隨著無人機(Unmanned Aerial Vehicle,UAV)成本的降低,無人機引起了越來越多的研究興趣.其應用領域廣泛,包括農業、消防、測繪、航拍以及娛樂應用.這些應用需要無人機在精準的自我定位下進行自主飛行,通常高度依賴于全球導航衛星系統(Global Navigation Satellite System,GNSS).然而,GNSS在長距離無線電通信方面存在多種缺陷(如非視距接收、多路徑效應、欺騙信號),這推動了補充或取代衛星導航新方法的發展.基于視覺的無人機定位與導航方法利用無人機搭載的視覺傳感器,實現自主定位與導航,成為解決這一問題的重要途徑.本文的貢獻在于系統性地梳理了基于視覺的無人機定位與導航技術,全面總結了該領域的研究現狀和發展趨勢.首先,介紹了無人機視覺定位的方法,主要分為圖像檢索和圖像匹配兩類,并對其技術特點、適用場景以及相關數據集和評價指標進行了分析.其次,詳細闡述了無人機視覺導航的方法,根據導航功能的不同分為障礙物檢測與規避方法以及路徑規劃方法,揭示了現有技術的優勢和局限.最后,進一步討論了基于視覺的無人機定位與導航方法在公共可用數據集、硬件加速、環境復雜性、實時性要求、能源限制以及模擬器到真實世界的泛化等方面可能面臨的挑戰.
軍用無人機已成為現代戰爭的標志性裝備,其在烏克蘭戰場造成的傷亡遠超其他武器。偵察、打擊、后勤及海軍作戰領域的廣泛應用,使國家與非國家行為體日益依賴無人系統。歐盟(EU)將無人機研發與反制列為優先事項,通過歐洲防務基金和永久結構性合作(Permanent Structured Cooperation)提供資金并協調研發。歐盟領導人承諾加強防務產業,對無人機生產、創新與互操作性進行重大投資,同時促進軍民兩用技術協同,解決戰略依賴問題并與北約開展合作。歐洲防務局正通過聯合項目及創新中心推進無人機技術發展。
無人機在俄烏戰爭中已成為主導力量,其數量達歷史頂峰。2024年5月烏軍方高層表示:"無人機造成的雙方傷亡超過任何武器"。年初烏設定百萬架年產量目標后,現已提升至400萬架;俄據稱正同步增產。現役超百種無人機涵蓋從民用改裝機到近20米寬的大型軍用機,承擔偵察、精準打擊、武器制導、誘餌投放、通訊中繼及物資運輸等任務。兩國通過自研、民用改裝或盟友渠道獲取無人機。在有人戰機受防空壓制及烏軍彈藥短缺背景下,無人機對維持防御至關重要。除空基系統外,烏軍部署海軍無人機打擊俄黑海艦隊并擊沉多艘艦艇,現正致力組建專業無人艦艇編隊。陸基無人機雖技術較初級,仍用于運輸、偵察及有限攻擊。
無人機不僅盛行于烏克蘭戰場,更已成為全球沖突的普遍特征:在加沙、以色列、黎巴嫩戰事,也門、蘇丹、敘利亞、緬甸內戰,以及紅海國際船只襲擊事件中均發揮關鍵作用。中東與非洲非國家團體對無人機的使用也持續擴展。此趨勢被部分觀點視為戰爭形態的重大變革,亦有觀點認為屬于軍事技術的自然演進。
截至2023年,全球商用無人機(UAS)市場規模約達229.8億美元,預計2030年將強勁增長至571.6億美元。農業、物流、傳媒及醫療等領域需求激增推動市場擴張。軍用無人機市場2022年估值132億美元,預計2032年將達277億美元。
歐盟正依托堅實基礎,有望在未來無人機戰爭中占據領導地位。行業報告顯示:截至2022年全球超40%無人機企業分布于歐洲。烏克蘭與土耳其已成為歐洲領先的無人機生產國。但歐盟安全研究所(EUISS)專家指出,烏需更多資金擴大產能并獲取先進無線電發射器、傳感器等關鍵部件,方能釋放產業潛力。
由拉脫維亞與烏克蘭發起的"國際無人機聯盟"于2024年2月成立。該聯盟由17國組成(按字母排序):澳大利亞、加拿大、捷克、丹麥、愛沙尼亞、法國、德國、意大利、立陶宛、盧森堡、荷蘭、新西蘭、挪威、波蘭、瑞典以及拉脫維亞與英國(后兩國任協調員)。過去一年聯盟聯合基金籌集1.76億歐元,伙伴國援助總額超20億歐元,資金用于采購無人機及支持創新研發以增強烏軍戰力。已完成兩次國際招標:首批選定5家供應商半年內向烏交付3萬架FPV無人機;第二批聚焦先進FPV無人機與攔截無人機,近20家烏制造商首次參與競標。聯盟另在拉脫維亞設立無人機試驗場。2025年3月,荷蘭宣布投資5億歐元啟動大規模無人機項目,旨在強化烏克蘭抗俄防御能力,該資金系荷政府20億歐元援烏計劃組成部分。
當前歐盟軍隊尚未建立俄烏規模的武裝無人機庫。盡管部分成員國部署少量大型高成本中空長航時(MALE)無人機(類似"反恐戰爭"機型),其在強對抗環境中的效能有限。且沒有歐盟軍隊儲備足夠"可消耗式無人機"與"巡飛彈藥"來維持烏克蘭戰場級別的高強度消耗戰。近十年來歐盟國家雖擁有多元作戰需求,卻集中于設計高端MALE無人機。與此同時,技術進步使小型戰術無人機載荷能力顯著提升——已足以支持地面部隊打擊任務,該趨勢近十年持續加速,但歐盟國家對此變革認知與響應遲緩。分析師指出:各國對"歐洲無人機"(Eurodrone)項目的過度關注,已然阻礙戰術無人機機隊的擴編與現代化進程。
鑒于歐洲共同的作戰需求與軍工體系專業積淀,集中投資一至兩款通用戰術無人機本應是更高效策略。但主要軍費支出國卻選擇國內自研或現貨采購,進一步加劇市場割裂與非歐盟供應商依賴。近期出現若干重大進展:西班牙2023年批準4.95億歐元SIRTAP戰術無人機投資計劃(分8年執行:2023-2031)。由空客制造的該機型具備20小時滯空時間、6000米實用升限、750公斤起飛重量及150公斤載荷——性能參數與萊昂納多FALCO EVO相當(注:該機型中東地區有部署,但無歐洲軍隊列裝)。
希臘為應對土耳其無人機技術進步,在持續引進以色列等國外系統同時著力提升自研能力。2022年9月,希臘航空航天工業集團聯合三所高校推出具備強大監視偵察功能的多用途兩用垂直起降(VTOL)無人機"Archytas";2023年1月又宣布啟動模塊化戰斗無人機"Grypas"研發,其載荷能力顯著提升。原型機預計2025年問世,希臘將作為啟動用戶(其他歐洲國家可能跟進)。預算限制或緊急需求則使部分歐盟國家轉向采購非歐盟現成無人機:例如波蘭2021年率先引進土耳其"旗手-TB2"(注:俄全面入侵初期烏軍曾大量使用),首購4架后另與通用原子公司簽訂MQ-9"死神"租賃協議。
歐洲正掀起以無人機與人工智能為核心的國防科技熱潮。慕尼黑初創公司Helsing專注AI軍事化應用,其開發的HX-2智能打擊無人機旨在強化戰場決策能力,2024年7月獲4.5億歐元融資。該公司已向烏軍交付4000架HF-1無人機,新簽6000架HX-2訂單。HX-2系AI驅動的X翼構型精確打擊無人機,作戰半徑100公里,具備電子對抗與干擾環境作戰能力,可實施人控集群作戰。同處慕尼黑的Quantum Systems專攻電動垂直起降雙用小型無人機,2024年9月獲3640萬歐元融資(加上2023年10月6360萬歐元,總額超1億歐元)。其無人機遠程性能優異,軍民場景適用性強。2024年4月在烏設立首座工廠后,計劃2025年實現產能翻番,當前在烏生產"向量"偵察無人機并建立研發中心及維護基地。
無人機已重塑現代戰爭形態,每日被投入戰場執行監視或攻防任務。盡管當前仍由人類操控,但去人化自主控制轉型迫在眉睫。人工智能(AI)的迅猛發展使AI驅動無人機成為未來戰爭核心要素,這促使各國需提升系統能力以應對自主無人機威脅并研發更優型號。強化學習(RL)作為AI的決策范式,專注于序列決策問題,其在機器人領域的應用已展現解決復雜現實挑戰的潛力。本文通過實戰案例闡釋RL基礎原理并提出機器人部署框架,識別出無人機作戰中RL應用的五大復雜性維度,分析技術前沿與現存差距,最終給出彌合差距的技術路線圖及倫理考量。
無人航空系統(UAS)長期在現代戰爭中發揮關鍵作用,早期以大型偵察與精確打擊無人機為主。烏克蘭沖突標志著向小型商用無人機武器化的顛覆性轉變,此類無人機通過控制爭議區域、低成本打擊與情報搜集展現戰略優勢(文獻[2-4])。當前戰場中,人類仍主導數據分析與無人機操控,例如通過偵察無人機識別目標后操控攻擊型無人機實施打擊(文獻[5])。
AI已被視為執行部分戰場任務(如目標識別)的理想技術(文獻[6]),其數據處理速度遠超人類,可加速戰場決策。然而,即使AI輔助減輕操作負擔,無人機控制仍高度依賴人力。烏克蘭沖突中,第一人稱視角(FPV)操作員已成為稀缺資源(文獻[1,3,5,7]),面臨部署效率低下、操作員數量不足、暴露風險及通信鏈路易受干擾等挑戰。輕量化(<10 kg)敏捷無人機的普及使反無人機系統(CUAS)研發更為緊迫,亟需提升AI在無人機控制與反制領域的能力。
強化學習(RL)作為成熟的控制AI框架,通過試錯機制學習決策策略,已在《星際爭霸II》(文獻[8])、《Stratego》(文獻[9])等復雜游戲中展現超人性能,并在FPV競速無人機控制(文獻[10])與自主導航(文獻[11])領域取得突破。盡管RL具備優化戰場控制算法的潛力,但其在實戰部署仍存鴻溝——現有研究通常基于理想化假設,與真實戰場環境存在顯著差異。本文系統分析并分類這些差距,提出控制小型UAS及防御其攻擊的技術路線圖。
第2節詳述當前以小型無人機及其反制技術為核心的戰場格局;第3節形式化定義強化學習并通過實戰案例闡釋框架;第4節提出RL部署框架;第5節從五大復雜性維度(感知不確定性、動態環境適應性、多智能體協同、對抗性學習、安全性保障)剖析RL應用于機器人(尤其是無人機)的前沿算法;第6節構建五個漸進式創新場景,推動無人機作戰向自主UAS與CUAS演進。
本節提出若干復雜度遞增的作戰場景,構建無人機戰爭未來發展的技術演進路徑。通過前文所述雷達圖分析框架,評估各場景在五大復雜性維度的實現難度,以此明確技術突破方向。該路線圖代表我們通過增強戰爭智能化推動軍事創新的戰略愿景。
無人駕駛飛行器(UAV)又稱無人機,它的發展給航空業帶來了革命性的變化,并已成為現代戰爭的一部分。無人機最初是為軍隊開發的,用于執行對人類來說 "枯燥、骯臟或危險 "的任務,如今,無人機已被用于支持大量非軍事任務,如治安和監視、航空攝影、包裹遞送、森林火災監測和撲救、農業、基礎設施檢查和科學工作等。無人機的軍事用途始于越南戰爭,但在伊拉克沖突以及后來的阿富汗沖突中都有廣泛使用。最近,在阿塞拜疆與亞美尼亞的沖突中,智能無人機的使用使阿塞拜疆明顯占了上風。土耳其的 TB-2 無人機被烏克蘭非常有效地用于收集情報,以對付強大得多的俄羅斯。顯然,無人駕駛飛機技術現已成為增強戰斗力的手段。
大多數無人機都有一名操控員,他從遠程位置駕駛無人機,通過安全的通信鏈路控制無人機的使用。人工智能(IA)和機器學習(ML)以及高速機載計算的進步使無人機能夠自主運行。在大多數空中任務中,無人機正在迅速取代人類。無人機被用于空中加油,無人駕駛旋翼機在移動的船只上自主著陸,無人機利用太陽能執行長時間飛行任務,還有無人駕駛或可選擇有人駕駛的戰斗機。無人機正在成千上萬地組成完全協調的飛行群。有人機-無人機空中編隊,即一架有人機控制一組無人機。這種編隊將利用兩種類型的優勢。作戰無人機正被用于情報、監視和偵察(ISR)、電子戰、地面打擊任務和空中作戰。大型無人機執行貨運任務的工作已經開始。實際上,有朝一日無人機將執行所有類型的空中任務。
無人機的尺寸和重量多種多樣。無人機的分類還與其最大工作高度和航程有關。無人機可以小到昆蟲,也可以大到客機。飛行高度帶可以與有人駕駛飛機一樣高。如果人類不在平臺上,續航時間甚至可以長達數月。同樣,無人機在進行高 "g "機動時也不再受人類生理機能的限制。無人機可以以超音速飛行,以后甚至可以以高超音速飛行。太空已經被無人系統所占據,因此,航空航天領域未來也會有更多的無人系統。
實際上,世界上所有重要的空軍部隊都擁有無人機。許多國家都在制造無人機和小型無人機。美國、以色列和中國在無人機制造領域處于全球領先地位。土耳其也正在成為一個重要的出口國。數以百萬計的業余無人機在全球各地飛行。四旋翼無人機是業余無線電遙控飛機和玩具廣泛流行的例證。
無人駕駛航空通勤飛行器已經過測試,很快就會出現在空中。這需要國際民用航空組織(ICAO)的規定,包括空中規則。還有適航認證問題。無人機遙控駕駛員需要進行分類,并獲得有效期為 10 年的遙控駕駛員培訓組織(RPTO)認證。必須為市內通勤指定特定的城市空中走廊。空中交通管理將面臨新的動態。無人機銷售也需要通過獨特的識別號碼和許可證進行監管。
戰斗無人機擁有更大的自主權,可以在沒有決策干預的情況下自由攻擊和殺害人類,這涉及倫理和法律問題,需要加以解決。在無人機中,人類仍將以某種形式處于環路中,即使這意味著決定算法并擁有一定的優先權或否決權。設計板上的大多數高端未來飛機仍以飛行員為中心。因此,盡管無人駕駛飛行器取得了進步,但飛行員仍需要一些年才能看到空中的彩虹和高空的日落。
在伊拉克、阿富汗和伊朗等國,無人機曾被用來追蹤和殺害人類。最近,一個配備致命武器的自主殺人機器人在利比亞襲擊人類。無人機正被用于定點清除重要人物。2020 年 1 月 3 日,伊朗少將卡西姆-蘇萊曼尼在巴格達國際機場被美軍無人機擊斃。2022 年 5 月初,911 襲擊的實施者之一艾曼-扎瓦希里(Ayman al-Zawahiri)在喀布爾的一次超視距無人機襲擊行動中喪生,當時他作為塔利班的客人居住在喀布爾。
無人機已被用于走私武器和毒品。恐怖分子可以利用無人機攻擊目標,甚至擊落飛機。攜帶小型手榴彈的無人機群可以神風特攻隊的方式飛入大型集會,制造混亂。
由于無人機已成為一種強大的空中武器平臺,使用反無人駕駛航空系統使其失效就變得非常重要。由于無人機體積小、特征低,探測總是會延遲。先進的雷達和光電探測手段正在不斷發展。可以通過動能手段使用硬殺傷武器擊落無人機,也可以使用電子戰技術使其失效,或發射一張網纏住旋翼。
反無人機系統(C-UAS)技術的興起主要是由于在民用和戰時環境中不斷擴大使用無人機(體積小、價格低的系統)所帶來的新威脅。與探測系統一樣,沒有一種攔截系統是完全有效的。由于無人機技術的擴散,反無人機系統將不可避免地成為未來所有沖突中無處不在的武器。這些反無人機系統必須足夠靈活,能夠探測到各種形狀和大小的無人機并使其失效。
本專著試圖對無人機和反無人機技術在軍事和民用領域的發展進行環境掃描,以及這些技術如何試圖改變現代戰爭的性質,從低強度沖突到全面戰爭。
該專著分為三個部分,首先從歷史角度介紹了無人機作為空中力量的一個要素是如何演變的。
第一部分用六章介紹了無人機技術,涉及無人機的組件、操作、技術進步以及影響其操作的法律問題等各個方面。
第二部分有兩章,涉及與反無人機系統有關的操作和技術方面。
第三部分有兩章,總結了目前使用這些系統的啟示,以及在塑造這兩種系統未來發展方向方面的經驗教訓。最后一章總結了無人機和反無人機的主題。
近幾十年來,學術界對無人駕駛飛行器(UAV)的關注明顯激增。先進的無人飛行器能夠執行復雜的飛行動作、在復雜的空間內飛行,并在不斷變化的環境中執行復雜的任務,因此其發展備受關注。這些環境包括采礦、城市搜索與救援 (USAR)、軍事行動等部門,以及包括維護和修理地下基礎設施在內的一系列工業應用。進入密閉空間并在其中作業的迫切需求已成為迫使研究人員推進無人機技術的驅動力。這些進步旨在克服與在受限環境中工作相關的復雜性,解決無人機當前的局限性,同時提高其整體性能能力。
在本論文中,介紹了一套相互關聯的工具,旨在使無人飛行器能夠在受限空間內自主規劃飛行動作。為實現這一目標,本文提出了一種改進的 "教學-重復-再規劃"(I-TRP)迭代策略。該解決方案是一種離線-在線混合方法,包括三個階段戰略中的四個主要模塊。根據手工繪制的路徑(教學階段)和感知到的環境幾何特征,開發了具有新穎占用檢查特性的先進 3D 飛行走廊。此外,結合生成的飛行走廊,還開發了一種通用全局路徑規劃算法 Field D* 的增強版,以通過離線流程(重復階段)制定出近乎最優和平滑的拓撲等效路徑。最后,通過順序凸優化過程(重新規劃階段),制定出具有在線碰撞檢查和避障功能的局部規劃算法。利用無人飛行器機載傳感器捕捉到的地形信息,這種局部規劃可生成后優化的動態可行路徑。
后置參考路徑被用于制定一套包含飛機位置、姿態、速度和加速度的制導指令,以引導無人機飛行在生成的飛行走廊(可能具有復雜的幾何特征)內飛行。所開發的路徑跟蹤方法是通過使用非線性模型預測公式制定的。
所開發的 I-TRP 策略可引導自主無人機在幾乎任何結構化或非結構化環境中到達目的地,這些環境具有不同程度的幾何復雜性,從開放的自由空間到高度雜亂的環境不等。仿真結果表明,在適合實時飛行導航的高效計算過程中,所開發的 I-TRP 策略的能力優于現有機制。
無人機(UAVs),通常被稱為無人飛行器或無人機,由于其靈活性(即在三維空間中自由移動的獨特能力)和持續降低的成本,具有深刻影響眾多應用的潛力,如檢查、災后評估和搜索及救援(SaR)。然而,盡管最近技術取得了進步,商業上可用的無人機要么由經驗豐富的飛行員手動操作,要么主要基于GPS以半自動模式飛行。為了使用小型旋翼無人機自動化上述任務,研究社區一直在專注于提高它們在依賴機載傳感器進行姿態估計、制圖和路徑規劃的同時,自主導航未知環境的能力。還提出了部署多個機器人的更高級的擴展,以進一步提高機器人任務的有效性,因為在時間關鍵的應用,如救援行動中,效率尤為重要。然而,在大大加速任務的同時,部署多個無人機涉及到一系列在群體協同定位和協調方面的困難。受這些挑戰的啟發,本論文首先解決了多機器人協作進行檢查和探索任務的問題,而在第二部分,它集中于感知感知導航的問題,這在文獻中也被稱為主動規劃。
為了放寬多機器人規劃中的典型假設,例如代理的基準位置的可用性以及環境的先驗地圖,第一種方法提出了一個集中式的多機器人架構,包括狀態估計、密集制圖和多代理協調。目標是使用一隊執行預定義粗略任務計劃的無人機生成大規模感興趣結構的一致性3D地圖。然而,盡管提出了一個完整的、可應用的解決方案,這種方法需要人類操作員的初始指導。為了解決這個局限性,在后續的方法中,提出了一種用于自動探索森林的分散協調策略。由于這種類型的場景在搜索和救援(SaR)中很常見,最小化完成感興趣區域覆蓋所需的時間至關重要;因此,在這里,我們提出了一種能夠利用無人機的敏捷性的高效策略,在任務期間始終保持較高的飛行速度,盡管環境中可能存在大量的障礙物和遮擋物。
盡管這兩種方法展示出有前景的性能,但它們都依賴于一個假設,即通過諸如GPS之類的傳感器可以直接并準確地估計無人機的姿態,但在很多情況下,這可能會失敗,例如,當靠近建筑結構或靠近建筑物時。在無人機導航文獻中,一種廣為接受的替代GPS定位的方法是視覺-慣性同時定位與地圖構建(VI-SLAM),其中使用圖像序列和高速慣性測量來估計機器人的姿態。另一方面,VI-SLAM對無人機的運動非常敏感,而且基于攝像頭的狀態估計的性能與環境的視覺外觀密切相關。由這些局限性推動,本論文的第二部分關注感知感知路徑規劃的問題,目標是通過產生對攝像頭敏感的運動來最小化姿態估計的誤差。受計算機視覺文獻中語義分割成熟度的啟發,將場景劃分為語義上有意義的像素簇,本論文解決了使用語義提示進行主動規劃的問題。與自動駕駛文獻中進行的大量研究形成對比,據我們所知,這是首次提出用于無人機的語義感知主動感知方法。 在語義場景注釋的指導下,首個提出的主動規劃方法鼓勵機器人在視覺可靠的區域上導航,例如固體場景結構(如建筑物),同時避免感知退化的區域,這些區域的特點是高動態或反射表面(例如水池)。在后續的方法中,這種使用語義來進行可靠的基于視覺的導航的概念得到了進一步推動,其中深度強化學習(RL)策略被訓練用于在線識別VI-SLAM在任務執行過程中的有用區域。這允許無人機動態地根據所看到的場景調整其未來的軌跡,從而在魯棒性和定位誤差方面提高性能。然而,在實際任務的部署過程中,小型無人機容易受到一系列可能的威脅,如強風或傳感器故障,這可能導致墜機。因此,在這些情況下,使它們能夠找到合適的著陸點以自主著陸是至關重要的。為確保機器人和環境(特別是在城市地區)的安全,本論文以一種適用于多旋翼無人機的語義感知自主緊急著陸方法作為結尾。在這里,遵循深度RL范式,我們展示了語義信息通過利用語義類別之間的高級空間關聯(例如,汽車和道路)能夠更快地找到著陸點。所提出的流程可以在策略訓練完成后立即直接部署在現實世界的實驗中,無需額外的微調或領域適應。通過關注多機器人協調和無人機的感知感知主動規劃,本論文提出的方法和系統有助于在具有挑戰性的實際場景中部署自主空中導航。此外,還證明了在基于視覺的飛行和自主緊急著陸過程中,使用語義分割對路徑規劃非常有益。這導致了更加穩健的方法,能夠在最先進的系統失敗的地方取得成功,為機器人的更可靠的自主導航鋪平了道路。
對使用無人駕駛飛行器(UAV),即無人機,在不同的應用中,如包裹遞送、交通監測、搜索和救援行動以及軍事戰斗交戰,有越來越多的需求。在所有這些應用中,無人機被用來自主導航環境--沒有人的互動,執行特定的任務和避免障礙。自主的無人機導航通常是通過強化學習(RL)完成的,智能體作為一個領域的專家,在避開障礙物的同時導航環境。了解導航環境和算法限制在選擇適當的RL算法以有效解決導航問題中起著至關重要的作用。因此,本研究首先確定了主要的無人機導航任務并討論了導航框架和仿真軟件。接下來,根據環境、算法特點、能力和在不同無人機導航問題中的應用,對RL算法進行了分類和討論,這將有助于從業人員和研究人員為他們的無人機導航用例選擇合適的RL算法。此外,確定的差距和機會將推動無人機導航研究。
自主系統(AS)是能夠在沒有人類干擾的情況下執行所需任務的系統,如機器人在沒有人類參與的情況下執行任務、自動駕駛汽車和無人機送貨。自主系統正在侵入不同的領域,以使操作更加有效,并減少人為因素產生的成本和風險。
無人駕駛航空器(UAV)是一種沒有人類飛行員的飛機,主要被稱為無人機。自主無人機由于其多樣化的應用而受到越來越多的關注,如向客戶交付包裹、應對交通事故以滿足傷員的醫療需求、追蹤軍事目標、協助搜索和救援行動,以及許多其他應用。
通常情況下,無人機配備有攝像頭和其他傳感器,可以收集周圍環境的信息,使無人機能夠自主地導航該環境。無人機導航訓練通常是在虛擬的三維環境中進行的,因為無人機的計算資源和電源有限,而且由于墜毀而更換無人機部件可能很昂貴。
不同的強化學習(RL)算法被用來訓練無人機自主導航的環境。強化學習可以解決各種問題,在這些問題中,代理人就像該領域的人類專家一樣。代理人通過處理環境的狀態與環境互動,用行動作出回應,并獲得獎勵。無人機相機和傳感器從環境中捕捉信息,用于表示狀態。代理人處理捕捉到的狀態并輸出一個行動,決定無人機的運動方向或控制螺旋槳的推力,如圖1所示。
圖1:使用深度強化智能體的無人機訓練
研究界對不同的無人機導航問題進行了回顧,如視覺無人機導航[1, 2]、無人機植群[3]和路徑規劃[4]。然而,據作者所知,目前還沒有與RL在無人機導航中的應用有關的調查。因此,本文旨在對各種RL算法在不同無人機自主導航問題上的應用進行全面系統的回顧。這項調查有以下貢獻:
本文的其余部分組織如下: 第2節介紹了系統回顧過程,第3節介紹了RL,第4節全面回顧了各種RL算法和技術在無人機自主導航中的應用,第5節討論了無人機導航框架和仿真軟件,第6節對RL算法進行分類并討論了最突出的算法,第7節解釋了RL算法的選擇過程,第8節指出了挑戰和研究機會。最后,第9節對本文進行了總結。
無人機系統(UAS)和其他相關技術(人工智能或AI、無線數據網絡、擊敗敵方電子戰的電子支援措施)已經發展到一個新的地步,無人機系統被認為原則上能夠執行目前由有人駕駛飛機執行的幾乎任何任務。
因此,許多武裝部隊正在積極試驗有人-無人編隊協作(不同的縮寫為MUM-T或MUMT)。通過將有人和無人資產作為一個單位而不是單獨部署,無人機最大限度地發揮了其作為力量倍增器的價值,提高了在高度競爭性空域的殺傷力和生存能力。無人機系統的直接控制權可由飛行中的有人單位或單獨的空中、地面或海上指揮中心掌握。隨著時間的推移,人工智能的進步將允許無機組人員的編隊元素自主地執行大部分任務。這最終可以將人類干預減少到最低,只保留任務目標的輸入、交戰規則的定義和武器釋放的授權。事實上,這種自主能力對于MUM-T概念來說是至關重要的,以防止人類飛行員被控制無人機的額外任務所淹沒。 無人機系統的主要應用包括:
在“武裝護衛”角色中,無人機系統可以在有人平臺執行任務之前壓制敵人的防空設施(SEAD角色),或者作為一個外部武器庫,使單一的有人駕駛飛機在每次任務中能夠攻擊大量的目標。
邊緣計算通過將計算、通信和存儲資源分布在移動和物聯網(IoT)設備的地理鄰近范圍內,促進了網絡邊緣的低延遲服務。無人機(UAV)技術最近的進步為軍事行動、災難響應或傳統地面網絡有限或不可用的偏遠地區的邊緣計算提供了新的機會。在這種環境下,無人機可以作為空中邊緣服務器或中繼部署,以促進邊緣計算服務。這種形式的計算也被稱為無人機支持的邊緣計算(UEC),它提供了一些獨特的優點,如移動性、視線、靈活性、計算能力和成本效率。然而,在UEC環境下,無人機、邊緣服務器和物聯網設備上的資源通常非常有限。因此,有效的資源管理是UEC的一個關鍵研究挑戰。在本文中,我們從資源管理的角度對現有的UEC研究進行了綜述。我們確定了UEC資源管理的概念架構、不同類型的協作、無線通信模型、研究方向、關鍵技術和性能指標。我們還提出了UEC資源管理的分類。最后,我們確定并討論了一些開放的研究挑戰,這些挑戰可以激發UEC資源管理的未來研究方向。
最近物聯網(IoT)和無線通信技術的發展引入了許多需要高計算能力和低延遲的新應用[86]。這類服務的例子包括可穿戴認知輔助、增強現實(AR)、智能醫療、面部識別、交互式在線游戲以及實時交通和道路安全監測[163]。然而,物聯網設備通常具有有限的計算資源、存儲、網絡覆蓋和能源。因此,資源密集型物聯網應用在維持預期的服務質量(QoS)方面常常面臨重大挑戰[59,83]。物聯網應用通常利用云計算技術來維持預期的QoS[63]。云計算通過虛擬機(vm)、虛擬存儲(VS)、VPN(virtual private network)等多種形式在Internet上交付計算資源[8]。然而,云計算目前被認為不足以滿足資源密集型和延遲敏感的物聯網應用的低延遲需求[86]。原因有兩方面。首先,物聯網設備的數量每天都在增加,預計到2030年將達到約1250億。這些設備產生了大量的網絡流量,使回程網絡負擔沉重,并因網絡擁塞而嚴重影響其性能[135]。其次,云服務器通常被放置在遠離物聯網設備的地方。因此,云計算在服務發放中引入了相當大的延遲,這降低了延遲敏感的物聯網應用的整體QoS[71]。
邊緣計算是一種相對較新的范式,為延遲敏感和資源密集型的物聯網應用提供了另一種計算解決方案。邊緣計算將云計算技術擴展到網絡邊緣,更接近用戶和物聯網設備[63]。它允許資源受限的物聯網設備(又稱邊緣設備)完全或部分地將其數據或計算任務卸載到附近強大的邊緣服務器或其他邊緣設備[1]。它大大提高了物聯網應用的延遲和能源效率。這也將減少核心網的流量阻塞。邊緣服務器還可以作為數據緩存來存儲物聯網設備頻繁訪問的數據,以提高應用程序的QoS[163]。物聯網設備通常使用無線網絡連接到邊緣基礎設施[86]。然而,在一些最偏遠的地區(例如農村或山區),可能并不總是有良好的無線網絡基礎設施[50]。此外,無線網絡基礎設施很容易受到地震、洪水或風暴等自然災害的影響。在某些情況下,例如軍事行動或緊急救援任務,通常很難擁有可靠的無線網絡基礎設施[56]。最近無人機(UAV)技術的進步開辟了一個新的機會,在軍事行動、災害響應或農村地區使用無人機提供邊緣計算服務。這也被稱為無人機使能邊緣計算(UEC)[88]。無人機提供了廣泛的適應性,如機動性、靈活性和成本效率,這使得UEC成為一個有前途的解決方案。無人機通常在UEC環境[60]中作為空中邊緣服務器或中繼。物聯網設備將全部或部分計算任務卸載給附近的無人機。UAV要么在本地處理任務,要么將任務發送到附近的邊緣/云服務器進行遠程執行。
該文對UEC中資源管理的研究現狀進行了全面的綜述。本工作的主要貢獻如下:
我們在第2節中介紹了一個三層的UEC體系結構,代表了UEC中管理資源的概念體系結構。該體系結構包含“事物”層、“邊緣”層和“云”層。然后,我們研究在提議的體系結構中發生的六種類型的協作。考慮的合作是a)物-無人機,b)無人機-邊緣,c)物-邊緣,d)物-無人機-云,e)無人機-邊緣-云,f)物-無人機-邊緣-云。我們還討論了UEC中使用的無線通信模型。
我們發現了UEC背景下資源管理的關鍵研究問題。在第3節中,我們將研究問題分為以下三類:a)計算任務和數據卸載,b)資源分配,c)資源供應。
第4節確定并全面回顧了UEC中用于資源管理的關鍵技術和性能指標。關鍵技術分為兩類:a)集中方法和b)分散方法。我們研究如何在現有的工作中評估這些方法。此外,討論了現有文獻中的關鍵性能指標,如能耗、延遲、吞吐量、成本、效用和資源利用率。
我們在第5部分中確定了這項工作的主要發現,指出了UEC資源管理的主要研究挑戰和未來的研究方向。圖2展示了本次綜述的組織結構,為讀者提供了本文的簡要概述。
自軍事航空業誕生以來,美國軍方一直對遙控飛機感興趣。今天的無人機系統(UAS)通常由一個無人駕駛飛行器(UAV)和一個地面控制站組成。自20世紀90年代,隨著MQ-1 "捕食者 "的推出,無人機系統在美國軍事行動中已變得無處不在。
美國軍方目前采用了幾種不同的大型無人機系統,包括
此外,其他幾個報告的項目計劃要么正在開發,要么目前正在進行試驗。這些計劃包括空軍的B-21突擊機和空軍的RQ-180。
當國會履行其監督和授權職能時,它可能會考慮與無人機系統有關的幾個潛在問題,項目相關的幾個潛在問題,包括
在美國軍方,遙控飛行器(RPV)最常被稱為無人駕駛飛行器(UAV),被描述為單一的飛行器(帶有相關的監視傳感器)或無人駕駛飛行器系統(UAS,或無人機系統),通常由一個飛行器與一個地面控制站(飛行員實際坐在那里)和支持設備組成。當與地面控制站和通信數據鏈相結合時,無人機形成了無人機系統或UAS。
美國國防部(DOD)對無人機的定義,并延伸至無人機系統,是指涵蓋下列特征的飛機:
根據國防部的定義,彈道或半彈道載具、巡航導彈和炮彈不被視為無人機系統。
無人機系統的作用和任務已經隨著時間的推移而演變,從收集情報、監視和偵察到執行空對地攻擊任務。此外,一些分析家預測了無人機系統的未來作用,如空對空戰斗和戰斗搜索和救援。然而,對無人機系統的未來概念和任務的詳細討論超出了本報告的范圍。
無人機系統在第一次世界大戰期間首次進行了測試,盡管美國在那場戰爭中沒有在戰斗中使用它們。美國在越南戰爭期間首次在戰斗中使用了無人機系統,包括AQM-34 Firebee,這一系統體現了無人機系統的多功能性。例如,"火蜂 "最初在20世紀50年代作為空中炮擊靶機飛行,然后在20世紀60年代作為情報收集無人機飛行,并最終在2002年被改裝為有效載荷。
美國軍隊在科索沃(1999年)、伊拉克(2003年至今)和阿富汗(2001年至今)等沖突中使用無人機系統,說明了無人機的優勢和劣勢。(下面討論的MQ-1 "捕食者 "進一步體現了這些優勢和劣勢)。當無人機系統執行歷史上由有人駕駛飛機執行的任務時,它們經常獲得媒體的關注。與有人駕駛飛機相比,它們似乎還具有兩個主要優勢:(1)它們消除了飛行員的生命風險(見關于MQ-4C的討論);(2)它們的航空能力,如續航能力,不受人類限制的約束,并使用對人類來說可能太危險的固有不穩定設計,改進低可觀察技術。此外,無人機系統可以通過執行不需要飛行員在駕駛艙內的 "枯燥、骯臟或危險 "的任務,潛在地保護飛行員的生命。這些任務的例子包括1999年由B-2轟炸機執行的30小時長航時任務(枯燥的任務);空軍和海軍的B-17飛機穿過核云收集放射性樣品(骯臟的任務);以及在存在主動威脅的情況下進行的情報監視和偵察飛行,如便攜式防空系統或綜合防空系統(危險任務)。
此外,無人機系統的采購和操作可能比有人駕駛的飛機更便宜。然而,較低的采購成本可能會與國防部的意見相權衡,即無人駕駛平臺比有人駕駛平臺更有可能發生A類事故,即造成250萬美元的損失、生命損失或飛機毀壞的事故(表1)。當比較事故率時,即以每10萬小時飛行的事故報告,以便對不同類型的飛機進行比較,與有人駕駛的飛機相比,無人駕駛的飛機發生A級事故的可能性要高92%;當MQ-1的事故率從無人駕駛的子類別中刪除時,與有人駕駛的飛機相比,MQ-9和RQ-4發生A級事故的可能性高15%(見表1)。雖然與無人駕駛平臺相比,有人駕駛飛機通常有更多的A類事故,但這一結果可能是由于有人駕駛飛機的數量更多。
表1. 1998至2021財年的軍用飛機失事和毀壞率
國防部通常使用三種模式來操作無人機系統:(1)政府擁有和操作的系統,(2)政府擁有但由承包商操作的系統,以及(3)承包商擁有和操作的系統。當無人機系統首次被引入部隊時,國防部使用了承包商擁有和操作的模式,因為國防部培訓軍事人員來操作這些新型飛機。在培訓了足夠的人員后,國防部過渡到了政府擁有和經營的模式。然而,國防部對分配給承包商運營的飛機(包括政府和承包商擁有的飛機)的任務類型進行了限制,將這些類型的行動限制在情報、監視和偵察的作用。
最早進入軍隊服役的無人機系統之一是MQ-1 "捕食者",當時國防部在1996年選擇了空軍來操作 "捕食者"。根據空軍的說法,"捕食者 "的設計目的是 "向作戰人員提供持久的情報、監視和偵察信息,并結合打擊能力"。20作為國防部高級研究計劃局(DARPA)合同下的先進概念技術示范機,"捕食者 "在1995年仍作為技術示范機進行了首次作戰部署,支持北約對塞爾維亞的空襲。從1999年3月到7月,"捕食者 "在科索沃上空飛行了600多架次,進行實時監視和戰損評估。2001年9月,"捕食者 "被部署到阿富汗,在2001年9月11日的恐怖襲擊之后,為支持 "持久自由行動 "提供長期的情報、監視和偵查。美國軍隊對 "捕食者 "的廣泛使用促進了其他密切相關的無人機系統(如下所述)的發展,這些系統旨在執行各種類型的任務。盡管 "捕食者 "于2018年3月9日正式退役,但美軍目前的大部分無人機系統機隊都是基于相同的技術,包括源自 "捕食者 "的機體。
“捕食者”由加利福尼亞州圣地亞哥的通用原子航空系統公司開發,以其綜合監視有效載荷和武器裝備能力幫助定義了無人機系統的現代作用。捕食者的主要功能是對潛在的地面目標進行偵察和目標獲取。為了完成這一任務,"捕食者 "配備了450磅的監視有效載荷,其中包括兩臺電子光學(EO)相機和一臺用于夜間的紅外(IR)相機。這些攝像機被安置在車頭下的球狀炮塔中。掠奪者 "還配備了一個多光譜瞄準系統(MTS)傳感器球,它在EO/IR有效載荷中增加了一個激光指示器,使掠奪者能夠跟蹤移動目標。此外,"捕食者 "的有效載荷包括一個合成孔徑雷達(SAR),它使無人機系統能夠在惡劣的天氣中 "看到"。捕食者的衛星通信提供了超越(地面)視距無線電的操作。
MQ-1捕食者的物理特征:"捕食者"是一種中高度、長壽命的無人機系統。它長27英尺,高7英尺,翼展48英尺,有細長的機翼和一個倒 "V "形的尾翼。"捕食者"通常在10,000到15,000英尺的高度運行,以便從其視頻攝像機獲得最佳圖像,盡管它能夠達到25,000英尺的最大高度。每輛飛行器可以在離其基地500多海里的地方停留24小時,然后返回家園。"捕食者"的飛行員和傳感器操作員從地面控制系統中駕駛飛機。
2001年,作為一項輔助功能,"捕食者 "配備了攜帶兩枚地獄火導彈的能力。以前,"捕食者 "識別目標并將坐標轉發給一架有人駕駛的飛機,然后與目標交戰,但增加反坦克彈藥后,無人機系統能夠對時間敏感的目標發動精確攻擊,并將 "傳感器到射擊 "的時間周期降至最低。因此,空軍將 "捕食者 "的軍事名稱從RQ-1B(偵察型無人機)改為MQ-1(多任務無人機)。
在 "捕食者 "作戰成功后,陸軍和空軍都開發了變種飛機,包括MQ-1C "灰鷹 "和MQ-9 "收割者"(下文討論)。這些飛機使用了原來的 "捕食者 "機身,同時增加了發動機功率和武器裝備。
以下各節概述了國防部目前選定的無人機系統項目。
除了RQ-170 "哨兵 "是一個公認的機密無人機系統項目外,這些選定的系統都有國防部發布的選定采購報告,其中提供了詳細的信息和系統特征。表2提供了這些選定的無人機系統的特征摘要。
表2. 選定的無人駕駛飛機的特征摘要
MQ-1C“灰鷹”(圖1)是MQ-1 "捕食者 "的陸軍衍生產品。根據陸軍的說法,MQ-1C“灰鷹”為作戰人員提供了專用的、有保障的、多任務的無人機系統能力,涵蓋所有10個陸軍師,以支持指揮官的作戰行動和陸軍特種部隊及情報和安全指揮部。 陸軍表示,MQ1C灰鷹能夠以150節的最大速度在25,000英尺的高度飛行至少27小時。它可以攜帶四枚地獄火導彈,以及光電傳感器、合成孔徑雷達和通信中繼器。根據2021財年選定的采購報告,陸軍的MQ-1C“灰鷹”在2019財年飛行了超過494,000小時,實現了92%的戰斗行動可用性。
圖1. MQ-1C “灰鷹”
陸軍總共采購了204架飛機,其中11架是訓練飛機,13架是 "戰備浮動飛機"(即備件)。平均采購單位成本(基本上是每架飛機的成本)為1.275億美元。36 陸軍在2018年8月完成了MQ-1C "灰鷹 "的作戰測試和評估,目前在15個陸軍連隊運營該無人機系統。
MQ-9 "死神"(圖2)--以前是 "捕食者B"--是通用原子公司對MQ-1 "捕食者 "的替代。根據空軍的說法,MQ-9 "死神 "是一種中高海拔、長續航時間的無人機系統,能夠進行監視、目標獲取和武裝對抗。盡管MQ-9 "死神 "借鑒了MQ-1 "捕食者 "的整體設計,但MQ-9 "死神 "長13英尺,翼展長16英尺。MQ-9 "死神 "還采用了900馬力的渦輪螺旋槳發動機,比MQ-1 "捕食者 "的115馬力發動機功率大得多。這些升級使MQ-9 "死神 "能夠達到最大50,000英尺的高度,240節的空速,24小時的續航時間,以及1,400海里的航程。然而,MQ-9 "死神 "與其前輩最不同的特點是其軍械能力。MQ1捕食者能夠攜帶兩枚100磅的地獄火導彈,而MQ-9死神可以攜帶多達16枚地獄火導彈,相當于陸軍阿帕奇直升機的有效載荷能力,或者混合500磅的武器和小直徑炸彈。在2018日歷年,MQ9 "死神 "總共飛行了325,000小時--其中91%的小時,即約296,000小時,是為了支持作戰行動而飛行的。
圖2. MQ-9 "死神"
2021年1月,通用原子公司披露了MQ-9 "死神 "的一個新的海上反水面戰變體。據報道,MQ-9B "海上衛士 "配備了聲納浮標投放(投放旨在識別潛艇的傳感器)和遙感能力(很可能是指 "海上衛士 "用于搜索水面艦艇的合成孔徑雷達),目前正在太平洋地區進行測試。
根據2020財年選定的采購報告,空軍已與通用原子公司簽訂合同,在該計劃的有效期內建造366架MQ-9 "死神"。按2008年美元計算,平均采購單位成本為2230萬美元(或按2022財年美元計算約為2800萬美元)。在2022財年,空軍沒有要求采購任何MQ-9 "死神",但眾議院軍事委員會在其標記中授權額外采購6架飛機。
由波音公司制造的MQ-25 "黃貂魚"(圖3)旨在為海軍的航母航空隊提供空中加油。根據海軍的說法,MQ-25將率先實現有人和無人操作的整合,展示成熟的復雜的海基C4I[指揮、控制、通信、計算機和情報]無人機系統技術,并為未來多方面的多任務無人機系統鋪平道路,以超越新興威脅。MQ-25的要求是解決基于航母的加油和持久的情報、監視和偵察能力的需要。
MQ-25 "黃貂魚 "由一個飛行器和一個控制系統組成,旨在適合航空母艦。它的首次飛行是在2019年9月進行的。MQ-25 "黃貂魚 "目前正處于采購過程的工程、制造和設計階段,海軍計劃在2023財政年度開始采購。根據2021財年的選定采購報告,海軍打算采購76架飛機,平均采購單位成本為1.21億美元。海軍在確定將加油作為其第一個航母上的無人機系統任務之前,研究了幾個無人戰斗飛行器概念。
圖3. MQ-25 "黃貂魚"
諾斯羅普-格魯曼公司的RQ-4 "全球鷹"(圖4)是美國空軍目前投入使用的最大和最昂貴的無人機系統之一。RQ-4 "全球鷹 "集成了多樣化的監視有效載荷,其性能被廣泛認為可與大多數有人駕駛的間諜飛機相媲美或超越。RQ-4全球鷹長47.6英尺,重32,250磅,與一架中等規模的公司飛機差不多大。根據空軍的說法,RQ-4全球鷹的飛行高度幾乎是商業客機的兩倍,可以在65,000英尺的高空停留超過34小時。它可以飛到5,400海里外的目標區域,在60,000英尺高空徘徊,同時監測一個伊利諾伊州大小的區域(近58,000平方英里)24小時,然后返回。RQ-4 "全球鷹 "最初被設計為一種自主的無人機,能夠根據預先編入飛機飛行計算機的輸入進行起飛、飛行和降落;然而,空軍通常在任務控制飛行員和傳感器操作員的配合下操作這些飛機。
圖4. RQ-4 "全球鷹"
RQ-4全球鷹目前以三種配置部署。Block 20、Block 30和Block 40:
20號機被稱為戰場機載通信節點(BACN,發音為 "bacon"),充當地面部隊的通信中繼。目前有四架飛機采用這種配置。
30號機使用合成孔徑雷達(SAR)、光電/紅外(EO/IR)傳感器、增強型綜合傳感器套件(EISS)和機載信號情報有效載荷(ASIP)的組合。Block 30的初衷是為了取代U-2間諜飛機。目前有20架Block 30飛機正在服役。
40號機整合了具有地面跟蹤能力的多平臺雷達技術(可跟蹤地面部隊的雷達,類似于E-8C JSTARS飛機)。10架Block 40飛機正在服役。
截至2016財年的選定采購報告,RQ-4全球鷹已經飛行了14萬小時(其中10萬小時支持作戰行動)。2014年,79.7%的飛機可用于執行任務。2014財年的平均采購單位成本為1.228億美元(或按2022財年調整后的美元計算為1.411億美元)。總統的2022財年預算請求重申了空軍計劃在2021財年退役所有Block 20飛機,并在2022財年退役所有Block 30飛機。
海軍的MQ-4C "海神"(圖5)也被稱為廣域海上監視(BAMS)系統,它以 "全球鷹 "Block 20機身為基礎,但使用不同的傳感器,與P-8 "海神 "有人駕駛飛機一起支持海上巡邏行動。根據2020財年選定的采購報告,"安裝在MQ-4C天龍上的任務傳感器提供360度的雷達和光電/紅外覆蓋"。報告稱,海軍打算在2020年10月達到初始作戰能力,并在2021年5月做出全速生產的決定。在2019年的年度報告中,作戰測試和評估主任表示,海軍結束了對該飛機的作戰評估,這支持了早期的實戰決定。MQ-4C "海獅 "的平均采購單位成本在2016財年為1.461億美元(或在2022財年約為1.626億美元)。
圖5. MQ-4C "海獅"
2019年6月,伊朗軍方在阿曼灣擊落了一架MQ-4C "海獅",國防部稱其為BAMS飛機。根據海軍的新聞簡報,這架飛機當時正在該地區飛行,監測霍爾木茲海峽是否有伊朗對商業航運的威脅。國防部官員表示,"這次襲擊是在最近國際航運和商業自由流動受到威脅之后,試圖破壞我們監測該地區的能力。" 當時,特朗普政府似乎考慮對伊朗摧毀一架美國飛機進行報復性打擊,但據報道,在回應一架無人駕駛飛機的損失時,升級風險是不值得的。
盡管RQ-170 "哨兵"(媒體也稱之為 "坎大哈的野獸")被公開承認存在,但關于它的大部分信息都是保密的。RQ-170 "哨兵 "首次在阿富汗上空被拍到,但據說也曾在韓國作戰,它是一種無尾的 "飛翼",比美國目前的其他無人機系統更隱蔽。 據報道,一架RQ-170 "哨兵 "在2011年5月1日對奧薩馬-本-拉登的駐地進行了監視和數據中繼。伊朗政府在2011年12月2日聲稱擁有一架完整的RQ-170 "哨兵",因為它被指控侵入了伊朗領空。
RQ-170 "哨兵 "由洛克希德-馬丁公司制造,翼展約65英尺,長近15英尺,由一臺噴氣式發動機驅動。它的上翼表面似乎有兩個傳感器托架(或衛星天線外殼)。雖然該機具有像B-2隱形轟炸機那樣的固有的低可觀察性混合機翼/機身設計,但RQ-170 "哨兵 "的常規進氣口、排氣口和起落架門表明其設計可能沒有完全針對隱形進行優化。
根據空軍的說法,"RQ-170哨兵是空軍正在開發、測試和投入使用的低可觀察性無人駕駛飛機系統(UAS)"。 沒有進一步的官方狀態。
盡管其他無人機系統項目正在開發中,但它們在很大程度上是保密的,因此有關它們的信息并不公開。這些項目包括B-21 "突襲者"(據說是一種能夠進行遠程駕駛的載人轟炸機)和RQ-180。2021年12月4日,空軍部長弗蘭克-肯德爾透露,空軍打算在2023財政年度啟動兩個新的無人機系統項目,但沒有其他信息。
B-21 "突襲者"
即將推出的B-21 "突襲者 "不是一個純粹的無人機系統;這種遠程轟炸機預計將由遠程或機上人員操作。B-21(圖6)打算在常規和核方面發揮作用,有能力穿透先進的防空環境并在其中生存。預計它將在20世紀20年代中期開始服役,建立一個由100架飛機組成的初始機隊。B-21將駐扎在德克薩斯州的戴斯空軍基地、密蘇里州的懷特曼空軍基地和南卡羅來納州的埃爾斯沃思空軍基地,其中埃爾斯沃思是訓練基地。
圖6. 對B-21的渲染圖
B-21是圍繞三個具體的能力而設計的:
1.一個大而靈活的有效載荷艙,能夠攜帶目前和未來的各種武器裝備。
2.航程(盡管是保密的)。
3.預計每架飛機的平均采購單位成本為5.5億美元(2010財政年度),這是公開宣布的,以鼓勵競爭廠商限制其設計。
盡管空軍已經發布了轟炸機的藝術效果圖,但具體設計仍然是機密。
為了實現5.5億美元的目標,單位成本被指定為采購戰略中的一個關鍵性能參數,這意味著達不到這個價格就會失去投標資格。(該價格是基于采購100架飛機;數量的變化可能會影響實際的單位成本)。在授標公告中,空軍透露,諾斯羅普公司中標的獨立成本估計為每架飛機5.11億美元,相當于2016財年的5.64億美元。空軍表示,截至2021年的平均采購單位成本在2010財政年度為5.5億美元,或在2022年為6.7億美元。
RQ-180
據報道,另一個正在開發的無人機系統項目是RQ-180,據說是一種轟炸機大小的無人機系統。 2014年6月9日,前空軍負責情報、監視和偵察的副參謀長羅伯特-奧托中將說,空軍正在 "研究RQ-180遙控飛機,以使其更好地進入有爭議的空域,在那里,無人駕駛的RQ-4全球鷹和有人駕駛的U-2S平臺是很脆弱的。" 關于RQ-180的其他細節幾乎沒有公開發布,空軍也沒有正式承認該計劃。
本節討論了國會在考慮國防立法時可能出現的問題,包括與載人系統的成本比較,缺乏后續的記錄項目,組織管理,與現有部隊結構的互操作性,以及出口管制。
在2021年6月的一份報告中,美國國會預算辦公室(CBO)研究了有人和無人的情報、監視和偵察(ISR)飛機之間的成本、可靠性和出動率。值得注意的是,CBO確定RQ-4全球鷹每飛行小時的成本約為18,700美元,或載人P-8海神的62%,后者可執行類似任務,每飛行小時的成本為29,900美元。報告還指出:
與P-8相比,RQ-4全球鷹預計每年多飛行356小時
RQ-4全球鷹的預計壽命為20年,而P-8的預計壽命為50年
RQ-4全球鷹的采購成本為2.39億美元,而P-8海神的采購成本為3.07億美元(約為該載人平臺采購成本的78%)。
同樣,其他UAS飛機的購置成本和每飛行小時的成本也比有人駕駛飛機低。然而,UAS飛機通常比有人駕駛飛機有更高的事故率。國會在比較飛機系統時可以考慮這種權衡--較低的成本與較高的風險。
在伊拉克和阿富汗沖突期間,美國軍方每年購買數百個無人機系統,主要是MQ-1 "捕食者 "和MQ-9 "死神",但也有RQ-4 "全球鷹 "和MQ-4 "海獅"。當這些沖突結束后,采購量驟然下降。例如,各部門在2012財政年度采購了1211架中型或大型無人機系統,但到2014年,每年的數量下降到54架無人機系統,而且這個數字還在繼續下降。2022財年的預算報告要求采購6套UAS。
國防部沒有對這一變化進行正式的評論;然而,有幾個因素可能影響了這一下降趨勢。一個是在伊拉克和阿富汗沖突期間獲得的許多無人機系統共享類似的技術,軍方可能沒有設定新的要求來納入新技術。另外,盡管那些第一代和第二代無人機系統在寬松的空中環境(如伊拉克和阿富汗的環境,那里沒有對手的空軍或防空部隊)下運行良好,但在與先進的防空部隊和飛機的近距離沖突中,它們會面臨更大的挑戰,而這些飛機越來越成為美國國防規劃的一部分。國防部也可能在更先進的技術(如噴氣動力無人機系統)成熟時,有意識地在采購方面采取戰略暫停。最后,許多無人機系統的開發被認為在這一時期轉移到了不被承認的機密系統。因此,國防部的采購可能沒有如此急劇下降,而是從非機密或公認的機密項目轉移到公共預算文件中看不到的非公認的機密項目。
盡管大多數美國軍用無人機系統是基于MQ-1 "捕食者 "機身的,但各軍種都有無人機系統項目。在授權和監督方面,國會可以考慮以下問題。誰應該管理國防部無人機系統的開發和采購?這些項目中至少有一部分的管理應該集中起來嗎?如果是這樣,國防部的中央機構應該設在哪里?
前空軍參謀長諾頓-施瓦茨將軍提出:"理想情況下,你想做的是讓美國政府以一種能夠讓我們獲得最佳能力的方式。一個例子是BAMS[MQ-4 Triton]和[RQ-4]全球鷹。為什么海軍和空軍要有兩個獨立的倉庫、地面站和訓練管道,來處理本質上是相同的飛機和不同的傳感器?我認為我們雙方有很多機會可以更好地利用資源。" 蘭德公司2013年的一項研究發現,從歷史上看,聯合載人飛機項目并沒有帶來生命周期的成本節約,但通過一個辦公室管理多個項目而不完全合并這些項目可能是可能的。
無人機系統在與有人駕駛飛機執行任務時帶來了潛在的互操作性挑戰,因為飛行員并不直接在飛機上,而是位于機場上,用于起飛和降落,或者位于美國的一個設施。例如,UAS飛行員依靠攝像機或傳感器與編隊中的有人飛機進行視覺接觸。在過去的20年里,陸軍和空軍都展示了將無人機系統整合到其行動中的方法;最近,陸軍在其2021財政年度的項目匯合中試驗了新的概念。然而,海軍和海軍陸戰隊在將無人機系統整合到他們目前的機隊和行動中的經驗有限,特別是在航空母艦和兩棲艦上的大型無人機系統。隨著新的無人機系統的開發,以及使用這些飛機的新概念,有人駕駛的飛機和無人機系統將如何整合仍有待觀察。同樣,目前還不清楚與空域沖突有關的問題在多大程度上會給國防部帶來挑戰。
美國通過多邊出口管制制度和國家出口管制來控制無人機系統的出口。
導彈技術管制制度
導彈技術管制制度(MTCR)"尋求限制 "核生化武器擴散的風險,"通過管制可能有助于此類武器運載系統(除有人駕駛飛機外)的貨物和技術的出口"。1987年由美國和其他六個國家成立的MTCR,每年舉行幾次會議,目前由35個伙伴國組成,是一個非正式的自愿安排,其伙伴國同意對一個包含兩類受控物品的附件適用共同的出口政策準則。伙伴國根據國家立法執行這些準則,并定期交流有關出口許可證問題的信息,包括拒絕技術轉讓。MTCR準則適用于武裝和非武裝無人機系統。
第一類MTCR項目是最敏感的,包括 "能夠在至少300公里范圍內運送至少500公斤有效載荷的完整無人機系統,其主要的完整子系統......以及相關的軟件和技術",以及為這些無人機系統和子系統 "專門設計的 "生產設施。伙伴國政府應 "強烈推定拒絕 "此類轉讓,無論其目的如何,但可在 "罕見情況下 "轉讓此類項目。 該準則禁止出口第一類物品的生產設施。制度伙伴在授權出口第二類物品方面有更大的靈活性,其中包括不太敏感和兩用的導彈相關部件。這一類別還包括完整的無人機系統,無論有效載荷如何,射程至少為300公里,以及具有某些特征的其他無人機系統。
MTCR準則指出,各國政府在考慮MTCR附件物品的出口請求時應考慮六個因素。(1) 對核生化擴散的關注;(2) 接受國 "導彈和空間計劃的能力和目標";(3) 轉讓對核生化運載系統的 "潛在發展意義";(4) "對轉讓的最終用途的評估",包括下文所述的政府保證;(5) "相關多邊協定的適用性";以及(6) "受控物品落入恐怖團體和個人手中的風險"。 " 該準則還規定,如果伙伴國政府 "根據所有可用的、有說服力的信息 "判斷該物品 "打算用于 "核生化武器的運載,則強烈推定拒絕轉讓MTCR附件中的任何物品或任何未列入清單的導彈。
此外,MTCR準則指出,如果出口國政府不判斷擬議的第一類無人機系統的轉讓是用于核生化運載,政府將從接受國獲得 "有約束力的政府對政府的承諾",即 "未經 "出口國政府的同意,"該項目或其復制品或衍生品都不會被再次轉讓。出口國政府還必須承擔 "采取一切必要步驟,確保該物品只用于其既定的最終用途 "的責任。此外,政府只有在得到 "接受國政府的適當保證",即接受國將只為其既定目的使用這些物品,并在未經出口國政府事先同意的情況下不修改、復制或重新轉讓這些物品的情況下,才可批準轉讓 "可能有助于[核生化]運載系統 "的物品。伙伴國政府的出口管制必須要求在政府通知出口商此類物品 "可能全部或部分用于......載人飛機以外的[核生化]運載系統 "的情況下,授權轉讓未列入清單的物品。這些限制被稱為 "全面 "管制。
其他多邊出口管制制度
其他多邊制度限制可能使無人機系統開發核生化有效載荷的技術的出口。例如,核供應國集團管理與核有關的出口,而瓦森納安排在常規武器和某些兩用貨物和技術方面發揮著類似的作用。澳大利亞集團是與化學和生物武器有關的技術的類似組織。
美國的出口管制
從2017年開始,美國向MTCR合作伙伴提交了一系列建議,以放寬該制度對某些無人機系統的出口準則。 這些政府以協商一致的方式作出決定,但沒有同意采納任何這些建議。2020年7月24日,特朗普政府宣布了一項新的無人機系統出口政策,將 "精心挑選的MTCR第一類無人機系統的子類,其飛行速度不能超過每小時800公里(大約每小時500英里),視為第二類",從而克服了MTCR對這些系統的 "強烈拒絕推定"。美國已經向法國、意大利、日本、德國、韓國、西班牙和英國出口了MTCR第一類無人機系統。
美國商務部工業與安全局(BIS)2021年1月12日的最終規則實施了對美國兩用許可程序的相關修改。BIS向國會提交的2020財政年度報告指出,取消了所有2020年MTCR會議,并解釋說,美國單方面采取這一政策是因為 "在可預見的未來,MTCR沒有進一步進展的場所"。 國務院的一位官員說,該提案 "仍然是我們在MTCR中的一項優先努力,但這--與其他許多事情一樣--受到了旅行限制的阻礙",該限制是為了應對COVID-19病毒帶來的風險。MTCR成員在2021年10月舉行了一次全體會議,但沒有通過美國的提案。
美國對無人機系統的出口施加了一些其他限制。美國務院負責管理對軍用無人機系統和其他國防物品的出口管制;這一制度的法定依據是《武器出口管制法》(AECA;P.L. 94-329)。該法第71(a)條要求國務卿保持一份MTCR附件中所有不受美國雙重用途管制的物品清單。美國出口管制法》還限制了原產于美國的國防物品的用途,并禁止未經美國政府許可向第三方轉讓此類物品。2018年出口管制法》(P.L. 115-232,B副標題,第一部分)為總統提供了廣泛而詳細的立法授權,以實施對兩用物品出口的控制,包括兩用無人機系統和相關組件。美國關于兩用物品出口的法規包含對無人機系統的全面控制。
美國政府還實施了一些法規,以確保原產于美國的無人機系統的接收者將這些物品用于其申報的目的。根據2019年5月國務院的一份概況介紹,美國將轉讓軍用無人機系統,"只有采取適當的技術安全措施"。 國務院和商務部都會進行最終監測,以確定接受國是否適當地使用出口物品。概況介紹說,一些軍用無人機系統 "可能要接受強化的最終使用監測",以及 "額外的安全條件"。根據國務院的概況介紹,美國轉讓MTCR第一類無人機系統也 "應要求與 "美國政府就該系統的使用進行定期磋商。