圖神經網絡(GNNs)已經成功地用于許多涉及圖結構數據的問題,實現了最先進的性能。GNN通常采用消息傳遞方案,其中每個節點使用置換不變聚合函數從其鄰居聚合信息。經過嚴格檢查的標準選擇(如平均值或和聚合函數)功能有限,因為它們無法捕獲相鄰函數之間的交互。在這項工作中,我們使用一個信息理論框架來形式化這些交互作用,特別是包括協同信息。在此定義的驅動下,我們引入了圖排序注意力層(GOAT),這是一種新穎的GNN組件,用于捕獲鄰域節點之間的交互。這是通過一種注意力機制來學習局部節點順序,并使用循環神經網絡聚合器處理有序表示來實現的。這種設計允許我們使用一個排列敏感的聚合器,同時保持擬議的GOAT層的排列等效。GOAT模型展示了它在捕獲復雜信息的圖指標(如中間性中心性和節點的有效大小)建模方面提高的性能。在實際用例中,通過在幾個真實的節點分類基準測試中取得的成功,它的卓越建模能力得到了證實。
流行的張量列(TT)和張量環(TR)分解在科學和工程上取得了很有前途的結果。然而,TT和TR分解只是建立相鄰兩個因子之間的聯系,并且對張量模的排列高度敏感,導致了不充分和不靈活的表示。本文提出了一種廣義張量分解,它將一個N階張量分解為一組n階因子,并建立了任意兩個因子之間的多線性運算/聯系。由于它可以圖形化地解釋為所有因素的全連接網絡,我們將其命名為全連接張量網絡(FCTN)分解。FCTN分解的優點在于充分刻畫任意兩個張量模間的內在相關性和換位的本質不變性。此外,我們將FCTN分解應用于一個有代表性的任務,即張量補全,并提出一個有效的基于近端交替最小化的算法。在理論上,我們證明了該算法的收斂性,即得到的算法序列全局收斂于一個臨界點。實驗結果表明,該方法與現有的基于張量分解的方法相比具有良好的性能。
//qibinzhao.github.io/publications/AAAI2021_Yu_Bang_Zheng/AAAI2021_FCTN_Decomposition_ybz.pdf
//www.zhuanzhi.ai/paper/3696ec78742419bdaa9c23dce139b3d4
消息傳遞圖神經網絡(GNNs)為關系數據提供了強大的建模框架。曾經,現有GNN的表達能力上界取決于1- Weisfeiller -Lehman (1-WL)圖同構測試,這意味著gnn無法預測節點聚類系數和最短路徑距離,無法區分不同的d-正則圖。在這里,我們提出了一類傳遞消息的GNN,稱為身份感知圖神經網絡(ID- GNNs),具有比1-WL測試更強的表達能力。ID-GNN為現有GNN的局限性提供了一個最小但強大的解決方案。ID-GNN通過在消息傳遞過程中歸納地考慮節點的身份來擴展現有的GNN體系結構。為了嵌入一個給定的節點,IDGNN首先提取以該節點為中心的自我網絡,然后進行輪次異構消息傳遞,中心節點與自我網絡中其他周圍節點應用不同的參數集。我們進一步提出了一個簡化但更快的ID-GNN版本,它將節點標識信息作為增強節點特征注入。總之,ID-GNN的兩個版本代表了消息傳遞GNN的一般擴展,其中實驗表明,在具有挑戰性的節點、邊緣和圖屬性預測任務中,將現有的GNN轉換為ID-GNN平均可以提高40%的準確率;結點和圖分類在基準測試上提高3%精度;在實際鏈路預測任務提高15%的ROC AUC。此外,與其他特定于任務的圖網絡相比,ID- GNN表現出了更好的或相當的性能。
論文概述:視頻中的時序關系建模對于行為動作理解(如動作識別和動作分割)至關重要。盡管圖卷積網絡(GCN)在許多任務的關系推理中顯示出令人鼓舞的優勢,但如何在長視頻序列上有效地應用圖卷積網絡仍然是一個挑戰。其主要原因是大量存在的視頻幀節點使GCN難以捕獲和建模視頻中的時序依賴關系。為了解決此問題,本文引入了一個有效的GCN模塊,即膨脹時序圖推理模塊(DTGRM),該模塊旨在對不同時間跨度視頻幀之間的時序關系和相關性進行建模,尤其可以通過構造多級擴張的時序圖來捕獲和建模長跨度的時序關系。此外,為了增強所提出模型的時序推理能力,本文提出了一種輔助的自監督任務,以鼓勵膨脹的時序圖推理模塊找到并糾正視頻中錯誤的時序關系。本模型在三個具有挑戰性的數據集上均優于最新的行動分割模型。
//www.zhuanzhi.ai/paper/c74cd67206e089bc164ab3112b168355
多元序列學習的本質是如何提取數據中的相關性。這些數據集,如重癥監護病房的每小時醫療記錄和多頻語音時間序列,通常不僅在個別成分中表現出強烈的序列依賴性(“邊緣”記憶),而且在橫剖面依賴性中也表現出不可忽略的記憶(“聯合”記憶)。由于聯合分布演化的多元復雜性是數據生成過程的基礎,我們采用數據驅動的方法,構建了一種新的循環網絡結構,稱為記憶門控循環網絡(mGRN),門顯式地調節兩種不同類型的記憶:邊緣記憶和聯合記憶。通過對一系列公共數據集的綜合模擬研究和經驗實驗的結合,我們表明我們提出的mGRN架構始終優于針對多元時間序列的最先進架構。
//www.zhuanzhi.ai/paper/4236df35ff33a6911c4913ac13bb78e0
從異步視頻面試(AVI)中的自動語音識別(ASR)轉錄中,我們解決了基于文本特征自動為候選人的能力評分的任務。問題的關鍵在于如何構建問題與答案之間的依賴關系,并對每個問答(QA)對進行語義級交互。然而,目前AVI的研究大多集中在如何更好地表示問題和答案上,而忽視了它們之間的依賴信息和相互作用,而這是QA評估的關鍵。在這項工作中,我們提出了一種層次推理圖神經網絡(HRGNN)用于問答對的自動評估。具體來說,我們構建了一個句子級關系圖神經網絡來捕獲問題和答案之間的句子依賴信息。基于這些圖,我們采用語義級推理圖注意網絡對當前QA會話的交互狀態進行建模。最后,我們提出了一種門控遞歸單元編碼器來表示用于最終預測的時間問答對。在CHNAT(一個真實數據集)上進行的實證結果驗證了我們提出的模型顯著優于基于文本匹配的基準模型。消融研究和10個隨機種子的實驗結果也表明了我們模型的有效性和穩定性。
//www.zhuanzhi.ai/paper/5c766d478e8b7fae79e95f2a09e5bdd1
由于不同道路間交通流時空分布格局具有復雜的空間相關性和動態趨勢,交通流時空數據預測是一項具有挑戰性的任務。現有框架通常利用給定的空間鄰接圖和復雜的機制為空間和時間相關性建模。然而,具有不完全鄰接連接的給定空間圖結構的有限表示可能會限制模型的有效時空依賴學習。此外,現有的方法在解決復雜的時空數據時也束手無策:它們通常利用獨立的模塊來實現時空關聯,或者只使用獨立的組件捕獲局部或全局的異構依賴關系。為了克服這些局限性,本文提出了一種新的時空融合圖神經網絡(STFGNN)用于交通流預測。首先,提出一種數據驅動的“時序圖”生成方法,以彌補空間圖可能無法反映的幾種現有相關性。SFTGNN通過一種新的時空圖融合操作,對不同的時間段進行并行處理,可以有效地學習隱藏的時空依賴關系。同時,該融合圖模塊與一種新的門控卷積模塊集成到一個統一的層中,SFTGNN可以通過層堆疊學習更多的時空依賴關系來處理長序列。在幾個公共交通數據集上的實驗結果表明,我們的方法達到了最先進的性能比其他基準一致。
論文鏈接://www.zhuanzhi.ai/paper/5e4dd4fd6b06fc88a7d86e4dc50687c6
簡介:數據增強已被廣泛用于提高機器學習模型的通用性。但是,相對較少的工作研究圖形的數據擴充。這在很大程度上是由于圖的復雜非歐幾里得結構限制了可能的操縱操作。視覺和語言中常用的增強操作沒有圖形類似物。在改進半監督節點分類的背景下,我們的工作研究了圖神經網絡(GNN)的圖數據擴充。我們討論了圖數據擴充的實踐和理論動機,考慮因素和策略。我們的工作表明,神經邊緣預測器可以有效地編碼類同質結構,以在給定的圖結構中促進類內邊緣和降級類間邊緣,并且我們的主要貢獻是引入了GAug圖數據擴充框架,該框架利用這些見解來提高性能通過邊緣預測的基于GNN的節點分類在多個基準上進行的廣泛實驗表明,通過GAug進行的增強可提高GNN架構和數據集的性能。
知識圖譜的關系預測旨在預測實體之間的缺失關系。盡管歸納關系預測的重要性,大多數以前的工作都局限于一個轉換的設置,不能處理以前看不見的實體。最近提出的基于子圖的關系推理模型提供了從圍繞一個候選三元組的子圖結構中歸納預測鏈接的替代方法。然而,我們觀察到這些方法往往忽略了提取子圖的有向性質,削弱了關系信息在子圖建模中的作用。因此,它們不能有效地處理不對稱/反對稱三聯體,并為目標三聯體產生不足的嵌入。為此,我們引入了一種用于歸納關系推理的傳遞消息的神經網絡CoMPILE,該網絡對局部有向子圖結構進行推理,并對處理實體無關的語義關系具有強烈的歸納傾向。與現有模型相比,CoMPILE加強了邊緣之間的消息交互,并授權通過通信內核,并支持足夠的關系信息流。此外,我們還證明了CoMPILE可以自然地處理非對稱/反對稱關系,而不需要通過提取有向封閉子圖來爆炸式地增加模型參數的數量。廣泛的實驗表明,與最先進的方法相比,在常用的基準數據集上具有不同的歸納設置的實質性性能收益。
圖神經網絡(gnn)的優勢在于對結構化數據的拓撲信息進行顯式建模。然而,現有的gnn在獲取層次圖表示方面的能力有限,而層次圖表示在圖形分類中起著重要的作用。本文創新性地提出了層次圖膠囊網絡(HGCN),該網絡可以聯合學習節點嵌入和提取圖的層次結構。具體地說,解糾纏圖膠囊是通過識別每個節點下的異構因素建立的,這樣它們的實例化參數代表同一實體的不同屬性。為了學習層次表示,HGCN通過顯式地考慮部件之間的結構信息,刻畫了低層膠囊(部分)和高層膠囊(整體)之間的部分-整體關系。實驗研究證明了HGCN算法的有效性和各組成部分的貢獻。
//www.zhuanzhi.ai/paper/c9930a15b45547cafbee90db8c5612aa