隨著新代碼、新項目和新章節的推出,第二版為讀者提供了一個堅實的機器學習基礎,并為讀者提供了一個完整的學習概念。由NASA噴氣推進實驗室副首席技術官和首席數據科學家Chris Mattmann編寫,所有的例子都伴隨著可下載的Jupyter筆記本,以親身體驗用Python編寫TensorFlow。新的和修訂的內容擴大了核心機器學習算法的覆蓋面,以及神經網絡的進步,如VGG-Face人臉識別分類器和深度語音分類器。
//www.manning.com/books/machine-learning-with-tensorflow-second-edition
使用TensorFlow的機器學習,第二版是使用Python和TensorFlow構建機器學習模型的完全指南。您將把核心ML概念應用于現實世界的挑戰,如情感分析、文本分類和圖像識別。實例演示了用于深度語音處理、面部識別和CIFAR-10自動編碼的神經網絡技術。
這是一個動手操作的初學者指南,它能讓你快速地構建游戲,所有的東西都有很棒的Unity引擎!您將快速通過基礎知識,并使用您現有的編碼技能來創建2D、3D和AR/VR游戲。
在Unity In Action,第三版,你將學習如何: 創造能夠奔跑、跳躍和撞到東西的角色 制作3D第一人稱射擊游戲和第三人稱動作游戲 構建2D卡牌游戲和橫向卷軸平臺游戲 帶有AI的腳本敵人 通過導入模型和圖像來改善游戲圖像 為游戲設計直觀的用戶界面 播放音樂和空間感知音效 將你的游戲連接到互聯網上進行在線游戲 將你的游戲部署到桌面、手機和網頁上
成千上萬的新游戲開發者選擇了Joe Hocking的《Unity in Action》作為他們掌握Unity的第一步。從一個新游戲開發項目的初始基礎開始,你將很快開始編寫自定義代碼,而不是點擊預先編寫好的腳本。這個完全更新的第三版包含了完全更新的圖形,Unity的最新功能,以及增強和虛擬現實工具包的覆蓋。您將從基礎上掌握Unity工具集,學習從應用程序程序員到游戲開發者的技能。
自然語言處理實戰教你如何創建實用的NLP應用,而不陷入復雜的語言理論和深度學習的數學。在這本引人入勝的書中,您將探索構建大量強大的NLP應用所需的核心工具和技術,包括聊天機器人、語言檢測器和文本分類器。
真實世界的自然語言處理不是典型的自然語言處理教科書。我們專注于構建真實世界的NLP應用。這里真實世界的意義有兩個方面:首先,我們關注構建真實世界的NLP應用需要什么。作為讀者,您不僅將學習如何訓練NLP模型,還將學習如何設計、開發、部署和監控它們。在此過程中,您還將學習現代NLP模型的基本構建模塊,以及對構建NLP應用有用的NLP領域的最新開發。其次,與大多數介紹性書籍不同,我們采用自上而下的教學方法。我們不采用自下而上的方法,一頁頁地展示神經網絡理論和數學公式,而是專注于快速構建“正常工作”的NLP應用程序。然后我們深入研究組成NLP應用的各個概念和模型。您還將學習如何使用這些基本構建塊構建端到端定制NLP應用,以滿足您的需求。
這本書由三個部分組成,共11章。第1部分介紹了NLP的基礎知識,其中我們學習了如何使用AllenNLP 快速構建一個NLP應用,以完成情感分析和序列標記等基本任務。
第1章首先介紹了NLP的“什么”和“為什么”——什么是NLP,什么不是NLP,如何使用NLP技術,以及NLP如何與人工智能的其他領域相關聯。
第2章演示了如何構建第一個NLP應用程序,一個情感分析器,并介紹了現代NLP模型的基礎知識——單詞嵌入和遞歸神經網絡(RNN)。
第3章介紹了自然語言處理應用的兩個重要組成部分,單詞和句子的嵌入,并演示了如何使用和訓練它們。
第4章討論了最簡單但最重要的NLP任務之一,句子分類,以及如何在這個任務中使用RNN。
第5章介紹了序列標注任務,如詞性標注和命名實體提取。它還涉及到一個相關的技術,語言建模。
第2部分介紹高級NLP主題,包括序列到序列模型、Transformer以及如何利用遷移學習和預先訓練過的語言模型來構建強大的NLP應用。
第6章介紹了序列到序列的模型,它將一個序列轉換為另一個序列。我們在一個小時內構建了一個簡單的機器翻譯系統和一個聊天機器人。
第7章討論了另一種流行的神經網絡結構,卷積神經網絡(CNN)。
第8章深入介紹了Transformer,它是當今最重要NLP模型之一。我們將演示如何使用Transformer構建改進的機器翻譯系統和拼寫檢查器。
第9章在前一章的基礎上,討論了遷移學習,這是現代NLP中的一種流行的技術,使用預先訓練過的語言模型,如BERT。
第3部分將討論與開發NLP應用程序相關的主題,這些應用程序對真實數據具有健壯性,并部署和服務它們。
第10章詳細介紹了開發NLP應用程序時的最佳實踐,包括批處理和填充、正則化和超參數優化。
第11章總結了如何部署和服務NLP模型。它還涵蓋了如何解釋和解釋ML模型。
掌握使用PyTorch實現深度學習解決方案的實踐方面,使用實踐方法理解理論和實踐。Facebook的人工智能研究小組開發了一個名為PyTorch的平臺,該平臺擁有良好的理論基礎和實用技能,為你在現實世界中應用深度學習做好了準備。
首先,您將了解PyTorch的深度學習是如何以及為什么成為一種具有開創性的框架,它帶有一組工具和技術來解決現實世界中的問題。接下來,這本書將為你打下線性代數、向量微積分、概率和最優化的數學基礎。在建立了這個基礎之后,您將繼續討論PyTorch的關鍵組件和功能,包括層、損失函數和優化算法。
您還將了解基于圖形處理單元(GPU)的計算,這對訓練深度學習模型是必不可少的。介紹了深度學習的前饋網絡、卷積神經網絡、循環神經網絡、長短時記憶網絡、自動編碼器網絡和生成對抗網絡等關鍵網絡結構。在許多訓練和優化深度學習模型的技巧的支持下,這個版本的Python深度學習解釋了使用PyTorch將這些模型帶到生產中的最佳實踐。
你會: 回顧機器學習的基本原理,如過擬合、欠擬合和正則化。 了解深度學習的基本原理,如前饋網絡,卷積神經網絡,遞歸神經網絡,自動微分和隨機梯度下降。 使用PyTorch深入應用線性代數 探索PyTorch的基本原理及其構建塊 使用調優和優化模型
圖像分類、目標檢測與跟蹤、姿態估計、人臉識別和情感估計在解決計算機視覺問題中都起著重要的作用。
本書將重點介紹這些和其他深度學習架構和技術,以幫助您創建使用Keras和TensorFlow庫的解決方案。您還將回顧多種神經網絡架構,包括LeNet、AlexNet、VGG、Inception、R-CNN、Fast R-CNN、Faster R-CNN、Mask R-CNN、YOLO和SqueezeNet,并通過最佳實踐、技巧、捷徑和陷阱了解它們如何與Python代碼一起工作。所有代碼片段都將被分解并進行詳細討論,以便您可以在各自的環境中實現相同的原則。
使用深度學習的計算機視覺提供了一個全面而簡潔的指南,將DL和CV結合在一起,實現自動化操作,減少人工干預,提高能力,并降低成本。
你會:
不久前,計算機視覺還只是科幻小說的專屬內容,但現在,即使不是在整個社會,也正迅速成為各行各業的普遍現象。人類視覺是人類感官中最珍貴的一種,在模仿人類視覺這一領域取得的進展令人驚嘆。直到1957年,拉塞爾·基爾希才掃描出了世界上第一張照片——他兒子的黑白照片。到20世紀80年代末,西羅維奇和柯比的工作幫助人臉識別成為一種可行的生物識別技術。盡管存在隱私問題和法律挑戰,但Facebook在2010年將人臉識別技術納入其社交媒體平臺時,使這項技術無處不在。
這本書試圖解釋計算機視覺問題的深度學習和神經網絡的概念。我們正在詳細研究卷積神經網絡,以及它們的各個組成部分和屬性。我們正在探索各種神經網絡架構,如LeNet, AlexNet, VGG, R-CNN, Fast R-CNN, Faster R-CNN, SSD, YOLO, ResNet, Inception, DeepFace,和FaceNet的細節。我們還在開發實用的解決方案,以解決二值圖像分類、多類圖像分類、目標檢測、人臉識別和視頻分析的用例。我們將使用Python和Keras作為解決方案。所有的代碼和數據集被檢入GitHub repo快速訪問。在最后一章中,我們將學習深度學習項目中的所有步驟——從定義業務問題到部署。我們還在處理在制定解決方案時面臨的重大錯誤和問題。在這本書中,我們提供了訓練更好的算法的技巧和技巧,減少訓練時間,監測結果,并改進解決方案。我們也分享代表性的研究論文和數據集,你應該使用它們來獲得進一步的知識。
這本書把這個主題分成三部分。在第1章到第4章,本書描述了神經網絡的本質和揭秘他們如何學習。并指出了不同的架構及其歷史意義。實踐者在擁有所有所需資源的情況下,可以體驗到LeNet優雅的簡單性、AlexNet提高的效率以及流行的VGG Net。在第5至7章,從業人員運用簡單而強大的計算機視覺應用,如訓練算法來檢測物體和識別人臉。在進行視頻分析時,我們遇到了漸變消失和爆炸的困擾問題,以及如何在ResNet架構中使用跳過連接來克服它。最后,在第8章中,我們回顧了完整的模型開發過程,從正確定義的業務問題開始,系統地推進,直到模型在生產環境中部署和維護。
【導讀】自2015年11月TensorFlow第一個開源版本發布以來,它便迅速躋身于最激動人心的機器學習庫的行列,并在科研、產品和教育等領域正在得到日益廣泛的應用。這個庫也在不斷地得到改進、充實和優化。今天給大家推薦一本偏實戰的教程《Hands-On Machine Learning with Scikit-Learn and TensorFlow, 2nd Edition》第二版,使用最新TensorFlow 2的官方高級API,幫助你直觀地理解構建智能系統的概念和工具。從業者將學習一系列可以在工作中快速使用的技術。第1部分使用Scikit-Learn來介紹基本的機器學習任務,例如簡單的線性回歸。第2部分已經過重大更新,采用Keras和TensorFlow 2.0引導讀者通過使用深度神經網絡的更先進的機器學習方法。通過每章的練習來幫助你應用所學知識,你只需要編程經驗即可開始使用。
Hands-On Machine Learning with Scikit-Learn and TensorFlow, 2nd Edition
▌本書簡介
通過近年來一系列的突破,深度學習推動了整個機器學習領域的發展。現在,即使對這種技術幾乎一無所知的程序員也可以使用簡單、高效的工具來實現能夠從數據中學習的程序。這本暢銷書的最新版本使用了具體的例子、最少理論和可復現的Python框架,幫助您直觀地理解用于構建人工智能系統的概念和工具。
您將學習一系列可以快速使用的技術。每一章都有練習來幫助你應用所學,你所需要的只是編程經驗。所有代碼都已更新為TensorFlow 2和最新版本的Scikit-Learn和其他庫。
▌相關代碼
//github.com/ageron/handson-ml2
參考鏈接:
Manning最暢銷的Java 8書籍已經被修訂為Java 9和Java 10!在Modern Java In Action中,讀者可以使用最新的特性和技術,在已有的Java語言技能的基礎上進行構建。
Java 9的發布建立在Java 8令人激動的基礎之上。除了Java 8的lambdas和streams之外,Java 9還添加了許多自己的新特性。它包含了新的庫特性來支持響應式編程,這為用戶提供了一種新的方式來思考編程和編寫更易于閱讀和維護的代碼。
//www.manning.com/books/deep-learning-with-javascript
深度學習已經改變了計算機視覺、圖像處理和自然語言應用領域。多虧了TensorFlow.js,現在JavaScript開發人員可以無需依賴Python或R就能構建深度學習應用程序。使用JavaScript的深度學習向開發人員展示了如何將DL技術引入web。本書由TensorFlow庫的主要作者編寫,為在瀏覽器或Node上使用JavaScript進行深度學習的應用程序提供了有趣的用例和深入的指導。
關于技術
在瀏覽器或基于Node的后端中運行深度學習應用程序,為智能web應用程序開辟了令人興奮的可能性。使用TensorFlow.js庫,您可以用JavaScript構建和訓練深度學習模型。TensorFlow.js具有無與倫比的可擴展性,模塊化和響應能力,其可移植性確實令人眼前一亮。它的模型可以在JavaScript運行的任何地方運行,從而將ML推向應用程序堆棧的更上層。
關于這本書
在Deep Learning with JavaScript這本書中,您將學習使用TensorFlow.js來構建直接在瀏覽器中運行的深度學習模型。這本快節奏的書由Google工程師撰寫,是實用的,引人入勝且易于閱讀。通過以文本分析,語音處理,圖像識別和自學習游戲AI為特色的各種示例,您將掌握深度學習的所有基礎知識并探索高級概念,例如對現有模型進行再訓練以進行遷移學習和圖像生成。
書里面有什么
在瀏覽器中的圖像和語言處理
用客戶端數據調優ML模型
通過生成式深度學習創建文本和圖像
源代碼示例以進行測試和修改
簡介: Google一直是引入突破性技術和產品的先驅。在效率和規模方面,TensorFlow也不例外,因此,編寫本書只是向讀者介紹TensorFlow核心團隊所做的這些重要更改。本書著重于機器學習方面的TensorFlow的不同應用,并更深入地探討了方法的最新變化。對于那些想要用TensorFlow進行機器學習的人來說,這本書是一個很好的參考點。本書分為三個部分。第一篇:使用TensorFlow 2.0進行數據處理。第二部分:使用TensorFlow 2.0構建機器學習和深度學習模型。它還包括使用TensorFlow 2.0的神經語言編程(NLP)。第三部分介紹了如何在環境中保存和部署TensorFlow 2.0模型。這本書對數據分析人員和數據工程師也很有用,因為它涵蓋了使用TensorFlow 2.0處理大數據的步驟。想要過渡到數據科學和機器學習領域的讀者也會發現,本書提供了實用的入門指南,以后可能會出現更復雜的方面。書中提供的案例研究和示例使您很容易理解和理解相關的基本概念。本書的優勢在于其簡單性以及將機器學習應用于有意義的數據集。
目錄: