亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

小樣本學習是當前研究關注的熱點。這篇論文總結了2016年到2020年的小樣本元學習文章,劃分為四類:基于數據增強; 基于度量學習,基于元優化; 和基于語義的。值得查看!

摘要:

在圖像識別和圖像分類等方面,深度神經網絡的表現已經超過了人類。然而,隨著各種新類別的出現,如何從有限的樣本中不斷擴大此類網絡的學習能力,仍然是一個挑戰。像元學習和/或小樣本學習這樣的技術表現出了良好的效果,他們可以根據先驗知識學習或歸納到一個新的類別/任務。在本文中,我們研究了計算機視覺領域中現有的小樣本元學習技術的方法和評價指標。我們為這些技術提供了一個分類法,并將它們分類為數據增強、嵌入、優化和基于語義的學習,用于小樣本、單樣本和零樣本設置。然后我們描述在每個類別中所做的重要工作,并討論他們解決從少數樣本中學習的困境的方法。最后,我們在常用的基準測試數據集Omniglot和MiniImagenet上比較了這些技術,并討論了提高這些技術性能的未來方向,從而達到超越人類的最終目標。

地址: //www.zhuanzhi.ai/paper/8d29a5f14fcd0cc9a1aa508d072fb328

概述:

基于人工智能(AI)的系統正在成為人類生活的重要組成部分,無論是個人生活還是專業生活。我們周圍都是基于人工智能的機器和應用程序,它們將使我們的生活變得更容易。例如,自動郵件過濾(垃圾郵件檢測),購物網站推薦,智能手機中的社交網絡等[1,2,3,4]。這一令人印象深刻的進展之所以成為可能,是因為機器或深度學習模型[5]取得了突破性的成功。機器或深度學習占據了AI領域的很大一部分。深度學習模型是建立在多層感知器與應用基于梯度的優化技術的能力。深度學習模型最常見的兩個應用是:計算機視覺(CV),其目標是教會機器如何像人類一樣看和感知事物;自然語言處理(NLP)和自然語言理解(NLU),它們的目標是分析和理解大量的自然語言數據。這些深度學習模型在圖像識別[6,7,8]、語音識別[9,10,11,12,13]、自然語言處理與理解[14,15,16,17,18]、視頻分析[19,20,21,22,23]、網絡安全[24,25,26,27,28,29,30]等領域都取得了巨大的成功。機器和/或深度學習最常見的方法是監督學習,其中針對特定應用程序的大量數據樣本與它們各自的標簽一起被收集并形成一個數據集。該數據集分為三個部分: 訓練、驗證和測試。在訓練階段,將訓練集和驗證集的數據及其各自的標簽輸入模型,通過反向傳播和優化,將模型歸納為一個假設。在測試階段,將測試數據輸入模型,根據導出的假設,模型預測測試數據樣本的輸出類別。

由于計算機和現代系統的強大能力[31,32],處理大量數據的能力已經非常出色。隨著各種算法和模型的進步,深度學習已經能夠趕上人類,在某些情況下甚至超過人類。AlphaGo[33]是一個基于人工智能的agent,在沒有任何人類指導的情況下訓練,能夠擊敗世界圍棋冠軍。圍棋是一種古老的棋盤游戲,被認為比國際象棋[34]復雜10倍;在另一個復雜的多人戰略游戲《DOTA》中,AI-agent打敗了《DOTA[35]》的人類玩家;對于圖像識別和分類的任務,ResNet[6]和Inception[36,37,38]等模型能夠在流行的ImageNet數據集上取得比人類更好的性能。ImageNet數據集包括超過1400萬張圖像,超過1000個類別[39]。

人工智能的最終目標之一是在任何給定的任務中趕上或超過人類。為了實現這一目標,必須盡量減少對大型平衡標記數據集的依賴。當前的模型在處理帶有大量標記數據的任務時取得了成功的結果,但是對于其他帶有標記數據很少的任務(只有少數樣本),各自模型的性能顯著下降。對于任何特定任務,期望大型平衡數據集是不現實的,因為由于各種類別的性質,幾乎不可能跟上產生的標簽數據。此外,生成標記數據集需要時間、人力等資源,而且在經濟上可能非常昂貴。另一方面,人類可以快速地學習新的類或類,比如給一張奇怪動物的照片,它可以很容易地從一張由各種動物組成的照片中識別出動物。人類相對于機器的另一個優勢是能夠動態地學習新的概念或類,而機器必須經過昂貴的離線培訓和再培訓整個模型來學習新類,前提是要有標簽數據可用性。研究人員和開發人員的動機是彌合人類和機器之間的鴻溝。作為這個問題的一個潛在解決方案,我們已經看到元學習[40,41,42,43,44,45,46,47,48,49,50]、小樣本學習[51,52,53,54]、低資源學習[55,56,57,58]、零樣本學習[59,60,61,62,63,63,64,64,65]等領域的工作在不斷增加,這些領域的目標是使模型更好地推廣到包含少量標記樣本的新任務。

什么是小樣本元學習?

在few-shot, low-shot, n-shot learning (n一般在1 - 5之間)中,其基本思想是用大量的數據樣本對模型進行多類的訓練,在測試過程中,模型會給定一個新的類別(也稱為新集合),每個類別都有多個數據樣本,一般類別數限制為5個。在元學習中,目標是泛化或學習學習過程,其中模型針對特定任務進行訓練,不同分類器的函數用于新任務集。目標是找到最佳的超參數和模型權值,使模型能夠輕松適應新任務而不過度擬合新任務。在元學習中,有兩類優化同時運行: 一類是學習新的任務; 另一個是訓練學習器。近年來,小樣本學習和元學習技術引起了人們極大的興趣。

元學習領域的早期研究工作是Yoshua和Samy Bengio[67]以及Fei-Fei Li在less -shot learning[68]中完成的。度量學習是使用的較老的技術之一,其目標是從嵌入空間中學習。將圖像轉換為嵌入向量,特定類別的圖像聚在一起,而不同類別的圖像聚在一起比較遠。另一種流行的方法是數據增強,從而在有限的可用樣本中產生更多的樣本。目前,基于語義的方法被廣泛地研究,分類僅僅基于類別的名稱及其屬性。這種基于語義的方法是為了解決零樣本學習應用的啟發。

遷移學習與自監督學習

遷移學習的總體目標是從一組任務中學習知識或經驗,并將其遷移到類似領域的任務中去[95]。用于訓練模型獲取知識的任務有大量的標記樣本,而遷移任務的標記數據相對較少(也稱為微調),這不足以使模型訓練和收斂到特定的任務。遷移學習技術的表現依賴于兩項任務之間的相關性。在執行遷移學習時,分類層被訓練用于新的任務,而模型中先前層的權值保持不變[96]。對于每一個新的任務,在我們進行遷移學習的地方,學習速率的選擇和要凍結的層數都必須手工決定。與此相反,元學習技術可以相當迅速地自動適應新的任務。

自監督學習的研究近年來得到了廣泛的關注[97,98,99]。自監督學習(SSL)技術的訓練基于兩個步驟:一是在一個預定義代理任務上進行訓練,在大量的未標記數據樣本上進行訓練;第二,學習到的模型參數用于訓練或微調主要下游任務的模型。元學習或小樣本學習技術背后的理念與自監督學習非常相似,自監督學習是利用先前的知識,識別或微調一個新的任務。研究表明,自監督學習可以與小樣本學習一起使用,以提高模型對新類別的表現[100,101]。

方法體系組織:

元學習、小樣本學習、低資源學習、單樣本學習、零樣本學習等技術的主要目標是通過基于先驗知識或經驗的迭代訓練,使深度學習模型從少量樣本中學習能泛化到新類別。先驗知識是在包含大量樣本的帶標簽數據集上訓練樣本,然后利用這些知識在有限樣本下識別新的任務而獲得的知識。因此,在本文中,我們將所有這些技術結合在了小樣本體系下。由于這些技術沒有預定義的分類,我們將這些方法分為四大類: 基于數據增強; 基于度量學習,基于元優化; 和基于語義的(如圖1所示)。基于數據增強的技術非常流行,其思想是通過擴充最小可用樣本和生成更多樣化的樣本來訓練模型來擴展先驗知識。在基于嵌入的技術中,數據樣本被轉換為另一個低級維,然后根據這些嵌入之間的距離進行分類。在基于優化的技術中,元優化器用于在初始訓練期間更好地泛化模型,從而可以更好地預測新任務。基于語義的技術是將數據的語義與模型的先驗知識一起用于學習或優化新的類別。

付費5元查看完整內容

相關內容

小樣本學習(Few-Shot Learning,以下簡稱 FSL )用于解決當可用的數據量比較少時,如何提升神經網絡的性能。在 FSL 中,經常用到的一類方法被稱為 Meta-learning。和普通的神經網絡的訓練方法一樣,Meta-learning 也包含訓練過程和測試過程,但是它的訓練過程被稱作 Meta-training 和 Meta-testing。

深度學習算法已經在圖像分類方面取得了最先進的性能,甚至被用于安全關鍵應用,如生物識別系統和自動駕駛汽車。最近的研究表明,這些算法甚至可以超越人類的能力,很容易受到對抗性例子的攻擊。在計算機視覺中,與之相對的例子是惡意優化算法為欺騙分類器而產生的含有細微擾動的圖像。為了緩解這些漏洞,文獻中不斷提出了許多對策。然而,設計一種有效的防御機制已被證明是一項困難的任務,因為許多方法已經證明對自適應攻擊者無效。因此,這篇自包含的論文旨在為所有的讀者提供一篇關于圖像分類中對抗性機器學習的最新研究進展的綜述。本文介紹了新的對抗性攻擊和防御的分類方法,并討論了對抗性實例的存在性。此外,與現有的調查相比,它還提供了相關的指導,研究人員在設計和評估防御時應該考慮到這些指導。最后,在文獻綜述的基礎上,對未來的研究方向進行了展望。

//www.zhuanzhi.ai/paper/396e587564dc2922d222cd3ac7b84288

付費5元查看完整內容

當前的深度學習研究以基準評價為主。如果一種方法在專門的測試集上有良好的經驗表現,那么它就被認為是有利的。這種心態無縫地反映在持續學習的重現領域,在這里研究的是持續到達的基準數據集。核心挑戰是如何保護之前獲得的表示,以免由于迭代參數更新而出現災難性地遺忘的情況。然而,各個方法的比較是與現實應用程序隔離的,通常通過監視累積的測試集性能來判斷。封閉世界的假設仍然占主導地位。假設在部署過程中,一個模型保證會遇到來自與用于訓練的相同分布的數據。這帶來了一個巨大的挑戰,因為眾所周知,神經網絡會對未知的實例提供過于自信的錯誤預測,并在數據損壞的情況下崩潰。在這個工作我們認為值得注意的教訓來自開放數據集識別,識別的統計偏差以外的數據觀測數據集,和相鄰的主動學習領域,數據增量查詢等預期的性能收益最大化,這些常常在深度學習的時代被忽略。基于這些遺忘的教訓,我們提出了一個統一的觀點,以搭建持續學習,主動學習和開放集識別在深度神經網絡的橋梁。我們的結果表明,這不僅有利于每個個體范式,而且突出了在一個共同框架中的自然協同作用。我們從經驗上證明了在減輕災難性遺忘、主動學習中查詢數據、選擇任務順序等方面的改進,同時在以前提出的方法失敗的地方展示了強大的開放世界應用。

//www.zhuanzhi.ai/paper/e5bee7a1e93a93ef97e1c

概述:

隨著實用機器學習系統的不斷成熟,社區發現了對持續學習[1]、[2]的興趣。與廣泛練習的孤立學習不同,在孤立學習中,系統的算法訓練階段被限制在一個基于先前收集的i.i.d數據集的單一階段,持續學習需要利用隨著時間的推移而到來的數據的學習過程。盡管這種范式已經在許多機器學習系統中找到了各種應用,回顧一下最近關于終身機器學習[3]的書,深度學習的出現似乎已經將當前研究的焦點轉向了一種稱為“災難性推理”或“災難性遺忘”的現象[4],[5],正如最近的評論[6],[7],[8],[9]和對深度持續學習[8],[10],[11]的實證調查所表明的那樣。后者是機器學習模型的一個特殊效應,機器學習模型貪婪地根據給定的數據群更新參數,比如神經網絡迭代地更新其權值,使用隨機梯度估計。當包括導致數據分布發生任何變化的不斷到達的數據時,學習到的表示集被單向引導,以接近系統當前公開的數據實例上的任何任務的解決方案。自然的結果是取代以前學到的表征,導致突然忘記以前獲得的信息。

盡管目前的研究主要集中在通過專門機制的設計來緩解持續深度學習中的這種遺忘,但我們認為,一種非常不同形式的災難性遺忘的風險正在增長,即忘記從過去的文獻中吸取教訓的危險。盡管在連續的訓練中保留神經網絡表示的努力值得稱贊,但除了只捕獲災難性遺忘[12]的度量之外,我們還高度關注了實際的需求和權衡,例如包括內存占用、計算成本、數據存儲成本、任務序列長度和訓練迭代次數等。如果在部署[14]、[15]、[16]期間遇到看不見的未知數據或小故障,那么大多數當前系統會立即崩潰,這幾乎可以被視為誤導。封閉世界的假設似乎無所不在,即認為模型始終只會遇到與訓練過程中遇到的數據分布相同的數據,這在真實的開放世界中是非常不現實的,因為在開放世界中,數據可以根據不同的程度變化,而這些變化是不現實的,無法捕獲到訓練集中,或者用戶能夠幾乎任意地向系統輸入預測信息。盡管當神經網絡遇到不可見的、未知的數據實例時,不可避免地會產生完全沒有意義的預測,這是眾所周知的事實,已經被暴露了幾十年了,但是當前的努力是為了通過不斷學習來規避這一挑戰。選擇例外嘗試解決識別不可見的和未知的示例、拒絕荒謬的預測或將它們放在一邊供以后使用的任務,通常總結在開放集識別的傘下。然而,大多數現有的深度連續學習系統仍然是黑盒,不幸的是,對于未知數據的錯誤預測、數據集的異常值或常見的圖像損壞[16],這些系統并沒有表現出理想的魯棒性。

除了目前的基準測試實踐仍然局限于封閉的世界之外,另一個不幸的趨勢是對創建的持續學習數據集的本質缺乏理解。持續生成模型(如[17]的作者的工作,[18],[19],[20],[21],[22]),以及類增量持續學習的大部分工作(如[12]中給出的工作,[23],[24],[25],[26],[27],[28])一般調查sequentialized版本的經過時間考驗的視覺分類基準如MNIST [29], CIFAR[30]或ImageNet[31],單獨的類只是分成分離集和序列所示。為了在基準中保持可比性,關于任務排序的影響或任務之間重疊的影響的問題通常會被忽略。值得注意的是,從鄰近領域的主動機器學習(半監督學習的一種特殊形式)中吸取的經驗教訓,似乎并沒有整合到現代的連續學習實踐中。在主動學習中,目標是學會在讓系統自己查詢接下來要包含哪些數據的挑戰下,逐步地找到與任務解決方案最接近的方法。因此,它可以被視為緩解災難性遺忘的對抗劑。當前的持續學習忙于維護在每個步驟中獲得的信息,而不是無休止地積累所有的數據,而主動學習則關注于識別合適的數據以納入增量訓練系統的補充問題。盡管在主動學習方面的早期開創性工作已經迅速識別出了通過使用啟發式[32]、[33]、[34]所面臨的強大應用的挑戰和陷阱,但后者在深度學習[35]、[36]、[37]、[38]的時代再次占據主導地位,這些挑戰將再次面臨。

在這項工作中,我們第一次努力建立一個原則性和鞏固的深度持續學習、主動學習和在開放的世界中學習的觀點。我們首先單獨回顧每一個主題,然后繼續找出在現代深度學習中似乎較少受到關注的以前學到的教訓。我們將繼續爭論,這些看似獨立的主題不僅從另一個角度受益,而且應該結合起來看待。在這個意義上,我們建議將當前的持續學習實踐擴展到一個更廣泛的視角,將持續學習作為一個總括性術語,自然地包含并建立在先前的主動學習和開放集識別工作之上。本文的主要目的并不是引入新的技術或提倡一種特定的方法作為通用的解決方案,而是對最近提出的神經網絡[39]和[40]中基于變分貝葉斯推理的方法進行了改進和擴展,以說明一種走向全面框架的可能選擇。重要的是,它作為論證的基礎,努力闡明生成建模作為深度學習系統關鍵組成部分的必要性。我們強調了在這篇論文中發展的觀點的重要性,通過實證證明,概述了未來研究的含義和有前景的方向。

付費5元查看完整內容

小樣本自然語言處理(NLP)是指NLP任務只具有少量標注的樣例。這是人工智能系統必須學會處理的現實挑戰。通常我們依賴于收集更多的輔助信息或開發一個更有效的學習算法。然而,在高容量模型中,一般基于梯度的優化,如果從頭開始訓練,需要對大量帶標記的樣例進行很多參數更新步驟,才能表現良好(Snell et al., 2017)。

如果目標任務本身不能提供更多的信息,如何收集更多帶有豐富標注的任務來幫助模型學習?元學習的目標是訓練一個模型在各種任務上使用豐富的標注,這樣它就可以用少量標記的樣本解決一個新的任務。關鍵思想是訓練模型的初始參數,這樣當參數通過零階或幾個梯度步驟更新后,模型在新任務上有最大的性能。

已經有一些關于元學習的綜述,例如(Vilalta和Drissi, 2002;Vanschoren, 2018;Hospedales等,2020)。然而,本文的研究主要集中在NLP領域,尤其是小樣本的應用。本文試圖對元學習應用于較少次數的神經語言處理提供更清晰的定義、進展總結和一些常用的數據集。

//arxiv.org/abs/2007.09604

付費5元查看完整內容

當對大量的標記數據集合(如ImageNet)進行訓練時,深度神經網絡展示了它們在特殊監督學習任務(如圖像分類)上的卓越表現。然而,創建這樣的大型數據集需要大量的資源、時間和精力。這些資源在很多實際案例中可能無法獲得,限制了許多深度學習方法的采用和應用。為了尋找數據效率更高的深度學習方法,以克服對大型標注數據集的需求,近年來,我們對半監督學習應用于深度神經網絡的研究興趣日益濃厚,通過開發新的方法和采用現有的半監督學習框架進行深度學習設置。在本文中,我們從介紹半監督學習開始,對深度半監督學習進行了全面的概述。然后總結了在深度學習中占主導地位的半監督方法。

付費5元查看完整內容

本文綜述了元學習在圖像分類、自然語言處理和機器人技術等領域的應用。與深度學習不同,元學習使用較少的樣本數據集,并考慮進一步改進模型泛化以獲得更高的預測精度。我們將元學習模型歸納為三類: 黑箱適應模型、基于相似度的方法模型和元學習過程模型。最近的應用集中在將元學習與貝葉斯深度學習和強化學習相結合,以提供可行的集成問題解決方案。介紹了元學習方法的性能比較,并討論了今后的研究方向。

付費5元查看完整內容

自然語言處理(NLP)幫助智能機器更好地理解人類語言,實現基于語言的人機交流。計算能力的最新發展和大量語言數據的出現,增加了使用數據驅動方法自動進行語義分析的需求。由于深度學習方法在計算機視覺、自動語音識別,特別是NLP等領域的應用取得了顯著的進步,數據驅動策略的應用已經非常普遍。本調查對得益于深度學習的NLP的不同方面和應用進行了分類和討論。它涵蓋了核心的NLP任務和應用,并描述了深度學習方法和模型如何推進這些領域。我們進一步分析和比較不同的方法和最先進的模型。

付費5元查看完整內容

?【導讀】圖像分類是計算機視覺中的基本任務之一,深度學習的出現是的圖像分類技術趨于完善。最近,自監督學習與預訓練技術的發展使得圖像分類技術出現新的變化,這篇論文概述了最新在實際情況中少標簽小樣本等情況下,關于自監督學習、半監督、無監督方法的綜述,值得看!

地址:

//www.zhuanzhi.ai/paper/6d160a5f8634d25a2feda7a30e1e5132

摘要

雖然深度學習策略在計算機視覺任務中取得了突出的成績,但仍存在一個問題。目前的策略嚴重依賴于大量的標記數據。在許多實際問題中,創建這么多標記的訓練數據是不可行的。因此,研究人員試圖將未標記的數據納入到培訓過程中,以獲得與較少標記相同的結果。由于有許多同時進行的研究,很難掌握最近的發展情況。在這項調查中,我們提供了一個概述,常用的技術和方法,在圖像分類與較少的標簽。我們比較了21種方法。在我們的分析中,我們確定了三個主要趨勢。1. 基于它們的準確性,現有技術的方法可擴展到實際應用中。2. 為了達到與所有標簽的使用相同的結果所需要的監督程度正在降低。3.所有方法都共享公共技術,只有少數方法結合這些技術以獲得更好的性能。基于這三個趨勢,我們發現了未來的研究機會。

1. 概述

深度學習策略在計算機視覺任務中取得了顯著的成功。它們在圖像分類、目標檢測或語義分割等各種任務中表現最佳。

圖1: 這張圖說明并簡化了在深度學習訓練中使用未標記數據的好處。紅色和深藍色的圓圈表示不同類的標記數據點。淺灰色的圓圈表示未標記的數據點。如果我們只有少量的標記數據可用,我們只能對潛在的真實分布(黑線)做出假設(虛線)。只有同時考慮未標記的數據點并明確決策邊界,才能確定這種真實分布。

深度神經網絡的質量受到標記/監督圖像數量的強烈影響。ImageNet[26]是一個巨大的標記數據集,它允許訓練具有令人印象深刻的性能的網絡。最近的研究表明,即使比ImageNet更大的數據集也可以改善這些結果。但是,在許多實際的應用程序中,不可能創建包含數百萬張圖像的標記數據集。處理這個問題的一個常見策略是遷移學習。這種策略甚至可以在小型和專門的數據集(如醫學成像[40])上改進結果。雖然這對于某些應用程序來說可能是一個實際的解決方案,但基本問題仍然存在: 與人類不同,監督學習需要大量的標記數據。

對于給定的問題,我們通常可以訪問大量未標記的數據集。Xie等人是最早研究無監督深度學習策略來利用這些數據[45]的人之一。從那時起,未標記數據的使用被以多種方式研究,并創造了研究領域,如半監督、自我監督、弱監督或度量學習[23]。統一這些方法的想法是,在訓練過程中使用未標記的數據是有益的(參見圖1中的說明)。它要么使很少有標簽的訓練更加健壯,要么在某些不常見的情況下甚至超過了監督情況下的性能[21]。

由于這一優勢,許多研究人員和公司在半監督、自我監督和非監督學習領域工作。其主要目標是縮小半監督學習和監督學習之間的差距,甚至超越這些結果。考慮到現有的方法如[49,46],我們認為研究處于實現這一目標的轉折點。因此,在這個領域有很多正在進行的研究。這項綜述提供了一個概述,以跟蹤最新的在半監督,自監督和非監督學習的方法。

大多數綜述的研究主題在目標、應用上下文和實現細節方面存在差異,但它們共享各種相同的思想。這項調查對這一廣泛的研究課題進行了概述。這次調查的重點是描述這兩種方法的異同。此外,我們還將研究不同技術的組合。

2. 圖像分類技術

在這一節中,我們總結了關于半監督、自監督和非監督學習的一般概念。我們通過自己對某些術語的定義和解釋來擴展這一總結。重點在于區分可能的學習策略和最常見的實現策略的方法。在整個綜述中,我們使用術語學習策略,技術和方法在一個特定的意義。學習策略是算法的一般類型/方法。我們把論文方法中提出的每個算法都稱為獨立算法。方法可以分為學習策略和技術。技術是組成方法/算法的部分或思想。

2.1 分類方法

監督、半監督和自我監督等術語在文獻中經常使用。很少有人給出明確的定義來區分這兩個術語。在大多數情況下,一個粗略的普遍共識的意義是充分的,但我們注意到,在邊界情況下的定義是多種多樣的。為了比較不同的方法,我們需要一個精確的定義來區分它們。我們將總結關于學習策略的共識,并定義我們如何看待某些邊緣案例。一般來說,我們根據使用的標記數據的數量和訓練過程監督的哪個階段來區分方法。綜上所述,我們把半監督策略、自我學習策略和無監督學習策略稱為reduced減約監督學習策略。圖2展示了四種深度學習策略。

圖2: 插圖的四個深學習策略——紅色和深藍色的圓圈表示標記數據點不同的類。淺灰色的圓圈表示未標記的數據點。黑線定義了類之間的基本決策邊界。帶條紋的圓圈表示在訓練過程的不同階段忽略和使用標簽信息的數據點。

監督學習 Supervised Learning

監督學習是深度神經網絡圖像分類中最常用的方法。我們有一組圖像X和對應的標簽或類z。設C為類別數,f(X)為X∈X的某個神經網絡的輸出,目標是使輸出與標簽之間的損失函數最小化。測量f(x)和相應的z之間的差的一個常用的損失函數是交叉熵。

遷移學習

監督學習的一個限制因素是標簽的可用性。創建這些標簽可能很昂貴,因此限制了它們的數量。克服這一局限的一個方法是使用遷移學習。

遷移學習描述了訓練神經網絡的兩個階段的過程。第一個階段是在大型通用數據集(如ImageNet[26])上進行有無監督的訓練。第二步是使用經過訓練的權重并對目標數據集進行微調。大量的文獻表明,即使在小的領域特定數據集[40]上,遷移學習也能改善和穩定訓練。

半監督學習

半監督學習是無監督學習和監督學習的混合.

Self-supervised 自監督學習

自監督使用一個借托pretext任務來學習未標記數據的表示。借托pretext任務是無監督的,但學習表征往往不能直接用于圖像分類,必須進行微調。因此,自監督學習可以被解釋為一種無監督的、半監督的或其自身的一種策略。我們將自我監督學習視為一種特殊的學習策略。在下面,我們將解釋我們是如何得出這個結論的。如果在微調期間需要使用任何標簽,則不能將該策略稱為無監督的。這與半監督方法也有明顯的區別。標簽不能與未標記的數據同時使用,因為借托pretext任務是無監督的,只有微調才使用標簽。對我們來說,將標記數據的使用分離成兩個不同的子任務本身就是一種策略的特征。

2.2 分類技術集合

在減少監督的情況下,可以使用不同的技術來訓練模型。在本節中,我們將介紹一些在文獻中多種方法中使用的技術。

一致性正則化 Consistency regularization

一個主要的研究方向是一致性正則化。在半監督學習過程中,這些正則化被用作數據非監督部分的監督損失的附加損失。這種約束導致了改進的結果,因為在定義決策邊界時可以考慮未標記的數據[42,28,49]。一些自監督或無監督的方法甚至更進一步,在訓練中只使用這種一致性正則化[21,2]。

虛擬對抗性訓練(VAT)

VAT[34]試圖通過最小化圖像與轉換后的圖像之間的距離,使預測不受小轉換的影響。

互信息(MI)

MI定義為聯合分布和邊緣分布[8]之間的Kullback Leiber (KL)散度。

熵最小化(EntMin)

Grandvalet和Bengio提出通過最小化熵[15]來提高半監督學習的輸出預測。

Overclustering

過度聚類在減少監督的情況下是有益的,因為神經網絡可以自行決定如何分割數據。這種分離在有噪聲的數據中或在中間類被隨機分為相鄰類的情況下是有用的。

Pseudo-Labels

一種估計未知數據標簽的簡單方法是偽標簽

3. 圖像分類模型

3.1 半監督學習

 四種選擇的半監督方法的圖解——使用的方法在每張圖像下面給出。輸入在左邊的藍色方框中給出。在右側提供了該方法的說明。一般來說,這個過程是自上而下組織的。首先,輸入圖像經過無或兩個不同的隨機變換預處理。自動增廣[9]是一種特殊的增廣技術。下面的神經網絡使用這些預處理圖像(x, y)作為輸入。損失的計算(虛線)對于每種方法都是不同的,但是共享公共部分。所有的方法都使用了標記和預測分布之間的交叉熵(CE)。所有的方法還使用了不同預測輸出分布(Pf(x), Pf(y))之間的一致性正則化。

3.2 自監督學習

四種選擇的自我監督方法的圖解——使用的方法在每張圖像下面給出。輸入在左邊的紅色方框中給出。在右側提供了該方法的說明。微調部分不包括在內。一般來說,這個過程是自上而下組織的。首先,對輸入圖像進行一兩次隨機變換預處理或分割。下面的神經網絡使用這些預處理圖像(x, y)作為輸入。損失的計算(虛線)對于每種方法都是不同的。AMDIM和CPC使用網絡的內部元素來計算損失。DeepCluster和IIC使用預測的輸出分布(Pf(x)、Pf(y))來計算損耗

3.3 21種圖像分類方法比較

21種圖像分類方法及其使用技術的概述——在左側,第3節中回顧的方法按學習策略排序。第一行列出了在2.2小節中討論過的可能的技術。根據是否可以使用帶標簽的數據,將這些技術分為無監督技術和有監督技術。技術的縮寫也在第2.2小節中給出。交叉熵(Cross-entropy, CE)將CE的使用描述為訓練損失的一部分。微調(FT)描述了交叉熵在初始訓練后(例如在一個借口任務中)對新標簽的使用。(X)指該技術不是直接使用,而是間接使用。個別的解釋由所指示的數字給出。1 - MixMatch通過銳化預測[3],隱式地實現了熵最小化。2 - UDA預測用于過濾無監督數據的偽標簽。3 -盡量減少相互信息的目的作為借口任務,例如視圖之間的[2]或層之間的[17]。4 -信息的丟失使相互信息間接[43]最大化。5 - Deep Cluster使用K-Means計算偽標簽,以優化分配為借口任務。6 - DAC使用元素之間的余弦距離來估計相似和不相似的項。可以說DAC為相似性問題創建了偽標簽。

4. 實驗比較結果

報告準確度的概述——第一列說明使用的方法。對于監督基線,我們使用了最好的報告結果,作為其他方法的基線。原始論文在準確度后的括號內。第二列給出了體系結構及其參考。第三列是預印本的出版年份或發行年份。最后四列報告了各自數據集的最高準確度分數%。

5 結論

在本文中,我們概述了半監督、自監督和非監督技術。我們用21種不同的方法分析了它們的異同和組合。這項分析確定了幾個趨勢和可能的研究領域。

我們分析了不同學習策略(半監督學習策略、自監督學習策略和無監督學習策略)的定義,以及這些學習策略中的常用技術。我們展示了這些方法一般是如何工作的,它們使用哪些技術,以及它們可以被歸類為哪種策略。盡管由于不同的體系結構和實現而難以比較這些方法的性能,但我們確定了三個主要趨勢。

ILSVRC-2012的前5名正確率超過90%,只有10%的標簽表明半監督方法適用于現實問題。然而,像類別不平衡這樣的問題并沒有被考慮。未來的研究必須解決這些問題。

監督和半監督或自監督方法之間的性能差距正在縮小。有一個數據集甚至超過了30%。獲得可與全監督學習相比的結果的標簽數量正在減少。未來的研究可以進一步減少所需標簽的數量。我們注意到,隨著時間的推移,非監督方法的使用越來越少。這兩個結論使我們認為,無監督方法在未來的現實世界中對圖像分類將失去意義。

我們的結論是,半監督和自監督學習策略主要使用一套不同的技術。通常,這兩種策略都使用不同技術的組合,但是這些技術中很少有重疊。S4L是目前提出的唯一一種消除這種分離的方法。我們確定了不同技術的組合有利于整體性能的趨勢。結合技術之間的微小重疊,我們確定了未來可能的研究機會。

參考文獻:

[1] B. Athiwaratkun, M. Finzi, P. Izmailov, and A. G. Wilson. There are many consistent explanations of unlabeled data: Why you should average. In International Conference on Learning Representations, 2019.

[2] P. Bachman, R. D. Hjelm, and W. Buchwalter. Learning representations by maximizing mutual information across views. In Advances in Neural Information Processing Systems, pages 15509–15519, 2019.

[3] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A. Raffel. Mixmatch: A holistic approach to semi-supervised learning. In Advances in Neural Information Processing Systems, pages 5050–5060, 2019.

[4] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsupervised learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), pages 132–149, 2018.

[5] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan. Deep adaptive image clustering. 2017 IEEE International Conference on Computer Vision (ICCV), pages 5880–5888, 2017.

付費5元查看完整內容
北京阿比特科技有限公司