無人機系統(UAS)和其他相關技術(人工智能或AI、無線數據網絡、擊敗敵方電子戰的電子支援措施)已經發展到一個新的地步,無人機系統被認為原則上能夠執行目前由有人駕駛飛機執行的幾乎任何任務。
因此,許多武裝部隊正在積極試驗有人-無人編隊協作(不同的縮寫為MUM-T或MUMT)。通過將有人和無人資產作為一個單位而不是單獨部署,無人機最大限度地發揮了其作為力量倍增器的價值,提高了在高度競爭性空域的殺傷力和生存能力。無人機系統的直接控制權可由飛行中的有人單位或單獨的空中、地面或海上指揮中心掌握。隨著時間的推移,人工智能的進步將允許無機組人員的編隊元素自主地執行大部分任務。這最終可以將人類干預減少到最低,只保留任務目標的輸入、交戰規則的定義和武器釋放的授權。事實上,這種自主能力對于MUM-T概念來說是至關重要的,以防止人類飛行員被控制無人機的額外任務所淹沒。 無人機系統的主要應用包括:
在“武裝護衛”角色中,無人機系統可以在有人平臺執行任務之前壓制敵人的防空設施(SEAD角色),或者作為一個外部武器庫,使單一的有人駕駛飛機在每次任務中能夠攻擊大量的目標。
自第二次世界大戰以來,美國在每一次沖突中都主宰著天空,但隨著低成本致命的無人機系統的爆炸性擴散,作戰指揮官將不再能夠假定空域是安全的--他們將不得不有意地爭奪它。使得這一新趨勢在作戰計劃和使用方面如此具有破壞性的原因是,無人機系統的獲取成本(相對而言)很低,而且操作簡單。一個適度的軍事強國可以部署幾十甚至幾百架作戰無人機系統。小型和中型致命的無人機系統已經出現,作為傳統攻擊飛機的低成本、經過戰斗驗證的替代品。事實證明,無人機系統在本質上很難被針對傳統飛機設計的傳感器探測到,因此需要專門的解決方案來對付它們。這些武器系統正在重新定義空中力量并使之擴散化,將多種聯合功能融合到單一的戰術平臺中,可以由一個經過有限培訓的小隊來操作。在未來的任何沖突中,美國應該期望面對日益成熟的各種規模和種類的多任務無人機系統陣列。JFACC將再次與敵人共享空域,這是自 "沙漠風暴 "第一夜以來從未發生過的真正意義上的事情。
被動措施應包括加強機動性和偽裝、隱蔽和欺騙(CC&D)戰術,使無人機系統操作者無法獲得打擊目標所需的關鍵可探測特征。煙幕彈提供了技術含量低但有效的隱蔽性,可以抵御光電傳感器,紅外干擾器可以抑制激光瞄準吊艙。機動性、高保真誘餌和無線電欺騙可以迷惑目標,并使人無法了解作戰機動部隊的模式。
在主動措施方面,本文之前討論了瞄準無人機系統的挑戰。現有的技術允許集中的多情報收集和融合,以追蹤SUAS回到它們的起源點,從而能夠對其可疑的GCS位置進行聯合射擊。新興技術應該集中在無人機系統的獨特特性上,除了傳統的地對空防御系統外,還有專門的反無人機系統,以應對高端威脅。美國陸軍已經確定了這樣的系統,并有計劃將移動短程防空(M-SHORAD)與他們的機動部隊和固定的關鍵目標附近結合起來。但這些系統都在爭奪資金。在大國競爭的時代,不能允許這些采購落入預算削減線以下。即使在高強度的沖突中,小型和中型無人機系統也肯定會發揮重要作用。
無人駕駛航空系統和其他相關技術的發展,包括人工智能、數據和云網絡、自主控制系統和系統/武器/傳感器的小型化和網絡化,以及增加昂貴的載人平臺艦隊數量的需要,推動了許多武裝部隊和工業界積極嘗試有人無人機編隊(MUM-T)。除非任務目標或載人平臺的生存需要,否則在有人平臺之外部署無人駕駛、"低成本 "和 "可損耗 "但不 "可拋棄 "的戰斗飛行器,可以最大限度地發揮其作為力量倍增器的價值,在高度競爭的空域提高殺傷力和生存能力。盡管自主技術和人工智能的引入正在徹底改變全域作戰,但新的自主平臺和武器系統的交戰規則正在通過嚴格的倫理考慮和評估來發展,其中人在環路上繼續發揮重要作用。本文希望對MUM-T方案和活動做一個整體的、非詳盡的分析。
天堡(Skyborg)是美國空軍 "先鋒 "計劃中迅速投入使用的三個技術項目之一,它是一個架構套件,旨在為自主可損耗的機身設計,根據該服務,它將能夠以足夠的節奏進行姿態、生產和維持多任務飛行,以挫敗對手在有爭議和高度爭議的環境中采取快速、決定性行動的企圖。天堡自主核心系統或ACS于2019年首次曝光,由Leidos公司開發,已在2021年的多月測試活動中得到驗證,在此期間,它被成功整合到兩個不同的無人平臺上,即Kratos UTAP-22 Mako和通用原子-航空航天系統公司的MQ-20,證明了政府擁有的自主核心的可移植性,使其在未來整合到不同平臺上。一個關鍵的活動里程碑是參加了 "橙旗21-2 "演習,這是美國在2021年6月進行的首要的大型部隊多領域測試活動,其中Skyborg ACS被集成到一個MQ-20中,成為在這種復雜活動中自主操作的無人車的首次飛行測試。由空軍研究實驗室(AFRL)進行,根據服務文件,Skyborg被組織成三個主要的努力方向(LOE)。LOE 1開發、演示和原型化由天堡自主架構和軟件組成的ACS,實現機器-機器和有人-無人的合作,同時也確保天堡自主任務系統套件的開放性、模塊化和可擴展性。ACS LOE還開發、演示和試制所需的硬件組件和開放架構標準,以便在系統集成實驗室和平臺上將模塊化傳感器、通信和其他有效載荷集成到Skyborg自主性和車輛架構中。LOE 2開發、演示和原型化新的低成本可移動飛行器的概念和技術,用于遠征的大規模生成,包括架次生成就業概念。LOE 3對可追蹤的、自主的、無人駕駛系統的操作概念和就業概念進行分析和實驗,并評估傳感器和任務系統的開放性、模塊化能力和整合。2021年8月,克拉托斯公司和通用原子公司都獲得了一份合同,以進一步支持將Skyborg分別集成到XQ-58A "女武神 "和MQ-20 "復仇者 "無人平臺,同時在大部隊演習中進行系統實驗。這些額外合同的目的是在資金允許的情況下,在2023年將Skyborg過渡到一個記錄方案。根據USAFRL的計劃,ACS還將從2022年開始在波音公司的隱形空中力量合作系統UCAV(無人駕駛戰斗飛行器)上進行實驗,該系統正在為澳大利亞國防部開發,如后所述。有趣的是,今年3月,AFRL授予藍色力量技術公司一份合同,開發一種支持對手空中訓練任務的無人駕駛飛行器,該飛行器將納入通過Skyborg努力開創的先進技術。2021年12月,空軍部長弗蘭克-肯德爾宣布,該軍種正在研究無人平臺與諾斯羅普-格魯曼公司的B-21 "突襲者 "遠程攻擊轟炸機和主要是下一代空中優勢(NGAD)先進飛機之間的MUM-T新概念方案,但也有可能與洛克希德-馬丁公司的F-22 "猛禽 "和F-35 "閃電II "聯合攻擊戰斗機合作。
圖:在通用原子公司的MQ-20上成功進行了測試,天堡自主核心系統(ACS)由自主架構和軟件組成,實現了機器-機器和有人-無人的合作。
圖:2021年8月,克拉托斯公司和通用原子公司都收到了一份合同,以進一步支持將天堡系統分別集成到XQ-58A "女武神"(此處描述)和MQ-20 "復仇者 "無人平臺上,同時在大部隊演習中進行系統試驗。
圖:去年11月的 "橙旗 "演習涉及F-35A "閃電 "II等飛機和兩架通用原子公司的MQ-20 "復仇者 "無人機,它們攜帶 "天堡 "自主核心系統進行了持續數小時的飛行測試。
美國海軍正在推行不同的高性能無人平臺計劃,以便在航空母艦上服役。在包括無人作戰系統的MUM-T工作中,2020年初,波音公司宣布,海軍作戰發展司令部在海軍作戰發展司令部的年度艦隊實驗中,由第三架飛機成功進行了兩架自主控制的EA-18G "咆哮者 "的演示。該實驗涉及到咆哮者在第三架咆哮者的控制下作為無人系統行動,以證明F/A-18超級大黃蜂和EA-18G咆哮者空勤人員從駕駛艙遠程控制戰斗機和攻擊平臺的有效性。該演示涉及四個架次的21項任務,為波音公司和海軍提供了分析所收集的數據并決定在哪里進行未來技術投資的機會。美國海軍繼續加速開發下一代空中優勢(NGAD)系統家族(FoS),以提供先進的、基于航母的力量投射能力,擴大其航空母艦的航程。當F/A-18E/F Block II飛機在2030年代開始達到使用年限時,NGAD FoS將取代這些飛機,并利用載人無人機組隊(MUM-T)來提供更強的殺傷力和生存能力。F/A-XX是NGAD FoS的攻擊戰斗機組件,根據該部隊的說法,它將成為MUM-T概念的 "四分衛",在戰斗空間的前沿指揮多個戰術平臺。F/A-XX在2021財年開始了概念完善階段,并且仍然按計劃進行。
2021年5月,澳大利亞政府宣布將對 "忠誠僚機"--高級發展計劃追加投資4.54億澳元。自2017年以來,根據澳大利亞皇家空軍(RAAF)計劃,澳大利亞國防部投資超過1.5億澳元,以支持澳大利亞皇家空軍和波音防務澳大利亞公司領導的當地工業團隊的合資企業,該企業設計、開發和生產了Loyal Wingman無人駕駛戰斗飛行器(UCAV),最近被命名為MQ-28A Ghost Bat。據澳大利亞政府稱,在短短四年內,該合資企業已經成功地制造和飛行了50年來的第一架澳大利亞制造的軍用作戰飛機,這可以使該計劃成為關鍵出口市場的重要競爭者。MQ-28A飛機于2020年5月亮相,2021年2月進行了首次飛行,距離項目啟動僅兩年零三個月。第二架飛機已經加入了飛行測試計劃,第三架飛機正準備在2022年晚些時候進行飛行測試。每架飛機的70%以上是在澳大利亞采購、設計和制造的。這項投資將看到該計劃擴大到更多的本地公司,以及國際合作伙伴和盟友,并在布里斯班附近的圖文巴(Toowoomba)建立一個生產設施,以及在今年加速開展側重于傳感器和任務系統能力的活動。除了用于概念演示的三架原型機外,這項投資將增加七架MQ28A,總共十架飛機,并將快速跟蹤 "幽靈蝙蝠 "在2024-2025年的服役情況。制造商所稱的空中力量組隊系統提供了類似戰斗機的性能,其機身長度為11.7米,能夠飛行超過3700公里。該UCAV有一個模塊化和可互換的機頭部分,可以容納集成傳感器包,以支持不同類型的任務,包括情報、監視和偵察、通信中繼以及動能和非動能打擊能力。據RAAF稱,該計劃是整合自主權和人工智能的探路者。
圖:澳大利亞國防部投資支持RAAF和波音防務澳大利亞公司領導的當地工業團隊的合資企業,該團隊設計、開發和生產了 "忠誠僚機"戰斗無人駕駛飛行器,最近被命名為MQ-28A幽靈蝙蝠。
圖:除了用于概念演示的三架 "忠誠僚機"原型機外,澳大利亞政府去年5月宣布的投資將增加7架MQ-28A,共10架飛機,并將加快 "幽靈蝙蝠 "在2024-2025年投入使用的步伐。
蚊子項目于2019年7月首次由英國皇家空軍快速能力辦公室和國防科技實驗室披露,該項目旨在開發和證明一種技術演示器,作為更廣泛的輕量級廉價新型作戰飛機(LANCA)計劃的一部分,根據公告,。該計劃旨在提供額外的能力,將無人平臺與F-35、"臺風 "和下一代 "暴風雪 "等戰斗機部署在一起,為有人駕駛的飛機提供更多的保護、生存能力和信息,甚至可以在未來提供一個無人駕駛的作戰航空 "艦隊"。有趣的是,2021年7月,英國皇家空軍空軍總司令邁克-威格斯頓爵士在空天力量協會的全球空軍首長會議上談到廣泛的未來戰斗航空系統(FCAS)時說,"與意大利和瑞典等國際盟友合作,我們正在采取一種革命性的方法。我們正在研究改變游戲規則的蜂群式無人機和無機組人員作戰飛機的混合編隊,以及像 "暴風雪 "這樣的下一代駕駛飛機,"這為與上述國家和其他國際盟友開展無機組人員作戰飛機和無人機的潛在共同計劃開辟了道路。
圖:2021年1月,由Spirit AeroSystems公司領導的一個工業團隊獲得了一份3000萬英鎊的合同,以快速設計和制造英國第一個無機組人員的戰斗航空系統的技術演示器,該系統是在 "蚊子 "三年全尺寸飛行測試計劃下的。
圖:"蚊子"將從機場、空客A400M "母艦 "或航空母艦上發射,計劃到2023年底在英國領空飛行。"蚊子"UCAV和Alvina蜂群無人機將支持新一代的 "暴風 "作戰空中平臺。
作為 "蚊子 "項目第二階段的一部分,2021年1月,由英國Spirit AeroSystems公司作為主承包商和機身設計者領導的工業團隊與諾斯羅普-格魯曼英國公司(人工智能、網絡、人機界面)和Intrepid Minds公司(航空電子和動力)一起獲得了一份3000萬英鎊的合同,在為期三年的全尺寸飛行測試計劃中快速設計和制造英國首個無機組人員作戰航空系統(UCAS)的技術演示機,作為目前F-35、臺風和下一代 "暴風 "平臺的補充。無人駕駛作戰飛機主要是為了增加軍方作戰航空部隊的數量,它被設計為與戰斗機一起高速飛行,配備導彈、監視和電子戰技術,以瞄準和擊落敵方飛機,并能抵御地對空導彈。蚊子 "將從機場、空客A400M "母艦 "或航空母艦上發射,計劃在2023年底前在英國領空飛行,但沒有說明實際的首次飛行是否會提前在外國天空進行。2021年,當時的英國國防參謀長尼克-卡特爵士將軍在一次國際戰略研究所的虛擬活動中說,到2030年,今天由8架臺風戰斗機組成的皇家空軍(RAF)戰術編隊將由2架臺風戰斗機、10架蚊式無機組人員戰斗機和100架阿爾維娜蜂群無機組人員飛行器組成,"因為這是產生大量的方式,你可以看到這在陸地和海洋領域也會上演。" 未來的皇家空軍預計將由暴風雪、F-35、蚊子、阿爾維納和保護者組成,其中80%將是無人駕駛或遙控平臺。2021年,空軍總司令邁克-維格斯頓爵士宣布,皇家空軍無人機測試中隊 "已經毫無疑問地證明了我們的阿爾維娜計劃下蜂群無人機的顛覆性和創新性效用"。在英國Alvina計劃的前兩個階段之后,2019年1月授予了第三階段250萬英鎊的合同,用于綜合概念評估活動,以探索協作運行的無人機群的技術可行性和軍事效用,2021年1月成功測試了涉及英國20架蜂群無人機的最大的協作性軍事重點評估。據報道,與正在為皇家空軍開發的 "蚊子 "分開,皇家海軍正在推進其名為 "維克斯 "的忠誠僚機。
法國、德國和西班牙,未來戰斗航空系統/未來戰斗系統(FCAS/SCAF)的伙伴國,以及它們各自的產業,正在開發遠程載具(RC)元件,它與可選擇駕駛的新一代戰斗機(NGF)和聯網的戰斗云(CC)一起構成下一代武器系統(NGWS)。RCs的開發是由空中客車防務和空間公司作為主體,法國MBDA公司、德國MBDA公司和西班牙SATNUS技術公司組成的合資公司Sener Aeroespacial、GMV和Tecnobit-Grupo Oesia公司進行的。該工業團隊正在開發一個蜂群和網絡化的飛行器系列,其尺寸從數百公斤的消耗性飛行器到數噸的更復雜和可重復使用的忠誠僚機類型。根據空中客車公司和MBDA之間的合作協議,前者專注于開發可重復使用的遙控飛行器,而后者則致力于開發消耗性的。正在開發的關鍵技術包括人工智能支持的合作算法、穩健和故障安全的數據通信、小型化傳感器、新的驅動技術、獨立于GPS的導航、可擴展的行動手段、低觀測性解決方案和蜂群技術。如果達索航空公司和空中客車公司將很快簽署各國已經達成的協議,遙控飛機技術演示器可能在2027-2028年飛行,但這將取決于發展路徑和時間。遙控飛機的初始作戰能力可以在2030年代達到,以初步補充第四代戰斗機,但這將取決于國家要求和對平臺及其任務套件的修改。FCAS的MUM-T作戰概念(CONOPS)和相關要求,定義了對遙控飛機機體和控制系統能力的要求,正在調查作為發展路徑的一部分,直到技術演示飛行階段。正如在2019年布爾歇航展和隨后的活動中所展示的那樣,RCs被設想為支持載人平臺的空對空和空對地任務,包括海軍領域,以及情報、監視和偵察(ISR)以及電子戰斗序列的繪制,還有干擾/欺騙、壓制和摧毀敵人的防空。MBDA正在利用其所有的經驗和技術,開發更深入的打擊武器系統,如 "風暴之影 "和 "金牛座",以及基于國家計劃的新系列 "長矛"、"智能滑翔機 "和 "智能巡洋艦 "的智能連接武器,以進一步發展這些概念的RCs,其發展取決于MUM-T平臺的選定類型。迄今為止,MBDA已經在2019年公布了其RC100和RC200遠程運載工具的概念,但最終的RC可能會有所不同,并且可以設想更大的一攬子解決方案,包括已經公布的用于攔截針對受保護平臺發射的空對空導彈的短程導彈。空中客車公司正在開發的更大的RC,在2019年提出了早期模擬,需要由運輸機(如A400M)進行空中發射,或從跑道起飛。目前還沒有提供關于忠誠的僚機型UCAV的信息。
圖:法國、德國和西班牙,FCAS/SCAF的伙伴國,以及它們各自的工業界,正在開發遠程載具(RC)元素,這些元素與可選擇駕駛的新一代戰斗機(NGF)和聯網的戰斗云(CC)一起構成了下一代武器系統(NGWS)。
圖:根據空客防務與航天公司和MBDA之間的合作協議,后者專注于開發消耗性遠程運載工具,而空客DS則專注于可重復使用的運載工具。
土耳其Baykar技術公司在2021年7月公布了其UCAV設計。據制造商稱,該平臺最初以土耳其語縮寫MIUS(無人駕駛作戰飛機系統)聞名,2022年3月改名為Kizilelma(土耳其語中的紅蘋果),預計將于2023年飛行。Baykar技術公司公布的概念和模型顯示,單渦輪風扇發動機驅動的CUAV具有隱形設計,其特點是三角翼和鴨翼配置,機身能夠容納一個武器艙。雖然沒有提供關于平臺尺寸的官方數據,但制造商提供了關于主要能力的信息。Kizilelma最大起飛重量為6,000公斤,不僅能夠從短的陸地跑道上起飛和降落,而且還能從甲板上的海軍平臺,如土耳其海軍未來的旗艦LHD Anadolu上起飛和降落,據稱它具有全自動起飛和降落的功能,以及包括主動電子掃描陣列雷達、先進的光電攝像機和電子戰系統在內的任務套件,以及視線內和視線外通信套件。Kizilelma的最大有效載荷容量為1500公斤,據稱能夠達到0.6馬赫的巡航速度和11550米的工作高度,續航時間為5小時,任務半徑為926公里,但沒有公布任務有效載荷。
圖:土耳其Baykar技術公司的UCAV Kizilelma(土耳其語中的紅蘋果),據制造商稱,預計將于2023年飛行。
Baykar技術公司公布的Kizilelma UCAV的概念和模型顯示了一個以單渦輪風扇發動機為動力的平臺,其隱身設計的特點是三角翼和鴨翼配置,其機身能夠容納一個武器艙。
根據Janes Market Forecast的分析,2022年至2031年期間,全球直升機市場總價值近330億歐元。運輸直升機幾乎占了這一市場份額的一半(約1610億歐元),其次是多功能電子和政府提供的設備(GFE)。后兩者各占約430億歐元的份額。就單個平臺而言,西科斯基H-60 BLACKHAWK在采購排名中遙遙領先,超過了西科斯基CH-53、波音AH-64 APACHE和波音H-47 CHINOOK。這主要是由于許多國家目前正在對其老化的機隊進行現代化改造,新一代的輕型和中型運輸直升機即將進入客戶手中。但俄羅斯對烏克蘭的攻擊也可能使許多歐洲國家重新對真正的戰斗直升機和反坦克直升機產生興趣。
目前,重點是平臺性能,即更高的有效載荷、航程和速度。以美國海軍陸戰隊(USMC)和以色列為例,這些要求由西科斯基CH-53K未來40年的供應來滿足。從德國空降兵的角度來看,純粹從數字上看是這樣的:WIESEL的后繼者——空中移動履帶式武器運輸車(LuWa)應該能夠以兩輛車作為內部載荷進行運輸。該驗證機連同彈藥和乘員重約5噸。
接下來在中型運輸直升機(MTH)領域,對更高速度的部隊運輸的需求--而不是更重的負載--將成為焦點。貝爾/波音V-22 OSPREY是第一個用傾轉翼飛機實現更高的飛行速度的方面。只要看看美國的未來垂直升降計劃(FVL)和像OSPREY這樣的機型的進一步發展。來自美國芝加哥的Skyworks航空公司也打算以其VERTIJET進入這一領域。這是一種垂直起飛和降落(VTOL)的高速和遠距離陀螺儀。這種飛機由一名飛行員駕駛,據該公司稱,可搭載六名乘客,以644公里/小時的速度飛行,并可飛行1609公里。巴西航空工業公司和BAE公司也在致力于EVTOL項目的軍事化,這是一個全電動的對應項目。
德國陸軍的一份概念文件要求陸軍航空兵擁有 "敏捷性和靈活性,以便在陸地行動中迅速轉移焦點"。作為一種核心能力,陸軍航空兵應該能夠在白天、夜間和能見度低的情況下,在長距離、不受地形影響和受到威脅的情況下,迅速部署他們的武器系統,在整個責任區提供效果和支持。在速度、航程和有效載荷的性能三角框架內,要求飛行速度超過220節,在不增加油箱或空對空加油的情況下,任務時間至少為3小時。另一個核心要求是有人-無人機編隊協同(MUM-T)。
在歐洲,將出現這樣的問題:NH-90和現有戰斗直升機的后繼者將是什么樣子。換句話說,是否會有一個歐洲未來垂直升降機計劃?歐洲防務局(EDA)已經在考慮初步的方法。美國陸軍的FVL計劃由四個項目組成:
FLRAA打算從2030年開始取代美軍(陸軍和美國海軍陸戰隊)的BLACKHAWK直升機隊。FARA旨在填補之前由貝爾OH-58D "KIOWA WARRIOR "直升機填補的輕型攻擊和偵察能力的關鍵空白,該直升機已于2014年退役。在最初的五個競爭者中,在2020年夏天進行了降級選擇,現在有兩個設計,即貝爾360 INVICTUS和西科斯基RAIDER X,正在進一步開發中。這兩種飛機將在2023年秋季進行評估測試,最遲在2028年開始生產。
對于FLRAA,有兩個申請團隊,德事隆的貝爾公司(擁有V-280 VALOR)和西科斯基-波音公司的DEFIANT X,將在2022年底進行預選,在2025年中期或后期交付原型機。關于DEFIANT X,洛克希德-馬丁公司表示。"為了遏制未來的沖突,必須對旋翼機系統能力進行變革性的改進。X2技術所提供的速度、范圍和機動性,增加了飛機在未來威脅環境中的生存能力。X2技術的可擴展性是為適應多種任務而開發的--側重于多域作戰的連接性、互操作性、多任務適用性和可擴展性及生存能力"。
從德國的角度來看,德國聯邦警察的中型運輸直升機計劃也很有趣。在這里,將采購44架機器。最近,H215 SUPER PUMA機隊的可用性在那里也是一個問題。該項目自2021年開始招標,目前正處于投標階段。萊茵金屬/西科斯基可能將與S92競爭,而空客將與當前版本的H225 SUPER PUMA競爭。
當被問及旋翼機最重要的技術和創新時,波音公司在德國的國防、空間和安全副總裁Michael Hostetter說。"未來的旋翼機將需要智能化、模塊化和可適應性,以提高它們的能力、可用性、經濟性和互操作性,而這些都是需要它們的非凡應用范圍和用戶范圍。
充分了解機載配置和狀況的智能旋翼機可以與所有操作人員合作,減少工作量,最大限度地提高安全和性能,同時提高可用性,減少維護負擔。模塊化和互操作性能夠為預期的用途實時快速地裝備系統,用首選的和可用的批準部件優化配置。這比開放的任務系統和車輛管理更廣泛,也適用于結構和系統以及推進器和動力裝置。模塊化也降低了初始和持續的采購成本,并促進了升級和改進以及新的配置"。
許多用戶正在接收新一代的飛機,包括:
這凸顯了為什么BLACKHAWK在全球范圍內是同類產品的領導者。挪威也在考慮通過租賃的方式用另一種型號來補充其NH-90艦隊。這些將由海岸警衛隊使用,并填補NH-90的能力空白。空中客車公司從法國獲得了新型H160的訂單,從西班牙獲得了36架H143的訂單,并向卡塔爾交付了第一架NH90。奧地利訂購了18架萊昂納多AW169M(從2023年開始),以取代ALOUETTE 3,哥倫比亞海軍已經收到了AW139。巴林已經訂購了12架AH-1Z VIPER,而以色列是繼美國海軍陸戰隊之后CH-53K的第一個出口客戶。另一方面,印度正在接收其第一架CH-47 CHINOOK。至于戰斗搜救行動,意大利已經收到了萊昂納多的HH-139B。
2021年12月,西班牙發布了12億歐元用于進一步開發空客TIGER Mk III。時間框架是2029年至2037年。法國也已經承諾進行Mk III的開發。德國的承諾仍然開放,根據波音公司的說法,對AH-64E APACHE GUARDIAN有一個平行的要求。澳大利亞也將使 "老虎"提前退役,并以APACHE取代它。特別是德國陸軍仍在與TIGER的災難性清晰度作斗爭。很快,最老的機器將不得不再次被淘汰。Mk III計劃中的關鍵系統改進包括對以下方面的增強:
德國加入美國的FVL計劃,然后從2030/35年開始接收第一批飛機也是可以想象的。然而,在此之前,"老虎 "將不得不保持活力。特別是考慮到烏克蘭的戰爭,對快速市場化的解決方案的需求可能會變得更大。英國已經與美國簽訂了一項合作協議,以獲得來自FVL計劃的信息。這旨在進一步發展其自身的技術,并確保兩國所有平臺的互操作性。
在武裝直升機領域,荷蘭和英國正在升級其AH-64D。此外,韓國在2021年ADEX上展示了KAI海洋攻擊直升機(MAH),這是一種用于海上作戰的戰斗直升機。這里,明確提到了MUM-T能力。澳大利亞也要求 "老虎 "的后續機型具備海上作戰能力。貝爾公司已經為巴林完成了12架AH-1Z "蝮蛇 "中的第一架。土耳其在2018年首次公布了自己的輕型戰斗和運輸直升機,即TAI T625 G?KBEY。土耳其還擁有第二架戰斗直升機,即土耳其航空航天公司的T129 ATAK。這是與萊昂納多合作開發的,以AW129為基礎。
德國為陸軍、海軍和空軍計劃了一個輕型多用途直升機(LUH SK)項目。這是一種訓練直升機,在陸軍中也將作為輕型武器化平臺,在 "老虎 "下面運行。BMVg(德國國防部)現在已經決定放棄這個方案。這意味著該直升機將繼續是一個純粹的訓練平臺。空中客車公司的H145M正在被考慮之中。因此,陸軍現在將不得不開始一個新的項目來填補TIGER下面的空白。最初,計劃為陸軍的一部分H145M裝備H-Force,以便以后可以選擇傳感器和效應器。特別是在作戰平臺上,對自信的要求是最重要的。MUM-T以及僚機和空中發射效應(ALE)概念將在這方面發揮非常重要的作用。
許多武裝部隊都存在征兵問題,人員的培訓既昂貴又漫長。為了減少人員數量和保護士兵,未來的許多任務可能會越來越多地依賴無人駕駛系統。這對VTOL平臺來說也將不例外。美國海軍陸戰隊指揮官大衛-伯杰將軍最近呼吁加快無人駕駛航空器(UAV)的進展。除了無人機之外,他還想到了用于后勤任務的VTOLs。
他說,美國海軍陸戰隊在未來必須擁有一支平衡的有人駕駛和無人駕駛飛機的機隊。自1999年以來,已經用卡曼航空系統公司的K-MAX進行了能力測試,洛克希德-馬丁公司對該機進行了改造。K-MAX提供了2,041公斤的有效載荷,據說其有效載荷成本為1,200美元/飛行小時。它已經被部署在阿富汗,以及從船上部署。2021年12月,美國海軍首次從船上部署諾斯羅普-格魯曼公司的MQ-8C FIRE SCOUT。
韓國航空航天工業公司(KAI)在2021年ADEX上展示了無人駕駛的輕型武裝直升機(LAH)。它基于空客H155平臺,鼻尖下有一門20毫米GATLING炮。它還有一個光電/紅外(EO/IR)傳感器,并可在其短小的機翼上攜帶導彈吊艙。韓國軍隊有一個214架LAH的計劃,將從2022/23年開始引進,空中客車公司也預計國際上需要300到400架。2022年2月宣布了UH-60A BLACKHAWK的30分鐘無人駕駛飛行。該飛機可以由人駕駛或無人駕駛。該系統的核心是西科斯基的MATRIX自主技術。
西科斯基公司創新部主任伊戈爾-切雷平斯基說。"像西科斯基的MATRIX技術一樣,支持自主和選擇性駕駛操作的進步,將改變飛行員和機組人員執行任務的方式,在機組人員減少或能見度有限的情況下飛行時提供幫助。MATRIX就像一個虛擬的第二飛行員,將幫助操作員在危險和復雜的任務中安全和自信地飛行。它可以利用全權限飛行控制輸入進行自主飛行--包括起飛、路線規劃、避障、選址和降落"。
MUM-T為有人駕駛的飛機提供了許多優勢。它們還能增加航程、耐力、靈活性、生存能力和整體作戰價值。例如,有人駕駛直升機的機組人員可以控制一個無人駕駛飛機系統(UAS),并將其送到其飛行路線的前方,以識別或壓制敵人的傳感器和效應器。這樣,當直升機改變行動區域時,UAS的傳感器--已經在最終目的地運行--已經可以在直升機接近時使用,以便更好地了解情況。這使直升機在到達任務目標后能立即開始執行任務。
如果無人機系統有自己的效應器,這也增加了攻擊直升機的穿透能力和射程,或者由于效應器的數量,大大提高了對目標的致命效果。通過這種方式,陸軍航空兵在未來將能更好地將其效果深入到敵方空間,以支持陸軍行動,甚至在敵方防空系統的威脅下。
無人機的使用將實現(部分)自動化,并得到人工智能(AI)的支持。這也將允許在不增加機組人員工作量的情況下使用群組。任務的風險越大,就越有可能被接管或由無人系統支持。除了使用無人機或僚機外,還使用了所謂的空中發射效應。這些都是從有人駕駛的飛機上發射的,或者由僚機的無人機系統攜帶。 德國波音防務公司的邁克爾-霍斯泰特說。"[APACHE]已經與GRAY EAGLE和Shadow以及SCAN EAGLE組隊,并且能夠與其他飛機組隊。然而,我們要強調的是,APACHE是唯一具有MUM-T能力的攻擊或偵察直升機。MUM-T完全集成到APACHE的顯示器和控制裝置中,使機組人員具有更強的態勢感知能力和以網絡為中心的互操作性--通過允許早期探測和識別戰場上的威脅來提高生存能力"。
韓國航空航天工業公司(KAI)正在開發一個MUM-T系統,用于大韓民國軍隊服役的直升機上。開發工作應在2022年底前完成。貝爾公司剛剛將ESG的任務管理系統集成到貝爾429中,以支持MUM-T。此外,荷蘭正在使用L3Harris遠程操作視頻增強接收器(ROVER)6i收發器技術來支持他們的AH-64E,其固有的4級MUMT能力。通用原子航空系統公司在其新的MOJAVE-UAS中集成了MUM-T能力。在德國,量子系統有限公司使用空客H145M和他們的VECTOR's UAS進行了MUM-T演示。該無人機系統提供了120分鐘的飛行時間,甚至可以在惡劣的條件下運行。
直升機實際上不過是一個空中移動平臺,沒有附加價值。只有通過其貨物,如特種部隊(SF)或戰斗車輛,或其傳感器和效應器,它才能在偵察或戰斗(空中和地面支持)中獲得真正的附加值。例如,阿聯酋特種部隊已經開發出一套裝備,可以在UH-60上攜帶(靜音、電動)兩輪車。這增加了SF的地面機動性,而不必求助于更大的飛機。
一段時間以來,UH-60上一直使用SPIKE NLOS制導導彈。現在,SPIKE ER2也被集成在H145M上。巴西海軍為其H225M配備了MBDA EXOCET AM39 Block 2 Mod 2反艦導彈用于反水面作戰。英國海軍在2021年6月首次從WILDCAT HMA2上發射了MARLET。MBDA BRIMSTONE也越來越被考慮作為直升機和無人機的武器裝備。一個新的補充可能是MBDA ENFORCER Air。
由于對適合在輕型直升機或戰術無人機上使用的小型、輕型和經濟型精確導彈系統的強烈需求,MBDA德國有限公司正在改進其ENFORCER以滿足未來的要求。基準的 "ENFORCER "是一種90毫米口徑、發射前鎖定(LOBL)、"發射并忘記"、一次性、日/夜、輕型精確制導肩射武器系統。ENFORCER系統的模塊化設計實現了一系列的發展選擇,包括未來用于陸地、空中和海上的ENFORCER "家族"。就像BRIMSTONE的一個更小和更具成本效益的兄弟。
新的傳感器意味著增加射程或更好的保護。亨索特公司為德國NH90 TTH配備了新的AMPS自我保護系統,美國空軍正在為其HH-60W JOLLY GREEN II戰斗搜救(CSAR)直升機尋求一種新的導彈保護系統作為改進。意大利正在越來越多的直升機上使用萊昂納多的MAIR導彈預警系統。在研究傳感器這一主題時,未來還必須考慮針對小型非軍用無人機的探測和保護系統。這些現在構成了一個不斷增長的威脅。
作者:Tamir Eshel,專知防務編譯
1 無人機蜂群的優勢
2 對抗無人機蜂群
3 攻擊蜂群網絡
4 理解態勢圖
5 態勢感知:生存的關鍵
6 擊敗無人機
7 蜂群信息
8 LEONIDAS
9 無人機與無人機蜂群
10 高功率激光器
11 總結
集群無人駕駛系統代表了無人作戰的顛覆性演化階段。在本文中,將蜂群視為一組以協調方式自主運行以執行任務的無人駕駛系統(UXS)。UXS組件可以是空中、陸基、水面或水下機器人平臺,執行的任務包括:
在海上,成群的無人船或游蕩的武器和無人潛航器可以用來摧毀敵方艦隊的脆弱資產,如雷達和通信或聲納。蜂群也可用于先發制人地壓制敵人在特定區域的活動,如機場、降落區或彈道導彈發射場。
單個無人機或巡航武器的攻擊需要有人類控制者參與,而無人機蜂群攻擊與此不同,蜂群收到簡報并自主執行任務,根據任務階段不斷協調其行為以最有效地實現目標。例如,它們可以計劃和機動從不同方向攻擊目標,或同時攻擊多個目標,或者犧牲蜂群中的一些元素以觸發目標在被擊中之前做出反應暴露自己。人類控制員主要發揮監督作用,只有在需要或蜂群要求時才會干預和指導無人機。
群體行動的無人機可以由人類單獨控制,也可以作為一個群體完全自主運行。其他操作方法遵循羊群行為,其中一些成員充當領導者,而其他成員充當追隨者。UXS蜂群通常由一個多發射器和地面控制站控制,從而簡化和加速部署。一旦啟動,單無人機的運行主要是自主的,使一個操作員能夠管理整個蜂群,而不是指導每架無人機飛行。
蜂群可能包括同一平臺的許多同類元素(被稱為同質蜂群)或不同的參與者形成的異質蜂群。每架無人機可能發揮類似的作用,或者專有功能,如信息收集、武器部署或通信中繼。其行為的關鍵是連接所有成員的網絡。通常情況下,這樣的網絡能夠通過不斷地轉發信息、位置和導航,使蜂群連接所有成員。特定的成員可以在不同的時間對整個編隊進行控制,以協調和確定行動的優先次序,分配任務,對障礙或威脅發出警報,或將權力移交給其他成員。如果一個控制節點被消滅,其他成員將根據網絡的自我形成、自我修復算法來重新控制。
大多數商用遙控無人機是通過跳頻擴頻(FHSS)控制的,使用先進的頻率敏捷波形,或通過無線局域網(WLAN)。從無人機發射的信號也使用FHSS、寬頻或WLAN信號。其他無人機可能依靠射頻(RF)、蜂窩或衛星通信(SATCOM)。蜂群經常利用臨時網絡技術(MESH網絡)在蜂群成員之間進行通信。這種方法在視線之外和在現有連接沒有保障的廣泛地區運行時特別有利。單個無人機可以隨時連接和斷開網絡,使得分散的自組織網絡結構非常適合它們的運行。
盡管無人機和機器人是自主運行的,但在被派往執行任務之前需要進行全面的準備。路線規劃、飛行前網絡設置、GNSS鏈接建立、與控制器和其他小組成員的協調都要在起飛前完成,以啟動一個自主任務。這種活動大多有明顯的電子特征,可以被信號情報(SIGINT)活動探測到。但有些準備工作比其他工作更不明顯。例如,在其載體上打包準備發射的游蕩無人機經常在無線電靜默中進行這種準備,沒有任何信號發送,測試和設置都在載體上進行。
一旦蜂群被發射并分組,其成員可以機動成編隊,使單個目標的探測更加困難。對目標的導航可以采用全球導航衛星(GNSS、GPS)、慣性導航、基于圖像的場景匹配,或幾種方法的組合,使其更難被擊敗。編隊成員可以相互依靠來確定他們的位置,從而保持傳感器的冗余度,以克服特定的對抗措施,如GPS干擾。
與可以完全孤立執行任務的單一自主無人機不同,蜂群有一個重要的弱點——它所依賴的網絡。蜂群成員必須不斷通信,以分享信息、狀態和任務。由于這些網絡使用特定的波形,它們的活動可以被SIGINT檢測到,以提供該地區蜂群活動的第一個警報。因此,SIGINT被認為是對抗蜂群(或反蜂群)的第一道防線,作為整個分層防御系統的核心。
隨著網絡信號的采集和跟蹤,以及信號情報(SIGINT)對網絡脆弱性的評估,防御者可能對威脅采取電子或網絡攻擊。考慮到這種探測的延伸范圍,依靠戰略性機載或天基SIGINT資產,防御者可以通過準備和執行應對威脅的通盤計劃來避免意外。對單個蜂群成員的探測和跟蹤構成了另一個重大挑戰,因為雷達和電子光學傳感器探測小型、低速和低空飛行目標的能力有限,特別是遠距離目標。對水下移動的目標探測幾乎是不可能的。此外,由于傳感器遇到的噪音和雜波,對移動中的目標探測也很有限。
C-UAS探測和對抗系統,如羅德與施瓦茨公司(R&S)開發的ARDRONIS,針對無人機的射頻信號活動,使用敏感的監測接收器收集和破壞無人機控制。據R&S稱,該監測器可以從5公里外探測到大疆Phantom 4迷你無人機。當使用FHSS與無人機接觸時,ARDRONIS將檢測到的信號與廣泛的無人機配置文件庫進行比較。這種“監測和匹配”過程為覆蓋區域內的任何威脅提供了可靠的早期警告。該系統還提供無人機遙測、視頻下行鏈路和控制單元的測向(DF),顯示操作員的位置。該系統還有一個集成的干擾器,可破壞目標無人機或無人機與控制器之間的通信,而對同一頻段的其他信號干擾最小。
羅德與施瓦茨公司和OpenWorks公司合作,在反無人駕駛航空系統(C-UAS)任務中建立了一個自主的三維探測和跟蹤系統。該系統已經通過北約新的“即插即用”協議集成,稱為“集成電子網絡技術的資產保護傳感”(SAPIENT),并在荷蘭德皮爾空軍基地的北約技術互操作性演習(TIE)活動中進行了測試。
ARDRONIS無人機探測解決方案與OpenWorks公司的SkyAI自主光學技術相結合,并與指揮和控制系統以及決策引擎相結合,以應對不斷升級的無人機威脅。ARDRONIS提供了一個主要的檢測能力,使用頻譜分析方法定位無人機和遠程控制器。SkyAI采用二維數據,并將其與通過SAPIENT網絡從遠程傳感器收到的信息相結合。然后,它控制與系統相關的EO/IR相機,自主地搜索無人機系統。利用實時先進的人工智能目標分類,EO/IR傳感器鎖定目標,并將高質量的視頻流傳給系統操作員,以進一步分析威脅。然后,對SkyAI ARDRONIS傳感器的數據進行融合,以提供被追蹤無人機系統的完整3D位置。
IAI的無人機衛士代表了另一種探測和攔截無人機和無人機蜂群的多層次解決方案。它由幾種被動和主動傳感器組成,通過一個統一的C2系統與軟、硬殺傷效應器集成。探測和分類層依賴于一個多任務三維X波段AESA雷達和SIGINT系統,該系統探測并對UAS數據鏈通信進行威脅探測和分類。一個日/夜EO/IR傳感器支持目標分類和獲取。無人機衛士使用各種攔截手段,包括干擾或接管作為軟殺傷措施和硬殺傷措施,如精確步槍瞄準器、火箭彈或無人機-殺傷-無人機(DKD)解決方案。
該系統的核心是指揮和控制元件,它從傳感器收集數據,自動關聯信息,定義優先級,并創建一個統一的態勢感知圖,以便及時部署針對威脅的對抗措施。該系統通過機器學習(ML)不斷學習和適應新的威脅類型,并配備了內置的先進決策和人工智能(AI)算法,用于威脅分析和手動、半自動或完全自主響應。
拉斐爾公司的Drone Dome是另一個“端到端”C-UAS解決方案,具有反蜂群能力,在一個多層架構中整合了各種傳感器。該系統采用了RADA的RPS-82雷達,采用靜態或車載配置,使用四個AESA雷達面板,覆蓋360度。除了目標探測和跟蹤外,RPS-82還采用了微多普勒算法進行目標分類。SIGINT元素覆蓋70兆赫到6千兆赫的頻譜,以定位無人機的位置及其操作者,并處理探測到的信號到達時間差(DTOA),以提高態勢感知。另一個自動化層是系統的EO/IR傳感器,支持視頻運動檢測(VMD),能夠根據無人機模式庫自動檢測、識別和跟蹤多個目標。
該系統生成了一個基于地圖的全面態勢圖,允許單個操作員進行可擴展的威脅緩解,采用響應性干擾(RJ)和GNSS反制措施,甚至使用高功率激光,這可對蜂群編隊進行有效打擊,快速連續擊敗多架無人機。
因此,態勢理解是盡可能早地擊敗蜂群的關鍵,通過目標定位網絡,將蜂群無人機解析轉化為先進的、幾乎堅不可摧的機器。將許多傳感器和信息源融合到態勢感知(SA)圖中,使防御者能夠針對蜂群的弱點,采取最有效的行動。根據行動策略,這些弱點可能是數據鏈、網絡或領導蜂群的“牧民”。行動可以采用軟殺傷,如進攻性網絡、電子戰斗(干擾、GPS拒止)。動能措施的范圍包括部署尼龍流和碎片堵塞無人機的螺旋槳和轉子,以及由C-UAS系統自主指揮和控制的高功率微波或高能激光器、空爆彈藥和火器的定向能量效應。
為C-UAS開發的最復雜的指揮和控制系統之一是Anduril的LATTICE。該系統通過自主解析來自數以千計的傳感器和數據源的數據,并將其轉化為一個智能的共同作戰圖,實時創建對戰斗空間的共享理解。使用傳感器融合、計算機視覺、邊緣計算、機器學習和人工智能,LATTICE可以檢測、跟蹤和分類操作員附近任何一個感興趣的目標。這個系統將SA從戰術層面擴展到戰略視角。Anduril的目標是將LATTICE作為一個全領域的任務引擎部署在陸地、海洋、空中和太空。它采用其網狀網絡來確保信息流,即使在偏遠和有爭議的地區,即使在帶寬有限的情況下,也能實現彈性的信息流和協作編隊。
其他C-UAS系統,如D-Fend的EnforceAir、DroneShield的DroneSentry-X支持戰術單位保護:
EnforceAir自動識別附近的無人機,然后利用網絡攻擊自動控制它們,并將其降落在一個安全的指定區域。據D-Fend公司稱,這種緩解方法采用了針對目標的協議,不會對友軍通信或授權無人機的運行造成干擾。該系統可以作為一個便攜式戰術套件使用,或安裝在車輛上,以支持靜態或移動操作,形成一個移動的保護“氣泡”。
在探測和識別階段,該系統保持被動,使秘密部隊能夠保持無線電靜默。由于無人機被迫降落在被保衛單位附近,軍事情報部門可以利用捕獲的無人機數據來了解使用的是哪種類型的無人機,它們從哪里發出,以及它們的攝像機記錄了什么。無人機接管只需要幾秒鐘,使該系統能夠有效地控制無人機小型蜂群。
DroneSentry-X是一個不同的移動C-UAS系統,因為它的擊敗能力依賴于干擾,不涉及協議操縱或“網絡”戰術。該系統可以在獨立模式下運行,并集成了傳感器和一個緩解器,以破壞其附近的無人機系統操作,并在360度范圍內保護平臺。
DroneShield和D-Fend都采用“外科手術”行動來對付單個或小群無人機,在它們到達目標之前將其擊落。其他使用電磁脈沖(EMP)和高功率微波(HPM)發射器——更強大的手段,來根除該地區的所有電子系統和活動。這種行動可以一次擊落許多無人機,但也會損壞其他沒有受到這種“電子沖擊治療”保護的系統。這種類型的系統已經在市場上出現,表明該技術已經成熟,可以集成到無人機和C-UAV系統中。
這種武器被設計為“犧牲型”,這意味著它們在激活期間被摧毀或“可重復使用”。美海軍水面作戰中心的工程師們構思了一種爆炸形成的電磁脈沖,可以作為彈頭裝在導彈或無人機內,成為一種能夠攔截和擊敗無人機的武器。 這種EMP裝置被稱為“通量壓縮發生器”,由一個線圈編織成一個密閉的圓柱體構成。 圓筒中充滿了電離的鋰氣,在啟動時建立了一個強磁場。圓筒被炸藥壓縮,通過增加的磁場加速電離氣體分子,產生太瓦級的強大電磁波。球形EMP摧毀攔截的無人機,并使其附近的任何電子系統失效。
可重復使用的高功率電磁效應器采用不同設計的微波發射器來提供能量爆發,可以從遠處使電子電路失效。最初,這些都是大型(卡車大小)系統,需要強大的發電機和冷卻裝置來產生預期的效果。大多數陸基系統是定向的,而更緊湊的系統則根據爆炸產生的能量爆發覆蓋一個球形模式。最近,大功率固態HPM的進步使新的HPM效應器更加成熟,更適合于戰術使用。
其中之一是LEONIDAS,基于Epirus公司開發的SmartPower技術。它使用固態放大器,以極高的功率傳輸定向能量,造成反電子效應。Epirus公司利用人工智能支持的氮化鎵(GaN)半導體陣列來產生HPM傳輸所需的極端功率密度,而無需特殊冷卻。頻率敏捷系統可迅速發射一連串獨特的波形,以利用無人機系統目標最容易受到的特定頻率。這使得戰術上相關的反蜂群范圍超過了小武器打擊,即使是針對各種蜂群。
一個全尺寸的地面LEONIDAS效應器使用非常高的能量從遠處作業,而裝在吊艙中的較小版本則可由無人機攜帶,更接近目標。由于該系統使用電力,LEONIDAS有很深的彈倉,可以連續快速發射,以達到精確或區域火力的效果,而不會過熱或需重新裝彈。
這項技術已經與美國陸軍的一些防空能力相結合。2020年,諾斯羅普-格魯曼公司宣布與Epirus公司達成戰略供應商協議,提供LEONIDAS作為其反無人機系統(C-UAS)系統解決方案的一個組成部分。諾斯羅普-格魯曼公司的C-UAS解決方案已經提供了一個分層結構,具有完整的動能和非動能效應、空中和地面傳感器的前線防空指揮和控制(FAAD-C2)系統,該系統被美國陸軍選定為反小型無人機系統能力的臨時C2系統。該協議增強了系統的非動能能力,以擊敗無人機系統蜂群。在另一項協議中,Epirus公司在2021年底宣布,該公司已與通用動力公司合作,在美陸軍的IM-SHORAD系統上集成LEONIDAS,該系統已經在移動中為戰斗人員提供C-UAS保護,使陸軍能夠與無人機蜂群作戰。
目前LEONIDAS尺寸也被縮小,以適應無人機攜帶的小吊艙。該吊艙與現有的機載系統集成,去到最終用戶希望它去的地方,直接飛向威脅區。當與地面的LEONIDAS裝置一起部署時,兩個系統協同工作,以實現更大的功率和范圍,并創建一個分層防御力場。
其他運行HPM的C-UAS系統包括洛克希德-馬丁公司的MORFIUS C-UAS無人機。該公司使用Dynetics Area-I公司的Altius 600無人機,裝上洛克希德-馬丁公司的HPM效應器MORFIUS,在距離和速度上對付無人機蜂群。這種管狀發射的無人機攜帶一個HPM效應器有效載荷和一個尋的器,使其能夠從遠距離對目標進行定位。兩者都是可回收和可重復使用的。管狀發射無人機平臺可以從空中、地面或移動的車輛上部署,支持分層防御方法。
雷神公司最近用其COYOTE Block 3渦輪動力C-UAS導彈展示了一個類似的概念。在這次演示中,COYOTE使用一種未指定的非動能效應器擊落了一組10架無人機。目標組包括在尺寸、復雜性、機動性和范圍方面不同的無人機。該測試還證明了COYOTE可以在交戰后被回收和重新部署,可以在車輛、飛機、直升飛機和無人機上部署。
高功率激光器也提供了有效的反蜂群能力,它能夠通過摧毀無人機的機身、能源、光學器件或電子電路來迅速擊敗小型和機動目標。以低成本快速“發射”多發子彈的能力使激光器適用于極短距離防空(VSHORAD)任務和對抗無人機小型蜂群。這種激光器已經被集成到一些C-UAS平臺上,如 Stryker的DE M-SHORAD、雷神公司的HELWS2和拉斐爾公司的激光無人機穹頂激光效應器,它們已經展示了擊敗小型無人機蜂群的能力。激光和HPM效應器都為操作者提供了一種低成本的單次射擊選擇,只需要電能就能操作。然而,激光器受到天氣的限制,因為它們不能穿透厚厚的云層,而HPM可能在其區域內造成附帶損害。
自主的、由人工智能驅動的和聯網的無人機蜂群正在成為一種顛覆性的軍事能力,它們執行任務的能力遠遠超過單一無人機的規模和能力。沒有打敗無人機蜂群的銀彈,因為對抗措施需要一個至少與無人機本身一樣先進、復雜和不斷發展的系統,利用無人機使用的一些技術。
當特斯拉和SpaceX創始人埃隆-馬斯克在一個滿是美國空軍人員的房間里斷言,自主無人機戰爭是未來,將取代戰斗機,這引發了一場有爭議但關鍵的辯論。9/11之后的十年里,無人機在軍事領域激增。在阿富汗、敘利亞、伊拉克、也門、利比亞和烏克蘭,無人機和無人駕駛飛行器(UAVs)已被廣泛用于禁用常規武器系統。因此,常規戰爭與無人機戰爭的可替代性和破壞性的難題就出現了。無人機是 "技術和信息系統深度融合的產物"。 此外,云計算、大數據、網絡和人工智能的快速發展推動了使用無人機的愿望,因為它們具有卓越的監視和打擊能力。
最近亞美尼亞和阿塞拜疆之間的沖突(2020年7月12日至16日)期間,無人機被用來摧毀坦克,這進一步點燃了關于無人機戰爭未來的長期辯論。無人機將只是軍事武器庫的一部分,還是將取代現有的軍事武器庫?納戈爾諾-卡拉巴赫沖突點燃了對無人駕駛獵殺系統的研究,如Harop和Orbiter 1K蜂群,可以破壞被攻擊國家的防空系統。中國和美國人尤其有多項計劃來開發無人機群技術。 雖然使用無人機的優勢是壓倒性的(減少士兵的風險,減少錯誤,減少平民傷亡),但依靠無人機的局限性也是不容反駁的。在未來的戰爭中,尤其是無人機戰爭中,"人的因素"應該被去除到什么程度,將取決于各國如何制定政策來適應這些新興技術,而不是由這些技術來塑造戰爭的方式。
第一架無人機是由英國在1916-17年開發的,并被命名為 "魯斯頓-普羅克特空中目標"。從那時起,無人機已成為偵察和監視的必要工具,并被美國、以色列和俄羅斯廣泛使用。在20世紀60年代的越南戰爭中,瑞安147型偵察無人機被用于密林中,而以色列在20世紀70年代和80年代的各種阿以沖突中擅長使用無人機作為游蕩彈藥作為反雷達解決方案。在20世紀90年代,海灣戰爭改變了戰爭的概念,特別是美國對信息和通信技術的使用,促進了無人機的使用。20世紀90年代,無人機在海灣戰爭、阿富汗戰爭、科索沃戰爭、阿拉伯-以色列戰爭和伊拉克戰爭中得到了使用。無人機最初被用作監視平臺,但其精確打擊的潛力很快就被意識到。例如,通用原子公司的MQ-1 "捕食者 "無人機被設計為偵察平臺,當從其上發射 "地獄火 "導彈時,它被改裝成了打擊型無人機。從那時起,美國軍方一直在使用MQ-1和MQ(其年輕版本)作為監視和攻擊平臺,其計時飛行時間超過了美國空軍所有戰斗機的總和。
在無人機戰爭方面,亞美尼亞-阿塞拜疆沖突迫使戰略界關注無人機蜂群技術的發展空間。美國海軍在2016年測試了130架微型無人機在加利福尼亞的中國湖周圍成群結隊的效果。這次測試展示了發展反無人機能力的迫切需求。美國有兩個研究無人機群技術的計劃--國防高級研究計劃局的Gremlins計劃,"從飛機上發射一些小型無人機,進行協調和分布式行動";以及海軍研究辦公室的Locust(低成本無人機群技術)計劃,"從船上發射小型無人機群"。俄羅斯和中國也進行了一些蜂群實驗,無人機在戰場上徘徊,自主或通過操作者進行獵殺、指定和瞄準。
非國家行為者對無人機戰爭的可承受性和效力并非一無所知。恐怖分子、武裝分子和叛亂分子等非國家行為者利用無人機制造混亂以實現其政治目的的例子有很多。從1994年到2018年,大約發生了14次非國家無人機襲擊。第一次無人機襲擊,雖然沒有成功,但在1994年,日本的末日邪教組織奧姆真理教使用遙控直升機噴灑化學劑沙林毒氣。2013年,"基地 "組織曾計劃對巴基斯坦進行無人機暖氣襲擊,但被情報機構制止。自2014年以來,ISIS一直在使用 "自制和現成的 "無人機來攻擊伊拉克和敘利亞軍隊。2018年,非國家行為者發生了兩起襲擊事件,一是通過GPS制導的無人機對委內瑞拉總統馬杜羅進行暗殺未果,二是13架無人機對俄羅斯在敘利亞的軍事基地進行了群攻。
在無人機戰爭領域涌現出的另一個討論領域是網絡力量在對抗無人機的擴散和使用方面的作用。除了防空火炮系統,網絡和電子攻擊也被用來阻止無人機攻擊。這方面的第一個例子可能是在2011年,美國RQ-170 "哨兵"無人機在伊朗丟失,可能是由于GPS欺騙。此外,愛德華-斯諾登泄露的數據顯示,英國信號收集裝置在塞浦路斯截獲了以色列無人機的錄像。反擊烏克蘭無人機的最活躍的網絡/電子攻擊是由俄羅斯人完成的。
談到安全問題,無人機可以有多種應用。就軍事用途而言,無人機可用于 "情報、監視、偵察(ISR)和目標獲取 "以及 "夜視行動、導航輔助和后勤運輸",也可用于 "邊境控制、監測、執法、搜索和救援、新聞和運輸 "等民用目的。在安全領域接受無人機的最相關的原因是,它們被認為是 "人道主義技術的一個進步",似乎很容易適應 "正義戰爭 "的原則,同時又是負擔得起的和安全的。
使用無人機的優勢可以根據它們的三種功能進行分析:監視、致命的武力使用和壓倒敵人的防空系統。說到ISR能力,無人機更容易在國際邊界上移動。它們的閑逛能力提供了持續的情報,而不會使人類面臨風險。此外,無人機可以在不同的氣候和地形下運行,因此是滿足ISR要求的理想選擇。無人機對于需要大量情報投入的反叛亂行動特別有用。
在打擊目標方面,無人機表現出深刻的準確性和空襲性,與其他武器系統相比,這大大減少了附帶和平民傷亡。在戰場上,指揮官獲得常規防空系統的反應時間相對高于他們獲得無人機的能力。這大大節省了戰爭期間采取行動的關鍵時間。
鞏固無人機案例的另一個領域是其壓倒和摧毀敵人防空系統的能力。神風特攻隊式的無人機群是壓倒高度復雜防空系統的關鍵。例如,高科技的俄羅斯防空系統的防御在反擊無人機攻擊方面是徒勞的。土耳其和以色列通過使用攜帶精確制導彈藥的無人機成功地摧毀/防御了 "俄羅斯Pantsir短程防空系統(SHORADS)、S300、S400高空防御系統(HIMADS)、Buk-M1中程地對空導彈(SAM)系統。因此,無人機的模塊化使其適用于各種軍事應用。
無人機可以根據其傳感器類型、速度、重量和成本分為三類--一類、二類或三類。但與戰斗機相比,它們的機動性較低,容易被擊落。無人機在有空軍和防空火炮系統的空域生存是很困難的。盡管正在采用無人機群技術來應對這一問題,但目前并非所有國家都具備群集能力。即使擁有空中優勢,無人機也無法到達遮蔽其視野的密集區(植被、基礎設施、人口)。雖然無人機有精確的打擊率,但總是打擊并消滅目標是不謹慎的,因為無人機剝奪了從目標處收集額外情報或從打擊地點收集其他實物證據的機會。
無人機在戰略界受到稱贊的另一個原因是其自主的 "開火和遺忘 "能力。但這些無人機的自主性的真正影響還有待商榷。例如,像RQ-4 "全球鷹 "這樣的自主無人機被美國空軍用于ISR行動,但這些無人機之所以能自主工作,是因為 "它們遵循程序化的任務軌跡,幾乎肯定地安全返回家園"。此外,無人機,無論是否自主,都有多層次的人類存在。例如,涉及MQ-1 "捕食者 "和MQ-9 "收割者 "的無人機行動,在以下方面有大量的人員存在。(1) 發射無人機的基地,(2) 控制它們的地區的遠程基地,(3) 提供戰區信息的線人,以及(4) 整理和確定目標清單的政府人員。因此,盡管飛行員的風險已經減少,但在該地點操作無人機的人員和線人仍有相當大的風險。在2009年美國在阿富汗的查普曼前進基地自殺式爆炸事件中,大約有7名中情局雇員在無人機項目中被殺。
近來,一個與依賴無人機的可持續性有關的新問題已經凸顯出來了。無人機的攻擊正通過使用網絡和電子攻擊而被積極阻止。事實證明,使用網絡技術來瓦解無人機的攻擊比傳統的防空火炮系統更有威力。非國家行為者使用網絡和電子戰入侵或控制平民用于娛樂活動的無人機,會對國家安全造成損害。雖然美國軍方的高保障網絡軍事系統(HACMS)等計劃旨在 "建立網絡彈性",以保護各種無人機系統,但這種計劃只涉及軍用無人機系統,民用無人機仍然可以被黑客攻擊(烏克蘭東部沖突中就有這種情況)。這種網絡攻擊的主要挑戰是無人機活動的歸屬問題。要確定無人機攻擊的地點是很困難的。
2020年納戈爾諾-卡拉巴赫沖突和阿塞拜疆使亞美尼亞裝甲部隊和步兵喪失能力的無人機戰略,重新引發了關于常規武器系統與自主武器系統的辯論。阿塞拜疆在土耳其和以色列的幫助下,用三架無人機不僅壓倒了亞美尼亞的防空系統,而且還摧毀了亞美尼亞的幾輛坦克。與MQ-9 "死神 "相同,土耳其的Bayraktar TB2(有趣的是,它采用了加拿大國防公司L3Harris提供的技術,盡管在這次沖突之后,加拿大禁止向土耳其交易這種技術)進行了紅外制導和激光制導反坦克彈藥。以色列的無人機Obiter 1K和Harop提供了神風特攻隊的攻擊和偵察支持。納入這三架無人機的出色戰略使亞美尼亞軍隊陷入癱瘓,并確保了阿塞拜疆的決定性勝利。
這場沖突不僅鞏固了無人機的案例和它們在未來戰爭中的關鍵作用,而且還展示了空軍為陸軍和海軍提供空中掩護的重要性。只關注無人機而忽視戰斗機將是災難性的。無人機應該被看作是軍事武庫的一部分,而不是軍事武庫的替代品。就印度而言,前陸軍參謀長Manoj Mukund Naravane將軍曾表示。首先在伊德利卜,然后在亞美尼亞-阿塞拜疆,對無人機的想象力和進攻性的使用,算法使用,挑戰了傳統的戰爭軍事硬件:坦克、大炮和挖好的步兵。
2021年6月27日恐怖分子對印度空軍查謨基地進行的簡易爆炸裝置(IED)無人機襲擊,以及在印度西部邊境看到的100-150架監視無人機,是印度加快無人機集結和反無人機能力的一個明顯信號。印度已經有了 "蒼鷺"(以色列航空工業公司)、"蒼鷺II"(IAI)、"搜索者"(IAI)、"海洋衛士"(美國通用原子航空系統公司)、Switch無人機(印度IdeaForged技術公司)、四旋翼飛機(DRDO)、"哈比 "和 "哈普"(IAI)等無人機。與其他無人機項目一起,印度目前有 "獵豹項目",該項目分為兩個獨立的項目--一個是為印度空軍升級 "蒼鷺 "無人機,另一個是為所有三個部門采購30架MQ-9 "死神 "B無人機。
無人機對印度的威脅是一個嚴重的問題。過去幾年中,越來越多的人使用無人機投放毒品、武器和彈藥。在多個場合,邊境安全部隊擊落了這些無人機。國防研究與發展組織(DRDO)正在積極研究無人機溫控和反無人機技術。他們已經開發了無人機的 "探測-摧毀技術",在共和國日、獨立日和美國總統唐納德-特朗普訪問艾哈邁達巴德的莫特拉體育場期間,總理的講話中都采用了這種技術。這種反無人機系統應得到進一步發展,并迅速納入所有關鍵基礎設施的保護中。盡管印度國防部正在與美國積極合作,在國防技術與貿易倡議(DTTI)下研究空射無人機(ALUAV),并與以色列(獵豹項目)合作,但謹慎的做法是也要積極合作開發反無人機技術,在矩陣中采用反雷達、網絡和炮兵防御系統。
無人機必將成為未來戰爭的一個重要組成部分,但它們有戰術上的限制,因此不能完全取代傳統的武器系統。它們只是整個軍事拼圖的一個部分。基于上述分析,可以得出以下結論。
1.即使有了自主性,也很難從無人機系統中去除人的因素。
2.無人機的使用保障了飛行員的安全,但卻使在戰區操作無人機的人員面臨風險。
3.無人機有能力解散最先進的防空系統。
4.網絡和電子攻擊,如數據鏈攔截和導航欺騙是無人機戰爭的最大威脅。對這些無人機活動的歸屬是一個挑戰。
5.無人機戰爭是一個現實,因此,為了獲得戰略優勢,各國應積極關注反無人機能力。
因此,根據現有的對手參數(武器庫、地形、氣候、戰略等),以組合方式使用無人機的戰術策略應該是掌握無人機戰爭的關鍵。
如今,部署在戰場上的部隊不僅由人組成,還由人工智能(AI)系統組成,將沖突提升到了新的技術水平。機器人,尤其是無人機,在烏克蘭抵御俄羅斯的持續進攻中發揮了核心作用。
烏克蘭正在使用土耳其的Bayraktar TB2無人機,配備有火箭或導彈,可以在沒有人類干預的情況下起飛、降落和導航(Walker-Munro, 2022)。然而,在這種情況下,武器系統并不是完全自主的:人類操作員必須跟蹤操作,并決定何時釋放無人機攜帶的激光制導火箭彈。
盡管土耳其也是STM Kargu-2的生產國,這是2020年在利比亞殺死士兵的第一架無人機,但烏克蘭部隊仍然沒有。俄羅斯總統弗拉基米爾-普京在2017年說,誰成為人工智能發展的領導者,誰就會成為世界的統治者"(Fierro, 2022)。事實上,在這場沖突之前,關于俄羅斯發展無人駕駛航空、地面和海上系統,有很多有用的分析和評論可供查閱。就在它入侵烏克蘭之后,俄羅斯的軍事自主和無人駕駛性能很弱或完全沒有。
今天,俄羅斯士兵使用Orlan-10飛機直接打擊或識別烏克蘭軍隊,或者只是使用商業的DJI模型。這表明這種技術的持續存在,在這場戰爭中已經成為任何軍事編隊的普通技術(Bendett, 2022)。這些無人駕駛儀器應該是可消耗的和可負擔的,因為它們對識別目標和充當炮兵偵察員等重要任務至關重要。雖然,我們從戰場上的灰燼中得知,俄羅斯已經實施了Lantset無人機,旨在自主地攻擊軍車或部隊集結地。這種武器可以識別地理區域(geofence)內預選的目標類型,產生導彈爆炸(Fierro, 2022)。另一種無人機類型是卡拉什尼科夫公司的子公司ZALA Aero開發的KUB-BLA,在撞擊目標時引爆。KUB-BLA上有一個人工智能系統,用于識別物體,不需要在基地發送和處理圖像,能夠識別1000種物體。
這些系統之所以在機上實施,是因為它們可以更直接地識別某些東西,以利于當場作出決定(估計是由人工智能作出的),而不必依賴可能隨時被敵人打斷的不穩定的無線電信號。然而,現在沒有任何跡象表明KUB-BLA有一個決策系統,可以獨立選擇俯沖目標并爆炸的選項。不過,在未來,這種可能性還是可以輕易實現的(Sambucci,2022)。
俄羅斯軍方可能低估了烏克蘭的防空力量,并訓練其空中無人機部隊來對付他們認為像在敘利亞面臨的部隊。早期俄羅斯在烏克蘭上空的多次損失可能造成了這樣的印象:俄羅斯軍方高估了其無人機部隊和技術的成功。
無疑可以說,無人機在這場沖突中一直存在,而遙控操作的機器人(無人駕駛地面車輛-UGVs)卻沒有出現。
俄羅斯也有軍用機器人,但到目前為止,在烏克蘭看到的唯一單位是Uran-6排雷機器人,而Uran-9機器人坦克似乎沒有在這場戰爭中使用。烏克蘭部隊現在有一個新的幫手。GNOM("Gnome"),一種機器人戰場偵察兵。它是由位于扎波羅熱的 "Temerland "公司制造的,這種小型機器將識別俄羅斯的陣地,并用機槍提供火力支援。GNOM有四個大輪子,采用4x4驅動和一個安靜的5馬力電動馬達,重量為50公斤,配備7.62毫米機槍,具有很強的機動性。雖然大多數UGV是由無線電控制的,但GNOM在它身后卷出一卷光纖電纜。"特梅爾蘭公司負責人特羅岑科說:"在敵人的電子戰設備運行期間,在最惡劣的環境下也能控制GNOM。另外,由于操作者沒有使用無線電,他們不能被大炮探測和瞄準,而且電纜不會產生熱成像儀可以看到的熱輻射。
GNOM的電纜使其射程達到2000米(1.25英里),如果斷裂,車輛會自動返回到預定的位置(Hambling,2022)。這種機器人可以在伸縮桿上配備一個360度的攝像頭,以便詳細了解周圍的情況,而且它幾乎是無聲的,外形很低。由于機槍的存在,GNOM可以在對士兵來說可能太危險的情況下進行自衛并提供火力支援。同時,GNOM已被用于偵察任務。
另一個自動機將在首都投入行動:機器狗Spot。它是由美國波士頓動力公司創造的最先進的模型之一。它有四條腿可以移動,還有一個機械臂,通過利用人工智能,教它獨立行動而不需要人類的命令,它可以舉起和清除地雷和未爆裝置。它能看到地雷,在不觸動扳機的情況下抓住它,并把它帶到將被解除的地方。戰術機器人長期以來一直被推廣,以減少傷亡,并使士兵在與敵人保持接觸的同時遠離火線。
所有現代軍事力量都涉及到對下屬服從命令的信任和對指揮官發出合法命令的信任。當代替人操作一臺機器時,上級應該像信任人一樣信任這臺機器。
這就產生了重大問題。研究人員總是談論 "機器偏見",因為我們相信機器會做出決定,僅僅是因為它們是機器(Walker-Munro,2022)。然而,對機器決策的錯誤信任可能會產生災難性的結果,尤其是當它們做出生死攸關的決定時。新的現代軍隊系統 "無人機神風 "就是這種情況,它結合了無人機的機動性和毀滅性的導彈能力。能夠自動駕駛飛行到交戰區,如果有必要,在沒有人類操作員輸入的情況下識別并擊中目標(Valesini, 2022)。限制軍用無人機的一種方法是讓它們做一些簡單的角色,比如充當空中攝像機。而無人機掃描視頻錄像來識別目標,則更有可能犯致命的錯誤。2007年,海軍水面作戰中心的研究員約翰-坎寧建議,未來的自主武器可能會攻擊步槍或彈藥,而不是攻擊持有它們的人類(Walker-Munro, 2022)。
另一個問題是,沒有關于這些武器的立法,所以當一輛汽車決定殺人時,誰的責任呢?這似乎是一個非常理論性的問題,但事實并非如此:正如人權專家詹姆斯-道斯在《對話》雜志上發表的一篇文章中回顧的那樣,自《日內瓦公約》以來,戰爭法的基礎是,即使在戰爭中也要為自己的行為負責。犯有戰爭罪的士兵可以被國際法庭審判和判刑(Dawes, 2021)。
2016年,生命的未來研究所--一個為防止新技術的生存風險而奮斗的組織--推動了一封公開信,呼吁暫停進攻性自主武器。在超過31000名簽名者中,還有霍金、伊隆-馬斯克和杰克-多爾西,以及許多最重要的人工智能研究人員(Sambucci,2022)。最后,去年12月在《聯合國特定常規武器公約》期間討論了這個問題,遺憾的是沒有達成最終決定。
聯合國秘書長安東尼奧-古特雷斯曾呼吁各國為新規則制定一個 "雄心勃勃的計劃"。
美國、俄羅斯、以色列、印度和其他許多國家都反對禁止自主武器,將談判推遲到以后。美國提議用一個約束力較小的自愿行為準則來規范這一事項。這種解決方案很難對這些技術的發展形成具體的威懾,而且不可能確定無人機和智能導彈何時以自主方式使用。
因此,烏克蘭的沖突有可能成為新一代武器的正式洗禮,這將使對此類問題的回答越來越緊迫,并對其使用采取國際立場。
本專著的目的是從防空歷史和空中力量穿透這些防御的工作中提煉出教訓。它從第一次世界大戰、第二次世界大戰、越南、"沙漠風暴 "以及俄羅斯和中國的現代發展中確定了六條經驗。這六條經驗為空軍和地面部隊在未來進行壓制敵方防空(SEAD)和滲透行動的努力提供參考。本專著探討了聯合部隊應如何對待SEAD任務的問題,以及來自陸地領域的部隊是否應在穿透地基防空系統方面發揮更重要的作用。
T.R. Fehrenbach提醒我們注意戰爭的一個持久特征。無論我們的技術變得多么復雜和先進,武裝沖突仍然需要士兵參與。空中力量理論家認為,在未來的戰爭中,人類可能不再需要近距離的暴力對抗,僅靠空中手段就能達到目的。雖然純粹的空戰仍然是一個遙遠的想象,但地面部隊將繼續奮勇向前,與泥濘中的人們一起奪取目標。本專論并不是說空中力量是不必要的;相反,它是至關重要的。空軍的覆蓋面和影響力已經與地面機動密不可分,在最近的戰爭中,空軍已經成為軍隊進攻的必要先導。然而,空中優勢作為地面進展的先決條件的模式可能不再成立了。移動式和便攜式防空系統的擴散,加上危害地面部隊的遠程打擊能力,無論其位置如何,都可能迫使地面作戰先于其空中補充。
本專著討論了聯合部隊在未來應如何進行壓制敵方防空(SEAD)。它考慮了攻擊性空軍和地面防御者之間的斗爭。具體來說,它討論了防空系統的進步已經發展到了美國空軍無法繼續承擔壓制和穿透它們的主要份額的程度。在未來,美國陸軍可能不得不對綜合防空系統(IADS)進行第一輪打擊,為美國空軍開始空中優勢的戰斗打開大門。
海上防空對于地面部隊的機動自由至關重要。在減少對手的防空資產之前,敵人的空軍可以隨意攻擊機動編隊。自從20世紀初早期的飛行者從飛機上投下第一件武器以來,空中力量對現代機動作戰一直是至關重要的。空中和地面防御系統已經發展到這樣的程度,即一支軍隊如果不首先擊敗其競爭對手的空軍就進行攻擊是不可想象的。迅速而徹底地擊敗伊拉克的防空系統并隨后摧毀其空軍,對于聯軍在 "沙漠風暴 "行動中的快速機動和壓倒性勝利至關重要。 以美國空軍為先導,然后是地面機動的SEAD模式是如此強大,以至于美國和北約的競爭對手注意到并進行了調整。今天的綜合防空系統(IADS)是高度網絡化的,相互支持的,并且是分層深入的。 這些防御網絡,再加上遠程彈藥的出現,造成了一個多層面的問題。國際防空系統迷惑了敵方空軍為其地面部隊建立機動空間的能力,同時遠程火力也使這些攻擊部隊受到威脅。先進的IADS與遠程彈藥的雙重困境,要求我們考慮我們目前的SEAD方法是否足夠。
所提出的假設是,聯合部隊應該作為一個密切協調的地面和空中團隊進行未來的SEAD。美國陸軍應該為反應靈敏、強大和機動的防空和導彈防御系統、遠程精確火力、地面發射的反輻射制導導彈(ARGM)和游動彈藥提供資源。
所采用的方法是對SEAD的歷史、理論和學說的研究。它考慮了SEAD從第一次世界大戰到現在的歷史。反擊空中和導彈威脅(聯合出版物3-01)將SEAD歸類為主要的進攻性反空(OCA)任務。其目的是 "通過破壞性或擾亂性的手段使敵方的地表防空系統失效、摧毀或暫時退化。" 美國部隊發展SEAD是為了應對日益復雜和有效的地基防空系統,它與防空的進步有效地共同發展。本專著中的防空歷史有五個主要部分。第一部分討論了第一次世界大戰中的空中力量發展,以及早期空軍能力的提高如何為地面機動提供了機會。一戰中對空襲的反應導致了二戰期間為防止滲透而對空中武裝進行牽制的武器的產生。二戰的戰斗人員完善了一戰中創造的技術,為進攻的空軍和地面的防御者開發了更致命的瞄準系統和改進的彈藥。在越南戰爭期間,越南人民軍(PAVN)采用了密集的防空武器組合,這需要美國裝備和訓練專門的飛機來壓制北越的防御;這是SEAD能力的第一個例子。接下來,該專著回顧了美國在 "沙漠風暴 "行動中對空地戰的運用,以顯示SEAD的有效性,以及它如何為其他世界大國進一步調整以對抗FM100-5中的理論提供了基礎。 第五章考慮了俄羅斯新一代戰爭(RNGW)、中國遠程導彈以及防空武器的擴散以防止滲透。作者將SEAD理論和學說的演變與歷史實例結合起來,說明空軍與IADS之間的競爭是如何發展到今天的高精尖系統的。最后,該專著提出了一個地面部分未來在對抗現代IADS的戰斗中的貢獻模式。
聯合部隊如何進行未來的海空防務行動,對于各軍種在面對未來的國際防空系統時如何整合和合作至關重要。現代國際防空系統對未來的空中行動,以及暗示的地面行動構成了一個重大障礙。國家和非國家行為者對地對空武器的使用加劇了國際防空系統的瓦解問題。它極大地提高了進行海空導彈和滲透敵占區所需的戰斗力水平。阿富汗圣戰者組織在蘇聯-阿富汗戰爭中使用 "毒刺 "導彈,以及最近在烏克蘭上空擊落馬來西亞航空公司MH17航班,都是這些系統的擴散已經超出既定軍隊嚴格使用的例子。在未來的戰爭中,雙方都可能面臨一個連續的國際防空系統和非正規部隊采用的未聯網的防空。聯合部隊必須開發多種方案來擊敗這些系統,并擴大他們的方法,以最大限度地提高靈活性,使空中和地面部隊能夠對由國際防空系統和獨立的地對空武器防御的對手構成眾多威脅。
無人機系統(UAS)在美國軍事行動中越來越突出。作為其現代化戰略的一部分,美國防部(DOD)目前正在開發先進的無人機,以及可選的載人飛機。在過去幾十年中,軍隊使用無人機執行各種任務,包括:
分析人士和美國防部認為,無人機可以在許多任務中取代載人飛機,包括
此外,美國防部正在開發一些實驗概念,如飛機系統體系、群集和致命自主武器,以探索使用未來幾代無人機的新方法。在評估潛在新的和未來無人機項目、任務和概念的撥款和授權時,國會可能會考慮以下問題:
彈道導彈能力的增長已經威脅到了傳統航母及其機群的作用。在未來的對抗中,目前的平臺將需要被重新評估,并承擔新的和非傳統的角色,以填補傳統上由航母打擊群占據的空白。潛艇將需要一個新的和更具進攻性的理論,作為分布式海上作戰(DMO)的一個組成部分。兩棲平臺將發揮新的作用,成為能夠分散航空資產并為艦隊帶來超視距打擊能力的水面平臺。航空母艦將擺脫傳統的打擊角色,成為指揮和控制(C2)、情報、監視、偵察(ISR)和維持的中心。目前具有綜合能力和創新部署的平臺可以克服遠程陸基導彈防御帶來的威脅。
"這句話不是由機智的馬克-吐溫、深思熟慮的亞伯拉罕-林肯、甚至是聰明的愛因斯坦說的,而是由80年代的電視英雄馬蓋先說的。這部長期播出的節目講述了一個沒有超能力的普通英雄的冒險故事,以及他利用周圍任何東西來解決問題的非凡能力。馬蓋先從未將“回形針”用于其預期目的,而是創造了一個獨特的變通方法來實現預期目標。經過深思熟慮和創造性的再利用,“回形針”找到了新的用途和新的意義。今天,現代軍隊有許多 "回形針 "平臺,它們有各種不同的目的和能力。也許現在是海軍對其平臺采取類似馬蓋先的方法的時候了,以便在與同行競爭者的沖突中發揮能力。
杰拉爾德-R-福特號航母是美國海軍最新和最現代化的航空母艦。一個新的電磁飛機發射系統(EMALS)、經過改造的甲板配置和靈活的電子結構只是這艘價值130億美元的船的一些新升級。在與同行競爭者的現代沖突中,如果美國海軍失去了能力或直接拒絕冒失去數十億美元資產的風險,它將轉向什么?由于航空母艦的脆弱性和其在戰場上可能喪失的能力,美國海軍應該研究現有平臺的額外和非傳統用途,以便在海洋環境中與同行競爭者競爭制海權。首先,核潛艇作為一個能夠爭奪制海權的平臺具有很大的優勢。其次,裝載有飛機和無人機的較小的兩棲艦提供了一個可行的替代方案,可替代在敵對環境中運行的一或兩艘大型航空母艦。最后,提高航母機翼的模塊化程度,可以增強其航程和影響在目前航程不允許使用的地區的行動的能力。
2019年,美國海軍陸戰隊(USMC)開始進行組織變革,目的是成為西太平洋地區卓越的偵察和反偵察部隊。為了實現這一目標,海軍陸戰隊公布了《2030年部隊設計》,目前正在采購新的作戰系統,并創建一個新的組織表,以便在地理位置偏遠、環境惡劣的地方獲得并保持殺傷力。
《2030年部隊設計》中的主要行動單位之一是海軍陸戰隊濱海團(MLR)。MLR包含步兵、火箭炮、防空、后勤、指揮和控制單位,用海軍陸戰隊司令的話說,是 "為在有爭議的空間進行海軍遠征戰而優化的,專門用于促進海上封鎖和保證進入以支持艦隊"(Berger 2019, p.5)。然而,第一個MLR最近才被激活,因此關于MLR的能力和限制的問題層出不窮。
特別令人感興趣的是在海軍陸戰隊濱海團安全區域內進行偵察和反偵察的海岸警衛隊的使用。這項研究的目的是研究海軍陸戰隊濱海團在各種實際環境中的能力,以及應對當代同行的海軍威脅,以幫助為海軍陸戰隊濱海團的警衛部隊最致命的組成和使用方法提供決策依據。為此,作者試圖回答以下問題:
利用海軍水面作戰中心開發的建模與仿真工具箱(MAST),我們使用最先進的實驗設計,有效地執行了27250次海軍陸戰隊濱海團和中國海軍(PLAN)水面行動組(SAG)之間的模擬戰斗。圖1描述了建模環境和模擬中的一些智能體。
圖 1. MLR 警衛部隊和解放軍水面戰斗人員之間的模擬交戰
在每次模擬交戰中,MLR 的任務是執行海上拒止任務,他們試圖在保持戰斗力的同時最大限度地摧毀敵艦數量。 MLR 使用了一支具有以下基線組成的警衛部隊:四艘輕型載人自主作戰能力(LMACC)艦艇、五艘中型無人水面艦艇(MUSV)和 15 艘遠程無人水面艦艇(LRUSV)。在整個實驗過程中,每次數量都不同,以評估不同組合的功效。警衛部隊的任務是“通過戰斗以贏得時間,同時觀察和報告信息,保護主力免受攻擊、直接火力和地面觀察”(MCDP 1-0,第 11-13 頁)。為了評估警衛部隊對友軍生存能力和殺傷力的影響,我們改變了船只類型的數量、每種船只類型的位置以及船只的傳感器能??力。我們使用有效的實驗設計來探索上述因素的各種組合的影響。
從 27,250 次模擬交戰中,觀察到一些趨勢,這些趨勢不僅回答了研究問題,而且提供了為 2030 年部隊設計決策和倡議提供信息的機會:
警衛部隊組成:LMACC 數量是預測生存能力和殺傷力的主要因素。LMACC 是一種小型導彈戰艦,載人較少,擁有高度自主的艦船系統。它可能被配置為許多角色,但在這種情況下,攻擊。對實驗輸出的分析表明,警衛部隊應該有不少于六個 LMACC。
殺傷力:在更靠近海岸(10-15 海里)的地方使用 LMACC,將 LRUSV 部署在更深的位置(100 海里),導致摧毀的 GBASM 發射器更少,摧毀更多的海軍艦艇。
將 LMACC 與可以充當 LMACC 偵察員的較小平臺配對會產生更有利的友好結果。為此,為 LRUSV 配備探測敵艦的能力——使用被動或視覺傳感器——在更遠的范圍內使 LRUSV 能夠更早、更準確地傳達有關對手的組成和部署的信息。
現代沖突中的雙方都可能出現高損耗。由于戰斗的固有不確定性,確切百分比的可變性很高,但在實驗中摧毀的 GBASM 發射器的平均數量是 36 個中的 15.62 個。
本研究的目的是進一步討論 MLR 的組成、能力和使用,同時激發新的研究,為未來的部隊設計決策、實彈試驗和戰術提供信息。