物聯網云平臺是聯動感知層和應用層的中樞系統,以感知數據為養分,通過各類IoT平臺加工,向下游應用賦能,呈現出從上游終端到下游用戶數據價值逐步升遷的邏輯,是功能與價值凝聚的PaaS軟件。物聯網云平臺現處于全面滲透的階段,大多數場景下更偏好公有云部署模式。
2020年,中國物聯網設備連接量達74億個,預計2025年將突破150億個。物聯網設備連接量的持續增長為物聯網云平臺的發展輸送養分,物聯網云平臺已經到了從數據 “量變”走向數據“質變”的關鍵階段。
自研AI芯片、云原生架構、彈性分布式訓練服務以及MLOps能力成為平臺核心能力
AI芯片將持續架構創新、形態演進以及軟硬一體化趨勢;云原生應用可以為AI開發平臺的用戶(開發者)提供更敏捷高質量的應用交付以及更簡單和高效的應用管理;分茍式訓練可提供底層資源的彈性配置,提升系統的資源利用率;MLOps為AI開發平臺帶來靈活性與速度。
開發者流量與平臺規模是AI開發平臺營收決定性要素
AI開發平臺商業模式相對簡單。AI開發平臺經營模式是通過為企業或并發者提供Ai技術接口或AI并發工具而獲利I計費方式主要包括免費、按調用量計費、包年或包月三種。
模型調用業務營收將提升
2016-2020年,中國AI開發平臺營收規模快速擴張,2020年中國AI開發平臺營收突破200億元^現階段算力、數據、模型調用、部署/維護四項業務占AI并發平臺的營收占比約為4:3:21。未來,隨著推斷應用占比的提升,數據業務的營收占比預計將下降;而隨著AI在各垂直場景中應用的深入,模型調用業務的營收占比預計將提升。
AI+安防仍然是人工智能技術商業落地發展最快、市場容量最大的主賽道之一,2020年,AI+安防市場規模為453億元。隨著疫情常態化以及十四五規劃開篇,2021-2025年市場將進入產業結構調整期,市場規模增速將有所放緩,預計2025年規模超900億元,AI開始向公安交通等場景的下沉市場以及泛安防的長尾細分領域滲透。
公安交通領域是AI安防市場的主要支撐力量,貢獻近86%的市場份額,但隨著雪亮工程進入收尾階段,預計2021-2025年公G安A交通領域AI安防軟硬件市場規模增速將穩定在10%左右;社區樓宇領域在全國城鎮老舊小區改造、“智慧社區”及“智慧安防小區”建設等重點工作持續推進的背景下,預計未來數年將是AI安防市場新的增長點。
與行業發展初期相比,現階段AI安防的政策環境、產品技術以及供需兩端均呈現出新的特點:
政策指導上強調AI安防建設應由單點突破向立體化、全面化、體系化智能安防建設轉變; 產品技術方面,算力向前端及邊緣端遷移的趨勢明顯,國內ASIC芯片廠商在算力前移過程中迎來發展機遇; 需求端,AI安防需求主體的角色越來越豐富且需求方傾向于選擇有技術兜底能力的集成商,除了要滿足現階段建設需求,未來還可提供長期的運維管理與技術服務; 供給端,安防廠商、AI廠商、ICT廠商等多方勢力激烈的市場競爭促使AI視頻監控單路平均價格快速下降,市場競爭進一步推動了AI安防的加速滲透。
AI安防賽道的市場格局已開始進入穩定期,賽道玩家以計算機視覺技術和AIoT技術為切入點,在智慧城市這一更為廣闊的市場下進行業務拓展,尋找“出圈”機會并形成新的核心競爭力將成為破局點。未來,隨著AI公司、安防廠商、ICT廠商、云服務廠商等各類型AI安防核心參與者在業務方向上的拓展與產品技術的泛化,AI安防賽道的邊界也將愈發模糊,其安防功能也將作為AI技術在城市數據感知、認知、決策支持中的重要模塊融入到城市管理與治理的方方面面。
物聯網及其平臺將成為中國第二產業未來增長的重要驅動力。
宏觀環境:國內生產總值同比增速呈下降趨勢,國民經濟增長的新動能亟待出現,三大產業中第三產業對國內生產總值的貢獻率逐步超越第二產業,物聯網及其平臺將成為第二產業未來增長的重要驅動力。
平臺崛起:互聯網及物聯網平臺具有高度中心化的屬性,科技公司通過互聯網化深耕自身平臺,可獲得從用戶到服務的顯著正外部性效應,因此物聯網平臺極具商業價值。
平臺功能:物聯網平臺在物聯網產業鏈中處于關鍵地位,基于底層云計算資源提供開放的云服務,允許各類應用在平臺中開發、部署和運營,并對所有接入物聯網的終端設備和底層硬件進行連接管理和監控。
平臺規模:因物聯網平臺可廣泛用于物聯網各下游應用領域,如智能家居、智慧工業、教育等,其驅動來自應用層的需求,下游需求爆發與行業場景的完善自下而上促進物聯網平臺層的發展。中國物聯網平臺層市場規模增長迅速,預計未來五年同比增長率接近50.0%,2025年市場規模將達到2,061.3億元,2020-2025年預測年復合增長率高達50.0%。
隨著新一代信息技術規模化應用,物聯網設備連接數量持續增長,拉動產業鏈上游物聯網平臺市場需求持續擴容,促進海量數據及設備管理平臺實現落地,推動物聯網全產業鏈協同發展。
智能時代,AI 中臺是企業管理能力、企業活力、企業“智力”提升的重要動力來源。思考企業的未來,AI 中臺將是企業在復雜時代下生存和發展的“必需品”和“必修課”。
日前,百度智能云與人工智能產業發展聯盟聯合發布了《AI 中臺白皮書(2021年)》。AI 中臺作為全棧式、集約化、自動化的生產力工具箱,是實現AI技術在各行業中快速研發、共享復用和部署管理的智能化底座和關鍵基礎設施。白皮書旨在深入剖析 AI 中臺體系架構與內涵,探討能力建設路徑和行業賦能方案,以期與業界分享,共同推動我國人工智能產業創新發展與行業智能化升級。
白皮書指出,AI 中臺是實現智能化能力普惠的必備基礎設施,負責構建企業的 AI 生產力,一般包括 AI 技術服務平臺、AI 研發平臺、AI 管理運行三大核心。
白皮書展開論述了 AI 中臺所應具備的四大關鍵能力。概括來看,AI 數據需求趨于精細化、場景化,健全的數據服務體系會是AI 中臺的基礎;自動機器學習技術加速演進,AI 研發平臺成為了技術普惠的關鍵;AI 部署運行愈加復雜,體系化工具成為了規模化應用的保障;AI 模型已經成為了企業新型資產,AI 資產化管理勢在必行。
企業如何建設自己的 AI 中臺體系呢?白皮書給出了兩類建設路徑和三大要素支撐。
面向企業智能化升級的不同階段,AI 中臺建設有兩類路徑:一類是對于處于 AI 能力起步期的企業,會先從 AI 能力直接賦能,再逐步發展到自主建模和個性化創新,構建 AI 能力創新底座;另外是面向已具備專業 AI 建模專家及算法團隊的企業,可以聚焦個性化 AI 研發能力的構建,進而大幅提升 AI 模型落地應用推廣效率。
三大要素則是企業智能化升級的堅實支撐。在基礎設施建設方面,AI 中臺支撐企業完成軟件部署,并與已有的私有云、數據中臺、視頻平臺等 IT 設施進行對接集成。支持企業結合自身業務場景,構建 AI 應用能力,圍繞 AI 中臺軟件、基礎應用集成、業務應用集成三大模塊,打造企業 AI 能力的核心技術底座。
在組織能力建設方面,AI 中臺為企業提供組織變革、流程創新、人才培養等方面建議,通過建立組織保障機制,明確機構中包括模型生產、服務管理、運維保障在內的各個工作組職責及流程,確保 AI中臺管理組織的高效運轉。此外,幫助企業持續培養人工智能相關的技術開發人員及運營管理人員,保證 AI 能力開發管理的人才供給。
在運營優化方面,AI 應用實際投產后,企業需結合業務反饋數據不斷進行優化調整,確保應用成效。
借助高效靈活的適配能力,AI 中臺已在制造、能源、金融、城市、醫療等諸多行業落地應用并取得顯著成效,切實解決企業生產運行痛點,滿足企業設計、生產、管理、銷售和運維等個性化場景需求。
展望未來,AI 中臺作為企業智能中樞,在不斷完善提升自身能力的同時,將成為伴隨企業成長、構筑核心競爭力的重要抓手和關鍵支撐。未來2-5年,AI 中臺將作為創新型企業運轉不可或缺的基礎設施;未來5-10年,AI 中臺將融入企業成長的全生命周期,企業建設、應用和運營 AI 中臺的能力,將成為衡量未來發展潛力和成長價值的關鍵指標,助力構筑企業核心競爭力。
以 AI 中臺助力行業高質量發展,提升國家供給側水平,將在數字社會與智能經濟時代獲得發展先機。過去二十年,移動互聯網對人類社會的影響集中體現在 C 端,即需求端;但在 AI 時代,人工智能將更多從 B 端,即供給端改變。AI 中臺作為“ AI 大生產平臺”的生產力載體,從更好推進 AI 行業落地、實現技術價值增值角度,正在加快幫助企業適應新形勢、新變化與新挑戰。AI 中臺技術所帶來的行業變革,將是一場更徹底的供給側改革,成為推動國家邁進智能未來時代的重要力量。
人工智能革命將個體價值的創造釋放提升到前所未有高度,AI 中臺通過推動行業智能變革為社會帶來更為光明的未來。AI 中臺賦能能力正在從通用行業(如制造、金融、教育等)向專業精細化行業(如生物醫藥、化學化工、半導體等)延伸拓展,幫助企業不斷拓展應用視野和創新邊界,推動人類社會創新進步。AI 中臺將幫助企業追求更有創造力、影響力和領導力的自我價值實現,為整個智能社會帶來更大提升空間、更多發展可能。
隨著企業信息化建設需求與底層技術發生變化,傳統軟件開發模式已無法快速響應復雜多變的企業業務訴求,而IT人才貴、易流失,傳統信息化建設低質低效、缺乏創新能力等問題始終轄制著軟件產業的創新發展。本報告將以IT服務商及軟件企業所面臨的困境為切入點,從企業內外部環境變化、IT人才等角度展開論述企業級無代碼的核心價值,并結合其產品技術、落地能力及行業解決方案,描述企業級無代碼如何推動供需雙側的變革,并對軟件開發模式的發展趨勢加以展望。
“2020年中國邊緣云計算市場規模為91億元,其中區域、現場、IoT三類邊緣云市場規模分別達到37億元、38億元及16億元。邊緣云計算尚處在發展的萌芽期,未來成長空間非常廣闊,預計到2030年中國邊緣云計算市場規模將接近2500億元。”
日前,艾瑞咨詢發布了《2021年中國邊緣云計算行業展望報告》,從概念界定、驅動因素、市場規模、應用規模、落地難點、未來展望等方面全面分析了中國邊緣云計算行業。
根據艾瑞咨詢測算,中國物聯網連接量將從2019年的55億個增長至2023年的148億個,年復合增長率達到28.1%。物聯網感知數據量激增,數據類型愈發復雜多樣,IDC預測到2025年中國每年產生的數據量將增長48.6ZB。
隨著智慧城市、自動駕駛、工業互聯網等應用的落地,海量的終端設備實時產生數據,集中式云計算在帶寬負載、網絡延時、數據管理成本等方面將愈發顯得捉襟見肘,難以適應數據頻繁交互的需求,邊緣側的價值將進一步凸顯。
人工智能技術是使人造機器具備類人類智能、模擬人類學習、認知、感知能力的信息技術,感知層人工智能技術發展成熟,多項應用方案實現規模落地,認知層人工智能技術將是實現下一代人工智能技術突破的關鍵。
中國工業領域人工智能技術滲透率較低,人工智能技術的應用主要集中于產品生產環節。工業領域各應用場景可用樣本數量的缺乏,是工業領域人工智能技術實現落地的主要制約因素之。
機器視覺技術在工業領域中應用廣泛,核心功能包括產品識別、測量、定位及檢測,是實現產品分揀、裝配、搬運、質檢等多個生產環節智能化轉型的核心技術,相較于人工生產具備降本增效等顯著優勢。
中國工業領域人工智能行業產業鏈上游以傳感器及AI芯片制造商與AI算法提供商為主體,產業鏈中游以輔助研發系統及智能生產系統提供商與工業機器人制造商為主體,產業鏈下游涵蓋工業領域各細分市場。
但是中國工業傳感器行業發展進入成熟期,主要增長動力來自于工業制造規模的增長與智能制造的應用,受制于人工智能技術在工業領域的滲透率增長速度較低,短期內中國工業傳感器市場需求增長速度預計將持續下行。
CMOS圖像傳感器成為圖像傳感器應用市場主流應用選擇;全球CMOS圖像傳感器市場集中度較高,壟斷效應明顯,龍頭企業占據高端CMOS圖像傳感器市場主導地位,對下游客戶具備較強主動議價能力。
應用于AI算法運行的處理器芯片以GPU、FPGA及ASIC三類芯片為主;發展起步較早的GPU芯片已實現規模化應用,具備更強的性能及更低的功耗的高度定制化ASIC芯片市場發展空間較大。
日前,在“2020 AIoT產業年終盛典”上,物聯網智庫正式發布全新升級版的《2021中國AIoT產業全景圖譜報告》(以下簡稱“報告”)。據悉,這是物聯網智庫連續第五年推出“中國AIoT產業全景圖譜”,繼續通過近距離觀察AIoT產業及主要參與者,梳理產業現狀,并分析、預測市場發展趨勢,幫助讀者把握產業發展脈絡。
報告指出,AIoT產業是多種技術融合,賦能各行業的產業,整體市場潛在空間超十萬億元。艾瑞咨詢數據顯示,2019年中國AIoT產業總產值為3808億元,預計2020年達5815億元,同比增長52.7%,高增長主要得益于5G等新技術規劃化商用和AIoT應用在消費和公共事業等領域大規模落地。未來三年,在消費端和政策驅動端應用市場的繼續推動下,AIoT產業仍將保持高速增長。長期來看,產業驅動應用市場潛力巨大,將成為遠期增長點。
本報告依舊分為端、邊、管、云、用、產業服務六大板塊。整體來看,邊板塊下沉,更加貼近端側。同時,因為IoT和AI的進一步融合,AI相關內容在整個圖譜中將被更充分地體現。報告將從產業全貌和上述六大板塊來介紹產業現狀及趨勢,勾勒產業全景,并將通過優秀的案例,來展示AIoT產業發展成果及應用落地情況。
“端”指的是終端,主要包括底層的芯片、模組、傳感器、屏幕、AI底層算法、操作系統等。 “邊”是相對于“中心”的概念,泛指中心節點之外的位置。邊緣計算則指的是將計算及相關能力從中心處理節點下放至邊緣節點后形成的,貼近終端的計算能力。 “管”主要指的是連接通道,及相關產品和服務。大物聯時代帶來的大連接數和復雜設備現場環境,使得有線連接網絡捉襟見肘,因此在AIoT應用場景中,網絡以無線連接為主。 “云”主要指PaaS平臺,包括物聯網平臺、AI平臺和其他能力平臺。 “用”指的是AIoT產業應用行業。從核心驅動要素來看,可分為消費驅動型、政府驅動型和產業驅動型行業。 “產業服務”板塊主要包括AIoT產業相關的各類聯盟、協會、機構、媒體、投資基金等,這些組織為產業提供包括檢測、標準制定、媒體、咨詢、投融資等服務,是推動產業發展的重要力量。