亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

小樣本自然語言處理(NLP)是指NLP任務只具有少量標注的樣例。這是人工智能系統必須學會處理的現實挑戰。通常我們依賴于收集更多的輔助信息或開發一個更有效的學習算法。然而,在高容量模型中,一般基于梯度的優化,如果從頭開始訓練,需要對大量帶標記的樣例進行很多參數更新步驟,才能表現良好(Snell et al., 2017)。

如果目標任務本身不能提供更多的信息,如何收集更多帶有豐富標注的任務來幫助模型學習?元學習的目標是訓練一個模型在各種任務上使用豐富的標注,這樣它就可以用少量標記的樣本解決一個新的任務。關鍵思想是訓練模型的初始參數,這樣當參數通過零階或幾個梯度步驟更新后,模型在新任務上有最大的性能。

已經有一些關于元學習的綜述,例如(Vilalta和Drissi, 2002;Vanschoren, 2018;Hospedales等,2020)。然而,本文的研究主要集中在NLP領域,尤其是小樣本的應用。本文試圖對元學習應用于較少次數的神經語言處理提供更清晰的定義、進展總結和一些常用的數據集。

//arxiv.org/abs/2007.09604

付費5元查看完整內容

相關內容

小樣本學習(Few-Shot Learning,以下簡稱 FSL )用于解決當可用的數據量比較少時,如何提升神經網絡的性能。在 FSL 中,經常用到的一類方法被稱為 Meta-learning。和普通的神經網絡的訓練方法一樣,Meta-learning 也包含訓練過程和測試過程,但是它的訓練過程被稱作 Meta-training 和 Meta-testing。

小樣本學習是當前研究關注的熱點。這篇論文總結了2016年到2020年的小樣本元學習文章,劃分為四類:基于數據增強; 基于度量學習,基于元優化; 和基于語義的。值得查看!

摘要:

在圖像識別和圖像分類等方面,深度神經網絡的表現已經超過了人類。然而,隨著各種新類別的出現,如何從有限的樣本中不斷擴大此類網絡的學習能力,仍然是一個挑戰。像元學習和/或小樣本學習這樣的技術表現出了良好的效果,他們可以根據先驗知識學習或歸納到一個新的類別/任務。在本文中,我們研究了計算機視覺領域中現有的小樣本元學習技術的方法和評價指標。我們為這些技術提供了一個分類法,并將它們分類為數據增強、嵌入、優化和基于語義的學習,用于小樣本、單樣本和零樣本設置。然后我們描述在每個類別中所做的重要工作,并討論他們解決從少數樣本中學習的困境的方法。最后,我們在常用的基準測試數據集Omniglot和MiniImagenet上比較了這些技術,并討論了提高這些技術性能的未來方向,從而達到超越人類的最終目標。

地址: //www.zhuanzhi.ai/paper/8d29a5f14fcd0cc9a1aa508d072fb328

概述:

基于人工智能(AI)的系統正在成為人類生活的重要組成部分,無論是個人生活還是專業生活。我們周圍都是基于人工智能的機器和應用程序,它們將使我們的生活變得更容易。例如,自動郵件過濾(垃圾郵件檢測),購物網站推薦,智能手機中的社交網絡等[1,2,3,4]。這一令人印象深刻的進展之所以成為可能,是因為機器或深度學習模型[5]取得了突破性的成功。機器或深度學習占據了AI領域的很大一部分。深度學習模型是建立在多層感知器與應用基于梯度的優化技術的能力。深度學習模型最常見的兩個應用是:計算機視覺(CV),其目標是教會機器如何像人類一樣看和感知事物;自然語言處理(NLP)和自然語言理解(NLU),它們的目標是分析和理解大量的自然語言數據。這些深度學習模型在圖像識別[6,7,8]、語音識別[9,10,11,12,13]、自然語言處理與理解[14,15,16,17,18]、視頻分析[19,20,21,22,23]、網絡安全[24,25,26,27,28,29,30]等領域都取得了巨大的成功。機器和/或深度學習最常見的方法是監督學習,其中針對特定應用程序的大量數據樣本與它們各自的標簽一起被收集并形成一個數據集。該數據集分為三個部分: 訓練、驗證和測試。在訓練階段,將訓練集和驗證集的數據及其各自的標簽輸入模型,通過反向傳播和優化,將模型歸納為一個假設。在測試階段,將測試數據輸入模型,根據導出的假設,模型預測測試數據樣本的輸出類別。

由于計算機和現代系統的強大能力[31,32],處理大量數據的能力已經非常出色。隨著各種算法和模型的進步,深度學習已經能夠趕上人類,在某些情況下甚至超過人類。AlphaGo[33]是一個基于人工智能的agent,在沒有任何人類指導的情況下訓練,能夠擊敗世界圍棋冠軍。圍棋是一種古老的棋盤游戲,被認為比國際象棋[34]復雜10倍;在另一個復雜的多人戰略游戲《DOTA》中,AI-agent打敗了《DOTA[35]》的人類玩家;對于圖像識別和分類的任務,ResNet[6]和Inception[36,37,38]等模型能夠在流行的ImageNet數據集上取得比人類更好的性能。ImageNet數據集包括超過1400萬張圖像,超過1000個類別[39]。

人工智能的最終目標之一是在任何給定的任務中趕上或超過人類。為了實現這一目標,必須盡量減少對大型平衡標記數據集的依賴。當前的模型在處理帶有大量標記數據的任務時取得了成功的結果,但是對于其他帶有標記數據很少的任務(只有少數樣本),各自模型的性能顯著下降。對于任何特定任務,期望大型平衡數據集是不現實的,因為由于各種類別的性質,幾乎不可能跟上產生的標簽數據。此外,生成標記數據集需要時間、人力等資源,而且在經濟上可能非常昂貴。另一方面,人類可以快速地學習新的類或類,比如給一張奇怪動物的照片,它可以很容易地從一張由各種動物組成的照片中識別出動物。人類相對于機器的另一個優勢是能夠動態地學習新的概念或類,而機器必須經過昂貴的離線培訓和再培訓整個模型來學習新類,前提是要有標簽數據可用性。研究人員和開發人員的動機是彌合人類和機器之間的鴻溝。作為這個問題的一個潛在解決方案,我們已經看到元學習[40,41,42,43,44,45,46,47,48,49,50]、小樣本學習[51,52,53,54]、低資源學習[55,56,57,58]、零樣本學習[59,60,61,62,63,63,64,64,65]等領域的工作在不斷增加,這些領域的目標是使模型更好地推廣到包含少量標記樣本的新任務。

什么是小樣本元學習?

在few-shot, low-shot, n-shot learning (n一般在1 - 5之間)中,其基本思想是用大量的數據樣本對模型進行多類的訓練,在測試過程中,模型會給定一個新的類別(也稱為新集合),每個類別都有多個數據樣本,一般類別數限制為5個。在元學習中,目標是泛化或學習學習過程,其中模型針對特定任務進行訓練,不同分類器的函數用于新任務集。目標是找到最佳的超參數和模型權值,使模型能夠輕松適應新任務而不過度擬合新任務。在元學習中,有兩類優化同時運行: 一類是學習新的任務; 另一個是訓練學習器。近年來,小樣本學習和元學習技術引起了人們極大的興趣。

元學習領域的早期研究工作是Yoshua和Samy Bengio[67]以及Fei-Fei Li在less -shot learning[68]中完成的。度量學習是使用的較老的技術之一,其目標是從嵌入空間中學習。將圖像轉換為嵌入向量,特定類別的圖像聚在一起,而不同類別的圖像聚在一起比較遠。另一種流行的方法是數據增強,從而在有限的可用樣本中產生更多的樣本。目前,基于語義的方法被廣泛地研究,分類僅僅基于類別的名稱及其屬性。這種基于語義的方法是為了解決零樣本學習應用的啟發。

遷移學習與自監督學習

遷移學習的總體目標是從一組任務中學習知識或經驗,并將其遷移到類似領域的任務中去[95]。用于訓練模型獲取知識的任務有大量的標記樣本,而遷移任務的標記數據相對較少(也稱為微調),這不足以使模型訓練和收斂到特定的任務。遷移學習技術的表現依賴于兩項任務之間的相關性。在執行遷移學習時,分類層被訓練用于新的任務,而模型中先前層的權值保持不變[96]。對于每一個新的任務,在我們進行遷移學習的地方,學習速率的選擇和要凍結的層數都必須手工決定。與此相反,元學習技術可以相當迅速地自動適應新的任務。

自監督學習的研究近年來得到了廣泛的關注[97,98,99]。自監督學習(SSL)技術的訓練基于兩個步驟:一是在一個預定義代理任務上進行訓練,在大量的未標記數據樣本上進行訓練;第二,學習到的模型參數用于訓練或微調主要下游任務的模型。元學習或小樣本學習技術背后的理念與自監督學習非常相似,自監督學習是利用先前的知識,識別或微調一個新的任務。研究表明,自監督學習可以與小樣本學習一起使用,以提高模型對新類別的表現[100,101]。

方法體系組織:

元學習、小樣本學習、低資源學習、單樣本學習、零樣本學習等技術的主要目標是通過基于先驗知識或經驗的迭代訓練,使深度學習模型從少量樣本中學習能泛化到新類別。先驗知識是在包含大量樣本的帶標簽數據集上訓練樣本,然后利用這些知識在有限樣本下識別新的任務而獲得的知識。因此,在本文中,我們將所有這些技術結合在了小樣本體系下。由于這些技術沒有預定義的分類,我們將這些方法分為四大類: 基于數據增強; 基于度量學習,基于元優化; 和基于語義的(如圖1所示)。基于數據增強的技術非常流行,其思想是通過擴充最小可用樣本和生成更多樣化的樣本來訓練模型來擴展先驗知識。在基于嵌入的技術中,數據樣本被轉換為另一個低級維,然后根據這些嵌入之間的距離進行分類。在基于優化的技術中,元優化器用于在初始訓練期間更好地泛化模型,從而可以更好地預測新任務。基于語義的技術是將數據的語義與模型的先驗知識一起用于學習或優化新的類別。

付費5元查看完整內容

【導讀】知識蒸餾是一種典型的模型壓縮和加速方法,在很多應用場景對此有需求。來自悉尼大學的學者發布了《知識蒸餾》的綜述論文,值的關注。

//arxiv.org/abs/2006.05525

近年來,深度神經網絡在工業和學術界取得了巨大的成功,特別是在視覺識別和神經語言處理方面的應用。深度學習的巨大成功,主要歸功于其巨大的可擴展性,既有大規模的數據樣本,也有數十億的模型參數。然而,在資源有限的設備如移動電話和嵌入式設備上部署這些笨重的深模型也帶來了巨大的挑戰,不僅因為計算量大,而且存儲空間大。為此,開發了各種模型壓縮和加速技術,如剪枝、量化和神經結構搜索。知識蒸餾是一種典型的模型壓縮和加速方法,旨在從大教師模型中學習小學生模型,越來越受到社會的關注。本文從知識分類、訓練方案、知識提取算法以及應用等方面對知識提取進行了綜述。此外,我們簡要回顧了知識提煉的挑戰,并對未來的研究課題提供了一些見解。

概述

在過去的幾年里,深度學習在人工智能領域取得了巨大的成功,包括計算機視覺(Krizhevsky et al., 2012)、強化學習(Silver et al., 2016)和神經語言處理(Devlin et al., 2018)的各種應用。借助最近許多技術,包括殘差連接(He et al., 2016)和批處理歸一化(Ioffe and Szegedy, 2015),我們可以輕松地在強大的GPU或TPU集群上訓練具有數千層的深度模型。例如,只需不到10分鐘就可以在數百萬張圖像的數據集上訓練ResNet模型(Deng et al. , 2009 ; Sun et al. , 2019); 訓練一個強大的BERT模型進行語言理解只需要不到一個半小時 (Devlin et al., 2018; You et al., 2019).。雖然大規模的深度模型帶來了令人難以置信的性能,但其龐大的計算復雜度和海量的存儲需求給實時應用的部署帶來了巨大的挑戰,特別是對于那些資源有限的設備,比如嵌入式人臉識別系統和自動駕駛汽車。

為了開發高效的深度模型,最近的工作通常集中在1)基于深度可分離卷積的高效基本塊,如MobileNets (Howard et al. , 2017 ; Sandler et al. , 2018) 和ShuffleNets (Zhang et al. , 2018a ; Ma et al. , 2018); (2)模型壓縮和加速技術,主要包括以下類別(Cheng et al., 2018)。

  • 參數修剪和共享: 這些方法主要是去除深層神經網絡中不重要的參數,去除的參數對性能影響不大。該類別又分為模型量化(Wu et al., 2016)和二值化(Courbariaux et al., 2015)、參數共享(Han et al., 2015)和結構矩陣(Sindhwani et al., 2015)。

  • 低秩分解: 這些方法通過矩陣/張量分解來探索深度神經網絡參數的冗余性(Denton et al., 2014)。

  • 傳輸/壓縮卷積濾波器: 這些方法通過傳輸/壓縮卷積濾波器來減少不必要的參數(Zhai et al., 2016)。

  • 知識蒸餾(KD): 這些方法通常將知識從一個較大的深度神經網絡提取到一個較小的網絡中(Hinton et al., 2015)。

對模型壓縮和加速的全面回顧超出了本文涵蓋的范圍,而我們關注的是知識蒸餾,這已經得到越來越多的研究社區關注。在實踐中,大型深度模型往往會取得非常好的性能,因為過參數化提高了泛化性能 (Brutzkus and Globerson, 2019; Allen-Zhu et al., 2019; Arora et al., 2018)。知識蒸餾通過在大教師模型的監督下學習小學生模型,從而探究深度模型中參數的冗余性,用于推理(Bucilua et al., 2006; Ba and Caruana, 2014; Hinton et al., 2015; Urban et al., 2016),而知識蒸餾的關鍵問題是如何將知識從大教師模型轉移到小學生模型。一般情況下,知識蒸餾的師生框架如圖1所示。雖然在實踐中取得了巨大的成功,但在理論或經驗上理解知識提煉方法的工作并不多(Cheng et al., 2020; Phuong and Lampert, 2019; Cho and Hariharan, 2019)。具體來說,為了理解知識蒸餾的工作機制,Phuong和Lampert在深度線性分類器的情況下,從理論上證明了學習精餾學生網絡快速收斂的泛化邊界(Phuong和Lampert, 2019)。這一解釋理論上回答了學生學習的內容和速度,并揭示了決定蒸餾成功的因素。蒸餾的成功依賴于數據幾何、蒸餾目標的優化偏差和學生分類器的強單調性。Cheng等人量化了來自深度神經網絡中間層的視覺概念知識,以解釋知識蒸餾(Cheng et al., 2020)。Cho和Hariharan對知識蒸餾的有效性進行了詳細的實證分析(Cho和Hariharan, 2019)。實證分析發現,由于模型容量的差距,較大的模型不一定是更好的老師(Mirzadeh et al., 2019),而精餾會對學生的學習產生不利影響。據我們所知,(Cho and Hariharan, 2019)忽略了對教師和學生之間不同知識、不同蒸餾和相互感情的經驗評價。此外,通過實證分析,從標簽平滑、教師和先驗對最優輸出層幾何形狀的預測置信度等角度探討了對知識蒸餾的理解(Tang et al., 2020)。

模型壓縮的知識蒸餾思想與人類的學習方案非常相似。為此,近年來的知識蒸餾方法不僅擴展到了師生學習(Hinton et al., 2015),還擴展到了相互學習(Zhang et al., 2018b)、自學(Yuan et al., 2019)、輔助教學(Mirzadeh et al., 2019)和終身學習(Zhai et al., 2019)。知識蒸餾的大部分擴展集中于壓縮深度神經網絡,因此輕量級的學生網絡可以很容易地部署在諸如視覺識別、語音識別和自然語言處理(NLP)等應用程序中。此外,知識蒸餾中從一個模型到另一個模型的知識轉移符號也可以擴展到其他任務,如對抗攻擊(Papernot et al., 2016b)、數據增強(Lee et al., 2019a;Gordon和Duh, 2019),數據隱私和安全(Wang等,2019a)。

本文對知識蒸餾的研究進行了綜述。本綜述的主要目的是1) 全面概述知識蒸餾,包括動機的背景,基本符號和公式,以及幾種典型知識,蒸餾和算法; 2) 全面回顧知識蒸餾的最新進展,包括理論、應用和在不同現實場景下的擴展; 3) 從知識遷移的不同角度,包括不同類型的知識、訓練方案、知識提煉算法/結構和應用,闡述知識蒸餾的一些挑戰和見解。本文組織概況如圖2所示。具體地說,本文的其余部分結構如下。第二節給出了知識蒸餾的重要概念和常規模型。知識和蒸餾的種類分別在第3節和第4節中進行了總結。現有的關于知識提煉中的師生結構的研究在第5部分進行了說明。第6節對許多最新的知識蒸餾方法進行了全面的總結和介紹。知識蒸餾的廣泛應用將在第7節的不同方面加以說明。第8節討論了知識蒸餾中具有挑戰性的問題和未來的方向。最后,在第9節給出結論。

付費5元查看完整內容

當對大量的標記數據集合(如ImageNet)進行訓練時,深度神經網絡展示了它們在特殊監督學習任務(如圖像分類)上的卓越表現。然而,創建這樣的大型數據集需要大量的資源、時間和精力。這些資源在很多實際案例中可能無法獲得,限制了許多深度學習方法的采用和應用。為了尋找數據效率更高的深度學習方法,以克服對大型標注數據集的需求,近年來,我們對半監督學習應用于深度神經網絡的研究興趣日益濃厚,通過開發新的方法和采用現有的半監督學習框架進行深度學習設置。在本文中,我們從介紹半監督學習開始,對深度半監督學習進行了全面的概述。然后總結了在深度學習中占主導地位的半監督方法。

付費5元查看完整內容

本文綜述了元學習在圖像分類、自然語言處理和機器人技術等領域的應用。與深度學習不同,元學習使用較少的樣本數據集,并考慮進一步改進模型泛化以獲得更高的預測精度。我們將元學習模型歸納為三類: 黑箱適應模型、基于相似度的方法模型和元學習過程模型。最近的應用集中在將元學習與貝葉斯深度學習和強化學習相結合,以提供可行的集成問題解決方案。介紹了元學習方法的性能比較,并討論了今后的研究方向。

付費5元查看完整內容

【導讀】元學習旨在學會學習,是當下研究熱點之一。最近來自愛丁堡大學的學者發布了關于元學習最新綜述論文《Meta-Learning in Neural Networks: A Survey》,值得關注,詳述了元學習體系,包括定義、方法、應用、挑戰,成為不可缺少的文獻。

近年來,元學習領域,或者說“學會學習的學習”,引起了人們極大的興趣。與傳統的人工智能方法(使用固定的學習算法從頭開始解決給定的任務)不同,元學習的目的是改進學習算法本身,考慮到多次學習的經驗。這個范例提供了一個機會來解決深度學習的許多傳統挑戰,包括數據和計算瓶頸,以及泛化的基本問題。在這項綜述中,我們描述了當代元學習的景觀。我們首先討論元學習的定義,并將其定位于相關領域,如遷移學習、多任務學習和超參數優化。然后,我們提出了一個新的分類法,對元學習方法的空間進行了更全面的細分。我們綜述了元學習的一些有前途的應用和成功案例,包括小樣本學習、強化學習和體系架構搜索。最后,我們討論了突出的挑戰和未來研究的有希望的領域。

//arxiv.org/abs/2004.05439

概述

現代機器學習模型通常是使用手工設計的固定學習算法,針對特定任務從零開始進行訓練。基于深度學習的方法在許多領域都取得了巨大的成功[1,2,3]。但是有明顯的局限性[4]。例如,成功主要是在可以收集或模擬大量數據的領域,以及在可以使用大量計算資源的領域。這排除了許多數據本質上是稀有或昂貴的[5],或者計算資源不可用的應用程序[6,7]。

元學習提供了另一種范式,機器學習模型可以在多個學習階段獲得經驗——通常覆蓋相關任務的分布——并使用這些經驗來改進未來的學習性能。這種“學會學習”[8]可以帶來各種好處,如數據和計算效率,它更適合人類和動物的學習[9],其中學習策略在一生和進化時間尺度上都得到改善[10,9,11]。機器學習在歷史上是建立在手工設計的特征上的模型,而特征的選擇往往是最終模型性能的決定因素[12,13,14]。深度學習實現了聯合特征和模型學習的承諾[15,16],為許多任務提供了巨大的性能改進[1,3]。神經網絡中的元學習可以看作是集成聯合特征、模型和算法學習的下一步。神經網絡元學習有著悠久的歷史[17,18,8]。然而,它作為推動當代深度學習行業前沿的潛力,導致了最近研究的爆炸性增長。特別是,元學習有可能緩解當代深度學習[4]的許多主要批評,例如,通過提供更好的數據效率,利用先驗知識轉移,以及支持無監督和自主學習。成功的應用領域包括:小樣本圖像識別[19,20]、無監督學習[21]、數據高效[22,23]、自導向[24]強化學習(RL)、超參數優化[25]和神經結構搜索(NAS)[26, 27, 28]。

在文獻中可以找到許多關于元學習的不同觀點。特別是由于不同的社區對這個術語的使用略有不同,所以很難定義它。與我們[29]相關的觀點認為,元學習是管理“沒有免費午餐”定理[30]的工具,并通過搜索最適合給定問題或問題族的算法(歸納偏差)來改進泛化。然而,從廣義上來說,這個定義可以包括遷移、多任務、特征選擇和模型集成學習,這些在今天通常不被認為是元學習。另一個關于元學習[31]的觀點廣泛地涵蓋了基于數據集特性的算法選擇和配置技術,并且很難與自動機器學習(AutoML)[32]區分開來。在這篇論文中,我們關注當代的神經網絡元學習。我們將其理解為算法或歸納偏差搜索,但重點是通過端到端學習明確定義的目標函數(如交叉熵損失、準確性或速度)來實現的。

因此,本文提供了一個獨特的,及時的,最新的調查神經網絡元學習領域的快速增長。相比之下,在這個快速發展的領域,以往的研究已經相當過時,或者關注于數據挖掘[29、33、34、35、36、37、31]、自動[32]的算法選擇,或者元學習的特定應用,如小樣本學習[38]或神經架構搜索[39]。

我們討論元學習方法和應用。特別是,我們首先提供了一個高層次的問題形式化,它可以用來理解和定位最近的工作。然后,我們在元表示、元目標和元優化器方面提供了一種新的方法分類。我們調查了幾個流行和新興的應用領域,包括少鏡頭、強化學習和架構搜索;并對相關的話題如遷移學習、多任務學習和自動學習進行元學習定位。最后,我們討論了尚未解決的挑戰和未來研究的領域。

未來挑戰:

-元泛化 元學習在不同任務之間面臨著泛化的挑戰,這與傳統機器學習中在不同實例之間進行泛化的挑戰類似。

  • 任務分布的多模態特性
  • 任務族
  • 計算代價
  • 跨模態遷移和異構任務

總結

元學習領域最近出現了快速增長的興趣。這帶來了一定程度的混亂,比如它如何與鄰近的字段相關聯,它可以應用到什么地方,以及如何對它進行基準測試。在這次綜述中,我們試圖通過從方法學的角度對這一領域進行徹底的調查來澄清這些問題——我們將其分為元表示、元優化器和元目標的分類;從應用的角度來看。我們希望這項調查將有助于新人和實踐者在這個不斷增長的領域中定位自己,并強調未來研究的機會。

付費5元查看完整內容

【導讀】現有的機器學習方法在很多場景下需要依賴大量的訓練樣本。但機器學習方法是否可以模仿人類,基于先驗知識等,只基于少量的樣本就可以進行學習。本文介紹34頁小樣本學習綜述《Generalizing from a Few Examples: A Survey on Few-Shot Learning》,包含166篇參考文獻,來自第四范式和香港科技大學習的研究學者。

小樣本學習綜述 Few-shot Learning: A Survey

【摘要】機器學習在數據密集型應用中非常成功,但當數據集很小時,它常常受到阻礙。為了解決這一問題,近年來提出了小樣本學習(FSL)。利用先驗知識,FSL可以快速地泛化到只包含少量有監督信息的樣本的新任務中。在這篇論文中,我們進行了一個徹底的調研,以充分了解FSL。從FSL的正式定義出發,我們將FSL與幾個相關的機器學習問題區分開來。然后指出了FSL的核心問題是經驗風險最小化是不可靠的。基于先驗知識如何處理這一核心問題,我們從三個角度對FSL方法進行了分類: (i) 數據,它使用先驗知識來增加監督經驗;(二) 利用先驗知識縮小假設空間大小的模型;(iii)算法,利用先驗知識在給定的假設空間中改變對最佳假設的搜索。有了這種分類法,我們就可以回顧和討論每個類別的優缺點。在FSL問題的設置、技術、應用和理論方面也提出了有前景的方向,為未來的研究提供了見解。

  • 我們給出了FSL的形式化定義。它可以自然地鏈接到以往文獻中提出的經典機器學習定義。這個定義不僅足夠概括,包括所有現有的FSL -shot Learning: A Survey problems,而且足夠具體,明確了什么是FSL的目標,以及我們如何解決它。這一定義有助于確定未來FSL領域的研究目標。

  • 指出了基于誤差分解的FSL在機器學習中的核心問題。我們發現,正是不可靠的經驗風險最小化使得FSL難以學習。這可以通過滿足或降低學習的樣本復雜度來緩解。理解核心問題有助于根據解決核心問題的方式將不同的工作分類為數據、模型和算法。更重要的是,這為更有組織和系統地改進FSL方法提供了見解。

  • 我們對從FSL誕生到最近發表的文獻進行了廣泛的回顧,并將它們進行了統一的分類。對不同類別的優缺點進行了深入的討論。我們還對每個類別下的見解進行了總結。這對于初學者和有經驗的研究人員都是一個很好的指導方針。

  • 我們在問題設置、技術、應用和理論方面展望了FSL未來的四個發展方向。這些見解都是基于當前FSL發展的不足之處,并有可能在未來進行探索。我們希望這部分能夠提供一些見解,為解決FSL問題做出貢獻,為真正的AI而努力。

  • 與已有的關于小樣本概念學習和經驗學習的FSL相關調相比,我們給出了什么是FSL,為什么FSL很難,以及FSL如何將小樣本監督信息與先驗知識結合起來使學習成為可能的正式定義。我們進行了廣泛的文獻審查的基礎上提出的分類法與詳細討論的利弊,總結和見解。我們還討論了FSL與半監督學習、不平衡學習、遷移學習和元學習等相關話題之間的聯系和區別

付費5元查看完整內容

自然語言處理(NLP)幫助智能機器更好地理解人類語言,實現基于語言的人機交流。計算能力的最新發展和大量語言數據的出現,增加了使用數據驅動方法自動進行語義分析的需求。由于深度學習方法在計算機視覺、自動語音識別,特別是NLP等領域的應用取得了顯著的進步,數據驅動策略的應用已經非常普遍。本調查對得益于深度學習的NLP的不同方面和應用進行了分類和討論。它涵蓋了核心的NLP任務和應用,并描述了深度學習方法和模型如何推進這些領域。我們進一步分析和比較不同的方法和最先進的模型。

付費5元查看完整內容
北京阿比特科技有限公司