在未來戰場上,人工合成的決策將出現在人類決策的內部和周圍。事實上,人工智能(AI)將改變人類生活的方方面面。戰爭以及人們對戰爭的看法也不例外。特別是,美國陸軍構想戰爭方式的框架和方法必須進行調整,以便將非情感智力的優勢與人類情感思維的洞察力結合起來。人工智能與人類行動者的組合有可能為軍事決策提供決定性的優勢,并代表了成功軍事行動的新型認知框架和方法。人工智能在軍事領域的應用已經開始擴散,隨之而來的作戰環境復雜性的增加已不可避免。
正如核武器結束了第二次世界大戰,并在二十世紀阻止了大國沖突的再次發生一樣,競爭者預計人工智能將在二十一世紀成為國家力量最重要的方面。這項工作的重點是美國陸軍的文化,但當然也適用于其他企業文化。如果要在未來有效地利用人工智能,而且必須這樣做才能應對競爭對手使用人工智能所帶來的幾乎必然的挑戰,那么成功地融入人工智能工具就需要對現有文化進行分析,并對未來的文化和技術發展進行可視化。美國將致力于在人工智能的軍事應用方面取得并保持主導地位。否則將承擔巨大風險,并將主動權拱手讓給積極尋求相對優勢地位的敵人。
合成有機團隊認知的兩大障礙是美陸軍領導的文化阻力和軍事決策的結構框架。首先,也是最重要的一點是,領導者必須持續觀察人工智能工具并與之互動,建立信心并接受其提高認知能力和改善決策的能力。在引入人工智能工具的同時,幾乎肯定會出現關于機器易犯錯誤或充滿敵意的說法,但必須通過展示人工智能的能力以及與人類團隊的比較,來消除和緩和對其潛在效力的懷疑。將人工智能工具視為靈丹妙藥的健康而合理的懷疑態度有可能會無益地壓倒創新和有效利用這些工具的意愿。克服這一問題需要高層領導的高度重視和下屬的最終認可。其次,這些工具的結構布局很可能會對它們如何快速體現自身價值產生重大影響。開始整合人工智能工具的一個看似自然的場所是在 CTC 環境中,以及在大型總部作戰演習的大型模擬中。最初的工具在營級以下可能用處不大,但如果納入迭代設計、軍事決策過程或聯合規劃過程,則幾乎肯定會增強營級及以上的軍事規劃。雖然在本作品中,對工具的描述主要集中在與指揮官的直接關系上,但在最初的介紹中,與參謀部的某些成員(包括執行軍官或參謀長、作戰軍官和情報軍官)建立直接關系可能會更有用。與所有軍事組織一樣,組織內個人的個性和能力必須推動系統和工具的調整,使其與需求保持平衡。
幾乎可以肯定的是,在將人工智能工具融入軍事組織的初期,一定會出現摩擦、不完善和懷疑。承認這種可能性和任務的挑戰性并不意味著沒有必要這樣做。人類歷史上幾乎所有的創新都面臨著同樣的障礙,尤其是在文化保守的大型官僚機構中進行創新時。面對國際敵對競爭對手的挑戰,美國陸軍目前正在文化和組織變革的許多戰線上奮力前行,在整合人工智能工具的斗爭中放棄陣地無異于在機械化戰爭之初加倍使用馬騎兵。在戰爭中,第二名沒有可取的獎賞,而人工智能在決策方面的潛在優勢,對那些沒有利用這一優勢的行為體來說,是一個重大優勢。現在是通過擁抱人工智能工具和改變戰爭節奏來更好地合作的時候了。
研究要求:
由于傳感器數量不斷增加,人工智能(AI)的應用也日益廣泛,未來作戰環境的特點將是信息量大、決策速度快。因此,陸軍指揮官及其參謀人員將需要更快地做出決策和篩選大量信息的能力。商用人工智能系統具有提供這種能力的潛力,但陸軍不能假設 "開箱即用 "的商用人工智能系統具有全部能力,因為這些系統需要針對美國陸軍的具體情況進行充分的訓練。此外,還需要開展研究,以了解目前人工智能在陸軍中的應用情況。總的來說,人工智能往往擅長于主要通過模式識別來解決的任務,以及可以通過任務數據進行預測的任務,如圖像識別、醫療診斷和轉錄。然而,人工智能能否用于提高美國陸軍的信息收集效率,目前還不得而知。因此,在當前的研究中,探討了以下問題: 人工智能能否用于提高美國陸軍任務式指揮流程中的信息收集效率?
方法:
為了回答研究問題,使用了一個商業人工智能應用系統,它反映了陸軍任務式指揮人工智能應用原型的首次開發工作。在這項研究工作中,比較了這一適合陸軍的人工智能系統和其他兩種信息收集方法在信息收集任務中的表現:一種是傳統的信息收集方法(搜索計算機文件夾中的 PDF 文件),另一種是非適合陸軍的人工智能系統。針對軍隊的系統使用軍隊相關知識來幫助搜索(例如,它知道 "MDMP "等同于 "軍事決策過程"),而非針對軍隊的系統則沒有。在以下方面對三種搜索方法進行了比較 1) 參與者找到準確搜索結果所需的時間;2) 參與者搜索結果的準確性;3) 參與者對搜索結果的信心程度;4) 參與者使用系統的工作量感知;5) 參與者對系統可用性的感知。
研究結果:
與使用傳統搜索方法相比,學員在使用人工智能系統進行搜索時既沒有更快,也沒有更準確。在使用人工智能系統時,參與者對搜索結果的信心也沒有傳統方法高。不過,在使用軍隊定制的人工智能系統而不是非軍隊定制的系統時,參與者的搜索速度更快,但準確性也更低。最后,不同搜索方法的參與者對工作量和可用性的感知沒有明顯差異。
利用和傳播研究結果:
這項研究是確定人工智能系統對信息收集效率影響的第一步。總體而言,研究結果表明,人工智能系統可能不會大幅提高美國陸軍任務式指揮流程的信息收集效率,至少不會立即提高。雖然這項研究的重點是在受控實驗室中執行一項無害的任務(即針對戰術情況尋找條令解決方案),但未來計劃中的用途不會像現在這樣無害,這表明未來的研究需要對假設進行檢驗。在對人工智能進行投資的同時,還應在培訓和研究方面進行投資,以充分發揮人工智能的優勢并降低風險。假定人工智能系統是靈丹妙藥并非明智之舉,事實上,這項研究表明,人工智能系統需要經過全面審查。
人們普遍認為,將機器學習融入軍事決策對于美國在 21 世紀保持軍事主導地位至關重要。機器學習的進步有可能通過提高整個國家安全企業級決策的速度、精確度和效率,極大地改變戰爭的特點。美國國防部的領導者們認識到了這一點,并正在做出大量努力,以在戰爭的戰術、作戰、戰略和機構層面有效整合機器學習工具。
本報告將探討機器學習的一種應用,其重點是在競爭和沖突的作戰層面實現軍事決策。展示了機器學習如何與人類合作,作為決策系統的一部分,用于提高軍事行動和活動的有效性。展示了這種方法如何通過分析原本無法獲取的數據源,為指揮官提供有關作戰環境的新見解。將重點放在從大量基于文本的數據(如報紙報道和情況報告)中獲得的洞察力上,這些數據無處不在,但卻很少以任何系統的方式整合到決策中。
在本報告中介紹的方法以人機協作系統的概念為基礎,并證明了現有的機器學習能力需要人在各個階段的參與,才能證明對操作層面的決策有用。因此,機器學習能力的發展與雷達自二戰以來的演變密切相關,而雷達是人機協作用于軍事目的的最早范例之一。如今,與不列顛之戰期間使用的預警系統同樣依賴雷達機器和人類觀察員一樣,機器學習仍然需要人類的參與,以指導這種新傳感器使用正確的數據,正確解釋其輸出結果,并評估其結果對作戰決策的影響。
通過一個基于真實世界數據和真實世界危機的示例研究,將讀者("您")置身于一名軍事指揮官的視角,就 2022 年俄羅斯全面入侵烏克蘭之前,美國如何支持烏克蘭兵力應對俄羅斯支持的烏克蘭東部叛亂,展示了這一系統方法的實際應用。在撰寫本案例研究時,把讀者您當成了這位指揮官,因為目標是強調您在未來與機器學習工具的合作中可能扮演的關鍵角色--無論是作為分析師、決策者,甚至是在現實世界的類似背景下應用這些工具的軍事指揮官。
值得注意的是,本案例研究是基于 2014-2020 年間的數據于 2020 年 12 月完成的,僅分析了這一時期與俄羅斯支持的烏克蘭東部叛亂有關的實地情況。本研究尚未更新,以反映自 2022 年 2 月俄羅斯入侵烏克蘭以來所獲得的任何見解。然而,從入侵前的視角來看,機器學習在后來發生的現實世界事件中用于作戰決策的優勢和局限性也就不言而喻了。
在整個案例研究中,將看到為本報告目的而進行的基于機器學習的實際評估結果,該評估分析了來自烏克蘭的 18,000 篇歷史新聞報道,內容涉及從 2014 年沖突起源到 2020 年末的沖突。利用機器學習工具從這些數據中提取相關見解,并與分析結果進行互動,就向烏克蘭兵力提供何種類型的支持以及在俄羅斯入侵前實現美國在該地區的目標做出名義上的決策。在此過程中,人機協作學習的優勢將逐漸顯現,將親眼目睹機器學習工具如何快速、系統地利用以前無法獲取的數據,為復雜問題提供新的見解。但這種方法的局限性也會顯現出來,將親眼目睹機器學習的好壞取決于支持它的可用數據,以及訓練機器學習工具和解釋其結果的人類分析師。
人機協作方法適用于軍事決策者在陸軍和美國防部作戰和機構層面面臨的各種問題集。因此,本研究以具體證據清晰地展示了在軍事決策中使用機器學習所涉及的權衡問題,為機器學習在軍事領域的廣泛應用做出了貢獻。本研究為美國陸軍提出了幾項重要發現和建議。
首先,分析展示了機器學習在軍事決策方面的巨大潛力,但只有在與對特定問題背后的背景有詳細了解的人類分析師配對時才能實現。在此提出的機器學習方法不會取代人類分析師。相反,它能使人類分析師更高效、更嚴謹,并能更好地從以前未開發的數據源中提取洞察力。在案例研究中,通過使用機器學習獲得的大多數關鍵見解都需要人類分析師的額外干預。在某些情況下,這需要在模型結果的基礎上有選擇性地疊加額外的數據源。在其他情況下,則需要人工分析師手動審查機器學習工具認為相關和有趣的基礎數據。因此,美國陸軍現有的機器學習能力需要人類在各個階段的參與,才能充分發揮其潛力。
其次,分析表明,通過大幅提高執行重復性任務的效率,人機協作方法可以大規模分析人類分析師無法單獨完成的海量數據集,從而產生以前無法實現的有關作戰環境的新見解。案例研究表明,從分析人員處理大量數據的重復性分析任務所花費的時間來看,機器學習能顯著提高效率,使分析人員更高效、更嚴謹,并能更好地從以前未開發的數據源中提取洞察力。這表明,對于需要大量人工審核相關數據的問題,陸軍領導應優先考慮將機器學習作為一種解決方案。
最后,這項研究揭示了機器學習的系統方法能夠對作戰級總部已有的大量數據進行標準化、客觀和長期的分析,從而增強其支持有效決策的潛力。在許多情況下,這些數據是戰爭中作戰和機構層面決策的最佳信息來源,但如果沒有機器學習,這些數據就只能以臨時和主觀的方式進行分析。
首先,這項研究表明,陸軍應為各級指揮人員提供頻繁接觸機器學習的機會,讓他們熟悉人類如何利用這些能力作為軍事決策系統的一部分。
其次,本研究強調,陸軍應建立多樣化的機器學習團隊,以充分釋放這一能力的潛力。這些團隊應整合熟悉機器學習工具細節的作戰研究系統分析員、對特定作戰環境有第一手知識的操作員、了解可用數據以分析特定問題的分析員,以及能將機器分析轉化為對作戰決策有實際影響的指揮官。
壓縮的戰術決策周期將是未來快節奏的超級戰爭的支點。人工智能武器系統有望擴展和最大化人類的能力,成為武裝部隊在這種致命作戰環境中的生存能力和殺傷力的關鍵。人工智能不是武器;它是武器系統的組成部分或元素--最可能是一個軍事網絡或 "軍事物聯網",它將加速火力或效果應用的速度和決策。網絡化部隊將為整個企業的態勢感知和戰斗管理提供信息。部隊不太可能出動 "殺手機器人"--攜帶武器、不受人類指揮做出生死決定的單獨實體。相反,創建和使用自主武器系統(AWS)將需要一個定義明確的作戰環境,并獲得豐富、準確、超大的數據集,如GPS,由分布式傳感器提供,加上改進的機器學習算法和高性能處理器,將人工智能融合到殺傷鏈中。殺傷鏈過程結合了多光譜傳感器,以了解作戰環境,積極地識別、跟蹤和選擇目標,并以最適當的效果與他們交戰。(蘇聯將這一過程稱為 "偵察打擊綜合體",而在20世紀90年代,美國的約翰-博伊德推廣了 "OODA循環 "一詞,即武裝部隊在對手面前競相觀察、定位、決定和行動)。人工智能旨在促進這種適應性的、多領域的、高速的決策模式,在此過程中,它有望提供決定性的軍事優勢。本研究的第二部分敘述了美國武裝部隊在武裝沖突期間對人工智能的當前和潛在使用。
在第三部分,研究轉向適用于戰爭中使用人工智能的規則。所有的戰爭方法和手段,包括人工智能,都必須符合戰爭法,也稱為武裝沖突法(LOAC)或國際人道主義法律(IHL)。指揮官有責任確保他們所掌握和指揮的方法和手段,包括人工智能,符合武裝沖突法的原則,如區分、相稱性和攻擊中需要預防的規則。
第四部分探討了《特定常規武器公約》(CCW)成員國為制定有助于確保AWS遵守武裝沖突法的標準所做的努力。特定常規武器公約》召集了一個政府專家小組(GGE),考慮對AWS的人類判斷或控制水平進行標準化的定義,以確保人類對機器的行為負責。政府專家小組最關注的是確保在敵對行動中使用致命性武器(LAWS)符合武裝沖突法。這項工作旨在彌補致命性武器系統在法律上暴露的 "漏洞"。然而,無論這一過程中產生了什么標準,都不可能成為確保致命性武器系統的運作符合武裝沖突法的有效和可靠的指導。
此外,一些非政府組織和有關國家認為,讓指揮官對行為不可預測的自主武器系統負責是不公平的,但這正是軍隊運作的方式--賦予軍事指揮部對部隊的全權和責任。特定常規武器公約》政府專家小組的努力不太可能產生詳細的、被廣泛接受的規則,從而有意義地改進這種模式。作戰的軍事指揮官已經對他們在武裝沖突期間使用人工智能武器系統負責,這是第五部分的重點。
第五部分探討了體現在軍事指揮官身上的人類問責制。軍事指揮官對人工智能武器系統的使用以及在他或她的指導下支持戰爭行動的所有努力路線負責。直接的、個人的指揮責任是長期的、完整的。對所有軍事行動--包括武裝沖突中由人工智能發動的攻擊--的相應責任由指揮系統的最高層承擔。這種問責可能是以刑法的形式,但也包括一系列行政和非司法措施。直接問責涵蓋了武裝沖突期間發生的每一件事,包括那些國際刑事法院缺乏管轄權或證據不足的事件,因此它規范了指揮官的行為,即使他們沒有犯罪意圖,事實上,即使他們沒有直接 "過錯"。
第六部分的結論是,指揮官的直接和個人問責的好處是長期存在,被廣泛理解,并被一線軍官和軍事領導人直觀地理解;它是軍事文化的一部分。雖然它可以利用法律程序,包括軍事司法系統,但它并不完全受制于或依賴這些程序。雖然指揮官仍然要為戰爭罪受到刑事處罰,但軍事問責制也包括一系列非司法和行政制裁。指揮官對人工智能武器系統的問責尤其引人注目,因為與常規武器不同,如果出了問題,沒有額外的人(或更少的人)可以負責。
圖4. 人工智能對目標定位的增強:人工智能可以通過搜索目標并在發現后發出警報來增強動態目標定位周期。
開發和使用新的軍事技術是一個軍事專業人員工作的一部分。事實上,軍事歷史在很大程度上是一個技術革新的故事,士兵需要學習如何操作新系統。因此,關于整合人工智能的很多東西并不新鮮。就像坦克、飛機甚至弩一樣,隨著時間的推移,士兵們學會了使用和運用技術,工業界學會了以足夠的數量和質量生產技術,高級領導人學會了運用技術來實現戰略效果。如前所述,人工智能技術與它們的顛覆性“前輩”之間的區別在于,前者有能力改善廣泛的軍事武器、系統和應用。由于這種潛在的普遍性,幾乎所有的士兵都必須在某種程度上變得熟練,才能有效地和道德地運用AI技術。隨著這項技術在應用上的擴展,戰爭將像管理暴力一樣管理數據。
這種普遍性也提出了關于人類發展和人才管理的問題。盡管培訓計劃最終會培養出更多的知識型士兵,人事系統也會提高管理士兵的能力,但軍警人員能夠獲得知識和技能的限制仍然存在,特別是在作戰層面。盡管討論的目的不是要建立嚴格的指導方針,但討論確定了士兵需要獲得的許多知識。例如,士兵將需要知道如何策劃和培訓數據庫,而該數據庫對他們正在執行的任務有著重要作用。這樣做需要確保數據的準確、完整、一致和及時。使用這些數據需要熟練應用推薦模型卡中描述的條件,而熟練的操作有助于確保算法以有效和道德的方式執行。
當然,信任不能僅靠政策和程序來保證。指揮官、參謀員和操作員需要知道他們被信任做什么,以及他們信任系統做什么。指揮官、參謀員和操作員信任人工智能系統來識別合法目標,并避免識別非法目標。參與這一過程的人必須在使用這些信息時,既需要擊敗敵人,又必須避免友軍和非戰斗人員的傷亡。要找到這種平衡,就需要判斷人應該承擔多大的風險。
只要參與流程的人類能夠與系統進行有效的互動,由人工智能賦能的系統就能促進找到這種平衡。在將人類控制整合到機器流程中時,人們經常被迫在控制和速度之間做出選擇:強加的人類控制越多,系統的運行速度就越慢。但本研究發現這種兩難的局面是錯誤的。盡管在某些情況下,在人的控制和速度之間進行平衡可能是必要的,但如果系統要最佳地運作,人的輸入是必要的。
實現最佳性能首先要求指揮官確保參謀和操作人員了解模型能力,理解數據質量的重要性,以及洞悉模型在作戰環境中的表現。盡管它可能不會使系統更加精確或準確,但實現這些任務可使系統能夠更好地對輸出進行概率分配。第二,指揮官需要確定對任務、友軍戰斗人員和敵方非戰斗人員的風險有多大才合適。這一決定很復雜,其中關鍵任務可能是需要容忍更多的友軍和非戰斗人員傷亡。同樣,如果非戰斗人員的密度較低,即使任務不那么緊急,也可以容忍較高的風險。尋找這種平衡將是人類的工作。
但在前面描述的模糊邏輯控制器的幫助下,指揮官可以更好地確定什么時候可以信任一個人工智能系統在沒有人類監督的情況下執行一些目標定位步驟。此外,可以通過構建交互的邏輯,以找到多種不同的人機互動配置,確保系統的最佳使用,同時避免不必要的傷害。在LSCO期間,讓指揮官在需要時選擇智能和負責任地加快目標定位過程將是至關重要的,本報告中提出的設計實現了這一目標。這一成就在未來尤其重要,因為為了保護部隊并實現任務目標,指揮官將面臨大量時間敏感目標,及面臨承擔更多風險的操作條件。
在培養具有正確技能的足夠數量士兵以充分利用人工智能技術方面,仍有大量的工作。目前的人才管理計劃尚未達到管理這一挑戰的要求,盡管多個有前途的計劃準備最終滿足需求。然而,在大多數情況下,這些計劃都是為了滿足機構層面的要求,在機構層面上做出全軍采買人工智能和相關技術的決策。但是,這些技能將如何滲透到作戰陸軍,尚不清楚。
盡管人工智能在目標定位中的使用并不違反當前的戰爭法,但它確實引起了一些道德倫理問題。在所討論的目標定位系統背景下,這些倫理問題中最主要的是問責制差距和自動化偏見。第一個問題對于回答核心問題至關重要,“指揮官在什么基礎上可以信任人工智能系統,從而使指揮官可以對這些系統的使用負責?”自動化偏見和數據衛生與問責制差距有關,因為當這些問題存在時,它們會破壞指揮官可能希望實施的有意義的人類控制措施。指揮官可以通過以下方式縮小問責差距:首先,確保人員受到適當的教育、技能和培訓,以整理相關數據;其次,確保指揮官允許的風險,準確地反映完成任務與保護友軍士兵和非戰斗人員之間的平衡需求。指揮官還可以通過在機器需要更多監督時向參與該過程的人類發出信號來減少自動化偏見的機會及其潛在影響。
作為一個專業人員,不僅僅意味著要提供服務,還要在出問題時承擔責任。專業人員還必須了解各種利益相關者,包括公眾和政府及私營部門實體,如何與本行業互動和競爭。鑒于這些技術的潛力,軍事專業人員必須首先學會在技術及其應用的發展中管理預期。由于這種演變影響到專業工作的特點,軍事專業人員還必須注意專業以外的人如何重視、獎勵和支持這項工作。因此,隨著美軍繼續將人工智能和數據技術整合到各種行動中,對其專業性的考驗將在于擁有專業知識的能力,以及建立能夠繼續發展、維護和認證這種專業知識的機構,這些機構既能滿足美國人民的國防需求,又能反映他們的價值觀。
美國仍然是世界上最突出的軍事和技術力量。在過去十年中,美國認識到人工智能作為力量倍增器的潛力,越來越多地將人工智能(AI)的熟練程度視為美國重要利益和保證美國軍事和經濟實力的機制。特別是,在過去十年中,人工智能已成為美國國防的一項關鍵能力,特別是考慮到2022年美國國防戰略對印度-太平洋地區的關注。
因此,美國國防部(DoD)(以及美國政府和國防機構總體上)對人工智能和相關新興技術表現出越來越大的熱情。然而,雖然美國目前在學術界和私營部門的人工智能研究和開發方面取得了巨大進展,但國防部尚未在廣泛范圍內成功地將商業人工智能的發展轉化為真正的軍事能力。
美國政府在利用國防人工智能和人工智能支持的系統方面通常處于有利地位。然而,在過去的幾年里,各種官僚主義、組織和程序上的障礙減緩了國防部在國防人工智能采用和基于技術的創新方面的進展。最關鍵的是,國防部遭受了復雜的收購過程和廣泛的數據、STEM和AI人才和培訓的短缺。從事人工智能和人工智能相關技術和項目的組織往往是孤立的,而且還存在必要的數據和其他資源相互分離。在美國防部內部存在一種傾向于可靠方法和系統的文化,有時趨向于勒德主義。所有這些因素都導致了人工智能采用的速度出奇的緩慢。美國家安全委員會2021年提交給國會的最終報告總結說,"盡管有令人興奮的實驗和一些小型的人工智能項目,但美國政府離人工智能就緒還有很長的路要走"。
因此,盡管人工智能有可能增強美國的國家安全并成為一個優勢領域,而且鑒于美國在軍事、創新和技術領導方面的長期傳統,人工智能有可能成為一個薄弱點,擴大 "美國已經進入的脆弱窗口"。 如果美國不加快創新步伐,達到負責任的速度,并奠定必要的制度基礎,以支持一支精通人工智能的軍隊,人工智能將繼續成為一個不安全點。
去年,美國防部在這些挑戰中的一些方面取得了進展,調整了國防人工智能的方法。2022年6月,美國防部發布了《負責任人工智能戰略和實施途徑》,將更有數據依據的、負責任的、可操作的人工智能工作列為優先事項,此后開始執行。最重要的是,美國防部已經啟動了對其人工智能組織結構的重大改革,創建了一個新的首席數字和人工智能辦公室(CDAO),以整合其不同的人工智能項目和利益相關者,并使其與該部門的數據流更好地協調。值得注意的是,美國國防部目前正在對其國防人工智能的整體方法進行重大變革和振興。然而,這些新的人工智能努力是否足以讓美國彌補失去的時間,還有待觀察。
人工智能(AI)是一項具有廣泛用途的新興技術。《美國防戰略》強調了人工智能對軍事行動的重要性,以使美國保持對其近似競爭對手的優勢。為了充分實現這一優勢,不僅要在戰術層面,而且要在戰爭的作戰層面整合人工智能。人工智能可以最有效地融入作戰計劃的復雜任務,方法是將其細分為其組成部分的作戰功能,這些功能可以由狹義的人工智能來處理。這種組織方式將問題減少到可以由人工智能解析的規模,并保持人類對機器支持的決策的監督。
人工智能是一套新興的、變革性的工具,有可能幫助軍事決策者。美國國家戰略將人工智能(AI)納入戰爭。《2020年國防授權法》11次提到了人工智能。國防戰略強調了利用人工智能和機器學習方面的商業突破的重要性。人工智能的軍事用途是保留國家安全的一個引人注目的方式。創造工具來支持戰術行動,如摧毀敵軍和從一個點導航到另一個點,具有顯著和可見的效果,使他們在資源有限的環境中在政治上可以接受。它們在訓練和測試方面的可重復性,使它們在采購過程中成為人工智能系統的快速贏家。然而,戰術行動的范圍和時間是有限的。僅在戰術層面上整合人工智能,忽視了在作戰層面上發生的決定性影響。
作戰,也就是實踐者將戰術行動轉化為戰略效果的層面,取決于領導者做出正確決策的能力。聯合部隊海事部分指揮官(JFMCC)的艱巨任務是制定計劃,將戰區戰略和聯合部隊指揮官(JFC)的目標結合起來,通過決定性的海軍交戰來塑造環境。在人工智能的快速認知能力的幫助下,JFMCC將能夠制定并更徹底地分析行動方案(COA)。這些品質對于未來的沖突是必要的。
人工智能必須在戰爭的各個層面進行整體集成,以充分實現其優勢。除了局部的、短期的戰斗,它還需要應用于主要的行動和戰役,涉及整個戰區的數月或數年。在戰爭的戰役(作戰)層面上的實施,放大了為實現戰略目標而進行的有序交戰和同步行動之間的協同作用。除了技術發展之外,行動上的整合將刺激政策和理論的建立,以使作戰人員有意愿使用人工智能。隨著使用人工智能的經驗的增加,其采用率也會增加。為協助海軍作戰計劃而實施的特定人工智能技術可能與那些用于計算射擊方案或在被拒絕的淺灘水域規劃路線的技術不同。然而,在作戰層面的接受度將推動戰術上的使用。
在JFMCC層面,人工智能系統網絡將為決策者提供決定性的優勢,將專注于作戰功能的獨立的人工狹義智能(ANI)單位統一起來將實現最顯著的好處。首先,人工智能解決方案比它們的通用人工智能(AGI)同行更適合于軍事問題的解決。其次,戰爭的性質促使有必要在作戰層面上整合人工智能。最后,雖然有許多方法可以整合,但沿著功能線這樣做會帶來最顯著的好處。不僅在技術意義上吸收人工智能,而且描述其在政策、理論和培訓中的使用,將使海軍能夠充分使用它,并在與我們的戰略競爭對手的競爭中獲得優勢。
目前人工智能在海上行動中的最佳應用是將復雜的海上行動問題分解成子問題,由人工智能來解決,并組合成COA建議。解決小問題的人工智能需要更少的訓練數據,有更直接的邏輯,并且可以連鎖起來解決更重要的問題。麻省理工學院人工智能實驗室前主任羅德尼-布魯克斯(Rodney Brooks)認為,創建動態環境的符號表示是困難的或不可能的。然而,特定任務的智能體可以利用足夠的傳感器數據智能地行動,更重要的是,可以連貫地互動。通過將簡單的活動連鎖起來,失敗的風險很低,更復雜的問題就可以得到解決。多個簡單的行動可以在低認知層平行運行,并將其輸出結合起來,為更高層次的復雜活動提供支持。這種結構的優點是允許軍事工程師開發和訓練人工智能,以首先解決可操作的問題。對人工智能開發者來說更具挑戰性的功能可以保留只由人類決定的方法,直到他們產生解決這些問題的專業知識。與其等待一個完整的系統,部分系統將提供一個臨時的邊際優勢。
鑒于人工智能可以通過將問題分解成更小的決策來最好地解決問題,問題仍然是如何劃分這些問題。重述作戰任務的一個模式是將它們分成作戰功能:指揮和控制(C2)、通信、情報、火力、運動和機動、保護和維持。這些作戰功能為開展有效行動提供了基礎。它們為一個行動提供了采用手段實現其目的的方法。因此,與決定如何實施這些功能以實現目標的決策者一起使用人工智能是很自然的。
如同應用于海上作戰戰爭,最低層的決策支持系統將由感知環境的活動組成:探測艦艇、飛機和潛艇;燃料水平;天氣;以及其他客觀的戰斗空間數據。通過將外部輸入限制在特定的、低層次的任務上,該系統將最大限度地減少對抗性例子或旨在消極操縱自動系統的數據的風險。中間層將把下層的輸出與作戰目標和因素結合起來,如時間、空間和力量的限制,以提供解決問題的方法和作戰功能。由于上層的對抗性數據注入的威脅較小,這些系統可以使用深度學習。深度學習是機器學習的一個子集,它不像其他形式那樣需要高度格式化的數據,但計算成本會更高,而且容易受到欺騙。深度學習將增加這一層的人類互動,并暴露出更復雜的關系。最高層將把C2流程應用于其他六個業務功能,以產生業務建議。中間層的每個功能人工智能將向其他功能人工智能和最高C2層提供建議。中間層的人工智能對復雜的數據和相鄰單位及C2功能的建議進行理解。
如果將中間層人工智能納入規劃和指導、收集、處理、分析和傳播的情報周期,將促進收集資產的更好分配。判斷對有限的收集資產的請求以滿足行動和戰術信息需求是JFMCC關注的一個問題。在收集計劃期間,人工智能可以使用已知的對手軌跡、地點、個人和組織來定義和優先考慮指定的利益區域(NAI)。在執行過程中,人工智能可以根據優先級驅動收集路線,就像企業用它來規劃送貨路線以減少勞動力、燃料和維護成本一樣。采集計劃者可以通過增加對手監視點的位置和范圍來減少反偵查的風險。在C2層面,指揮官和情報官員可以利用收集成果來證明更多的JFMCC收集資產和COA的修改。這種方法適用于其他功能。
人工智能可以在部隊部署不斷變化和對手存在不確定的環境中改善維持能力。相互沖突的要求使如何使用有限的后勤資產來滿足作戰人員的需求的決策變得復雜。后勤單位較低的生存能力促使人們決定是將它們帶入被對手防御系統拒絕的區域,還是將戰斗飛船引離目標。人工智能可以利用軍事和民用運輸的可用性、預先部署的庫存和供應商的響應能力來制定船舶和飛機需求的解決方案。企業利用人工智能準確預測需求,并分辨出影響運輸和倉儲的采購模式。維持型人工智能可以使用這個過程的一個變種,來計劃在高級后勤支持站點(ALSS)或前方后勤站點(FLS)的材料堆放。它可以決定如何以及何時使用穿梭船和站立船來運送到攻擊組。機器學習將使用燃料、食品和武器庫存、威脅環、戰備水平和維修時間來訓練維持人工智能。維持型人工智能可以提供比人類單獨完成的更有效的量化解決方案,并將其反饋給其他功能區和C2高層。
C2層將對來自下層的決定進行仲裁,并提供一個統一的建議。就像一個軍事組織的指揮官一樣,它將把其副手AI的建議合并起來。人工智能過程的早期階段使用傳感器數據和其他客觀信息來確定指揮官的方向;決定行動方案需要建立對戰斗空間的理解,這是一種更高層次的欣賞。戰斗空間的可變性和模糊性將使這一層的人工智能元素最難開發。最終,該系統將作為一個可信的智能體,壓縮指揮官負責的信息量。壓縮的信息減輕了時間有限的決策者工作時的疑慮負擔,使她能夠向下屬單位發出更及時的命令。
圖1說明了基于這些原則的系統的擬議架構。以對手預測為例,許多單一用途的ANI將在最低層結合原始傳感器和單位報告數據。它將評估敵方單位的最可能位置。公司分析評論、社交媒體和論壇發帖的情緒,以確定產品的滿意度。同樣地,這個系統將通過公開的言論和秘密的報告來確定對手的意圖。它將評估當前和歷史天氣模式,以評估氣候對敵人行動的影響。這三個輸入和其他信息將被功能情報ANI用來形成對敵方COA的評估。同樣,火力節點將使用敵人的組成、JFC的優先級和預測的彈藥可用性來產生目標指導。中間層節點將橫向傳遞他們的評估,以完善鄰近的建議,如部隊保護水平。獨立的功能建議也將直接反饋給C2層,以創建整體行動方案。
圖1. 海上人工智能系統的擬議架構
首先,利用聯合人工智能資源的優勢,針對海軍的具體問題修改標準組件。擅長開發軍事人工智能系統的工程師的稀缺性將限制新系統的開發。美國防部的人工智能戰略具體規定了建立通用的工具、框架和標準,以便進行分散的開發和實驗。使用這些現成的組件,為人工智能決策網的所有子系統創建低級別的系統和標準接口。將海軍的資源集中于采購和實施用于海事具體決策的中層和高層系統。避免技術上令人著迷但無效的解決方案,并通過將職能領域的專家與設計團隊相結合來保持解決海事問題的目標。
第二,創建并維護可通過機器學習攝入的作戰數據數據庫,以訓練海軍人工智能。實施能夠在海上作戰中心(MOC)讀取和集中匯總基本作戰數據報告的技術和工藝,如燃料狀態、導彈裝載量。開發記錄和定性評分作戰決策結果的方法,如對手態勢的變化、傷亡修復率和公眾對行動的反應。將輸入與作戰決策和結果聯系起來的數據庫將加速開發符合現實世界標準的系統。
第三,將人工智能的使用納入政策和條令。條令應該編纂人工智能可以被整合到戰爭戰役層面決策中的領域。明確地說,關于情報、行動、火力、后勤、規劃和通信的海軍作戰出版物應說明人工智能在決策過程中產生優勢的地方和方式。描述海上聯合行動的聯合出版物應明確說明如何將JFC的要求解析為JFMCC的AI系統。如果國防部和海軍的政策對指揮官因整合人工智能的決策建議而產生的責任量進行了定性,那么他們在使用人工智能時就可以采取經過計算的風險。讓指揮官和作戰人員掌握使用人工智能的戰術、技術和程序將加速其在艦隊中的應用。
美國已經進入了一個大國競爭的新時期。俄羅斯和中國的崛起在全球權力結構中形成了復雜的三足鼎立局面。最近人工智能方面的技術進步使這種多變的國際動態進一步復雜化。學者、政治家和高級軍官已經意識到,人工智能的融入是軍事事務中一場新革命的起源,有能力改變權力的戰略平衡。美國在中東被二十年的反叛亂所困擾,并受到僅延伸至2025年的長期人工智能戰略的阻礙,沒有準備好進入這個 "第六代 "軍事能力,以確保其戰略利益。這種人工智能化的部隊將由半自主和自主系統定義,包括致命的自主武器系統。第一個開發和使用這些武器的國家行為者將在這個新時代獲得對其競爭對手的戰略優勢。雖然美國目前在人工智能方面擁有優勢,但由于缺乏前瞻性思維和重點投資政策,這種優勢正在迅速消失。這是一份旨在解決這一差距的政策文件。20世紀90年代中期的中國軍事現代化模式為美國未來的政策提供了一條潛在的途徑。雖然兩國政府結構存在差異,但其中的幾個基本原則可以在美國的制度框架內適用。因此,美國可以通過制定健全的投資政策、集中的技術發展計劃和新的行動概念來確保人工智能的首要地位,以便在新能力出現時將其最大化。
大國競爭必須相對于其他大國的能力進行評估。因此,沒有一種能力可以被評估為產生可持續的絕對優勢。然而,在潛在的對手獲得同樣的能力之前,開發人工智能技術和應用為21世紀沖突設計的CONOPS的能力將在整個政治/軍事領域產生一個暫時的戰略優勢。美國目前的公共政策和戰略并沒有延伸到25年后。隨著中國準備在2030年成為占主導地位的人工智能大國,美國為了確保長期戰略利益,不能接受人工智能競賽的現狀。由于人工智能領域的技術發展速度很快,人工智能RMA的狀態和抓住初始優勢的能力正在接近一個拐點。建議美國采取側重于美國在人工智能競賽中的首要地位的政策,特別是在致命性自主武器系統的研究和開發方面。美國在這一領域保持優勢的能力對于國家安全和參與21世紀人工智能輔助和/或人工智能環境的準備工作是至關重要的。
由于致命性自主武器系統是一項仍在開發中的未來技術,因此不可能確定致命性自主武器系統對戰略環境的完整影響。本研究承認,對于評估一個未來武器系統的影響沒有預測性的措施,該系統在實現其全部潛力之前還將經過幾代技術的演變。然而,評估投資政策、技術和CONOPS演變的影響以及它如何影響軍事準備、政治資本和戰略環境的能力是有據可查的。
本文的建議將以1990年至今的中國軍事投資戰略為藍本。在此期間,中國國防開支的增加創造了一個前所未有的能力和軍事力量的增長,為美國未來的人工智能政策提供了一個框架。由于全球力量是以相對而非絕對的方式衡量的,美國至少必須在多極環境中與不斷增長的大國保持平等。雖然從美國的角度來看,中國戰略的某些方面,特別是盜竊知識產權的因素是不切實際的,但那些關于教育和貨幣投資的內容可以被納入美國未來的人工智能政策中。這項研究建議:
1.設立一個負責人工智能政策的助理國防部長的新職位,直接負責人工智能的發展和整合到美國防部。
2.指示ASDAI為美國軍隊制定一個關于第六代能力的預期最終狀態,每十年更新一次。
3.建立30年、15年和5年的人工智能目標,每五年更新一次,讓各個機構,如DARPA、JAIC、國防創新部門(DIU)和相關組織負責特定的發展水平。這將使美國政策制定者有能力根據ASDAI評估和更新的多變的戰略環境,為每個機構提供適當的資金。
4.成立一個委員會,負責發展和保留研究生水平的科學、技術、工程和數學(STEM)人才。
5.建立一個戰略規劃組織,負責研究和整合新的人工智能技術,因為它們出現在15年和5年的基準點上,以便在收購過程中納入其中。
對這些政策的評估必須對照美國對手在人工智能領域的成就和進步。建立在美國在人工智能領域的首要地位上的政策應該集中在教育和經濟投資,新的人工智能技術的初步發展,以及新的CONOPS的發展,以便在新的人工智能能力可用時充分和有效地進行。本研究報告的其余部分重點關注中國國防現代化計劃對美國未來人工智能政策和建議的調整。
在過去的二十年里,人工智能(AI)獲得了大量的關注,并激發了許多科學領域的創新。美國軍事預測人員創造了許多以人工智能為核心特征的未來作戰環境的預測。本文報告了人工智能創新的歷史趨勢,導致了對真正的通用人工智能(AGI)出現的高預期時期。這些對持續創新的夸大期望超過了實際能力,導致幻想破滅。人工智能經歷了新的創新、過度期望和幻想破滅的周期,然后是適度的進步。人工智能創新的周期性遵循極端夸張的周期,在過去的周期中,這導致了資金的損失和未來創新的放緩。為了避免在夸張的周期中看到的未來的幻滅和進步的喪失,領導者需要對機器學習技術有一個現實的理解,以及它對未來的人工智能發展意味著什么。本文提出了一個理解人工智能與作戰環境互動的功能框架。
語義學、技術樂觀主義、誤解和議程掩蓋了目前關于人工智能(AI)和智能的本質的辯論。關于人工智能的預測,從歇斯底里的天網啟示錄到人工智能驅動的烏托邦都有。人工智能和 "機器學習 "可能會走上幻滅之路。技術領域的知名專家警告說,人工智能將對人類的未來產生災難性影響。特斯拉和Space X的首席執行官(CEO)埃隆-馬斯克(Elon Musk)稱人工智能是一種生存威脅,并懇請政府對人工智能進行監管,"以免為時已晚"。已故著名物理學家史蒂芬-霍金認為,人工智能將是人類的末日。新聞媒體的標題是:"美國有可能在人工智能軍備競賽中輸給中國和俄羅斯"。還有人援引世界末日的觀點和對人工智能技術的情感反應。例如,《紐約時報》最近發表了一個標題:"五角大樓的'終結者難題'。可以自己殺人的機器人"。不幸的是,煽動恐懼的言論引起了公眾的共鳴,并建立在人工智能將是人類終結者的流行文化敘事上。
在歷史背景下觀察,目前對人工智能的看法遵循一個可衡量的趨勢,即Gartner公司的信息技術(IT)研究 "炒作周期 "的技術發展階段,見圖1。炒作周期以 "技術觸發點 "開始,一種只存在于原型的新概念化能力,吸引了媒體的注意。下一個狀態是 "期望值膨脹的高峰",早期采用者因其在實施該技術方面的成功而獲得宣傳。下一個階段是 "幻滅的低谷",技術固有的物理限制變得明顯,人工智能未能成熟,投資資金轉移到更有前途的企業。在幻滅的低谷之后,技術繼續成熟,盡管速度要慢得多。在這個緩慢的環境中,它被更好地理解,實施起來也有真正的成功。最后一個階段,即 "生產力的高原",是技術在被充分理解的條件下被廣泛實施的時候。然后,各行業創建標準和法規來管理技術的實施和互操作性。
圖 1. 技術發展的成熟度曲線。
人工智能發展的以往演變遵循夸張的周期,有幾個高峰和低谷,這里將概述一下。每次人工智能發展進入幻滅的低谷,美國政府和軍方支出停止資助;人工智能的發展都會停滯不前。美國政府和軍方一直是人工智能發展史上不可或缺的一部分,并將繼續在指導未來發展方面發揮重要作用。美國軍方不能有膨脹的期望,這將導致一段幻滅期,將主動權和技術優勢讓給美國的同行競爭者,俄羅斯和中國;他們正在追求武器化的AI。領導人和決策者需要對人工智能的發展有一個現實的技術理解,以指導他們將人工智能整合到軍隊企業中。過去的夸張周期提供了需要避免的陷阱的例子,但也提供了需要尋找有用的應用和未來創新的領域。
人工智能是有望改變未來幾年戰爭面貌的眾多熱門技術之一。描述其可能性并警告那些在人工智能競賽中落后的人的文章比比皆是。美國防部已經創建了聯合人工智能中心,希望能在人工智能的戰斗中獲勝。人工智能的愿景是使自主系統能夠執行任務、實現傳感器融合、自動化任務以及做出比人類更好、更快的決策。人工智能正在迅速改進,在未來的某一天,這些目標可能會被實現。在此期間,人工智能的影響將體現在我們軍隊在無爭議的環境中執行的更平凡、枯燥和單調的任務上。
人工智能是一種快速發展的能力。學術界和工業界的廣泛研究正在縮短系統訓練時間并獲得越來越好的結果。人工智能在某些任務上很有效,例如圖像識別、推薦系統和語言翻譯。許多為這些任務設計的系統今天已經投入使用,并產生了非常好的結果。在其他領域,人工智能非常缺乏人類水平的成就。其中一些領域包括處理人工智能以前從未見過的場景;理解文本的上下文(理解諷刺,例如)和對象;和多任務處理(即能夠解決多種類型的問題)。今天的大多數人工智能系統都被訓練來完成一項任務,并且只在非常特定的情況下這樣做。與人類不同,它們不能很好地適應新環境和新任務。
人工智能模型每天都在改進,并在許多應用中顯示出它們的價值。這些系統的性能可以使它們在信息戰中展示出非凡的能力,諸如在衛星圖像中識別 T-90 主戰坦克、使用面部識別識別人群中的高價值目標、為開源情報翻譯文本以及文本生成等任務。人工智能最成功的應用領域是那些有大量標記數據的領域,如 Imagenet、谷歌翻譯和文本生成。 AI 在推薦系統、異常檢測、預測系統和競技游戲等領域也非常有能力。這些領域的人工智能系統可以幫助軍方在其承包服務中進行欺詐檢測,預測武器系統何時因維護問題而失效,或在沖突模擬中制定制勝策略。所有這些應用程序以及更多應用程序都可以成為日常操作和下一次沖突中的力量倍增器。
當軍方希望將人工智能在這些任務中的成功經驗納入其系統時,必須承認一些挑戰。首先是開發人員需要獲得數據。許多人工智能系統是使用由一些專家系統(例如,對包括防空炮臺的場景進行標注),通常是人類標注的數據進行訓練。大型數據集通常由采用人工方法的公司進行標注。獲得這種數據并分享它是一個挑戰,特別是對于一個喜歡對數據進行分類并限制其訪問的組織來說。一個軍事數據集的例子可能是由熱成像系統產生的圖像,并由專家進行標注,以描述圖像中發現的武器系統(如果有的話)。如果不與預處理器和開發人員共享,就無法創建有效使用該數據集的人工智能。人工智能系統也很容易變得非常大(因此很慢),并因此容易受到 "維度問題 "的影響。例如,訓練一個系統來識別現有的每一個可能的武器系統的圖像將涉及成千上萬的類別。這樣的系統將需要大量的計算能力和在這些資源上的大量專用時間。而且由于我們正在訓練一個模型,最好的模型需要無限量的這些圖像才能完全準確。這是我們無法實現的。此外,當我們訓練這些人工智能系統時,我們經常試圖強迫它們遵循 "人類 "的規則,如語法規則。然而,人類經常忽視這些規則,這使得開發成功的人工智能系統在情感分析和語音識別等方面具有挑戰性。最后,人工智能系統在沒有爭議的、受控的領域可以很好地工作。然而,研究表明,在對抗性條件下,人工智能系統很容易被愚弄,導致錯誤。當然,許多國防部的人工智能應用將在有爭議的空間運作,如網絡領域,因此,我們應該對其結果保持警惕。
忽略敵人在人工智能系統方面的努力,其靠此擊敗我們,因為這些看似超人類的模型也有局限性。人工智能的圖像處理能力在給定不同于其訓練集的圖像時并不十分強大--例如,照明條件差、角度不對或部分被遮擋的圖像。除非這些類型的圖像在訓練集中,否則模型可能難以(或無法)準確識別內容。幫助我們信息戰任務的聊天機器人僅限于數百個字,因此不能完全取代一次可以寫幾頁的人類。預測系統,如IBM的Watson天氣預測工具,由于它們試圖模擬的系統復雜性,在維度問題和輸入數據的可用性方面很困難。研究可能會解決其中的一些問題,但很少有問題會像預測或期望的那樣迅速得到解決。
人工智能系統的另一個弱點是他們沒有能力進行多任務處理。人類有能力識別敵方車輛,決定對其采用何種武器系統,預測其路徑,然后與目標交戰。這套相當簡單的任務目前對人工智能系統來說是不可能完成的。充其量,可以構建一個人工智能的組合,將個別任務交給不同的模型。這種類型的解決方案,即使是可行的,也會帶來巨大的傳感和計算能力的成本,更不用說系統的訓練和測試了。許多人工智能系統甚至沒有能力在同一領域內轉移他們的學習。例如,一個被訓練來識別T-90坦克的系統很可能無法識別中國的99式坦克,盡管它們都是坦克,而且都是圖像識別任務。許多研究人員正在努力使系統能夠轉移他們的學習,但這樣的系統離實際應用還有長久的時間。
人工智能系統在理解輸入和輸入中的背景方面也非常差。人工智能識別系統并不理解圖像是什么,它們只是學習圖像像素的紋理和梯度。給予具有這些相同梯度的場景,人工智能很容易錯誤地識別圖片的一部分。這種缺乏理解的情況可能會導致作出錯誤分類,例如將湖面上的一艘船識別為BMP,但人類缺不會。
這導致了這些系統的另一個弱點--無法解釋它們是如何做出決定的。人工智能系統內部發生的大部分事情都是一個黑盒,人類幾乎無法理解系統是如何做出決定的。這對于高風險的系統來說是一個關鍵問題,比如那些做出參與決定的系統,或者其輸出可能被用于關鍵決策過程的系統。對一個系統進行審計并了解其犯錯原因的能力在法律上和道德上都很重要。此外,在涉及人工智能的情況下,我們如何評估責任的問題是一個公開研究點。最近,新聞中出現了許多例子,人工智能系統在貸款審批和假釋決定等領域基于隱藏的偏見做出了糟糕的決定。不幸的是,關于可解釋的人工智能的工作多年來一直沒有取得成果。
人工智能系統也很難區分相關性和因果關系。經常用來說明兩者區別的臭名昭著的例子是溺水死亡和冰激凌銷售之間的相關性。一個人工智能系統得到了關于這兩個項目的統計數據,卻不知道這兩個模式之所以相關,只是因為兩者都是天氣變暖的結果,并可能得出結論,為了防止溺水死亡,我們應該限制冰淇淋的銷售。這類問題可能表現在一個軍事欺詐預防系統中,該系統被告知按月采購的數據。這樣一個系統可能會錯誤地得出結論,認為9月份的欺詐行為會隨著支出的增加而增加,而實際上這只是年終消費習慣的一個結果。
即使沒有這些人工智能的弱點,軍方目前應該關注的主要領域是對抗性攻擊。我們必須假設,潛在的對手將試圖愚弄或破解我們使用的任何可獲得的人工智能系統。將試圖愚弄圖像識別引擎和傳感器;網絡攻擊將試圖躲避入侵檢測系統;后勤系統將被輸入篡改的數據,用虛假的需求堵塞供應線。
對抗性攻擊可分為四類:規避、推理、中毒和提取。事實證明,這些類型的攻擊很容易完成,通常不需要計算技能。逃避攻擊試圖愚弄人工智能引擎,往往是希望避免被發現--例如,隱藏網絡攻擊,或說服傳感器相信一輛坦克是一輛校車。未來的主要生存技能可能是躲避人工智能傳感器的能力。因此,軍方可能需要開發一種新型的人工智能偽裝,以擊敗人工智能系統,因為事實證明,簡單的混淆技術,如戰略性的膠帶放置,可以愚弄人工智能。逃避攻擊通常是通過推理攻擊進行的,推理攻擊可以獲得關于人工智能系統的信息,這些信息可以用來實現逃避攻擊。中毒攻擊的目標是訓練期間的人工智能系統,以實現其惡意的意圖。這里的威脅將是敵人獲得用于訓練我們工具的數據集。可能會插入誤標的車輛圖像以愚弄目標系統,或篡改維護數據,旨在將即將發生的系統故障歸類為正常操作。考慮到我們的供應鏈的脆弱性,這將不是不可想象的,而且很難發現。提取攻擊利用對人工智能界面的訪問來了解人工智能的運行情況,從而創建一個系統的平行模型。如果我們的人工智能不被未經授權的用戶所保護,那么這些用戶可以預測我們的系統所做的決定,并利用這些預測為自己服務。人們可以設想對手預測人工智能控制的無人系統將如何應對某些視覺和電磁刺激,從而影響其路線和行為。
人工智能在未來的軍事應用中肯定會有作用。它有許多應用領域,它將提高工作效率,減少用戶的工作量,并比人類更迅速地運作。正在進行的研究將繼續提高其能力、可解釋性和復原力。軍隊不能忽視這項技術。即使我們不擁有它,但我們的對手肯定會發展AI,我們必須有能力攻擊和擊敗他們的AI。然而,我們必須抵制這種重新崛起的技術誘惑。將脆弱的人工智能系統放置在有爭議的領域,并讓它們負責關鍵的決策,這將為災難性的結果打開了機會。在這個時候,人類必須繼續負責關鍵決策。
鑒于我們暴露的人工智能系統被攻擊的概率很高,以及目前人工智能技術缺乏彈性,投資軍事人工智能的最佳領域是那些在沒有爭議的領域運作的人工智能。由人類專家密切監督或具有安全輸入和輸出的人工智能工具可以為軍隊提供價值,同時減輕對漏洞的擔憂。這類系統的例子有醫學成像診斷工具、維修故障預測應用和欺詐檢測程序。所有這些都可以為軍隊提供價值,同時限制來自對抗性攻擊、有偏見的數據、背景誤解等等的風險。這些并不是由世界上的人工智能推銷員贊助的超級工具,但卻是最有可能在短期內獲得成功的工具。
保羅-麥克斯韋中校(退役)是美國軍事學院陸軍網絡研究所的計算機工程網絡研究員。他在服役的24年中曾是網絡和裝甲部隊的軍官。他擁有科羅拉多州立大學的電子工程博士學位。
所表達的觀點僅代表作者本人,不反映美國軍事學院、陸軍部或國防部的官方立場。