利用有限的數據進行學習是深度學習的最大問題之一。目前,解決這個問題的流行方法是在大量數據上訓練模型,無論是否標記,然后在同一模態的感興趣的較小數據集上重新訓練模型。直觀地說,這種技術允許模型首先學習某種數據(如圖像)的一般表示。然后,學習這種特定模態的特定任務應該需要更少的數據。雖然這種被稱為“遷移學習”的方法在計算機視覺或自然語言處理等領域非常有效,但它不能解決深度學習的常見問題,如模型可解釋性或對數據的總體需求。本文探索了在數據約束設置中學習表達模型問題的不同答案。我們不再依賴大數據集來學習神經網絡的參數,而是用反映數據結構的已知函數來代替其中的一些參數。這些函數通常都是從內核方法的豐富文獻中提取出來的。實際上,許多核函數都可以解釋,并且/或允許使用少量數據進行學習。所提出方法屬于"歸納偏差"的范疇,可以定義為對手頭數據的假設,限制了學習過程中模型探索的空間。在本文的前兩章中,我們在序列(如自然語言中的句子或蛋白質序列)和圖(如分子)的上下文中證明了該方法的有效性。本文還強調了工作與深度學習最新進展之間的關系。本文的最后一章重點研究凸機器學習模型。這里,我們不是提出新的模型,而是想知道學習一個“好的”模型真正需要數據集中的哪些樣本比例。更準確地說,研究了安全樣本篩選的問題,即在擬合機器學習模型之前,執行簡單測試以丟棄數據集中沒有信息的樣本,而不影響最優模型。此類技術可用于壓縮數據集或挖掘稀有樣本。
**最近機器學習方法的大部分成功都是通過利用過去幾年產生的大量標記數據而實現的。**然而,對于一些重要的實際應用來說,如此大規模的數據收集仍然是不可行的。這包括機器人、醫療健康、地球科學和化學等領域,在這些領域獲取數據可能既昂貴又耗時。在本文中,我們考慮三個不同的學習問題,其中可以收集的數據量是有限的。這包括在在線學習期間限制對標簽、整個數據集和生成經驗的訪問的設置。本文通過采用序列決策策略來解決這些數據限制,這些策略在收集新數據和根據新獲得的證據做出明智的決策之間迭代。**首先,解決標簽獲取成本較高時如何高效地收集批量標簽的問題。**概率主動學習方法可用于貪婪地選擇信息量最大的待標記數據點。然而,對于許多大規模問題,標準的貪心算法在計算上變得不可行。為緩解這個問題,本文提出一種可擴展的貝葉斯批量主動學習方法,其動機是近似模型參數的完整數據后驗。
**其次,我們解決了自動化分子設計的挑戰,以加速對新藥物和材料的搜索。**由于迄今為止只探索了化學空間的一個小區域,可用于某些化學系統的數據量是有限的。本文通過將3D分子設計問題制定為強化學習任務,克服了生成模型對數據集的依賴,并提出了一種對稱感知策略,可以生成用以前方法無法實現的分子結構。
**最后,我們考慮了如何在不同任務中有效地學習機器人行為的問題。**實現這一目標的一個有希望的方向是在不同的任務上下文中泛化局部學習的策略。上下文策略搜索通過顯式地將策略約束在參數化上下文空間上,從而提供數據高效的學習和泛化。進一步構建上下文策略表示,在各種機器人領域實現更快的學習和更好的泛化。
本書為表示提供了簡明而全面的指南,這是機器學習(ML)的核心。最先進的實際應用涉及許多高維數據分析的挑戰。不幸的是,許多流行的機器學習算法在面對龐大的基礎數據時,在理論和實踐中都無法執行。本書恰當地介紹了這個問題的解決方案。 此外,這本書涵蓋了廣泛的表示技術,對學者和ML從業者都很重要,如局部敏感哈希(LSH),距離度量和分數范數,主成分(PCs),隨機投影和自動編碼器。書中提供了幾個實驗結果來證明所討論技術的有效性。 本書討論了機器學習(ML)中最重要的表示問題。在使用機器從數據中學習類/聚類抽象時,以適合有效和高效機器學習的形式表示數據是很重要的。在本書中,我們建議涵蓋各種在理論和實踐中都很重要的表示技術。在當前興趣的實際應用中,數據通常是高維的。這些應用包括圖像分類、信息檢索、人工智能中的問題解決、生物和化學結構分析以及社會網絡分析。這種高維數據分析的一個主要問題是,大多數流行的工具,如k近鄰分類器、決策樹分類器,以及一些依賴于模式間距離計算的聚類算法都不能很好地工作。因此,在低維空間中表示數據是不可避免的。 常用的降維技術有以下幾種:
**數字化、大規模和高通量技術的出現產生了前所未有的數據,為今天的藥物發現利用機器學習(ML)提供了一個極好的機會。**通過識別ML中的相關問題和合適配置,我們可以將這些不斷增加的數據轉化為發現更好的藥物,并縮短藥物開發周期,從而為以前無法治愈的疾病提供更便宜的藥物和治療選擇。**本文提出了四種機器學習方法來解決當今藥物研發流程中的不同挑戰,以快速為臨床試驗提供更可行的藥物候選,并最終改善所有人的生活質量。**本文提出一種批均衡方法,利用風格遷移生成對抗網絡來調節細胞圖像中常見的批效果,以便可以更有效地將它們用于高通量體外篩選。描述了一個能量啟發的SE(3)等變模型,以高效和準確地估計分子構象的分布,從而可以提高基于硅結構的篩選的準確性。提出了一個用于目標感知分子生成的3D全原子擴散框架,可以探索現有篩選庫之外的新化學,并提出新的藥物候選以結合挑戰性疾病的靶點。描述了一種反應預測算法,將基于規則的系統(整數線性規劃)和數據驅動的方法(圖神經網絡)結合在一起,可以從所描述的篩選管道或生成模型中有效地合成候選藥物。最后,我們使用圖神經網絡對氣味分子(而不是藥物)進行建模,并找到許多物種共享的通用氣味空間。我們假設,新陳代謝的生物學驅動了這種趨同進化,我們對這些與不同代謝過程相關的揮發性有機化合物的建模能力,可能對我們如何理解動物嗅覺和研究人類健康有很大的影響。綜上所述,本文展示了機器學習在大數據時代改變藥物發現和人類健康的潛力。
機器學習的現實應用通常具有復雜的目標和安全關鍵約束。當代的機器學習系統擅長于在具有簡單程序指定目標的任務中實現高平均性能,但它們在許多要求更高的現實世界任務中很困難。本文致力于開發可信的機器學習系統,理解人類的價值觀并可靠地優化它們。
機器學習的關鍵觀點是,學習一個算法通常比直接寫下來更容易,然而許多機器學習系統仍然有一個硬編碼的、程序指定的目標。獎勵學習領域將這種見解應用于學習目標本身。由于獎勵函數和目標之間存在多對一的映射,我們首先引入由指定相同目標的獎勵函數組成的等價類的概念。
在論文的第一部分,我們將等價類的概念應用于三種不同的情形。首先,我們研究了獎勵函數的可識別性:哪些獎勵函數集與數據兼容?我們首先對誘導相同數據的獎勵函數的等價類進行分類。通過與上述最優策略等價類進行比較,我們可以確定給定數據源是否提供了足夠的信息來恢復最優策略。
其次,我們解決了兩個獎勵函數等價類是相似還是不同的基本問題。我們在這些等價類上引入了一個距離度量,即等價策略不變比較(EPIC),并表明即使在不同的過渡動態下,低EPIC距離的獎勵也會誘導具有相似回報的策略。最后,我們介紹了獎勵函數等價類的可解釋性方法。該方法從等價類中選擇最容易理解的代表函數,然后將代表函數可視化。
在論文的第二部分,我們研究了模型的對抗魯棒性問題。本文首先介紹了一個物理上現實的威脅模型,包括在多智能體環境中行動的對抗性策略,以創建對防御者具有對抗性的自然觀察。用深度強化學習訓練對手,對抗一個凍結的最先進的防御者,該防御者通過自訓練,以對對手強大。這種攻擊可以可靠地戰勝最先進的模擬機器人RL智能體和超人圍棋程序。
最后,研究了提高智能體魯棒性的方法。對抗性訓練是無效的,而基于群體的訓練作為一種部分防御提供了希望:它不能阻止攻擊,但確實增加了攻擊者的計算負擔。使用顯式規劃也有幫助,因為我們發現具有大量搜索的防御者更難利用。
。
關系數據在現代計算中無處不在,并驅動跨多個領域的幾個關鍵應用程序,如信息檢索、問題回答、推薦系統和藥物發現。因此,人工智能(AI)的一個主要研究問題是建立以有效和可靠的方式利用關系數據的模型,同時注入相關的歸納偏差和對輸入噪聲的魯棒性。近年來,圖神經網絡(GNNs)和淺節點嵌入模型等神經模型在關系結構的學習表示方面取得了重大突破。然而,這些系統的能力和局限性還沒有被完全理解,在賦予這些模型可靠性保證、豐富它們的關系歸納偏差以及將它們應用于更具挑戰性的問題設置方面仍存在一些挑戰。在這篇論文中,我們研究了關系數據的學習和推理。更具體地說,我們從理論上和實證上分析了現有模型的性質和局限性,并提出了改進關系歸納偏差和表征能力的新方法。
//ora.ox.ac.uk/objects/uuid:da7744ad-effd-4fc9-b7ab-a00b03a86a53
1. 引言以神經網絡為動力的深度學習系統已經在各種具有挑戰性的任務上取得了突破性的成果,如計算機視覺[96]和機器翻譯[160]。深度學習模型在最少人為干預的情況下從數據中學習模式,并在其訓練集之外進行經驗歸納。因此,在多個領域應用深度學習系統的興趣越來越大。沿著這些思路,近年來一個突出的研究前沿是將深度學習應用到關系數據中。從根本上說,關系數據將信息表示為一組通過語義意義關系連接的實體。例如,可以將在線市場上的產品、賣家和用戶表示為實體,并將交易描述為跨上述三種實體類型的三元關系,例如,Alice從Charlie那里購買了一個球。關系數據的一個流行的特例是圖結構,其中關系最多是二進制的。在這種情況下,關系可以被視為定義(標記)圖實體之間的邊,這些實體本身構成了圖節點。關系表示非常通用,并且出現在各種應用程序領域中。例如,社交網絡中的用戶根據他們的互動(友誼、關注、點贊)成對連接,可以被視為一個圖結構。這同樣適用于引文網絡中的論文[153,154]及其引文連接,以及分子,其中原子可以被視為實體,它們的鍵可以表示為二進制關系。事實上,關系數據封裝了幾個傳統數據域。例如,圖像是網格形狀的圖形的一種特殊情況,其中相鄰的像素由一條邊連接,序列是一系列實體,這些實體的邊連接著連續的實體。鑒于關系數據的普遍存在和圖結構的普遍存在,構建強大的關系機器學習模型是一個重要的研究問題,其分支涉及多個任務,如信息檢索[182]、問題回答[20]、推薦系統[173]和藥物發現[60]。廣義上講,機器學習任務可以分為三大類:
1. 節點級的任務。給定一個帶有未標記或部分標記節點的輸入圖,節點級任務旨在預測節點屬性,例如,對于沒有預標記屬性的節點,預測一個類或一個值。例如,在引用網絡中,論文(輸入圖中的實體)具有內容特征,并且通過二元引用關系與其他論文相連,預測論文的主題就是一個節點分類任務。
2. Graph-level任務。給定一個輸入圖,圖級任務尋求基于節點特征、邊和整體輸入圖結構預測全局圖屬性,如類或值。這些任務在分子圖中非常突出,包括幾個圖性質預測問題,如毒性分類和零點振動能(ZPVE)回歸[140]。
3.Edge-level任務。給定一個輸入圖,邊級任務旨在預測現有邊的未知邊屬性,或者更常見的是,基于現有邊和節點特征預測圖中缺失的邊。對于后一種情況,當輸入圖是單關系圖時,該問題稱為鏈接預測,如引用網絡,當輸入圖是多關系圖時,該問題稱為知識圖譜補全(KGC)。在本文中,我們研究了關系數據(圖結構和更一般的關系數據)的學習和推理,并提出了幾個模型和框架,以理論分析和結果支持,以提高該領域模型的關系歸納偏差和表示能力。更具體地說,我們系統地研究現有模型,證明它們的理論屬性和結果,并提出擴展和新模型,以(i)可證明地捕獲和/或強加豐富的關系歸納偏差,(ii)更好地理解現有模型的表現力和表征局限性,以及(iii)將現有模型和方法擴展到與推理和推理相關的新穎的、具有挑戰性的應用領域。
在本文中,我們的目標是改進深度強化學習中的泛化。對任何類型的學習來說,泛化都是一項基本挑戰,它決定了如何將已獲得的知識轉移到新的、以前從未見過的情況中。本文專注于強化學習,這是一個描述人工智能體如何學習與環境交互以實現目標的框架。近年來,利用神經網絡表示智能體取得了顯著的成功,并極大地擴展了其可能的應用范圍。本文的目標是通過允許這些智能體更快地學習,學習更好的解決方案,并對以前未見過的情況做出魯棒的反應,從而提高它們的性能。在這個探索中,我們探索了一系列不同的方法和途徑。我們專注于將額外的結構,也稱為歸納偏差,納入主體。專注于特定的,但廣泛適用的問題領域,我們可以開發專門的架構,從而大大提高性能。在第3章中,我們關注的是部分可觀察環境,在這種環境中,智能體每時每刻都不能完全訪問所有與任務相關的信息。在第4章中,我們將注意力轉向多任務和遷移學習,并設計了一種新的訓練方法,允許訓練分層結構的智能體。我們的方法優化了單個解決方案的可重用性,大大提高了傳輸設置中的性能。
//ora.ox.ac.uk/objects/uuid:9fdfadb0-e527-4421-9a22-8466c9fed9c8 在本文的第二部分中,我們將注意力轉向正則化,這是另一種形式的歸納偏差,作為提高深度智能體泛化的方法。在第五章中,我們首先探討了強化學習(RL)中的隨機正則化。雖然這些技術已被證明在監督學習中非常有效,但我們強調并克服了將它們直接應用到在線RL算法中的困難,這是RL中最強大和應用最廣泛的學習類型之一。在第6章中,我們通過探索訓練數據中的瞬態非平穩性如何干擾神經網絡的隨機梯度訓練,并使其偏向較差的解,在更基本的水平上研究了深度rl中的泛化。許多先進的RL算法將這些類型的非平穩性引入到訓練中,甚至在平穩環境中,通過使用持續改進的數據收集策略。我們提出了一個新的框架,以減少經過訓練的策略所經歷的非平穩性,從而允許改進的泛化。
機器學習模型在有偏差的數據集上訓練時是有偏差的。最近提出了許多方法,以減輕被確定為先驗的偏差。然而,在現實世界的應用中,標注偏差不僅耗時而且具有挑戰性。本論文考慮了三種不同的場景,并提出了學習魯棒模型的新算法。這些算法是有效的,因為它們不需要明確的偏差注釋,從而實現了實用的機器學習。
首先,我們引入了一種算法,該算法對從多個環境中收集的數據進行操作,其中偏差特征和標簽之間的相關性可能會有所不同。我們表明,當使用在一個環境上訓練的分類器對來自不同環境的例子進行預測時,它的錯誤是隱藏偏見的信息。
然后,我們利用這些錯誤來創建一組示例,這些示例的插值結果只具有穩定的相關性。我們的算法在四種文本和圖像分類任務上實現了最新的技術。然后我們考慮無法訪問多個環境的情況,這是新任務或資源有限任務的常見場景。我們證明,在現實世界的應用中,相關的任務往往有類似的偏見。在此基礎上,我們提出了一種算法,從資源豐富的源任務中推斷出偏差特征,并將這種知識轉移到目標任務中。與橫跨5個數據集的15個基線相比,我們的方法始終提供顯著的性能提升。
最后,我們研究了只給出一組輸入標簽對的自動偏差檢測。我們的算法學習分割數據集,使得在訓練分割上訓練的分類器不能泛化到測試分割上。性能差距為測量學習特征的偏差程度提供了一個智能體,因此可以用來識別未知偏差。在六個NLP和視覺任務上的實驗表明,我們的方法能夠產生與人類識別的偏差相關的虛假分裂。
在一個特定的數據集上訓練一個強大的神經預測器執行一項任務的主流NLP范式取得了在各種應用上的成功(如:情感分類、基于廣度預測的問答或機器翻譯)。然而,它建立在數據分布是平穩的假設之上,即。在訓練和測試時,數據都是從一個固定的分布中取樣的。這種訓練方式與我們人類在不斷變化的信息流中學習和操作的方式不一致。此外,它不適合于真實世界的用例,在這些用例中,數據分布預計會在模型的生命周期中發生變化。
本文的第一個目標是描述這種偏移在自然語言處理環境中可能采取的不同形式,并提出基準和評價指標來衡量它對當前深度學習體系結構的影響。然后,我們繼續采取步驟,以減輕分布轉移對NLP模型的影響。為此,我們開發了基于分布魯棒優化框架的參數化重構方法。從經驗上講,我們證明了這些方法產生了更魯棒的模型,正如在選擇的現實問題上所證明的那樣。在本文的第三部分和最后一部分,我們探索了有效地適應現有模型的新領域或任務的方法。我們對這個主題的貢獻來自于信息幾何學的靈感,獲得了一個新的梯度更新規則,緩解了適應過程中災難性的遺忘問題。
我們從評估開始,因為分布轉移特別難以描述和測量,特別是在自然語言方面。這部分是由于數據缺乏規范的度量結構。換句話說,如何有效地衡量兩個句子之間的語義相似度還不清楚,因此沒有直接的方法來衡量兩個樣本之間的差異,更不用說兩種分布了。因此,作為解決分布偏移的第一步,我們提出了一個新的基準(第3章)和評估指標(第4章),分別評估域偏移和對抗擾動的魯棒性。有了這些工具在手,我們開始構建魯棒的模型,這些模型經過訓練,即使在沒有關于轉移本質的明確信息的情況下,對分布轉移也不那么敏感。這是通過利用訓練分布中的數據多樣性來實現的,以確保在訓練數據(子群體)中存在的各種領域上的統一性能。具體來說,我們制定了一個分布魯棒優化框架的參數化版本,該框架允許訓練模型對子群體轉移更為穩健(第5章和第6章)。最后,在靜態環境中學習從根本上是次優的:我們不能期望我們的模型在每一個可能的未來環境中都表現良好,我們必須能夠使它們適應我們遇到的任何新情況。因此,我們研究了一種機制,通過這種機制,我們能夠根據新的證據微調訓練模型,而不會忘記之前獲得的知識(第7章)。
近年來,自然語言處理的研究方法取得了一些突破。這些突破來源于兩個新的建模框架以及在計算和詞匯資源的可用性的改進。在這個研討會小冊子中,我們將回顧這些框架,以一種可以被視為現代自然語言處理開端的方法論開始:詞嵌入。我們將進一步討論將嵌入式集成到端到端可訓練方法中,即卷積神經網絡和遞歸神經網絡。這本小冊子的第二章將討論基于注意力的模型的影響,因為它們是最近大多數最先進的架構的基礎。因此,我們也將在本章中花很大一部分時間討論遷移學習方法在現代自然語言處理中的應用。最后一章將會是一個關于自然語言生成的說明性用例,用于評估最先進的模型的訓練前資源和基準任務/數據集。
//compstat-lmu.github.io/seminar_nlp_ss20/
在過去的幾十年里,人工智能技術的重要性和應用不斷得到關注。在當今時代,它已經與構成人類塑造環境的大部分環境密不可分。因此,商業、研究和開發、信息服務、工程、社會服務和醫學等無數部門已經不可逆轉地受到人工智能能力的影響。人工智能有三個主要領域組成了這項技術:語音識別、計算機視覺和自然語言處理(見Yeung (2020))。在這本書中,我們將仔細研究自然語言處理(NLP)的現代方法。
這本小冊子詳細介紹了用于自然語言處理的現代方法,如深度學習和遷移學習。此外,本研究亦會研究可用于訓練自然語言處理任務的資源,并會展示一個將自然語言處理應用于自然語言生成的用例。
為了分析和理解人類語言,自然語言處理程序需要從單詞和句子中提取信息。由于神經網絡和其他機器學習算法需要數字輸入來進行訓練,因此應用了使用密集向量表示單詞的詞嵌入。這些通常是通過有多個隱藏層的神經網絡學習的,深度神經網絡。為了解決容易的任務,可以應用簡單的結構神經網絡。為了克服這些簡單結構的局限性,采用了遞歸和卷積神經網絡。因此,遞歸神經網絡用于學習不需要預先定義最佳固定維數的序列的模型,卷積神經網絡用于句子分類。第二章簡要介紹了NLP中的深度學習。第三章將介紹現代自然語言處理的基礎和應用。在第四章和第五章中,將解釋和討論遞歸神經網絡和卷積神經網絡及其在自然語言處理中的應用。
遷移學習是每個任務或領域的學習模型的替代選擇。在這里,可以使用相關任務或領域的現有標記數據來訓練模型,并將其應用到感興趣的任務或領域。這種方法的優點是不需要在目標域中進行長時間的訓練,并且可以節省訓練模型的時間,同時仍然可以(在很大程度上)獲得更好的性能。遷移學習中使用的一個概念是注意力,它使解碼器能夠注意到整個輸入序列,或自注意,它允許一個Transformer 模型處理所有輸入單詞,并建模一個句子中所有單詞之間的關系,這使得快速建模一個句子中的長期依賴性成為可能。遷移學習的概念將在小冊子的第6章簡要介紹。第七章將通過ELMo、ULMFiT和GPT模型來描述遷移學習和LSTMs。第八章將詳細闡述注意力和自注意力的概念。第九章將遷移學習與自注意力相結合,介紹了BERT模型、GTP2模型和XLNet模型。
為NLP建模,需要資源。為了找到任務的最佳模型,可以使用基準測試。為了在基準實驗中比較不同的模型,需要諸如精確匹配、Fscore、困惑度或雙語評估替補學習或準確性等指標。小冊子的第十章簡要介紹了自然語言處理的資源及其使用方法。第11章將解釋不同的指標,深入了解基準數據集SQuAD、CoQa、GLUE和SuperGLUE、AQuA-Rat、SNLI和LAMBADA,以及可以找到資源的預訓練模型和數據庫,如“帶代碼的論文”和“大壞的NLP數據庫”。
在小冊子的最后一章中,介紹了生成性NLP處理自然語言生成,從而在人類語言中生成可理解的文本。因此,不同的算法將被描述,聊天機器人和圖像字幕將被展示,以說明應用的可能性。
本文對自然語言處理中各種方法的介紹是接下來討論的基礎。小冊子的各個章節將介紹現代的NLP方法,并提供了一個更詳細的討論,以及各種示例的潛力和限制。