戰斗機的轟鳴聲和坦克的隆隆聲不再是現代戰爭的唯一形象。人工智能(AI)正在迅速改變戰場,開創了一個數據驅動決策和增強態勢感知的時代。通過利用實時數據共享和分析,人工智能使軍隊能夠優化部署效率、加強戰略規劃,并在不斷變化的戰場上獲得關鍵優勢。
傳統上,軍事行動一直受到 "戰爭迷霧 "的阻礙。"戰爭迷霧 "是指困擾戰時環境的不確定性和信息不完整性。關鍵數據往往來得太晚或支離破碎,阻礙了指揮官做出明智決策的能力。人工智能通過促進各種平臺的實時數據收集和傳播,彌補了這一差距。
想象一下這樣一種場景:配備了人工智能傳感器的地面部隊實時檢測到敵人的動向。這些數據會即時轉發給進行空中偵察的無人機,由無人機確認威脅。與此同時,人工智能算法對信息進行分析,精確定位敵人的位置和潛在弱點。然后,這些情報會通過增強現實顯示器傳送給指揮官,為他們提供全面、最新的戰場畫面。
在人工智能的幫助下,這種無縫的信息流使指揮官能夠迅速果斷地做出反應。他們可以戰略性地部署部隊,發起有針對性的反攻,并最大限度地降低自己人員的風險,從根本上改變戰爭的態勢。
人工智能的真正威力不僅在于數據共享,還在于它能從海量信息中提取有意義的模式和見解。先進的算法可以分析情報報告、衛星圖像和截獲的通信,識別潛在威脅、敵軍動向,甚至后勤薄弱環節的跡象。
例如,人工智能可以分析過去沖突的歷史數據,識別敵人的戰術并預測潛在的作戰策略。這樣,指揮官就能先發制人地部署反制措施,贏得戰略優勢。此外,人工智能還能篩選截獲的大量通信數據集,精確定位敵方領導人,發現后勤樞紐,為有針對性的行動提供有價值的情報。
人工智能在軍事領域的應用遠不止戰場。來探討一些具體的例子:
后勤和資源管理: 人工智能可以優化供應鏈,預測裝備需求,簡化向地面部隊運送必需品的流程。這可確保士兵在需要時獲得所需資源,從而提高作戰效率。
網絡安全防御: 人工智能驅動的系統可以持續監控軍事網絡中的可疑活動,在網絡威脅造成重大損失之前將其識別出來并予以消除。在網絡戰時代,這一點至關重要,因為一個漏洞就可能導致關鍵基礎設施癱瘓。
自主系統和機器人技術: 人工智能在自主車輛和武器系統的開發中發揮著至關重要的作用。配備人工智能的無人機可以執行偵察任務,識別并攻擊目標,甚至執行復雜的后勤任務。這些無人系統可最大限度地降低人類生命危險,并實現更精確、更高效的行動。然而,使用自主武器系統會引發倫理問題,需要認真考慮。
必須強調的是,人工智能并不是要取代人類在軍事領域的決策。相反,它是一種強大的力量倍增器,能增強人的能力,為指揮官提供做出明智選擇所需的信息和洞察力。歸根結底,關鍵決策的責任始終在于人類指揮官。
將人工智能融入軍事行動會帶來一些挑戰。圍繞自主武器的倫理考慮以及可能產生的意外后果需要仔細研究。此外,確保人工智能系統免受網絡攻擊至關重要。此外,訓練數據中的偏見可能導致歧視性結果,因此確保人工智能開發的公平性和透明度至關重要。
隨著人工智能技術的不斷發展,它對軍事行動的影響無疑將更加深遠。我們可以期待看到在實時數據處理、增強自主能力,甚至開發能夠協助復雜戰略規劃的人工智能系統方面取得進一步的進步。
然而,確保在軍事領域負責任地開發和部署人工智能至關重要。國際合作和遵守道德準則將是塑造未來人工智能戰爭的關鍵。
總之,人工智能正在徹底改變戰爭的方式。通過促進實時數據共享、提供可操作的見解以及為先進武器提供動力,人工智能正在改變戰場,開創軍事戰略的新時代。在我們向前邁進的過程中,負責任的發展和對道德原則的承諾將是確保人工智能作為一種善的力量,在提高軍事能力的同時捍衛人類價值的關鍵。
當今的威脅形勢瞬息萬變,能否在充分了解情況的基礎上做出以數據為導向的決策,關系到任務的成敗。然而,傳統的分析方法往往無法應對現代國防和情報行動所面臨的大量復雜數據。
這正是知識圖譜驅動的先進人工智能(AI)提供變革性解決方案的地方。通過利用大型語言模型和知識圖譜的協同作用,軍事領導人和分析人員可以獲得基于背景的洞察力,從而領先于新出現的威脅,并自信地做出關鍵決策。
國防領域的有效決策需要對行動背景有細致入微的了解,即形成現實世界場景的實體、關系和特定領域知識的錯綜復雜的網絡。在人命關天、容錯率極低的情況下,這種背景意識至關重要。
獨立的人工智能模型雖然功能強大,但缺乏可靠支持關鍵任務應用所需的上下文基礎。這些模型通常是在廣泛的互聯網數據基礎上訓練出來的,容易產生幻覺、與事實不符,而且對國防部隊面臨的復雜作戰現實缺乏敏感性。
知識圖譜為人工智能提供了一個專為國防領域量身定制的豐富、結構化的知識庫,從而彌補了這一關鍵差距。這些圖對現實世界的概念、實體(人員、組織、地點等)及其相互關聯的關系進行建模,捕捉可靠的決策支持所需的深層背景。
通過將大型語言模型(LLM)與知識圖譜相結合,我們可以釋放出強大的協同效應,將 LLM 的生成能力與圖譜中編碼的結構化上下文知識相結合。這種混合方法通常被稱為 "情景(上下文)人工智能",它允許 LLM 生成不僅流暢連貫,而且基于相關的、經過驗證的事實和特定領域知識的響應。
例如,負責分析潛在威脅場景的情境人工智能系統可以利用知識圖譜來了解相關行為體、其動機、歷史模式和地緣政治背景。有了這些豐富的背景知識,LLM 就能生成細致入微的評估、可行的建議和應急計劃,以應對錯綜復雜的局勢。
情境人工智能在國防和情報領域的應用意義深遠:
雖然情景人工智能潛力巨大,但將其部署到關鍵任務防御應用中需要一個強大的信任和問責框架。知識圖譜通過編碼事實性的、可驗證的知識并實現透明的推理過程,為此奠定了重要的基礎。
此外,人工智能的道德原則,如公平性、可解釋性和人類監督,必須嵌入到這些系統的開發和部署中。這將確保情境人工智能能夠增強人類決策者的能力,同時遵守最高的問責和負責任使用標準。
隨著威脅的演變和現代戰爭復雜性的加劇,知識圖譜和情景人工智能的整合成為國防部門和特種作戰部隊的戰略要務。通過利用這一變革性技術的力量,可以獲得決定性的優勢,在日益動蕩的世界中保持任務準備狀態并保障國家安全。
注:任務準備(戰備):指軍隊、組織或個人為完成任務所做的準備工作,包括物資、裝備、人員、訓練等方面的準備。
生成式人工智能的應用領域遠遠超出了數字助理和在線工具的范疇;其現在正涉足一個風險極大的領域:軍事行動。在國防戰略領域的這一飛躍代表著人工智能應用的重大發展,既是對戰略家和技術專家的挑戰,也令他們興奮不已。
來自特殊競爭研究項目(SCSP)的專家強調了正在進行的實驗,即根據特定的軍事條令和情報對生成式人工智能進行訓練,以制定作戰規劃。這一發展并不是要取代人類戰略家,而是要增強他們的能力。生成式人工智能在簡化復雜軍事行動的起草方面潛力巨大,不過實際執行仍嚴格受人類控制,并遵守防止自動致命行動的嚴格標準。
這個想法很吸引人:現在,生成式人工智能可以管理各種任務,從平凡的任務,如規劃一周的雜貨清單,到復雜的任務,如總結絕密情報或制定詳細的軍事戰略。不過,這項技術仍然需要一個 "認知副駕駛員"--由人類來監督和驗證人工智能的計劃。
以下是生成式人工智能在全球軍事行動中的三種應用方式。
1.自動威脅模擬:生成式人工智能用于網絡防御,根據以往事件中的模式自動生成網絡攻擊模擬。這有助于軍事網絡防御團隊制定強有力的應對措施,并針對潛在的網絡威脅進行更有效的訓練。
2.場景規劃和策略制定:在戰略行動中,生成式人工智能可以創建詳細的兵棋場景和策略,為特定的軍事形勢提供多種可能的應對措施。這有助于培訓和行動規劃,為軍事戰略家提供基于不同方法的各種潛在結果。
3.信息和心理作戰:生成式人工智能可用于制作量身定制的信息內容和心理作戰活動,以高度適應特定目標受眾的文化和社會背景。這種應用包括生成有說服力的通信,以戰略性的方式影響人們的觀念和行為。
從簡單的人工智能任務到更復雜的操作,這表明在未來,生成式人工智能有可能協調軍事和民用生活中更廣泛的方面。這包括從后勤支持到戰略規劃的方方面面,所有這些都將在人類的監督下進行,以避免出現令人擔憂的 "天網 "情況。
對于編劇來說,這項技術的發展提供了豐富的素材。人類角色將如何與能力越來越強的生成式人工智能互動?這種互動會產生什么樣的沖突和解決方案?敘事的可能性既廣泛又深刻,反映了現實世界與技術關系的復雜性。
隨著新一代人工智能不斷滲透到生活的方方面面,它對地緣政治穩定的影響是深遠的,這與第一次世界大戰前的時代有著令人不安的相似之處。然而,在人類和人工智能顧問的精心指導下,我們有希望比過去更有效地駕馭這個動蕩的時代。
這些發展不僅是技術上的,也是鼓舞人心的。在人工智能重塑戰場的同時,它也重塑了敘事景觀,為每個人角色和故事提供了新的挑戰和機遇。無論是在探索戰爭的未來、人工智能的倫理,還是人工智能驅動的企業世界中的微妙動態,不斷演變的人工智能角色都是一個等待探索的敘事金礦。
隨著人工智能的不斷發展,敘事也應與時俱進,以挑戰角色和吸引讀者的方式融入這些技術進步。這不僅是一次反思未來的機會,也是一次通過講述故事塑造未來的機會。
參考來源:AI4ES
在技術進步重塑戰爭格局的時代,將人工智能(AI)、機器學習(ML)和自主系統融入國防戰略已不再是未來的概念,而是現實的演變。這些技術在提高電子戰(EW)能力方面的意義怎么強調都不為過,因為它們在作戰速度、效率和復雜性方面具有顯著優勢。成本更低、規模更小、資產更豐富的戰爭即將來臨,對烏克蘭戰爭時經常這樣評論。
現代戰爭中潛在的變革性戰略之一是應用蜂群戰術,即使用多個自主單元執行協調任務。認知電子戰的蜂群資產,強調了這些戰術如何通過同時出現的一系列威脅來壓垮敵方系統。人工智能的集成使這些蜂群具有自主決策能力,從而大大提高了其有效性。這些系統可以根據實時戰場數據動態調整戰術,有效地適應反制措施并利用敵方防御的漏洞。
在繼續向完全自主系統轉變的過程中,一些討論強調了這些系統徹底改變戰爭的潛力。重點討論了在人工智能驅動的戰爭預警行動中使用無人機的問題。這些自主系統可以執行復雜的任務,處理大量的感知和信號數據,在瞬間做出有關干擾、欺騙或規避的決定。這些系統的獨立運行能力減輕了人類操作員的認知負擔,并允許采用更復雜、多層次的防御策略。無人機獨立運行是好事嗎?如何避免藍對藍?如何防止妥協或黑客攻擊?
將人工智能集成到關鍵軍事系統中會帶來一系列挑戰,尤其是在確保這些系統決策的可靠性和可信度方面。戰爭中的人工智能系統必須具有高度的可預測性,并通過模擬真實世界條件的模擬進行徹底審查。這不僅能確保作戰成功,還能防止因人工智能決策失誤而導致的災難性故障。我們如何進行這類培訓?我們是否擁有實時更新和更改這些系統的人員?
未來戰爭,將人工智能和自主系統融入電子戰戰略是一個充滿希望而又充滿挑戰的前沿領域。這些技術重新定義軍事行動的潛力。然而,先進技術的成功和安全取決于嚴格的測試、驗證和持續改進,以符合道德標準和戰略目標。
戰爭的演變不僅需要技術進步,還需要一個堅實的治理和監督框架,以確保負責任地有效使用這些強大的工具。關于這些更新的技術,已經有很多話題和討論,人們普遍感到興奮,但也看到了一些目前仍被忽視的重要問題。如何控制這些資產?誰來控制這些資產?是否已經決定將這些資產像彈藥一樣作為消耗品,還是仍然期望保留這些資產?
參考來源: JED
前美國防部長馬克·埃斯珀(Mark Esper)曾經說過:“歷史告訴我們,那些率先利用新一代技術的人往往在未來幾年的戰場上擁有決定性的優勢”。
人工智能和機器學習將在塑造現代戰場方面發揮關鍵作用。這些技術增強了態勢感知能力,優化了決策,并提供了競爭優勢。
從用于偵察的自主無人機到用于供應鏈管理的預測分析,它們的影響是深遠的。在烏克蘭的行動凸顯了這些技術的應用:由克里斯·希爾博士領導的陸軍物資司令部分析小組利用作戰數據在需要時協助需求規劃,同時無縫預測和協調需求。快速處理此類大量數據的能力允許實時威脅檢測和響應,從而挽救生命和資源。
此外,人工智能有助于開發復雜的網絡防御系統,并支持創造更智能、適應性更強的武器。簡而言之,人工智能和機器學習正在通過提高效率、準確性和整體有效性來徹底改變戰爭。隨著我們繼續開展活動和運營,并在全球范圍內進行投資,情況將保持不變。
總的來說,指揮官和領導者必須信任這項技術,才能在聯合全域作戰中證明其有效。當務之急是,所有梯隊的領導者都必須考慮如何制定和實施與家鄉站的數據訓練策略——以及戰斗訓練中心的參與——以建立對技術的信心,以便領導者能夠以信任的速度運作。
在不斷變化的戰爭環境中,技術進步不斷塑造著武裝部隊的作戰方式。從南北戰爭期間的加特林機槍到二戰期間的DUKW兩棲車輛和M-3半履帶運兵車,技術一直影響著我們的戰斗方式。
在這些進步中,人工智能和機器學習已成為游戲規則的改變者,無疑將徹底改變現代戰場。它們的整合在軍事行動的各個方面,從情報收集到決策等方面都帶來了前所未有的改進。
量子計算和機器學習可以在幾秒鐘內做出比傳統工作人員在軍事決策過程中更多的行動方案,這允許決策速度,這將給我們帶來決定性的優勢。
隨著戰爭性質的變化,我們正處于一個戰略轉折點,正如現已退休的馬克·米利將軍在 2023 年 7 月發表的“聯合部隊季刊”文章《戰略拐點:戰爭性質中最具歷史意義和最根本的變化正在發生——而未來籠罩在迷霧和不確定性中》中所闡明的那樣。
“我們必須努力比敵人少犯錯,”他說。這要求我們的聯合特遣部隊在聯合作戰概念的指導下進行根本性轉變。隨著我們過渡到一個新的戰爭時代,如果我們要贏得“比敵人少犯錯”的戰斗,我們必須確保聯合部隊被納入人工智能和機器學習的整合中。
同時,全面了解戰場對于軍事成功至關重要,人工智能和機器學習將使軍隊能夠利用大數據和實時信息的力量來增強態勢感知能力。配備人工智能算法的自主無人機可以以無與倫比的效率執行偵察任務,捕獲有關敵人動向、地形狀況和潛在威脅的數據。這些信息可以快速處理,使指揮官能夠在使用傳統方法所需時間的一小部分內做出明智的決定。
這種增強的態勢感知能力不僅可以最大限度地降低士兵的風險,還可以對新出現的威脅做出積極反應。簡而言之,訪問可以快速處理和分析的數據,為指揮官和作戰人員的實時決策提供信息,這將改變戰場上的游戲規則。
利用人工智能和機器學習等技術將塑造我們如何在未來的戰斗中采用這一概念,并決定我們如何培訓和發展梯隊領導者,以便在競爭、危機或沖突中利用這項革命性技術。
在“軍事評論”最近的一篇文章中,堪薩斯州萊文沃思堡陸軍聯合武器中心司令米爾福德·比格爾中將談到了我們必須如何通過減少對材料的依賴和提高對信息維度的利用來優化指揮所。
在混亂的戰爭中,瞬間的決策可以決定戰斗的結果。
正如在第二次世界大戰期間的中途島海戰中所看到的那樣,在那場海戰中,決策速度決定了成敗。人工智能和機器學習算法旨在處理大量數據并識別人類可能遺漏的模式。這些工具將改變組織如何更快地做出更好的決策。
將那些經常在“數據脫節”環境中作戰的戰場最邊緣的指揮官提升到行動指揮官和上層之間費力的信息流的犧牲品。
這種能力有助于軍事領導人做出更明智的決策,從選擇最佳戰略到根據實時情報評估最佳行動方案。從歷史數據中得出的預測分析還可以幫助預測敵人的動向并識別其防御中的潛在弱點。這是對指揮官現在利用的人類情報和信號情報流的一大補充。
最后,利用這項技術可以采取更有計劃、更有效的軍事行動方法,從而最大限度地減少傷亡并提高任務成功率。
戰略競爭對手正在部署能力,通過所有領域的多層對峙來對抗對手,這將要求在太空、網絡、空中、海上和陸地上擊敗多層對峙。實時檢測和響應威脅的能力是現代戰爭的重要組成部分。
人工智能驅動的系統可以同時監控多個數據源,從衛星圖像到截獲的通信。通過實時分析這些數據,算法可以識別異常和潛在威脅,從而立即向軍事人員發出警報。這種積極主動的方法能夠實現快速響應和反擊,防止對手占據上風。
無論是對關鍵基礎設施的網絡攻擊還是敵軍的移動,人工智能驅動的威脅檢測系統在維護軍事行動的安全性和完整性方面都具有顯著優勢。
后勤和供應鏈管理是任何軍事行動的命脈。在全球綜合后勤環境中,有太多相互作用的變量,維持者無法有效監控。
如今,人員只能通過各種數據流對車隊和供應商品的歷史數據進行監控。正如 Lone Star Analysis 的 John Price 在 2021 年 8 月發表在“軍事嵌入式系統”上的一篇文章中所寫的那樣,“計算機系統可以提供持續的評估,并且有足夠的機器智能,預測就會變得強大。
人工智能和機器學習通過預測需求模式、識別供應短缺和簡化分銷路線來優化這些流程。這包括人工智能驅動的基于車輛狀態的維護,該維護監控車輛的各個方面,從進氣到排氣以及其中的所有點。
因此,我們將范式完全從工廠轉移到了工廠,現在需求從散兵坑傳到了工廠。基于車輛狀態的維護利用預測性和規范性分析,同時提供持續診斷以及提供問題預測和解決方案處方,從而使人員能夠專注于進行特定調整,以優化軍用車隊的運營可用性。
這不僅確保了部隊擁有必要的資源,而且還最大限度地減少了浪費并降低了成本。通過自動化重復性任務和優化路線,武裝部隊可以更有效地分配資源,并在速度和效率方面保持競爭優勢。這種由人工智能和機器學習實現的精確維持確保響應符合需要,或者從散兵坑移動到工廠,而不是從工廠轉移到散兵坑。
同時,現代戰爭超越了傳統戰場,也包括了網絡領域。人工智能和機器學習在制定針對網絡威脅的自適應防御策略方面發揮著至關重要的作用。
美國防部的OODA - 觀察,定位,決策和行動 - 是作戰人員使用數據不僅實現有根據的決策,而且及時定位的循環。這些技術可以快速識別和響應網絡攻擊,分析模式以區分正常的網絡活動和可疑行為。此外,人工智能驅動的網絡安全系統可以從以前的攻擊中吸取教訓,并不斷提高其檢測和消除新出現的威脅的能力。
隨著世界的不斷發展,沖突的性質也在不斷變化。人工智能和機器學習已成為現代軍事武器庫中不可或缺的工具。他們處理大量數據、加強決策和實現實時響應的能力改變了武裝部隊的運作方式。
從提高態勢感知到徹底改變供應鏈管理和網絡安全,這些技術正在塑造戰爭的未來。
美國防部致力于遵循“設計即使用”的方法,在聯合全域作戰中利用這項技術。在開發解決方案時,每種服務都有不同的要求。
美國陸軍的要求可能是移動中的士兵或地面戰車;相比之下,對于空軍來說,這個案例可能是前沿空軍基地所需要的。
隨著向前邁進,這些技術的整合對于保持軍事優勢和確保軍事人員在現代戰場上的安全和成功仍然至關重要。借助人工智能和機器學習,無疑將能夠“以最先的速度”到達那里。
參考來源,David Wilson,美國陸軍維持司令部司令
在不到一年的時間里,Chat-GPT 已成為一個家喻戶曉的名字,反映了人工智能驅動的軟件工具,特別是生成式人工智能模型的驚人進步。伴隨著這些發展,人們頻頻預測人工智能將徹底改變戰爭。在人工智能發展的現階段,人們仍在探索可能的參數,但軍方對人工智能技術的反應是不可否認的。美國網絡安全和基礎設施安全局局長詹-伊斯特里警告說,人工智能可能是 "我們這個時代最強大的武器"。雖然自主武器系統在有關人工智能軍事應用的討論中往往占據主導地位,但人們較少關注在武裝沖突中支持人類決策的系統中使用人工智能的問題。
在這篇文章中,紅十字國際委員會軍事顧問魯本-斯圖爾特(Ruben Stewart)和法律顧問喬治婭-海因茲(Georgia Hinds)試圖批判性地審視人工智能用于支持戰爭中武裝人員決策時被吹噓的一些益處。其中特別討論了減輕對平民的傷害和節奏問題,尤其關注武裝沖突中對平民的影響。
即使在最近的炒作之前,人們可能已經以各種形式使用過人工智能,事實上,人們可能正在使用主要由人工智能驅動的設備閱讀這篇文章。如果您使用指紋或人臉打開過手機,參與過社交媒體,使用手機應用程序規劃過旅程,或者在網上購買過披薩和書籍等任何物品,那么這些都可能與人工智能有關。在很多方面,我們對人工智能已經習以為常,常常在不知不覺中將其應用到我們的日常生活中。
但如果人臉識別軟件被用來識別要攻擊的人呢?如果類似的軟件不是尋找最便宜的航班將你送往目的地,而是尋找飛機對目標實施空襲呢?或者,機器推薦的不是最好的披薩店或最近的出租車,而是攻擊計劃?這顯然是開發基于人工智能的國防決策平臺的公司 "即將到來 "的現實。
這類人工智能決策支持系統(AI-DSS)是一種計算機化工具,使用人工智能軟件顯示、綜合和/或分析數據,并在某些情況下提出建議,甚至預測,以幫助人類在戰爭中做出決策。
AI-DSS 的優勢往往體現在提高態勢感知能力和加快決策周期上。下文將根據人工智能系統和人類的局限性,并結合現代沖突的規劃過程,對這些說法進行解讀。
新技術在戰爭中的出現往往伴隨著這樣的說法,即新技術的整合將減少對平民的傷害(盡管在實踐中并不總是如此)。就 AI-DSS 而言,有人聲稱這種工具在某些情況下有助于更好地保護沖突中的平民。當然,國際人道主義法(IHL)規定,軍事指揮官和其他負責攻擊的人員有義務根據他們在相關時間所掌握的所有來源的信息做出決定。特別是在城市戰爭的背景下,紅十字國際委員會建議,有關平民和民用物體存在等因素的信息應包括互聯網等公開來源資料庫。此外,具體到人工智能和機器學習,紅十字國際委員會認為,只要人工智能-DSS工具能夠促進更快、更廣泛地收集和分析這類信息,就能使人類在沖突中做出更好的決策,從而最大限度地減少對平民的風險。
與此同時,任何 AI-DSS 的輸出都應在多個來源之間進行交叉核對,以防止信息有偏差或不準確。雖然這對沖突中的任何信息來源都是如此,但對AI-DSS 尤為重要;正如紅十字國際委員會先前所概述的那樣,由于系統的功能以及人類用戶與機器的交互方式,要核實輸出信息的準確性可能極其困難,有時甚至是不可能的。下文將進一步闡述這些方面。
最近關于人工智能發展的報道經常包括人工智能失敗的例子,有時是致命的。例如,軟件無法識別或錯誤識別膚色較深的人,推薦的旅行路線沒有考慮最新的路況,以及自動駕駛汽車造成死亡的例子。其中一些失誤是可以解釋的,但不可原諒,例如,因為其輸出所依據的數據有偏差、被破壞、中毒或根本不正確。這些系統仍然很容易被 "欺騙";可以使用一些技術來欺騙系統,使其對數據進行錯誤分類。例如,可以想象在沖突中使用對抗性技術來影響瞄準輔助系統的源代碼,使其將校車識別為敵方車輛,從而造成毀滅性后果。
隨著人工智能被用于執行更復雜的任務,特別是當多層分析(可能還有決策和判斷)不斷累積時,驗證最終輸出以及導致最終輸出的任何錯誤的來源就變得幾乎不可能。隨著系統越來越復雜,出現復合錯誤的可能性也越來越大--第一個算法建議中的一個微小不足會被反饋到第二個算法過程中并造成偏差,而第二個算法過程又會反饋到第三個算法過程中,依此類推。
因此,人工智能系統經常表現出用戶或開發者無法解釋的行為,即使經過大量的事后分析也是如此。一項針對備受矚目的大型語言模型 GPT-4 的研究發現,三個月后,該模型解決數學問題的能力從 83.6% 銳減至 35.2%,令人費解。不可預測的行為也可以通過強化學習產生,在強化學習中,機器已被證明能夠非常有效地采用和隱藏不可預見的行為,有時甚至是負面行為,從而戰勝或超越人類:無論是通過撒謊贏得談判,還是通過走捷徑擊敗電腦游戲。
AI-DSS 不會 "做出 "決定。不過,它們確實會直接影響人類的決策,而且往往影響很大,其中包括人類在與機器交互時的認知局限性和傾向性。
例如,"自動化偏差 "指的是人類傾向于不批判性地質疑系統的輸出,或搜索矛盾的信息--尤其是在時間緊迫的情況下。在醫療保健等其他領域已經觀察到了這種情況,經驗豐富的放射科醫生的診斷準確性受到了人工智能錯誤輸出的不利影響。
在醫療領域,不準確的診斷可能是致命的。同樣,在武裝沖突中,過度信任也會帶來致命后果。2003 年,美國的 "愛國者 "防御系統兩次向友軍聯軍飛機開火,原因是這些飛機被誤認為是攻擊導彈。在隨后的調查中,發現的主要缺陷之一是 "操作員接受了信任系統軟件的培訓"。
這些運作方式,再加上人機互動的這些特點,有可能增加結果偏離人類決策者意圖的可能性。在戰爭中,這可能導致意外升級,無論如何都會增加平民和受保護人員的風險。
人工智能在軍事上被吹捧的一個優勢是,它能讓用戶的決策節奏快于對手。節奏的加快往往會給平民帶來額外的風險,這就是為什么要采用 "戰術忍耐 "等降低節奏的技術來減少平民傷亡。放慢決策節奏,包括為決策提供信息的過程和評估,可以讓系統和用戶有額外的時間:
2021 年 8 月 29 日,在喀布爾大撤退期間,無人機對喀布爾進行了臭名昭著的空襲,造成 10 名平民死亡,中央司令部指揮官將這次空襲歸咎于 "我們沒有多余的時間來分析生活模式和做其他一些事情"。
"生活模式"分析是一些軍隊對平民和戰斗人員的存在和密度、他們的時間表、在考慮攻擊的地區內和周圍的移動模式等進行評估的描述。這是減少平民傷害的重要方法。然而,對生活模式的評估只能實時進行--平民創造這種模式需要時間--無法加快。
試圖根據歷史趨勢預測未來行為的做法無法顧及當前情況。在這個例子中,回顧舊的情報資料,特別是喀布爾的全動態視頻,并不能反映出由于塔利班接管和正在進行的疏散工作而發生的形勢和行為變化。
正如預防平民傷亡指南所解釋的那樣,"等待和觀察的時間越長,你就會對發生的事情了解得越多,也就能更好地做出使用致命或非致命手段的決定",或者正如拿破侖所說的那樣 "慢慢給我穿衣服,我趕時間"--有時,刻意為之才能達到最佳效果。
放慢決策速度的另一個原因是,人的理解能力,尤其是對復雜和混亂情況的理解能力,需要時間來培養,也需要時間來斟酌適當的應對措施。時間越少,人理解局勢的能力就越弱。軍事規劃流程旨在讓指揮官和參謀人員有時間考慮作戰環境、對手、友軍和平民,以及所考慮的行動方案的利弊。正如德懷特-D-艾森豪威爾將軍所解釋的,"在準備戰斗的過程中,我總是發現計劃是無用的,但規劃是不可或缺的"。
當人類決策者考慮由 AI-DSS 生成或 "推薦 "的行動方案時,這一點就會產生影響,因為相對于對手而言,AI-DSS 加快行動節奏的能力可能是被利用的最主要原因。如果人類計劃人員沒有經歷或甚至完全不了解 AI-DSS 提出的計劃的制定過程,那么他對局勢、各種影響因素和相關人員的了解可能就會很有限。 事實上,人們已經注意到,使用自動輔助工具會降低人類用戶的警覺性,損害他們保持態勢感知的能力。這一點應從如何影響遵守國際人道主義法義務的角度加以考慮;盡一切可能核查目標的義務表明,需要最大限度地利用現有情報、監視和偵察資產,以獲得在當時情況下盡可能全面的態勢感知。
除了能讓指揮官看到和了解更多情況外,額外的時間還能讓指揮官制定戰術備選方案,包括決定不使用武力或緩和局勢。額外的時間可以讓其他單元和平臺脫離接觸、重新定位、重新補給、計劃和準備協助即將到來的行動。這為指揮官提供了更多選擇,包括可更好地減少平民傷害的替代計劃。額外的時間可能允許采取額外的緩解措施,如發布警告,從平民的角度來看,這也允許他們實施應對機制,如躲避、重新補給食物和水或撤離。
正如軍事規劃理論中的一個例子所解釋的那樣,"如果時間充裕,而且更快采取行動也沒有好處,那么就沒有什么借口不花時間進行充分規劃"。正如北約的《保護平民手冊》所回顧的那樣,"如果有時間按照國際人道主義法的原則對部隊或目標進行蓄意規劃、區分和精確瞄準,那么CIVCAS[平民傷亡]的可能性就會大大降低"。
"戰爭是混亂的、致命的,從根本上說是人類的努力。它是人與人之間的意志沖突。所有戰爭本質上都是為了改變人類的行為,每一方都試圖通過武力改變另一方的行為"。"戰爭源于人類的分歧,在人類群體之間展開,由人類控制,由人類結束,而在戰爭結束后,人類又必須共存。最重要的是,沖突中的苦難由人類承擔。
這一現實,乃至國際人道主義法本身,都要求在武裝沖突中開發和使用人工智能時采取 "以人為本 "的方法--努力在本已不人道的活動中維護人性。這種方法至少有兩個關鍵方面:(1) 關注可能受影響的人;(2) 關注使用或下令使用人工智能的人的義務和責任。
在研究可能受影響的人時,不僅要考慮在使用 AI-DSS 獲取軍事優勢時減少對平民的風險,還要考慮專門為保護平民的目標設計和使用這類工具的可能性。在這方面已經提出的可能性包括識別、跟蹤和提醒部隊注意平民人口存在的工具,或識別在武裝沖突中表明受保護地位的特殊標志的工具(見這里和這里)。
確保人類能夠履行其在國際人道主義法下的義務意味著 AI-DSS 應為人類決策提供信息,但不能取代人類對武裝沖突中人們的生命和尊嚴構成風險的判斷。在自主武器系統方面,各國已廣泛認識到這一點(例如,見此處、此處和此處)。遵守國際人道主義法的責任在于個人及其指揮官,而非計算機。正如美國國防部《戰爭法手冊》所述:"戰爭法并不要求武器做出法律決定......相反,必須遵守戰爭法的是人。中國在《新一代人工智能倫理規范》中更普遍地強調了這一點,堅持 "人是最終的責任主體"。
關于 AI-DSS 必然會加強平民保護和遵守國際人道主義法的說法必須受到嚴格質疑,并根據這些考慮因素進行衡量,同時考慮到我們對系統局限性、人機互動以及行動節奏加快的影響的了解。
參考來源:International Committee of the Red Cross
在未來戰場上,人工合成的決策將出現在人類決策的內部和周圍。事實上,人工智能(AI)將改變人類生活的方方面面。戰爭以及人們對戰爭的看法也不例外。特別是,美國陸軍構想戰爭方式的框架和方法必須進行調整,以便將非情感智力的優勢與人類情感思維的洞察力結合起來。人工智能與人類行動者的組合有可能為軍事決策提供決定性的優勢,并代表了成功軍事行動的新型認知框架和方法。人工智能在軍事領域的應用已經開始擴散,隨之而來的作戰環境復雜性的增加已不可避免。
正如核武器結束了第二次世界大戰,并在二十世紀阻止了大國沖突的再次發生一樣,競爭者預計人工智能將在二十一世紀成為國家力量最重要的方面。這項工作的重點是美國陸軍的文化,但當然也適用于其他企業文化。如果要在未來有效地利用人工智能,而且必須這樣做才能應對競爭對手使用人工智能所帶來的幾乎必然的挑戰,那么成功地融入人工智能工具就需要對現有文化進行分析,并對未來的文化和技術發展進行可視化。美國將致力于在人工智能的軍事應用方面取得并保持主導地位。否則將承擔巨大風險,并將主動權拱手讓給積極尋求相對優勢地位的敵人。
合成有機團隊認知的兩大障礙是美陸軍領導的文化阻力和軍事決策的結構框架。首先,也是最重要的一點是,領導者必須持續觀察人工智能工具并與之互動,建立信心并接受其提高認知能力和改善決策的能力。在引入人工智能工具的同時,幾乎肯定會出現關于機器易犯錯誤或充滿敵意的說法,但必須通過展示人工智能的能力以及與人類團隊的比較,來消除和緩和對其潛在效力的懷疑。將人工智能工具視為靈丹妙藥的健康而合理的懷疑態度有可能會無益地壓倒創新和有效利用這些工具的意愿。克服這一問題需要高層領導的高度重視和下屬的最終認可。其次,這些工具的結構布局很可能會對它們如何快速體現自身價值產生重大影響。開始整合人工智能工具的一個看似自然的場所是在 CTC 環境中,以及在大型總部作戰演習的大型模擬中。最初的工具在營級以下可能用處不大,但如果納入迭代設計、軍事決策過程或聯合規劃過程,則幾乎肯定會增強營級及以上的軍事規劃。雖然在本作品中,對工具的描述主要集中在與指揮官的直接關系上,但在最初的介紹中,與參謀部的某些成員(包括執行軍官或參謀長、作戰軍官和情報軍官)建立直接關系可能會更有用。與所有軍事組織一樣,組織內個人的個性和能力必須推動系統和工具的調整,使其與需求保持平衡。
幾乎可以肯定的是,在將人工智能工具融入軍事組織的初期,一定會出現摩擦、不完善和懷疑。承認這種可能性和任務的挑戰性并不意味著沒有必要這樣做。人類歷史上幾乎所有的創新都面臨著同樣的障礙,尤其是在文化保守的大型官僚機構中進行創新時。面對國際敵對競爭對手的挑戰,美國陸軍目前正在文化和組織變革的許多戰線上奮力前行,在整合人工智能工具的斗爭中放棄陣地無異于在機械化戰爭之初加倍使用馬騎兵。在戰爭中,第二名沒有可取的獎賞,而人工智能在決策方面的潛在優勢,對那些沒有利用這一優勢的行為體來說,是一個重大優勢。現在是通過擁抱人工智能工具和改變戰爭節奏來更好地合作的時候了。
人工智能(AI)究竟是什么?它與電子戰(EW)的未來有什么關系?人工智能正在改變我們所做的一切嗎?如果忽視人工智能,那將是一個錯誤。眾所周知,特斯拉采用了人工智能算法,特別是卷積神經網絡、遞歸神經網絡和強化學習。從根本上說,這些算法可以匯編來自多個傳感器的數據,分析這些數據,然后做出決策或向最終用戶提供信息,從而以驚人的速度做出決策。這一過程以指數級的速度發生,超過了人腦的處理速度。因此,從根本上說,人工智能是機器像人類一樣執行認知功能的能力。
人工智能可以駕駛汽車、撰寫學期論文、以適當的語氣幫你創建電子郵件,因此,它在軍事領域的潛在應用也是理所當然的。具體來說,就是整合人工智能電子戰及其提供的潛在能力轉變。雖然 "電子戰 "一詞已經使用了相當長的一段時間,但將人工智能注入這一領域為提高速度和殺傷力和/或保護開辟了新的途徑。
電子戰包含一系列與控制電磁頻譜有關的活動,傳統上一直依賴人類的專業知識來探測、利用和防御電子信號。然而,現代戰爭的速度和復雜性已經超出了人類操作員的能力。這正是人工智能的優勢所在,它帶來的一系列優勢將徹底改變電子戰的格局。
將人工智能融入電子戰的首要好處之一是增強了實時處理和分析海量數據的能力。在數字時代,戰場上充斥著來自通信網絡、雷達系統和電子設備等各種來源的大量信息。人工智能算法可以迅速篩選這些數據,識別出人類操作員可能無法識別的模式、異常情況和潛在威脅。這種能力不僅能提高威脅檢測的準確性,還能大大縮短響應時間,使友軍在快速演變的局勢中獲得關鍵優勢。
在這種情況下,人工智能賦能的兵力倍增器就出現了,它能在面對復雜多變的局勢時做出更高效、更有效的決策。現代戰場會產生大量電子信號,需要快速準確地識別。人工智能驅動的算法擅長篩選這些數據、辨別模式,并識別在以往場景中可能被忽視的信息。這使兵力能夠迅速做出反應,以更快的速度做出關鍵決策。
此外,人工智能還具有適應和學習新信息的能力,這一特性在電子戰領域尤為有利。電子威脅和反制措施處于不斷演變的狀態,需要反應迅速和靈活的策略。人工智能驅動的系統可以根據不斷變化的情況迅速調整戰術,持續優化性能,而無需人工干預。這種適應性對于對抗復雜的電子攻擊和領先對手一步至關重要。
人工智能與電子戰的融合還為指揮官提供了更先進的決策工具,比歷史標準更詳細、更快速。人工智能算法可以分析各種場景,考慮地形、天氣以及友軍和敵軍兵力等因素。這種分析為指揮官提供了全面的戰場情況,使他們能夠在充分了解情況的基礎上做出決策,最大限度地提高任務成功的概率,最大限度地降低潛在風險。此外,人工智能驅動的模擬可以演繹不同的場景,使軍事規劃人員能夠完善戰略,評估不同行動方案的潛在結果。美國今年早些時候進行了一次以印度洋-太平洋地區為重點的演習,將大語言模型(LLM)作為規劃和決策過程的一部分。一位演習成員稱贊了系統 "學習 "的成功和速度,以及系統成為戰場上可行資源的速度。另一個例子是,利用已輸入人工智能系統的數據對目標清單進行優先排序,人工智能系統能夠考慮瞄準行動、網絡,從而比操作人員更快、更全面地了解戰區情況。
不過,必須承認,要完成人工智能整合,還存在一些潛在的障礙。首先,美國防部大多數實體無法直接獲得人工智能技術。大多數從事前沿人工智能工作的組織都是商業公司,它們必須與軍事系統合作或集成。這可能會受到美國現行預算和研發流程的阻礙。此外,美國的這些流程進展緩慢,人工智能技術很有可能無法融入美國兵力。還有潛在的道德和安全考慮。隨著人工智能系統在探測和應對威脅方面承擔更多責任,人類的監督和控制水平也會出現問題。為了與戰爭法則保持一致,需要有人工參與,而不是完全依賴人工智能來做出攻擊決策。任何時候,只要有可能造成人員傷亡、附帶損害或其他問題,就需要人類做出有意識的知情決策,而不能任由人工智能自生自滅。在人工智能自主決策和人工干預之間取得適當的平衡至關重要,以防止意外后果或機器在沒有適當問責的情況下做出生死攸關的選擇。
最后,人工智能的整合引發了對潛在網絡漏洞的擔憂。雖然人工智能可以提高電子戰的速度和準確性,但它也為試圖操縱或破壞人工智能系統的惡意行為者帶來了新的攻擊途徑。要保護這些系統免受網絡威脅,就必須采取強有力的整體網絡安全方法,同時考慮到人工智能驅動的電子戰的硬件和軟件層。
最后,不可否認,將人工智能融入戰爭預警的潛在戰略利益是巨大的。人工智能處理海量數據、適應不斷變化的條件和支持決策過程的能力有可能重塑現代戰爭的格局。隨著兵力越來越依賴技術來保持在數字化作戰空間中的優勢,負責任地開發和部署人工智能驅動的預警系統將是必要的。 如何在技術創新、人工監督和安全措施之間取得適當平衡,將決定能在多大程度上實現這些優勢,同時又不損害戰略目標或道德考量。美國采購系統面臨的挑戰也將在人工智能集成中發揮關鍵作用。人工智能在電子戰中的變革力量有可能改變游戲規則。問題是:它會嗎?人工智能將如何融入新型 EC-37B Compass Call 和 NexGen 干擾機等未來平臺?陸軍是否會將人工智能納入其推動營級決策的努力中?這些都是值得探討的問題,但有一點是肯定的:電磁作戰界必須繼續接受創新思維,因為我們知道未來的戰斗將在電磁頻譜中開始和結束。人工智能將在現代戰爭的新時代發揮關鍵作用。
美國陸軍近年來提出了 "信息優勢 "的概念,即士兵有能力比對手更快地做出決策和采取行動。陸軍現在認為,人工智能是實現這一戰略的關鍵。
人工智能的普及程度和能力都有了爆炸式的增長,ChatGPT 等大型語言模型和其他人工智能系統也越來越容易為大眾所使用。在工業界和美國防部,許多人都在探索將該技術用于軍事應用的可能性,陸軍也不例外。
陸軍賽博司令部司令瑪麗亞-巴雷特(Maria Barrett)中將說,人工智能具有 "真正、真正推動變革的最大潛力......但它也給我們帶來了非常、非常現實的挑戰,以及整個信息維度的挑戰"。
負責政策的國防部副部長辦公室副首席信息作戰顧問、陸軍少將馬修-伊斯利(Matthew Easley)說,軍方正在經歷 "從傳統的信息作戰,即我們如何將不同的信息效果結合起來,為我們的行動創造我們想要的協同效應 "到新的信息優勢概念的轉變。
伊斯利在 6 月份美國陸軍協會的一次活動中說,這一概念的目標是確保陸軍在信息環境中掌握 "主動權","能夠看清自己、了解自己并更快地采取行動"。他說,信息優勢包括五大功能:輔助決策;保護士兵和軍隊信息;教育和告知國內受眾;告知和影響國外受眾;以及開展信息戰。
他補充說:"所有這五個領域都可以利用人工智能和機器學習取得一定效果"。
伊斯利在 2019 年幫助建立了陸軍人工智能兵力工作組。但他說,在他任職期間,該小組在全軍范圍內采用人工智能時遇到了兩個挑戰:遷移到混合云環境和移動設備。
陸軍將 "繼續擁有大量的傳統數據中心,但隨著我們需要激增,我們需要在全球范圍內移動--云環境使我們更容易開展全球業務,"他說。根據陸軍預算文件,陸軍正在為2024財年申請4.69億美元,用于向云過渡和數據環境投資。
巴雷特在 AUSA 會議上說: "沒有數據存儲庫,就無法實現人工智能和機器學習"。陸軍賽博司令部對其大數據平臺進行了大量投資,將 "進入我們平臺的數據流數量翻了一番,解析器翻了一番,我們現在存儲的數據存儲量也翻了一番,"她說。她說:"我們將繼續沿著這條軌跡前進,這意味著我們已經準備好開始利用 "人工智能能力"。
她說,對于指揮部來說,人工智能主要用于網絡防御,但在 "信息層面 "也有應用。"引入各種不同的信息源......并真正了解特定環境的信息基線,這意味著什么?所有這些都對我們大有幫助,而且我認為這只會不斷擴大"。
伊斯利說,移動設備的普及大大增加了潛在的饋送量,但也會擴大對手的潛在目標。這些設備 "有很多功能,也有很多漏洞。我們必須考慮并使用人工智能......既能保護我們自己,又能管理我們擁有的大量數據"。
陸軍參謀長詹姆斯-麥康維爾(James McConville)將軍在6月的一次媒體吹風會上說,在潛在沖突中,人工智能可以幫助士兵整理所有數據,并將正確的信息 "送到箭筒中"。
根據陸軍預算文件,陸軍正在為2024財年的人工智能和機器學習申請2.83億美元,其中包括用于增強自主實驗的研發資金,以及為集成視覺增強系統、可選載人戰車(最近被重新命名為XM30機械化步兵戰車)、遠程戰車、TITAN地面站和 "具有邊緣處理功能的更智能傳感器 "等系統的人工智能/機器學習項目活動提供資金。
"陸軍部長克里斯蒂娜-沃穆斯(Christine Wormuth)在簡報會上說:"我們當然在尋找如何利用人工智能使我們的能力(包括新能力和正在開發的能力)更加有效。她說,陸軍尤其在 "融合項目"(Project Convergence)演習中使用了人工智能目標定位程序。
融合項目是陸軍對國防部聯合全域指揮與控制概念的貢獻,該概念旨在通過網絡將傳感器和射手聯系起來。陸軍發布的一份新聞稿稱,在2022年底的上一次演習中,參演人員使用了陸軍的 "火風暴 "系統--"一種人工智能驅動的網絡,將傳感器與射手配對",向參加實驗的澳大利亞兵力發送情報。
麥康維爾說,軍方還將人工智能用于預測性后勤工作。他說:"我們正在使用人工智能來幫助我們預測所需的零部件,這對龐大的軍隊來說意義重大"。
除了簡單的維護之外,預測性后勤還涉及陸軍的不同供應類別,如燃料和彈藥,"以及我們如何看待消耗,如何預測在哪里可以將正確的供應品送到需要的地方",負責維持的陸軍副助理部長蒂莫西-戈德特(Timothy Goddette)說。
戈德特在國防工業協會戰術輪式車輛會議上說:"我們的目標是提前計劃這些物資需要運往何處或何時需要進行維護,而不是作出反應。
他說:"如果計劃的維護是正確的,但條件是錯誤的--如果你處于低[操作]節奏,我們如何改變計劃的維護?如果你處于炎熱、寒冷或腐蝕性環境中,你該如何改變維護計劃?這可能正是我們需要思考的地方。"
他補充說,在數字化世界中,陸軍必須 "學會如何使用數據和以不同的方式使用數據"。"我承認,我們還沒有完全弄懂[預測性后勤]。我們確實需要大家的幫助來思考這個問題。
McConville 和 Wormuth 說,人工智能未來的其他應用還包括人才管理和招聘。"Wormuth 說:"人工智能可能有辦法幫助我們以人類不擅長的方式識別優質線索或潛在客戶。
不過,McConville 強調,在使用人工智能時,"人在回路中 "非常重要。
他說:"實際做所有工作的可能不是人,但我們會看到人工智能幫助我們更好地完成工作。"但與此同時,我們也希望有人能說'發射這個武器系統',或者至少能考慮到這一點。"
巴雷特贊同麥康維爾的說法:"每個人都會把[人工智能]當成一臺機器。但是......你猜怎么著:每個玩過 ChatGPT 的人--是的,是人在喂養那臺機器。"
伊斯利說,隨著陸軍引入人工智能系統,士兵們可以做四件事來幫助技術正常成熟:收集和注釋數據;使用這些數據訓練人工智能模型;使用這些模型來檢驗它們是否有效;以及幫助改進模型。
他說,軍方在收集數據方面做得 "很好","但軍隊中仍有很多數據我們沒有完全捕捉到......我們可以利用這些數據來訓練我們自己的大型語言模型。"要使這些模型對我們的領域有效,我們必須在我們的數據上進行訓練。因此,我們必須研究:我們的人力資源數據是什么?我們的人力資源數據是什么?我們的醫療數據是什么?我們的業務數據是什么?我們的情報數據是什么?我們如何在受控環境下利用這些數據來建立更好的模型?
他說,這些模型必須根據軍隊的數據進行快速訓練和再訓練,以便不斷改進。他以自己手機上的餐廳推薦算法為例,"它之所以這么好,是因為它有10年的時間,我只告訴它我喜歡世界上哪些餐廳"。
伊斯利說,雖然他們將來可能會收到人工智能的推薦,但武器系統將始終由人類來管理,但 "其他系統,如果不是那么關鍵的話......[機器]可以做出決定"。不過,他補充說,人類將對人工智能進行培訓,使其在執行陸軍任務時可以信賴。"他說:"你不會質疑你的地圖算法告訴你在城市中往哪里走--你知道該算法比你掌握更好的信息。但是,"我們如何獲得數據背后的真實性,讓我們能夠相信模型的內容、模型是如何訓練的,以及我們是如何使用它的?我認為這都是......人類的努力"。
參考來源:NDIA網站;作者:Josh Luckenbaugh
在技術飛速發展的時代,戰爭的面貌正在發生重大轉變。人工智能(AI)與軍事系統的結合正在徹底改變我們進行戰爭的方式。
本文將深入探討人工智能在戰爭中的迷人世界,重點關注認知戰爭的概念以及人工智能在塑造未來戰斗中的作用。
認知戰爭代表著軍事行動模式的轉變。它戰略性地利用人工智能和機器學習來影響對手的認知過程。
其目的是操縱決策過程,制造混亂,最終獲得戰略優勢。這種方法利用人工智能的力量來增強人的能力,因此越來越被認為是現代戰爭中的有力工具。
認知戰爭最顯著的實例之一是國防科技初創公司 Anduril 開發的 "幽靈 4 "無人機。這架無人機是人工智能融入軍事系統的見證。它配備了人工智能,可以在地面單個操作員的控制下執行各種偵察任務。它利用機器學習來分析圖像和識別目標,展示了人工智能在增強軍事能力方面的潛力。
盡管如此,重要的是要以平衡的視角來看待這一發展。雖然幽靈 4 無人機代表了軍事技術的重大進步,但它也提出了幾個問題。
在戰爭中使用人工智能,尤其是能夠做出決策的自主系統,會帶來新的復雜性和不可預測性。如果這些系統出現故障或被對手利用,就有可能產生意想不到的后果。
此外,在戰爭中使用人工智能所涉及的倫理問題也是一個一直爭論不休的話題。機器在戰場上做出生死攸關決定的前景是一個有爭議的問題。雖然人工智能通過接管危險任務有可能減少人員傷亡,但缺乏人類判斷力和責任感是一個主要問題。
最后,在認知戰爭中使用人工智能有可能使沖突升級。操縱對手決策過程的能力可能導致誤判和誤解,增加沖突風險。因此,制定明確的規則和條例來規范人工智能在戰爭中的使用以降低這些風險至關重要。
2023 年標志著數字化、透明化戰爭的到來。烏克蘭戰爭就是這一新時代的明顯例證。由于衛星、數字痕跡和用戶在社交媒體上生成的內容提供了全面的透明度,全世界都看著俄羅斯在烏克蘭邊境集結兵力。在這個時代,再也不可能用陸海空三軍偷襲另一個國家了。這些兵力造成的死亡和破壞也無法掩蓋。這種透明度迫使兵力調整戰略,以更加分散的方式移動和機動。
精確武器的出現又一次改變了戰爭的游戲規則。這些武器可以用一枚成本效益高的導彈摧毀價值數百萬的平臺。這一現實正在改變軍隊、海軍和空軍的組織、裝備和作戰方式。
在烏克蘭沖突中,精確武器成功打擊了裝甲車輛和飛機,凸顯了其有效性。現在的挑戰是降低這些武器的成本和復雜性,各國正在緊急開展這項工作。
人工智能與戰爭的結合必將推動國家對抗沖突的方式發生深刻變革。機器人技術、自主性、連通性、安全云中的數據以及人工智能的進步將導致武裝力量迅速發展為有人、無人和自主能力的團隊。
這一轉變的意義將不亞于 Airbnb 和 Uber 等數字平臺對各自行業的影響。然而,盡管發生了這種轉變,戰爭的本質將保持不變--意志的較量,理性、情感和機遇的混合
我們深入研究了人工智能與戰爭,發現自己正站在一個新時代的懸崖邊上。將人工智能融入軍事系統的確是一把雙刃劍。一方面,它有望徹底改變戰爭,增強軍事能力,并有可能減少人員傷亡。另一方面,它也提出了深刻的倫理道德問題,作為一個社會,我們必須努力解決這些問題。
例如,在認知戰爭中使用人工智能會帶來機器做出生死攸關決定的幽靈。我們能把如此關鍵的決策交給算法嗎?在自主系統主導的領域,我們如何確保問責制?
這些問題不僅是技術問題,更是深刻的哲學問題,涉及我們的價值觀和原則。
此外,人工智能在戰爭中的潛在濫用也是一個重大問題。如果落入壞人之手,這些技術可能會被用來加劇沖突、操縱輿論或侵犯人權。
我們如何防止這種濫用?
我們如何在利用人工智能的好處和防范其潛在風險之間取得平衡?
關鍵是要以謹慎和負責的態度對待它。我們必須促進有關這些問題的公開對話,鼓勵不同的觀點和嚴謹的辯論。
只有通過這樣的討論,我們才有希望以負責任和合乎道德的方式在戰爭中利用人工智能的力量。
隨著大數據、云計算、物聯網等一系列新興技術的大量涌現,人工智能技術不斷 取得突破性進展。深度強化學習技術作為人工智能的最新成果之一,正被逐漸引入軍事領域 中,促使軍事領域走向信息化和智能化。在未來戰爭作戰模式及軍隊發展建設中,網絡化、 信息化、智能化和無人化形成重要特征已經成為不可逆轉的趨勢。因此,本文在回顧了深度 強化學習基本原理和主要算法的基礎上,對當前深度強化學習在武器裝備、網絡安全、無人 機編隊、智能決策與博弈等方面的應用現狀進行了系統的梳理與總結。最后,針對實際推進 深度強化學習技術在軍事領域應用落地所面臨的一系列問題和挑戰,提供了未來進一步研究 的思路。
近年來,隨著大數據、云計算、物聯網等 一系列新興技術的大量涌現,人工智能技術不 斷取得突破性進展。作為 21 世紀的頂尖技術之 一,人工智能給各個領域的發展都帶來了前所 未有的機遇和挑戰,軍事領域也不例外。2016 年 6 月,由國防大學舉辦的“戰爭復雜性與信息化戰爭模擬”學術研討會,對大數據時代的軍事 信息體系與發展戰略進行了重點研究[1],軍事 智能化已不再是一個陌生的概念,正在全面影 響著軍隊建設和未來戰爭形態[2]。從應用角度 來看,軍事智能化主要體現在五個層次[3]:以 無人機、無人車等仿生智能為主的單裝智能;以人機融合、集群、協同等概念為核心的協同 智能;以智能感知、決策、打擊、防御等多要 素作戰力量綜合運用的體系智能;以通信、網 絡、電子、輿情等專業領域管控的專項智能;以作戰體系基于數據、模型、算法獲取涌現效 應為目標的進化智能。人工智能技術為這些應 用的落地提供了堅實的基礎。深度學習(deep learning,DL)和強化學 習(reinforcement learning,RL)作為實現人工 智能的先進技術,分別在信息感知和認知決策 領域有著出色的表現[4]-[5]。深度強化學習(Deep Reinforcement Learning,DRL)[6]則是近幾年 提出的新興概念,結合了 DL 與 RL 的優勢, 是人工智能的最新成果之一,在機器人控制、 計算機視覺、自然語言處理、博弈論等領域都 取得了重要研究成果。在軍事領域中,針對作 戰任務規劃、智能軍事決策與智能博弈對抗等 問題的解決,DRL 也有著巨大的應用潛力,引 起了研究人員的廣泛關注。
目前,關于 DRL 的研究已經取得了較大進 展,有一些關于 DRL 的綜述性文獻陸續發表 [6]-[7],但它們更加偏向于對 DRL 算法的總結。除此之外,也有一些關于 DRL 在領域應用中的 綜述,如無人機[8]、通信與網絡[9]、智能制造[10] 等領域,然而關于 DRL 在軍事領域中的應用, 并沒有專門的綜述性文獻對其進行深入梳理和 總結。基于此,本文首先回顧了 DRL 的理論發 展歷程;然后對 DRL 的基本算法及改進算法進 行了歸納總結;最后對前人研究中 DRL 在軍事 領域武器裝備、網絡安全、無人機編隊、智能 決策與博弈等問題的應用現狀進行了系統性的 總結,并展望了其發展方向和前景。