亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本背景資料簡報概述人工智能(AI)與國防領域的交匯點。AI現部署于教育、金融、交通、醫療與國家安全等多領域。國防領域作為國家安全體系的核心構成,涵蓋以維護國家主權與利益為目標的軍事能力與行動。盡管AI有望提升國防活動效能,但其應用引發人權與國防領域善治相關的諸多挑戰。本簡報將界定AI概念,探討其在國防領域的應用場景,剖析對善治的潛在風險,并就強化監管提出建議(包括完善監測機制、提升透明度、健全問責制及促進利益相關方協作)。

本背景資料簡報解答以下問題
? 何為人工智能(AI)?
? 國防領域的定義為何?
? 國防領域為何使用AI?
? AI對國防領域構成哪些風險?
? AI如何影響國防領域善治?
? 如何強化國防領域AI應用的監管?

國防領域人工智能應用

主體 檢測 規劃 行動 后勤
??武裝部隊?? 收集分析多源數據,識別動態、威脅與異常 通過海量數據分析輔助戰略戰術規劃,預測未來場景并優化資源配置 提供實時作戰情報支持軍事行動 自動化物流供應鏈管理與人員調度
??行政管控機構?? 分析風險并評估國防能力替代方案 起草國防立法框架,評估戰備狀態 實時監測作戰效能,動態調整資源分配 自動化國防采購預算與資產追蹤
??國內安全機構?? 處理海量數據識別模式趨勢,研判潛在威脅 開發戰略報告,建立威脅優先級體系 部署AI增強型監控偵察系統提升行動精度 自動化數據處理與信息分發流程
??監督委員會?? 監測分析國防開支與采購動態 制定戰略監督報告,評估項目合規性 實時追蹤國防項目執行情況 自動化審計程序與風險管理系統
??商業國防供應商?? 整合Tranche 0衛星追蹤數據與地面傳感器網絡 開發下一代AI驅動武器系統,優化研發周期 維護升級AI作戰平臺軟件系統 構建智能供應鏈,實現備件預測性維護
??民間社會組織?? 監控AI軍事化應用倫理風險 推動制定AI軍事應用國際規范框架 開展AI武器系統影響評估 建立AI軍事技術雙用途追蹤數據庫

國防領域人工智能應用監管框架

行為主體 國內監管框架 透明度與問責制 伙伴關系與協作
??武裝部隊?? 實施人工智能專項審計與審查流程,監測系統開發、部署及運行 通過披露數據源、算法與決策流程等非涉密信息,提升人工智能系統透明度 與民間社會組織、學術機構、研究組織及產業伙伴合作,共享經驗教訓,促進治理創新
??行政管控機構?? 建立專用監管機構/委員會,實施風險管理框架識別人工智能應用風險(技術/法律/安全) 發布人工智能影響評估報告,詳述部署成效與運營結果 強化與議會委員會、政府監察機構及獨立審計部門協作,確保人工智能倡議透明度
??國內安全機構?? 成立獨立審查小組,監控人工智能在國內安防應用中的倫理與法律影響 推動人工智能治理透明化與問責機制建設 與人權組織、隱私倡導機構及技術專家合作開展獨立評估,完善安防人工智能系統審查
??監督委員會?? 制定人工智能采購與部署專項監管條例 定期公開國防人工智能項目進展與資金流向 搭建跨部門人工智能治理協作平臺,促進監管經驗共享
??商業國防供應商?? 執行人工智能技術出口管制與雙用途技術監管 建立人工智能研發應用全周期可追溯機制 參與行業聯盟制定人工智能倫理標準,推動負責任技術創新
??民間社會組織?? 倡導建立人工智能軍事應用倫理審查制度 開發公民監督平臺,完善人工智能應用違規舉報機制 聯合國際智庫開展人工智能軍事化影響研究,推動全球治理框架構建
付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

本報告旨在通過推演通用人工智能(AGI)治理的未來情景及其對全球權力格局的影響,促使政策制定者深入思考AGI發展對地緣政治與國際秩序的可能沖擊。作者聚焦于AGI研發部署可能引發的多維度影響——其中部分情形雖概率較低但意義重大——這些影響將從根本上改變現有地緣政治秩序。

為深入探究這些可能重塑世界的潛在影響,作者基于AGI研發集中化程度及其地緣政治結果構建了八種示范性情景。這些情景涵蓋:使美國占據優勢地位的AGI影響、增強美國競爭對手的AGI影響、引發重大地緣政治格局變遷的影響、以及導致AGI發展中斷的影響。

這些情景旨在揭示AGI研發的集中化程度是實現特定地緣政治結果的關鍵決定因素。在高度集中化情景中,美國或其競爭對手可能獲得顯著優勢;而分散化發展路徑可能導致多邊治理模式,甚至因非國家行為體借助AGI大幅增強實力而引發地緣政治失穩。

核心發現

決定未來AGI地緣政治格局的關鍵因素持續顯現:
? 集中化程度可能是AGI發展最核心的影響要素。高度集中化研發有利于擁有雄厚資源的傳統強國;分散化路徑雖可賦能多元主體,但會增加擴散風險。出口管制、研究經費分配及國際治理框架構成影響AGI研發相對集中化程度的潛在調控杠桿。
? 國家與私營企業的關系成為另一關鍵決定因素。公私密切合作的情景與缺乏協調的情景產生截然不同的結果。專家一致強調:無論是國家還是企業都無法單獨有效管控AGI發展,建立平衡的合作關系至關重要。
? 即使在地緣政治因素有利的條件下,確保AGI系統可靠追求人類兼容目標的內在難度仍構成重大風險。緩解該風險通常需要開展國際合作,旨在限制危險行為體獲取AGI技術,并應對可能災難性的AGI系統失控局面。
 ? AGI部署引發的經濟社會動蕩給技術發展管理帶來嚴峻挑戰。社會能否適應快速自動化進程、信息操控及潛在的就業崗位更替,將直接影響最終結果對現有權力結構的鞏固或削弱效應。

付費5元查看完整內容

人工智能(AI)的發展將如何塑造未來戰爭形態?盡管公眾對AI顛覆戰爭模式的潛力抱有濃厚興趣,研究者們仍處于探索AI如何改變作戰方式的初級階段。本報告提供概念框架與初步評估,旨在為系統探討AI改變軍隊作戰制勝模式的潛力確立基礎。

本次分析基于一項核心假設:AI成功實現其消除人類智力作為軍事行動約束的目標。據此框架,報告評估了AI對軍事行動四大"基礎要素競賽"的潛在影響。該框架將戰爭拆解為以下組元性競爭:(1)數量與質量的博弈,(2)隱蔽與發現的對抗,(3)集中式與分布式指揮控制(C2)的抉擇,(4)網絡進攻與網絡防御的較量。針對每項要素,我們闡釋了AI可能影響競爭形態的關鍵驅動因素與權衡取舍。

基于四維要素競賽分析,我們認為美軍可能需要改變其在作戰理念與軍力規劃方面的傳統模式,以釋放AI潛能。鑒于AI技術尚未成熟,以下僅為試探性推論:

  • 數量可能相對質量取得顯著優勢。隨著規模部署成本降低且能力提升,質量與數量的投資效價比將重新洗牌。自主技術與機器人學的進步或使大規模列裝作戰平臺成為現實——這在過去是財力難以承受的。高端平臺武器雖仍具價值,但作戰中規模優勢可能大幅增強。
  • 更精密的隱蔽手段或能抵消偵察技術進步,但這需要全新的欺騙戰術與投入。若軍隊運用AI打造"戰爭迷霧生成器",通過先進誘餌群實施精密欺騙,隱蔽效果將遠超當前水平。但此優勢取決于隱蔽方試圖隱藏的信息類型,以及偵察方利用AI傳感器網絡的能力。最終可能形成高度對抗的隱蔽-偵察博弈,優勢地位將因具體情境而變動。AI與機器人誘餌對隱藏大國核力量尤其有效,從而降低AI顛覆戰略穩定的風險。
  • "任務式指揮"——集中與分布式模式的混合體——仍將占據主導。優化C2的核心制約因素并非情報質量或決策速度,而是部隊間通信鏈路的抗毀能力。
  • 防御方將受益于AI賦能,長期來看作戰網絡韌性將增強。關鍵在于AI能破解當前制約網絡防御效能的規模與速度難題,扭轉進攻方占優的局面。但網絡進攻同樣受益于AI,攻擊方仍能在特定時空實施網絡滲透。
  • 拒斥規模戰術與欺騙手段的軍隊將面臨嚴重劣勢。依賴少量尖端兵力的模式正迅速由資產變為負擔。傳感網絡與遠程打擊技術的進步要求軍隊將欺騙置于作戰核心。實現這種轉型需要美國國防生產與保障體系革新,包括構建能遠距離保障更大規模部隊的后勤體系。

徹底革新作戰理念與部隊架構的軍隊,將比僅用AI小幅改進現有模式的對手更具優勢。釋放AI軍事潛能既是技術挑戰更是組織變革,它要求軍隊突破既有的編制與運作舒適區。

  • 應立即投入規模戰術與戰爭迷霧體系建設。即便AI技術尚未成熟,當前已可利用本報告揭示的趨勢。應加強無人系統與先進誘餌等關鍵領域的實驗投入。兵力規劃需確保"高低混合"戰略更側重規模發展,新型高端系統須從設計階段就融入欺騙與隱身方案而非事后追加。
  • 分配稀缺資源時需預設將遭遇精密自適應對手。盡管存在用AI強化既有模式以獲取"先發優勢"的誘惑,但更應準備應對優勢轉瞬即逝的局面,將資源投向能帶來持久優勢的領域。
  • 必須確保國防工業基礎具備規模生產能力。當前工業界聚焦小批量高端裝備,規模化生產乏力。轉向規模導向的部隊結構需重塑工業基礎,此過程需充足時間與資源投入,應立即啟動。

付費5元查看完整內容

本文探討了在軍事網絡安全方法中應用生成式人工智能(Generative AI)所帶來的倫理和對抗影響。生成式人工智能已在眾多民用應用中展示于威脅模擬和威脅防御領域。盡管如此,其在軍事應用中存在重要的倫理考量,原因在于生成式人工智能可能被濫用。針對軍事系統的網絡威脅正變得比以往更加復雜,我們希望為該領域的研究體系增添數據,以幫助彌合在理解軍事環境中生成式人工智能風險方面所識別的知識差距。目標: 本文旨在探討圍繞生成式人工智能軍事應用的倫理困境,包括責任歸屬、自主性和濫用問題。本文審查了與生成式人工智能相關的對抗性風險,包括敵對行為體的操縱或其他利用。目標是提出考量倫理困境的措施,同時改進防御能力。方法: 方法論將評估倫理風險,如與人工智能系統相關的自主性、武器化和偏見問題。它將通過建議采用對抗性訓練策略、混合人工智能系統以及針對被對抗性操縱的人工智能生成威脅的穩健防御機制來確定對抗性風險。它還將為軍事網絡安全提出倫理框架和責任模型。結果: 本文提供了在傳統網絡環境和智能網絡環境下軍事網絡安全系統的性能比較評估。重要研究結果證明,生成式人工智能有可能提高檢測準確性,尤其是響應時間。但它也引入了新的風險,如對抗性操縱。實驗結果說明了對抗性訓練如何增強模型的魯棒性、減少漏洞,并提供更強的針對對抗性威脅的防御能力。結論: 與傳統方法相比,生成式人工智能在軍事網絡安全中具有相當可觀的益處,特別是在提升檢測性能、響應時間和適應性方面。如圖所示,人工智能增強系統的優勢使惡意軟件檢測準確率提高了15%,從80%上升到95%,釣魚郵件檢測準確率也提升了15%,從78%上升到93%。對新威脅的快速反應能力也很關鍵,響應時間縮短了60%,從5分鐘減至2分鐘,這在軍事環境中至關重要,快速響應將能最大限度減少影響。此外,人工智能系統顯示出將誤報率從10%降低到4%(這非常優秀)以及將漏報率從18%降低到5%的能力(這也很優秀),這很大程度上基于人工智能系統識別真實威脅樣貌的能力以及識別真實威脅的能力。

在過去的幾年中,由于人工智能(AI)和機器學習技術的發展,網絡安全經歷了根本性的轉變。作為人工智能的一個子類別,生成式人工智能,包括生成對抗網絡(GANs)和變分自編碼器(VAEs),正被迅速用于生成網絡威脅模擬以提供更好的防御。盡管這些人工智能模型在民用網絡安全應用中所展現的巨大效用已得到證明,但它們在軍事環境中的使用會產生額外的困境和變數。鑒于軍事領域的風險高得多,甚至在實施生成式人工智能之前,對其能力和風險獲得更深入的理解至關重要。將生成式人工智能用于軍事網絡安全工具存在諸多優勢。最顯著的好處在于,生成式人工智能能夠針對當前系統的極限,提供逼真、復雜且先進的網絡攻擊模擬。盡管在軍事網絡領域提出了無數解決方案(如復雜的關鍵基礎設施和武器系統),軍事網絡仍必須應對日益復雜的網絡攻擊,包括高級持續性威脅(APTs)、零日漏洞利用和定制攻擊。生成式人工智能模型可以生成基于情景的自適應攻擊,包括多態惡意軟件、相關釣魚郵件和自適應入侵模式,這可以匯總應對惡意網絡事件的最佳實踐。生成式人工智能也將允許檢測和/或響應系統的測試。最后,這些用于模擬的先進能力本身也帶來了必須加以考慮的顯著倫理/對抗風險。

生成式人工智能的軍事應用存在著嚴峻的倫理挑戰。首先是自主性問題。監督和管理對于人工智能的能力及其相應的自主決策至關重要。在軍事行動中由自主人工智能系統做出的決策可能產生嚴重后果,無論是沖突升級還是未知的損害。這要求現有系統配備監督機制,以確保對人工智能決策的責任追究或自主性,其決策范圍涵蓋從軍事到民用領域。第二個倫理挑戰是武器化。隨著生成式人工智能模型的改進,對手最終也會利用生成式人工智能來武器化新的網絡攻擊或發動人工智能支持的進攻策略。因此,我們必須確保強大的工具在國際法管轄的范圍內以符合倫理的方式使用。此外,人工智能系統中的偏見不容忽視。包括使用生成式人工智能在內的機器學習模型,都可能易受訓練數據中存在的偏見影響。如果這些偏見未被識別,它們必然會影響或玷污決策過程,導致負面的、武斷的或歧視性的結果,尤其是在風險巨大的軍事應用中。存在偏見的AI系統可能導致基于含有偏見的數據錯誤識別威脅或未能識別威脅行為,這會危及軍事系統的安全。

在軍事網絡應用中,生成式人工智能的應用既帶來對抗性風險,也涉及倫理考量。雖然人工智能提高了對事件的檢測和響應速度,但對手可以利用人工智能中的缺陷。網絡攻擊者可以添加對抗樣本并篡改人工智能的訓練數據,導致人工智能錯誤分類威脅或根本未能識別惡意活動。這是一個嚴重問題,特別是在涉及人員生命且生命損失風險以軍事防御規模來衡量的情況下。對抗性人工智能模型甚至可能能夠通過發動一次產生幻影的攻擊來偽造網絡攻擊,使其響應系統不堪重負,或者操縱軍事網絡安全系統陷入另一種、有效的對抗性系統復雜化。本文針對在軍事網絡安全中使用生成式人工智能所涉及的倫理和對抗性問題進行了論述。最終,本文將在后文探討減輕這些擔憂的方法,例如通過對抗性訓練、混合人工智能系統和責任歸屬機制。這項工作的最終目的是確保在恪守倫理原則、公平性和安全性的前提下,軍事領域對生成式人工智能的利用能夠增強網絡安全態勢。本文還將考慮如何在現實世界軍事行動動態多變的背景下,持續研究和評估這些模型對新興網絡威脅的抵御能力。

付費5元查看完整內容

隨著基于大語言模型的商用產品取得顯著進展,人工智能(AI)議題在公共討論中持續升溫。隨著AI能力的發展,人們對其經濟與安全影響的擔憂日益加劇。本報告通過實證預測算法進步的方向、速度與指標,為政策制定提供參考。作者闡釋了AI算法改進的可能路徑,并探討各路徑進展的潛在影響。通過研究數值分析、運籌學與計算機科學領域的算法,界定了新算法引入的實證機制及改進定義方式。

作者指出推動AI系統近期發展的兩大關鍵驅動力:允許廣泛改進的新型合成數據生成方法,以及具備更高數據效率的替代架構。若無此類改進,小型模型可能主導市場。若僅實現單一路徑突破,小型模型或成主流,但大型模型仍有存在價值。若雙路徑均獲進展,大型模型可能提供更具實用價值的能力。

主要發現

算法改進存在兩條潛在高影響力路徑:

  1. 通過生成合成數據或修剪現有數據,構建更適配AI訓練的數據集以改進算法。
  2. 開發數據效率更高的算法(相比Transformer模型計算成本更低或單次迭代效率更優)。

這些路徑可能催生三種AI發展情景:

  • 若數據限制成為瓶頸:當額外數據不可獲取導致模型無法有效擴展時,小型專用AI系統可能主導市場。
  • 若算法擴展失敗:當通過合成生成獲取額外數據但新算法無法有效提取性能增益時,大型模型研發或持續,但小型系統仍占主流。
  • 若算法持續進步:當數據充裕且算法能高效利用時,更大規模模型將在近期AI研究中占據重要地位。

付費5元查看完整內容

本報告是系列研究之一,旨在分析新興技術對美國國土安全部(DHS)任務與能力的影響。作為研究組成部分,作者團隊開發一套技術與風險評估方法論,用于評估新興技術并理解其在國土安全背景下的潛在影響。該方法論與分析為DHS提供了理解新興技術及其風險的基礎框架。

確保太空關鍵通道的可靠接入已成為經濟與國家安全的重要命題。鑒于DHS廣泛的國土安全職責與權限(作為美國政府最大的執法機構),該部門在諸多依賴太空可靠接入的活動中具有核心利益,特別是在與16個關鍵基礎設施部門相關或位于其中的領域。

在技術評估中,作者團隊考察了四個維度:技術可用性,以及風險與情景(細分為威脅、脆弱性和后果)。風險與情景分析由DHS科技政策辦公室和DHS政策辦公室提供。研究團隊將這四個維度置于三個時間段進行比較——短期(最多三年)、中期(三至五年)和長期(五至十年)。具體而言,研究聚焦未來十年內通信與成像衛星、太空數據中心與存儲設施、太空研發、太空增材制造、商業能源生產及太空采礦等領域的技術進展。

主要發現

  • 隨著衛星性能提升與發射成本降低,關鍵基礎設施將日益依賴天基能力。然而,這種依賴性將導致太空環境愈發呈現競爭性、擁擠性與對抗性特征,使關鍵基礎設施面臨更多元化的風險敞口。
  • 太空技術可及性在未來十年研究期內將呈現穩步發展態勢,但各項技術的成熟度差異顯著。與太空領域關鍵基礎設施應用相關的風險(威脅、脆弱性及后果)需待系統實現規模化部署后才會充分顯現。
  • 早期應用可能涵蓋多種活動:太空旅游可能涉及長期駐留;太空數據中心處于規劃階段,未來三至五年內或完成原型驗證;制造與采礦預計需五至十年時間框架方能實現;某些應用(如商業能源生產和大規模太空采礦)在十年研究周期結束時仍難以突破原型驗證階段。
  • 研究團隊評估認為,太空科技成熟度將持續提升,催生新應用場景、需求與市場力量,進而驅動創新迭代。技術的遞歸特性意味著,隨著科技成熟度取得成功,新的應用場景、需求和市場力量將會被識別,反之亦然。

付費5元查看完整內容

本文探討了人機協同(HMT)和人機自主協同(HAT)在加強歐洲陸軍維持行動方面的變革潛力。文章探討了這些模式如何通過將人類的適應性與自主的精確性和效率相結合,徹底改變后勤、戰場維修和醫療支持。通過探討動態和有爭議的環境中日益增長的需求,本文強調了歐洲軍隊采用這些技術的戰略重要性,以便在未來大規模作戰場景中實現更強的應變能力和作戰效能。

在作戰環境日益復雜的時代,先進機器和自主系統的集成有可能重塑未來戰爭的實施方式。隨著軍事理論轉向多域作戰,以應對多極世界和大規模沖突的回歸,軍隊必須創新其維持戰略,以滿足現代戰爭的復雜需求。這一發展對于增強軍隊的機動性、應變能力以及在有爭議和動態沖突地區支持分散、聯合和技術一體化部隊的能力至關重要。在這方面,人機協同(HMT)和人機自主協同(HAT)這兩個新興范例尤其具有發展前景,它們將人類的適應性與自動化和機器人技術的精確性和效率相融合,在各種軍事后勤和醫療活動中具有變革潛力。雖然這兩個概念涉及維持網絡的不同方面,但它們協同合作,有望更快地為關鍵支持功能提供更強大、更準確的解決方案。

因此,本文探討了這些范例在重新定義歐洲陸軍前方維持行動方面的潛力,強調了它們在軍隊(再)補給、戰場維修/維護和醫療支持服務方面的作用。本文強調,雖然這些創新會帶來挑戰,包括技術限制和行動整合障礙,但歐洲軍隊必須適應并為未來鋪平道路,在未來,人類專長和自主能力將相互促進,以維持任務并確保行動效力。

付費5元查看完整內容

要點

  • 軍隊越來越多地將人工智能(AI)技術用于決策支持和作戰行動。人工智能不會取代人類,但人員與人工智能技術的互動會更加頻繁。

  • 人機交互實踐有可能深刻改變戰爭中人的能動性(即做出選擇和采取行動的能力)的質量。具體來說,它們在人類和機器之間引入了分布式代理。

  • 分布式代理的形式將在一定范圍內形成,為人類或機器代理保留更多空間。這種做法發生在多個地點,使用多個聯網系統。

  • 要解釋分布式代理現象,就不能把人機互動的挑戰看作是可以直接解決的問題。相反,需要認識到分布式代理提出了基本的操作、倫理規范和法律挑戰。

人工智能技術在圍繞目標選擇的軍事決策過程中的應用似乎越來越廣泛。起初,人工智能在軍事領域的應用主要與武器系統有關,通常被稱為自主武器系統(AWS),可以在沒有進一步人工干預的情況下識別、跟蹤和攻擊目標(紅十字國際委員會 [ICRC] 2021)。世界各國軍隊已在使用武器系統,包括一些閑逛彈藥,這些系統采用人工智能技術來促進目標識別,通常依賴于計算機視覺技術(Boulanin 和 Verbruggen,2017 年;Bode 和 Watts,2023 年)。雖然通常是在人類批準的情況下操作,但閑逛彈藥似乎有可能在沒有人類干預的情況下動態使用武力。事實上,俄羅斯在烏克蘭戰爭中的各種報告都指出,烏克蘭軍隊使用的閑散彈藥在作戰的最后階段無需人類批準即可釋放武力(Hambling,2023 年,2024 年)。這些事態發展堅定地強調了人們長期以來日益增長的擔憂,即在使用基于人工智能的系統時,人類在使用武力決策中所起的作用正在逐漸減弱。

然而,武器系統只是人工智能在軍事領域眾多應用領域中的一個。人工智能技術通常被認為能提高對大量數據的有效和快速分析,使其成為一系列與不同風險程度相關的軍事決策任務的理想選擇,如后勤、征兵、情報和目標選擇(Grand-Clément,2023 年)。在軍事領域,這類系統通常被稱為基于人工智能的決策支持系統(DSS),“協助指揮鏈中不同層級的決策者解決半結構化和非結構化的決策任務”。

軍方正在逐步采用人工智能技術,原因有幾個,其中包括人員問題。人們常常認為,僅靠人的能力無法審查獲取戰場感知所需的大量數據。此外,許多國家的軍隊,如日本和英國,在招募和留住人才方面都很困難,因此越來越多地依賴人工智能來解決人才短缺問題。將人工智能技術融入軍事決策并不是簡單地取代軍事人員。不過,隨著這些技術的發展,它們有可能通過將各種人工智能技術用于描述性、預測性和規范性目的而改變許多軍事人員的工作方式。本政策簡報初步反思和評估了與人工智能技術的互動可能會如何改變人類在軍事領域的代理權行使,即決策和行動的能力。人機互動的實例塑造了人類與人工智能之間的分布式代理。這種分布式代理不能通過將人類和機器視為孤立的單獨實體來理解,因為它是在互動的情況下產生的。

本政策簡報分五個部分研究這一現象: 首先,它研究了人類控制與人類代理之間的關系,認為反思代理而不是控制,可以更全面地研究在軍事領域使用人工智能技術的意義。其次,它對軍方如何談論人機協作和人機系統整合進行了簡要的實證概述。第三,概述了將代理視為分布式代理的含義。第四,它考慮了這種發展可能帶來的作戰、倫理規范和法律后果。第五,它為參與軍事領域人工智能辯論的利益相關者提出了切實可行的前進方向。

關于術語的說明:本簡報承認人工智能是一個總括術語,用于描述 “創造出比程序所設定的功能更強的機器或事物 ”的總體努力。所選用的 “人工智能技術 ”一詞強調了人工智能與社會融合的復雜性、偶然性和可變性,從而也尋求與人工智能的問題炒作保持距離。人工智能技術依賴于各種技術,如計算機視覺、機器學習、語音識別和自然語言處理。在軍事領域,自主性的概念先于人工智能技術,但也與之相關。自主通常是指系統無需人工干預即可執行的功能,如情報分析、機動性或瞄準。本簡報的重點是人工智能技術,可以從技術復雜性不斷增加的角度來理解人工智能技術。此外,軍事領域的人機互動通常被認為既涉及機器人系統,也涉及基于軟件的系統。

付費5元查看完整內容

本文介紹了在戰場數字孿生框架內使用貝葉斯優化(BO)、遺傳算法(GA)和強化學習(RL)等先進技術優化軍事行動的綜合方法。研究重點關注三個關鍵領域:防御作戰中的部隊部署、火力支援規劃和下屬單位的任務規劃。在部隊部署方面,BO 用于根據戰場指標優化營的部署,其中湯普森采樣獲取函數和周期核取得了優異的結果。在火力支援規劃中,采用了 GA 來最小化威脅水平和射擊時間,解決了資源有限條件下的資源受限項目調度問題(RCPSP)。最后,為任務規劃開發了一個 RL 模型,該模型結合了多智能體強化學習 (MARL)、圖注意網絡 (GAT) 和層次強化學習 (HRL)。通過模擬戰場場景,RL 模型展示了其生成戰術演習的有效性。這種方法使軍事決策者能夠在復雜環境中提高行動的適應性和效率。研究結果強調了這些優化技術在支持軍事指揮和控制系統實現戰術優勢方面的潛力。

基于戰場數字孿生的 COA 生成概念

戰場數字孿生是一個數字復制品,代表了真實戰場環境的組成部分和行為特征。它可以通過接收來自實際戰場的實時或接近實時的戰場、敵方和友軍單位信息,并將其動態反映到數字孿生中,從而對數字孿生模型進行評估和調整。換句話說,模型可以根據真實世界的數據不斷更新,以實現更具適應性的分析。這一概念與深綠的自適應執行相一致,后者也依賴于動態更新的信息。通過這種方式,可以向真實戰場系統提供改進的決策反饋,幫助用戶根據數字孿生模型做出更好的決策,而數字孿生模型是根據實際作戰數據更新的。

本節提出了 “基于戰場數字孿生的作戰行動選擇生成與分析 ”概念,通過各種技術方法,利用戰場數字孿生生成作戰行動選擇。然后對這些選項進行評估、效果比較,并推薦最合適的 COA 選項。基于戰場數字孿生的作戰行動選擇生成和分析的基本概念是,利用戰場數字孿生的預測模擬生成作戰行動選擇,同時考慮若干戰術因素(METT+TC:任務、敵人、地形和天氣、可用部隊和支持、可用時間和民用因素)。然后,可在數字孿生環境中對生成的作戰行動方案進行快速評估。圖 2 展示了這一流程的概念圖。生成和分析 COA 的四個關鍵輸入--威脅分析、相對戰斗力分析結果、戰場信息以及指揮官和參謀部的指導--假定來自其他分析軟件模塊和用戶輸入,從而完成智能決策支持系統。有關鏈接分析軟件模塊的更多信息,請參閱 Shim 等人(2023,2024)。

圖 2:基于戰場數字孿生系統的 COA 生成和分析概念。

可以按照圖 1 中概述的戰術規劃流程生成并詳細說明 COA 選項。然而,如前所述,規劃過程中的許多任務都需要人工干預,而人工智能技術的應用仍然有限。因此,我們將重點放在 COA 生成階段,在研究適用技術的同時,找出可以實現自動化和智能化的方面。本研究介紹了在 COA 生成過程中可實現自動化和智能化的三個概念:確定友軍部隊部署、規劃間接火力支援和規劃部隊戰術任務。友軍部隊部署是指部隊到達戰場后如何安排和使用,而部隊部署則是指如何將部隊轉移到指定的大致位置。我們將貝葉斯優化方法應用于友軍部署優化問題,作為 COA 方案生成的一部分。隨著人工智能技術的快速發展,許多研究都探索了基于最先進機器學習算法的全局優化方法。其中,使用高斯過程的貝葉斯優化法作為一種針對實驗成本較高的黑盒函數的全局優化方法受到了廣泛關注(Brochu,2010 年)。對于炮兵作戰,我們將火力支援調度問題歸結為一個項目調度問題,該問題力求在遵守資源限制的同時,最大限度地減少敵方總威脅和發射時間。將項目調度與資源管理相結合的任務被稱為資源約束項目調度問題(RCPSP)。最后,我們利用強化學習(RL)技術為下屬單位規劃戰術任務,以找到最優行動策略。強化學習已經證明,它是在動態和不確定環境中解決復雜決策問題的有效框架。特別是,我們利用多智能體強化學習(MARL)、分層強化學習(HRL)和圖注意網絡(GAT)的原理,為多個單位有效地學習任務及其相應參數,同時從每個智能體的角度考慮其重要性。

在使用所提出的方法生成一系列作戰行動(COA)選項后,將在戰場數字孿生系統中對這些選項進行模擬評估。然后對模擬結果進行評估,以推薦最合適的 COA 選項。在下一章中,將詳細解釋用于實現所建議的 COA 生成概念的技術方法,并提供全面的實驗評估結果,以突出所建議方法的有效性。

圖 8:強化學習的擬議架構。

付費5元查看完整內容

在數字化和戰略競爭日趨激烈的現代,成功與否取決于一個組織是否有能力比競爭對手更好、更快地利用數據和技術。人工智能(AI)技術的飛速發展正在徹底改變公共和私營機構保持領先的方式,影響著傳統的、由人類驅動的分析流程的各個層面。本報告探討了在情報周期中應用人工智能工具的機會,以增強人類分析師的能力,同時減少其局限性,從而推動更加無縫的情報流程

人類分析師擅長批判性思維和直覺判斷。他們解讀細微信息、理解復雜環境并根據不完整數據集做出明智決策的能力無與倫比。然而,數據超載、認知偏差、需要資源密集型培訓以及有限的時間和精力等限制因素卻阻礙了他們的工作效率。相反,人工智能技術擅長數據處理、客觀性和日常任務自動化。它們能以前所未有的速度分析海量數據、識別模式并執行重復性任務,而不會造成身心疲憊。

因此,人類和機器能力的互補優勢表明,分析流程將發生轉變,分析師-機器團隊將自適應地持續合作,以近乎實時的洞察力應對復雜的威脅。這種新模式將需要敏捷的協作框架、能夠有效使用人工智能工具并解讀人工智能生成的洞察力的熟練分析師、可靠而全面的培訓數據和流程,以及強大的監督機制。

付費5元查看完整內容

毫無疑問,今天圍繞人工智能(AI)的最復雜的治理挑戰涉及國防和安全。CIGI正在促進戰略制定:人工智能對軍事防御和安全的影響項目將這一領域的主要專家與來自國防部的40多名公務員和加拿大武裝部隊的人員聚集在一起,討論人工智能對國家安全和軍事領域的力量倍增效應。

這一努力依賴于一系列的四次研討會,以產生關于數據驅動技術如何引發巨大的技術重組的前瞻性思考,這將對加拿大的國防規劃產生深遠影響。具體來說,這些研討會集中在數據治理和政策(道德、云計算、數據準備和互操作性);決策(可信賴性、人機一體化、生物技術和問責制);模擬工具(培訓、兵棋推演、人機合作、機器人、自主和可信的人工智能);以及信息時代的加拿大情報(將人工智能用于情報)。CIGI還主辦了一個研究生研討會,以激勵整個加拿大在全球公共政策、計算機科學和安全等領域學習的新興學者。

報告總結

本文探討了在人工智能(AI)和機器學習背景下的軍事特定能力的發展。在加拿大國防政策的基礎上,本文概述了人工智能的軍事應用和管理下一代軍事行動所需的資源,包括多邊參與和技術治理。

維持先進軍事能力的前景現在與人工智能的武器化直接聯系在一起。作為一項通用技術,人工智能代表著一種力量的倍增器,有能力重塑戰爭規則。事實上,在核彈頭仍然是一種單一的技術應用的情況下,人工智能有能力支持許多不同類型的武器和系統。正如北大西洋公約組織(NATO)的指導意見所指出的,人工智能和其他 "智能 "技術現在對加拿大及其盟國的未來安全至關重要。

新技術在改變戰爭的性質方面有著悠久的歷史。從馬匹和盔甲的使用到航空母艦和戰斗機的引進,人工智能和機器人只是代表了軍事技術發展的最新階段。常規武器與人工智能和機器學習的融合,必將重塑決策的性質和軍事戰略轉型中的武力應用。

即使當代人工智能系統的能力被限制在機器學習算法的狹窄范圍內,這種限制可能不會持續太久。與神經科學、量子計算和生物技術相重疊的發現領域正在迅速發展,代表了 "智能機器 "進化的未知領域。在這些新的研究領域中的科學和技術發現給加拿大的國防帶來了巨大的風險,但同時也代表著巨大的機遇。

顯而易見的是,新興技術已經成為高度緊張的地緣政治競爭的基礎,它與一系列商業產業和技術平臺相重疊。中國、俄羅斯、美國和其他國家和非國家行為者正在積極追求人工智能和其他前沿技術的軍事應用。競爭的領域包括云技術、高超音速和新導彈技術、空間應用、量子和生物技術以及人類增強。

盡管技術創新一直塑造著國家間沖突的性質,但新興和顛覆性技術(EDT)的規模和速度是前所未有的。加拿大的國防政策反映了這種擔憂,它呼吁使加拿大武裝部隊(CAF)適應不斷變化的地緣政治環境。加拿大國防規劃已著手擴大和發展加拿大武裝部隊,在新的軍事平臺整合中納入下一代偵察機、遙控系統和天基設施。

基于對不斷變化的技術環境的廣泛評估,加拿大國防部(DND)認識到,這個新時代的特點是全球力量平衡的變化。這包括在快速發展的創新經濟中大國競爭性質的變化。就像石油和鋼鐵為工業時代設定條件一樣,人工智能和機器學習現在也可能為數字時代設定條件。

這種規模的破壞是由技術和制度變化的融合所驅動的,這些變化可以以新的和不可預測的方式觸發復雜的反饋回路。在這個新的環境中,人工智能技術將迫使世界各國軍隊投射力量的能力倍增。確定軍事人工智能發展中的護欄對于避免未來危機至關重要。應用減少風險的措施來識別和減輕軍事人工智能可能帶來的一系列風險將是關鍵。事實上,在這些能力完全嵌入世界上目前和未來的軍隊之前,治理人工智能可能會更容易。

從整體上看,這種轉變預示著從初級機器到數據驅動技術和精密電子的巨大轉變。這種物理、數字和生物技術的加速融合代表了一場巨大技術革命的早期階段。在全球范圍內管理這些新興和顛覆性的技術,對于減少未來沖突的風險至關重要。

1 引言

從人工智能和機器人到電池存儲、分布式賬本技術(DLT)和物聯網(IoT),新興和顛覆性技術(EDT)現在正在激起一個商業創新的新時代。這一巨大的技術變革景觀正在醞釀一場社會和經濟變革,對中央銀行的發展具有巨大影響。正如北約最近的一份報告所指出的(北約新興和顛覆性技術咨詢小組2020),這些技術包括:

→ 人工智能和機器學習。人工智能/機器學習的發展及其對創新的潛在影響。這包括神經形態計算、生成式對抗網絡,以及人工智能從已經收集或尚未收集的數據中揭示出意想不到的見解的能力。

→ 量子技術。正在進行的從量子過程研究中獲得的知識轉化為量子技術的應用,包括量子計算、量子傳感、量子密碼系統,以及在量子尺度上對材料的操縱和開發。

→ 數據安全。用于保障和損害通信、數據交易和數據存儲安全的算法和系統的設計,包括量子證明加密方法、區塊鏈和分布式賬本架構,以及更廣泛的網絡安全領域。

→ 計算功能的硬件。微型化、電力采集和能源儲存方面的進展,包括在全球范圍內提供數字化關鍵基礎設施所需的物理系統(物聯網)和機器人的廣泛使用及其對全球系統和流程的持續影響。

→ 生物和合成材料。從原子/分子層面的材料設計、合成和操作到中觀和宏觀尺度的創新,支持生物工程、化學工程、基因層面的操作、增材制造和AI介導的生成設計。

正如蒸汽機和印刷術激發了工業革命一樣,人工智能和機器人技術現在也在軍事技術的性質和全球力量平衡方面引發了巨大變革。人工智能的興起并非沒有歷史先例,但伴隨著人工智能的變化表明,需要對國防規劃進行更精確的調整,以適應一個數據驅動的時代。

在大國競爭和多極體系的背景下,人工智能已經成為競爭的一個特別焦點。中國、俄羅斯、美國和其他許多國家都在積極追求人工智能能力,并把重點放在國防和安全方面。例如,中國希望到2030年在人工智能方面領先世界,并期望通過利用大量的豐富數據,擴大其在人工智能產業化方面的領先優勢(Lucas和Feng,2017年)。

事實上,數據和數據驅動的技術現在占據了全球經濟的制高點。整個全球數據經濟的競爭已經與大國競爭密不可分(Mearsheimer 2021)。盡管美國和中國的經濟深深地相互依存,但中國在整個歐亞大陸不斷擴大的投資將很快使其成為世界貿易的中心。

技術優勢仍然是北約國家的關鍵支柱,但中國正在迅速趕超。即使美國在人工智能發現方面建立了強大的領先優勢,中國也越來越有可能在人工智能驅動的應用產業化方面占據主導地位。中國不僅有先進的商業能力,而且還有一個連貫的國家戰略。中國的技術部門正在達到專業知識、人才和資本的臨界質量,正在重新調整全球經濟的指揮高度(Lucas and Waters 2018)(見圖1)。

中國產業部署的大部分技術創新都是 "漸進式 "的,而不是 "顛覆式 "的,但現在這種情況正在改變。將新興市場聚集在其軌道上,中國前所未有的經濟擴張現在對世界經濟產生了引力(The Economist 2018)。標志性項目,價值數萬億美元的 "一帶一路 "倡議(世界銀行2018年)為圍繞電動汽車、電信、機器人、半導體、鐵路基礎設施、海洋工程以及最終的人工智能的廣泛戰略轉變提供了一個全球平臺(McBride和Chatzky 2019年)。

毫不奇怪,中國已經是國際專利申請的世界領導者(世界知識產權組織2020)。隨著自主機器(Etzioni和Etzioni 2017)、可再生能源基礎設施、量子通信(?iljak 2020)、增強型腦機接口(Putze等人2020)和天基武器(Etherington 2020)的出現,重新思考加拿大國家安全,特別是加拿大國防的性質的壓力正在增加。鑒于技術創新的步伐不斷加快,以及亞洲作為世界貿易中心的崛起(Huiyao 2019),來自國外的技術的影響可能是巨大的。

圖1:按購買力平價計算的國內生產總值預測(以萬億美元計)

2 AI與軍事防御

2.1 AI定義

人工智能的概念已被廣泛討論,但該術語的精確定義仍然是一個移動的目標。與其說人工智能是一項具體的技術或特定的創新,不如說它是一個材料的集合。事實上,即使人工智能技術已經成為廣泛的主流商業應用的基礎,包括網絡搜索、醫療診斷、算法交易、工廠自動化、共享汽車和自動駕駛汽車,人工智能仍然是一個理想的目標。

盡管人工智能領域的研究始于20世紀40年代,但隨著機器學習和計算機處理能力的改進,過去十年對人工智能興趣的爆炸性增長已經加速。人工智能的持續進步被比喻為在人腦中發現的多尺度學習和推理能力。當與大數據和云計算相結合時,預計人工智能將通過將 "智能 "人工智能和機器學習系統與第五代(5G)電信網絡(即物聯網)上的大量聯網設備連接起來,使數字技術 "認知化"。

作為人工智能的一個子集,機器學習代表了人工智能的最突出的應用(見圖2)。機器學習使用統計技術,使機器能夠在沒有明確指令的情況下 "學習",推動許多應用和服務,改善一系列分析和物理任務的自動化。通過使用數據自動提高性能,這個過程被稱為 "訓練 "一個 "模型"。使用一種算法來提高特定任務的性能,機器學習系統分析大量的訓練數據集,以便做人類自然而然的事情:通過實例學習。

今天,機器學習的最常見應用是深度學習。作為更廣泛的機器學習家族的一部分,深度學習利用人工神經網絡層來復制人類智能。深度學習架構,如深度神經網絡、遞歸神經網絡和卷積神經網絡,支持一系列廣泛的研究領域,包括計算機視覺、語音識別、機器翻譯、自然語言處理和藥物設計。

圖2:人工智能的層級

2.2 加拿大國防部:將人工智能應用于國家安全

安全人工智能位于新興和顛覆性技術(EDT)星座的中心,包括機器人學、基因組學、電池存儲、區塊鏈、3D打印、量子計算和5G電信。在研究層面,美國仍然是人工智能的全球領導者。目前,國家科學基金會每年在人工智能研究方面的投資超過1億美元(國家科學基金會2018年)。國防高級研究計劃局(DARPA)最近宣布投資20億美元用于一項名為AI Next的計劃,其目標是推進上下文和適應性推理(DARPA 2018)。

與過去的原子武器或隱形飛機的技術發展不同,沒有國家會壟斷軍事人工智能。研究人員和領先的商業企業之間廣泛的全球合作意味著人工智能和機器學習的進步可能會在全球范圍內擴散。事實上,人工智能發展的大多數技術進步是由工業界而不是政府推動的。除了市場主導的技術公司,世界各地廣泛的網絡集群正在孵化新一代的商業創新(Li and Pauwels 2018)。因此,許多未來的軍事應用將可能是為商業產業開發的技術的改編。

幸運的是,加拿大一直是人工智能研究前沿的領導者,并繼續通過2017年推出的泛加拿大人工智能戰略下的幾個項目培育一個強大的人工智能生態系統。加拿大政府積極參與人工智能咨詢委員會和各種國際伙伴關系,包括2020年啟動的全球人工智能伙伴關系;人工智能國防伙伴關系,其第二次對話在2021年舉行;以及重疊人工智能驅動的安全和規劃的多邊協議(五眼,北約)。事實上,加拿大的國防政策,"強大、安全、參與"(SSE),反映了加拿大政府對增加年度國防開支的承諾,重點是技術。

目前的聯邦預算包括對人工智能發展的實質性承諾,承諾在10年內投入4.438億美元(Silcoff 2021)。在政府2021年的預算中,1.85億美元將支持人工智能研究的商業化;1.622億美元將用于在全國范圍內招聘頂尖的學術人才;4800萬美元將用于加拿大高級研究所;五年內4000萬美元將旨在加強埃德蒙頓、多倫多和蒙特利爾的國家人工智能研究所的研究人員的計算能力;五年內860萬美元將幫助推進人工智能相關標準的發展和采用(加拿大政府2021年,148)。

2.3 增強加拿大的情報能力

人工智能是一個影響廣泛的商業和軍事技術的模糊領域。像電力或化石燃料一樣,人工智能的廣泛應用意味著人工智能和其他通用技術有能力重新配置現代軍隊的步伐和組織(Bresnahan和Trajtenberg 1995)。從整體上看,人工智能代表了國家安全性質的結構性轉變。出于這個原因,SSE設想了一個未來的軍事態勢,更加注重開發、獲取和整合先進的變革性技術,包括網絡和自主系統。

即使加拿大在傳統聯盟(北美防空司令部、北約和五眼聯盟)中的持續作用仍然是國家安全的基礎,EDT正在從根本上改變沖突的性質。正如格雷格-菲夫(2021年)所觀察到的,人工智能作為戰爭工具的崛起與升級加拿大國家安全架構,特別是加拿大情報部門的日益增長的需求相重疊。技術變革和信息爆炸的復合周期,新的技能組合和新的數據分析戰略對國防規劃的演變變得至關重要。

在數字時代,戰爭正日益成為基于知識的戰爭。隨著沖突進入信息領域,軍事規劃開始重新聚焦于信息/虛假信息行動、網絡行動、情報行動和政治或經濟影響行動。事實上,這種混合戰爭作為一種戰爭工具由來已久,其目的是利用宣傳、破壞、欺騙和其他非動能軍事行動,從內部破壞對手(Bilal 2021)。

網絡仍然是潛在對手、國家代理人、犯罪組織和非國家行為者的一個關鍵目標。這包括對通信、情報和敏感信息的嵌入式監視和偵察。正如Amy Zegart(2021年)所解釋的那樣,技術正在通過極大地擴展數據和信息的獲取,使情報的性質民主化。事實上,今天驅動戰略情報的大部分信息實際上是開放源碼情報(OSINT)或在公共領域。

現代軍隊正變得嚴重依賴安全、及時和準確的數據。隨著數據的急劇膨脹,消化它變得不可能。這種數據爆炸正在推動對新的分析模式和新型網絡工具的需求。在數字時代,安全和情報人員需要新的平臺、新的工具和跨領域工作的新OSINT機構。在這方面,人工智能可能特別有幫助。

隨著數據的重要性增加,在廣闊的數字領域的對抗性競爭也在增加。人工智能和機器學習可以通過篩選巨大的數據庫來極大地提高加拿大的國家情報能力。人工智能不是銀彈。人工智能系統不能產生意義或提供因果分析。然而,人工智能和機器學習可以極大地增強人類在管理數據和數據驅動的分析方面的情報能力。

2.4 增強加拿大軍力

隨著決策者為數據驅動的世界調整其安全態勢,人工智能有望改變軍事沖突的既定模式。DND/CAF面臨的關鍵挑戰之一是數據驅動的網絡重塑指揮和控制系統的速度(Thatcher 2020)。集中式系統的優勢在于其協調人類活動的效率。在指揮系統中,人員和傳感器推動威脅檢測,將信息向決策堆棧上移,以便決策者可以做出適當的反應。數字技術深刻地加速了這個過程。

人工智能在軍事領域的應用可能被證明對傳統的指揮和控制系統具有挑戰性。例如,在美國,五角大樓的第一位首席軟件官最近辭職,以抗議技術轉型的緩慢步伐。在離開國防部職位后的一次采訪中,尼古拉-沙伊蘭告訴《金融時報》,美國未能對技術變革和其他威脅作出反應,使國家的未來面臨風險(Manson 2021)。

除了變化的速度緩慢,軍事指揮和控制系統的集中性意味著單點故障提供了脆弱的攻擊點。指揮機關和自動或人類控制者往往容易受到利用不良或欺騙性信息的對抗性技術的影響,甚至自上而下的決策在適應復雜的突發挑戰方面也會很緩慢。

神經形態計算、生成式對抗網絡(GANs)、人工智能決策支持、數據分析和情報分析方面的新創新在增強軍事行動的結構和進程方面可能會產生巨大影響。機器學習算法的快速發展已經在商業和軍事領域引發了一波投資熱潮。

超越對損耗和動能攻擊的傳統關注,轉向基于加速和適應的新方法,數據驅動的技術可能是促成國家安全性質徹底轉變的關鍵。人工智能不是一種單一的技術。相反,它是一類可以在一系列軍事和商業應用中整合的技術。這些技術不斷演變的基礎是數據。

數字技術現在由數據推動,并將繼續推動創造越來越多的數據驅動的技術--特別是人工智能。數據是訓練人工智能和先進機器學習算法的基礎。數據既是大規模運行的數字系統產生的 "操作廢氣",也是機器對數據輸入作出反應的過程,它現在推動了機器的 "自主性"。

數據驅動的技術支撐著現代社會的核心社會和經濟功能,涵蓋了基礎設施、能源、醫療保健、金融、貿易、運輸和國防。隨著5G網絡的全球推廣,預計在高度健全的全球信息網絡中創建、收集、處理和存儲的數據將出現爆炸性增長。根據市場研究公司IDC的數據,目前全球數據正以每年61%的速度增長(Patrizio 2018)。預計到2025年,數據將達到175 zettabytes(一萬億吉字節),改變數字經濟的性質和規模(同上)。

出于這個原因,DND/CAF將數據提升到國家資產的水平是明智的。這對經濟增長和加拿大國防都至關重要。將數據作為國家資產加以保護和利用,將意味著重新思考目前構成當代數據架構的大型集中式數字基礎設施。可以肯定的是,網絡時代的數據安全應該是分散的和聯合的,以避免集中式系統的脆弱性。

3 武器化AI:致命的自治系統

關于技術破壞的傳統預測往往會犯一個錯誤,即假設這種規模的系統變化只是以一對一的方式取代舊技術。在現實中,這種規模的顛覆往往會不成比例地取代舊的系統,使其具有巨大的新的架構、界限和能力(Arbib和Seba 2020)。

正在進行的人工智能武器化正在助長一場全球軍備競賽,有望重塑加拿大國防戰略的輪廓。事實上,世界上許多國家在人員系統自動化、設備維護、監視系統以及無人機和機器人的部署方面已經遠遠領先(斯坦利和平與安全中心、聯合國裁軍事務廳和史汀生中心2019)。從美國到俄羅斯到以色列再到中國,軍事研究人員正在將人工智能嵌入網絡安全舉措和支持遠程手術、戰斗模擬和數據處理的機器人系統。

以先進的物流、半自動車隊、智能供應鏈管理和預測性維護系統的形式將人工智能應用于軍事行動代表了人工智能的近期應用(Perry 2021)。然而,能夠在陸地、海洋、空中、太空和網絡領域針對個人(無論是否需要人類干預)的自主武器的演變代表了軍事沖突的可能未來(見圖3)。事實上,近100個國家的軍隊目前擁有某種程度的武裝或非武裝無人機能力(Gettinger 2019)。

圖3:全球無人機激增

商業無人機技術在采礦、農業和能源領域的縱橫捭闔,正在助長無人機技術的廣泛擴散。正如最近亞美尼亞和阿塞拜疆之間的沖突所表明的那樣,一群相對便宜的自主和半自主無人機可以被利用來壓倒傳統的軍事系統,使一系列當代平臺變得過時(Shaikh和Rumbaugh 2020)。輕型、可重復使用的武裝無人機,如土耳其的Songar(Uyan?k 2021)可以配備一系列有效載荷,包括迫擊炮、手榴彈和輕機槍。最近對沙特阿拉伯的Abqaiq石油加工設施(Rapier 2019)和俄羅斯的Khmeimim空軍基地(Hambling 2018)的攻擊反映了軍事無人機在不同戰場環境中的應用越來越多。

致命自主武器系統(LAWS)被定義為可以在沒有人類授權的情況下選擇和攻擊目標的武器,它被設計為在獨立識別目標之前在指定的行動區域內長期徘徊。多個無人機或機器人可以并行運作,以克服對手的防御或摧毀一個特定目標。開發人員傾向于將致命性武器系統分為三大類,即觀察、定位、決定和行動(OODA)循環(見圖4)。這些類別包括。"循環中的人"、"循環中的人 "和 "循環外的人"。這種區分也被框定為 "半自主"、"受監督的自主 "和 "完全自主 "的技術系統。不幸的是,受監督的致命性自主武器系統和完全自主的致命性自主武器系統之間的區別,可能只是一個軟件補丁或一個監管程序。

圖4:OODA環

隨著致命性自主武器系統和其他數據驅動的技術變得更便宜和更廣泛,它們可能會給廣泛的國家和非國家行為者提供平臺和工具,以新的和破壞性的方式利用人工智能和機器學習。除了收緊OODA循環外,軍事人員將需要了解人工智能在加速OODA循環方面的影響,以確定在特定情況下哪種模式最合適。

3.1 網絡平臺

鑒于EDT的范圍和規模,認為我們可以簡單地保持從上個世紀繼承的系統和做法是錯誤的。正如英國查塔姆研究所2018年的一份報告所警告的那樣,美國、英國和其他核武器系統正變得越來越容易受到網絡攻擊(Unal and Lewis 2018)。這些擔憂是有根據的。人工智能和EDT的擴散一起,幾乎肯定會通過利用人工智能和自主系統的規模效應,為小國和非國家行為者帶來好處。

對于許多北約國家來說,網絡平臺已經成為多領域行動的關鍵--海、空、陸、網絡和空間。大規模的網絡使得在復雜環境中可視化和協調大量資源成為可能。在5G電信和云計算的基礎上,信息系統現在可以有效地收集、傳輸和處理大量的戰場數據,提供實時數據分析。

連接設備正在成為協調空襲、駕駛無人機、消化戰斗空間的實時視頻和管理高度復雜的供應鏈的關鍵。在英國,國防數據框架提供了一個結構,以解決軍事組織與數據驅動的企業需求相一致的挑戰(Ministry of Defence 2021)。從戰略到通信到后勤到情報,數字平臺現在是協調復雜軍事行動的基礎。數據現在是所有作戰領域的命脈。

在一個數字化的戰斗空間中,每個士兵、平臺和資源現在都是一個復雜軍事網絡中的節點。從20世紀90年代以網絡為中心的美國軍事行動開始,數字技術已經成為先進武器、戰術和戰略的基礎。從戰場態勢感知和自主無人機到精確制導彈藥和機器驅動的心理行動,網絡正在使戰爭進入網絡時代。

在集中式機構對工業時代至關重要的地方,平臺和網絡正在成為數字時代的關鍵。人工智能本質上是一種 "自下而上 "的技術,依靠不斷 "喂養 "大量的數據來支持機器學習作為 "學習引擎"。隨著數字生態系統的激增,網絡平臺和它們所依賴的數據管理系統成為管理不斷擴大的資源和人員的關鍵。

與金融部門一樣,DND應該尋求區塊鏈等DLT,以加速加拿大軍隊的數字化轉型。通過在分散的網絡中橫向分配數據,CAF區塊鏈可以幫助減少官僚化系統固有的限制和脆弱性。DLT提供了一個高度分散的驗證系統,可以確保所有的通信和數據傳輸免受對手的攻擊,同時消除集中式節點的潛在故障。

3.2 無人機群和機器人技術

人工智能在軍事規劃中的應用正在迅速推進,許多國家在部署無人機和機器人方面已經取得了很大進展。事實上,無人機技術的全球擴散正在順利進行中。

世界各地的軍隊正在加速開發或采購攻擊型無人機(見圖5)。俄羅斯的 "閃電"(BulgarianMilitary.com 2021)、西班牙的Rapaz8以及英國、9美國10和以色列11的各種無人機項目共同代表了軍事技術新時代的早期階段。與工業時代的軍事技術不同,無人機可以以低成本獲得,并需要相對較少的技術技能。

無人機群技術涉及微型/迷你無人機/無人駕駛飛行器或無人機群,利用基于共享信息的自主決策。事實上,當代軍用無人機已經可以被設計成在沒有人參與的情況下定位、識別和攻擊目標。利用蜂群技術,數以百計的非武裝無人機可以從現場收集信息,同時用各種武器(即火器、火炮和/或彈藥)引導數以千計的無人機。

正如簡短的視頻 "Slaugherbots "所展示的那樣,完全自主的武器將使瞄準和殺死獨特的個人變得非常容易和便宜。在面部識別和決策算法的基礎上,國家和非國家行為者都可以廣泛使用致命性武器。數以千計的相對便宜的無人機配備了爆炸性的彈頭,有可能壓倒防空系統,攻擊基礎設施、城市、軍事基地等等。

圖5:無人機對比

3.3 馬賽克戰爭

無人機群壓倒加拿大軍事設施的威脅,以及對關鍵基礎設施的網絡攻擊或在衛星傳感器檢測到威脅時自動發射的高超音速導彈,代表了一個令人不安但越來越可能的未來。從復雜性科學和對昆蟲的研究中產生的,使用無人機來支持 "集群情報 "代表了一個加速戰爭節奏的新工具集。

為了應對這種不斷變化的環境,DARPA提出了 "馬賽克戰爭"的概念。馬賽克戰爭的中心思想是,模塊化系統可以成為應對高度網絡化環境的廉價、靈活和高度可擴展的工具。就像馬賽克中的瓷片一樣,單個作戰平臺可以被設計成高度可配置的。編隊利用分散的代理在 "殺戮網 "上進行重新配置。殺戮網的目標是避免 "單體系統 "的結構僵化。

與傳統戰爭中需要的復雜棋局不同,馬賽克戰爭利用數字網絡,利用模塊的靈活性和增強的決策(時間壓縮)加快動態響應時間。像自然界中的復雜系統一樣,殺傷性網絡使用算法來消除單點故障,通過模塊化設計加速反應時間。

從主導地位(預測)轉向加速反應(適應),"馬賽克戰爭 "旨在支持混合軍事單位,利用 "決策棧 "上下的橫向網絡。人工智能、無人機、傳感器、數據和人員結合在一起,為地面上的作戰指揮官提供支持,使小型編隊能以更快的速度獲得情報、資源和后勤資產。

像 "馬賽克戰爭 "這樣的模塊化系統表明,未來的戰爭將越來越多地利用現在驅動戰爭游戲和模擬的計算、數據分析和算法。推動高度流動、游戲化和不可預測的環境,未來的人工智能系統可以將戰爭加速到一個隨著結果范圍的擴大而變得極其密集的計算速度和節奏。

DARPA最近的AlphaDogfight(2019-2020年)為這一新現實提供了一個窗口。使用復雜的F-16飛行模擬器讓計算機與有經驗的人類飛行員對決,試驗的目的是為DARPA的空戰進化計劃推進人工智能開發者。毫不奇怪,F-16人工智能代理通過積極和精確的機動性擊敗了人類飛行員,而人類飛行員根本無法與之相提并論,五局為零。

4 對抗性攻擊

人工智能的武器化也在激起對抗人工智能系統的新戰略和方法。正如網絡行動(無論是間諜活動還是攻擊)可以指示計算機網絡或機器以它們不打算的方式運行,對手也可以對人工智能系統使用同樣的策略。這個過程被稱為對抗性機器學習,旨在找出機器學習模型的弱點并加以利用。攻擊可能發生在開發或部署階段,包括通過提供欺騙性輸入(例如,"毒化"數據)或針對模型本身來誤導模型。

這些方法在國家安全環境中特別危險,因為在許多情況下,它們是微妙的,人類無法察覺。此外,具有挑戰性的是,對手不一定需要對目標模型的具體知識或直接訪問其訓練數據來影響它。隨著人工智能系統變得更加普遍,更多的人可以接觸到,對手的吸引力和攻擊機會將增加。

4.1 攻擊數據

攻擊者可能試圖修改訓練數據或測試數據。這是通過創造對抗性樣本來實現的,這些樣本被故意 "擾亂 "或改變并提供給模型,從而導致錯誤。例如,通過改變洗衣機圖像的分辨率,研究人員能夠欺騙一個模型,將機器分類為 "安全 "或 "擴音器"(Kurakin, Goodfellow and Bengio 2017)。對人的眼睛來說,對抗性圖像看起來幾乎是一樣的。

在國家安全方面,對手可能會試圖使用同樣的技術來暗示武器系統實際上是一個社區中心。如果這是在孤立的情況下發生的,那么這個問題很可能被識別和解決。如果對手的樣本被長期大規模使用,這可能成為一個重大的挑戰,并影響對情報收集系統的信任。

此外,一些對手可能并不精確--或有技能--并可能試圖迫使一個模型對整個類別而不是特定類別進行錯誤分類。由于我們在國家安全環境中越來越依賴計算機圖像,并不總是能夠實時或在有爭議的空間進行驗證,因此在這種攻擊中出現誤判的風險是很大的。

高后果的人工智能系統并不是對抗性攻擊的唯一目標。受對抗性樣本影響的人工智能系統可以包括生物識別,其中假的生物特征可以被利用來冒充合法用戶,語音識別中攻擊者添加低量級的噪音來混淆系統(Zelasko等人,2021)和計算機安全(包括在網絡數據包中混淆惡意軟件代碼)。

由于DND/CAF尋求通過部署人工智能系統來提高效率--如軍艦上的語音助手(McLeod 2019)--必須在部署前評估對抗性使用的風險并制定對策。

4.2 攻擊模型

除了改變輸入,另一種攻擊方法可用于逆向工程模型以獲取訓練數據(Heaven 2021)。由于機器學習模型對訓練數據的表現比新的輸入更好,對手可以識別目標模型預測的差異,并與包括個人身份信息在內的已知數據相匹配(Shokri等人,2017)。隨著機器學習即服務變得越來越多--而且在許多情況下,被用作開發更復雜的能力的基礎--DND將需要仔細審查國家安全系統的數據泄漏風險。這甚至適用于看似無害的系統,如語音助手。

人工智能系統的弱點的例子很多(Hadfield-Menell等人,2017)。這些例子包括吸塵器將收集到的灰塵彈回它剛打掃過的地方,以便它能收集更多的灰塵,或者數字游戲中的賽艇在原地循環以收集分數,而不是追求贏得比賽的主要目的。雖然這些例子沒有生命危險,但同樣的技術--被稱為獎勵黑客(當一個模型被指示使其目標函數最大化,但卻以非故意的方式進行)--可以被用于更嚴重的效果。

從旨在用固定的訓練數據解決 "單步決策問題 "的機器學習過渡到解決 "順序決策問題 "和更廣泛的數據集的深度機器學習,將使對抗性攻擊更難發現。這種威脅是如此之大,以至于美國情報高級研究項目活動正在資助一個項目,以檢測木馬人工智能對已完成系統的攻擊。令人擔憂的是,政府可能會在不知情的情況下操作一個產生 "正確 "行為的人工智能系統,直到出現 "觸發 "的情況。例如,在部署過程中,對手可能會攻擊一個系統,并在更晚的時候才導致災難性的故障發生。這些類型的攻擊可能會影響到圖像、文本、音頻和游戲的人工智能系統。

4.3 防御和反制措施

正如對抗性樣本可以用來愚弄人工智能系統一樣,它們可以被納入訓練過程中,以使它們對攻擊更加強大。通過對最重要的國家安全人工智能系統進行清潔和對抗性數據的訓練--要么給它們貼上這樣的標簽,要么指示一個模型將它們分離出來--更大的防御是可能的。但是,復雜的對手很可能會自行躲避這種防御方法,而使用額外的戰術進行深度防御將是必要的。

GANs有各種各樣的用例,從創建深度假說到癌癥預后(Kim, Oh and Ahn 2018)。它們也可用于防御對抗性攻擊(Short, Le Pay and Ghandi 2019),使用一個生成器來創建對抗性樣本,并使用一個判別器來確定它是真的還是假的。一個額外的好處是,使用GANs作為防御,實際上也可能通過規范數據和防止 "過度擬合 "來提高原始模型的性能(IBM云教育2021)。

對抗性攻擊和防御模型進行基準測試--如使用GANs--是一種全面的對策,可以對AI系統進行比較。這種方法為制定和滿足安全標準提供了一個量化的衡量標準,并允許評估人工智能系統的能力和限制。

作為這個測試和評估過程的一部分,博弈論可能有助于建立對手的行為模型,以確定可能的防御策略。由于人工智能系統無法在傳統的信息安全意義上進行 "修補",因此在部署前應仔細分析針對國家安全人工智能系統的對抗性攻擊的風險,并定期進行審查。此外,訓練有素的模型--特別是那些關于機密數據和最敏感應用的模型--應該得到仔細保護。

5 關于人工智能的全球治理

數據驅動的戰爭的速度和范圍表明,我們正在進入一個新的時代,其中致命性武器系統的潛力--無論是否有人類參與--都可能極大地改變全球力量平衡。從殺手級無人機和人機合作到增強的軍事決策(殺手2020),人工智能技術將使世界各國軍隊投射力量的能力大大增加。正在進行的人工智能武器化也與空間武器化相重疊(《經濟學人》2019年),因為低地球軌道(LEO)日益成為軍事監視、遙感、通信、數據處理(Turner 2021)和彈道武器(Sevastopulo和Hille 2021)的操作環境。

人工智能與低地軌道和致命性自主武器系統的興起,代表了全球安全性質的一個關鍵轉折點。為此,世界各地的學術研究人員、技術企業家和公民都對人工智能的軍事化所帶來的危險表示擔憂。正如他們正確地指出的那樣,在規范負責任地開發和使用人工智能的規范和法律方面缺乏國際共識,有可能造成未來的危機。

5.1 戰爭法則

除了我們在科幻小說中經常看到的對人工智能的夸張描述,重要的是建立適當的制衡機制,以限制人工智能技術可能提供的權力集中。關于管理人工智能和其他數字技術的共同國際規則和條例將塑造未來幾十年的戰爭和沖突的輪廓。在軍事人工智能的發展中制定護欄,對于減少未來沖突的可能性至關重要。

加拿大和其他北約國家積極參與這一討論可能是未來全球和平與安全的關鍵。在發動戰爭的條件(jus ad bellum)和戰爭中的人工智能行為(jus in bello)方面,規范人工智能使用的戰爭法仍有待確定。鑒于美國和中國之間不斷擴大的競爭,需要制定關于致命性自主武器系統的使用及其擴散的條約是再及時不過了。

正如北約所觀察到的,加拿大及其盟國應尋求促進、參與和建立合作機會,以支持開發和應用人工智能和其他EDT的廣泛、全面的架構(北約新興和顛覆性技術咨詢小組2020)。盡管面臨著艱巨的挑戰,全球治理在規范軍事人工智能方面可以發揮重要作用。盡管對人工智能及其武器化有不同的看法,但過去的談判可以作為未來條約的基礎,特別是在定義戰爭規則方面。這包括關于常規武器、核軍備控制、生物和化學武器、地雷、外層空間和平民保護的條約(見圖6)。

到目前為止,《聯合國特定常規武器公約》(CCW)已經監督了一個討論應對自主武器帶來的人道主義和國際安全挑戰的進程。已經提出了一系列監管致命性自主武器系統的潛在方案,包括《特定常規武器公約》下的一項國際條約,一個不具約束力的行為準則,宣布各國承諾負責任地開發和使用致命性自主武器系統。在聯合國之外,2013年發起了 "停止殺手機器人 "運動,目標是完全禁止致命性自主武器系統。

聯合國秘書長安東尼奧-古特雷斯強調了人工智能和其他數字技術的風險和機遇(聯合國2020),并呼吁禁止致命性自主武器系統(古特雷斯2021)。不幸的是,聯合國成員國,特別是聯合國安理會的觀點存在分歧,一些國家認為監管是民族國家的專屬權限,而另一些國家則側重于更多部門的做法。除了人工智能的武器化,在圍繞人權、算法偏見、監控(公共和私人)以及國家支持的或國家支持的網絡攻擊等問題上也存在廣泛的分歧。

對于世界上的主要軍事大國來說,缺乏互信仍然是追求人工智能集體軍備控制協議的一個重大障礙。即使相當多的國家支持提供新的具有法律約束力的條約,禁止開發和使用致命性自主武器,但世界上大多數主要軍事大國都認為人工智能的武器化具有重大價值。鑒于這些分歧,致命性自主武器系統的多邊管理將需要建立信任措施,作為打開政治僵局的軍控進程的手段。

走向平凡的監管 也許制定管理人工智能的政策和監管制度的最具挑戰性的方面是難以準確地確定這些制度應該監管什么。與生物和化學武器不同,人工智能大多是軟件。事實上,人工智能是一個移動的目標:40年前被定義為人工智能的東西,今天只是傳統的軟件。

人工智能是一個模糊的技術領域,影響著廣泛的商業和軍事應用。例如,機器學習算法是搜索引擎(算法排名)、軍用無人機(機器人技術和決策)和網絡安全軟件(算法優化)的成分。但它們也支撐著平凡的行業,甚至兒童玩具(語義分析、視覺分析和機器人技術)、金融軟件和社交媒體網絡(趨勢分析和預測分析)。

與屬于這些平凡的監管領域的產品和流程一樣,人工智能技術不是被設計成最終實體,而是被設計成在廣泛的產品、服務和系統中使用的成分或組件。例如,一個 "殺手機器人 "不是一種特定技術的結果。相反,它是人工智能 "成分 "重新組合的結果,其中許多成分也被用來檢測癌癥或增加駕駛者的安全。

雖然人們傾向于使用一個專門的不擴散鏡頭來監管人工智能,但雙重用途的挑戰仍然存在。與核擴散或轉基因病原體不同,人工智能不是一種特定的技術。相反,它更類似于一個材料或軟件成分的集合。與大多數二元的核不擴散鏡頭相比,可以在食品監管中找到更相關(盡管不那么令人興奮)的監管模式的靈感,特別是食品安全和材料標準(Araya和Nieto-Gómez 2020)。

5.2 治理人工智能

鑒于對人工智能進行全面監管存在重大的概念和政治障礙,治理仍然是一項艱巨的挑戰。一方面,如果我們把人工智能理解為一系列復制人類活動的技術實踐,那么就根本沒有一個單一的領域可以監管。相反,人工智能的治理幾乎重疊了每一種使用計算來執行任務的產品或服務。另一方面,如果我們將人工智能理解為大幅改變人民和國家之間權力平衡的基礎,那么我們就會面臨重大挑戰。

幸運的是,這并不是民族國家第一次面臨影響全球安全的新技術。在第二次世界大戰之后,世界上最強大的國家--美國、英國、蘇聯、中國、法國、德國和日本--對核武器、化學制劑和生物戰的全球治理進行監督。當時和現在一樣,世界必須采取集體行動來治理人工智能。

與冷戰時期一樣,包括定期對話、科學合作和分享學術成果在內的建立信任措施可以幫助減少地緣政治的緊張。為管理軍事人工智能帶來的風險制定一個共同的詞匯,可以為隨著時間的推移制定更有力的人工智能多邊條約提供基礎。

在這方面,經濟合作與發展組織(OECD)已經公布了其關于人工智能的建議,作為一套政府間標準,于2020年2月啟動了人工智能政策觀察站。加拿大和法國政府還與經合組織一起領導了一個全球人工智能伙伴關系(GPAI),旨在成為一個人工智能政策的國際論壇。GPAI的成員專注于以 "人權、包容、多樣性、創新和經濟增長原則 "為基礎的負責任的人工智能發展。

除了GPAI,一些歐洲國家已經呼吁歐盟成員開始一個關于負責任地使用新技術的戰略進程--特別是人工智能。美國已經邀請盟國討論人工智能的道德使用問題(JAIC公共事務2020)。北約已經啟動了一個進程,鼓勵成員國就一系列道德原則和具有軍事用途的電子技術關鍵領域的國際軍備控制議程達成一致(Christie 2020;NATO 2020)。認識到EDT對全球安全的深遠影響,北約于2019年12月推出了EDT路線圖(北約科技組織2020)。

從整體上看,二十一世紀需要進行正式監管。從長遠來看,這很可能包括尋求與禁止生物武器、化學武器和殺傷人員地雷一樣的人工智能條約。然而,鑒于人工智能的創新速度和世界超級大國之間日益擴大的分歧,就人工智能的全球治理進行談判的機會之窗可能正在關閉。

圖6:人工智能的全球治理

6 結論:走向國家創新體系

即使在工業時代即將結束的時候,技術創新也在加速進行(Araya 2020)。自從大約80年前誕生以來,人工智能已經從一個神秘的學術領域發展成為社會和經濟轉型的強大驅動力。人工智能在戰爭中的整合被一些軍事分析家描述為一個不斷發展的 "戰場奇點"(Kania 2017)。在 "技術奇點"(Schulze-Makuch 2020)的概念基礎上,人們越來越多地猜測,人工智能和機器人將超越人類的能力,有效地應對算法驅動的戰爭。

人工智能和其他EDT的演變正在將先進的數據、算法和計算能力匯集起來,以 "認知 "軍事技術。在這種新環境下,現代軍隊正變得嚴重依賴提供安全、及時和準確數據的網絡。數據已經成為數字系統的 "作戰用氣 "和驅動 "智能機器 "的原料。隨著數據重要性的增加,在廣闊的數字領域的對抗性競爭也在增加。事實上,數據的真正價值在于其推動創新的數量和質量。

正如北約關于EDT的年度報告(北約新興和顛覆性技術咨詢小組2020)明確指出,要想跟上技術變革的步伐,就必須在技術的開發、實驗和應用方面保持靈活性和快速迭代。整個CAF的創新能力必須是一個更廣泛的創新生態系統的一部分,該系統有效地整合了公共和私人生態系統的研究和實施。這包括與加拿大工業界合作利用雙重用途的GPT的明確目標,以便利用已經存在的技術。

這種多領域的合作在歷史上被定義為國家創新體系(NSI)(OECD 1997)。事實上,NSI政策和規劃可以采取多種形式,從松散的協調到高度整合的伙伴關系。在美國(Atkinson 2020)、中國(Song 2013)和歐洲(Wirkierman, Ciarli and Savona 2018)應用的各種NSI規劃模式表明,在最大化政府-產業-研究伙伴關系方面可以找到大量的經濟和社會回報。政府應通過稅收優惠、采購和研究資金以及戰略規劃,努力建設加拿大的技術能力。但它不能單獨行動。

國家創新必然取決于機構參與者在一個共享的生態系統中進行合作。出于這個原因,一個協調的加拿大國家統計局將需要在推動長期創新的過程中,人們和機構之間的技術和信息的相互流動。鑒于EDT的許多創新是由工業界主導的,推進公私伙伴關系對加拿大軍隊的發展至關重要。對于國防部/加拿大空軍來說,要推進適合數字時代的軍隊,政府、工業界和學術界將需要以更綜合的方式進行合作。

建立一個強大的加拿大創新生態系統將意味著更廣泛的公私合作和持續的知識和資源的再培訓、培訓和孵化。盡管開發尖端人工智能需要人力資本投資,但大多數人工智能應用現在可以通過開源許可獲得,即使核心學習算法可以在公共平臺和整個學術生態系統中獲得。這種 "開放一切 "環境的影響是對封閉的等級制度和深思熟慮的官方機構的實質性挑戰。

政府程序和規劃將需要適應加速的創新生命周期,以配合EDT積極的淘汰周期。除了與網絡技術相關的巨大的不對稱安全風險外,向數據驅動型軍隊的轉變將需要大量關注數據安全和數據治理。與進行傳統的國家間沖突所需的大量成本和規劃不同,網絡攻擊的破壞性影響可以由僅有一臺個人電腦的小團體對關鍵基礎設施發動。鑒于未來不斷增加的挑戰,大型官僚機構(公司、政府、學術和軍事)的設計變化是不可避免的。

除了對新的和不同的知識、資源和專長的需求,加拿大政府和加拿大軍方將需要平衡硬實力和不斷變化的地緣政治格局的需求。在美國占主導地位的時代之外,二十一世紀正被一個以技術民族主義和后布雷頓森林體系為特征的多極體系所塑造。面對一個快速發展的數字時代,國際合作將是確保和平與安全的關鍵。信息共享、專家會議和多邊對話可以幫助世界各民族國家及其軍隊更好地了解彼此的能力和意圖。作為一個全球中等國家,加拿大可以成為推動這一努力的主要伙伴。

國際治理創新中心(CIGI)

國際治理創新中心(CIGI)是一個獨立的、無黨派的智囊團,其經同行評議的研究和可信的分析影響著政策制定者的創新。其全球多學科研究人員網絡和戰略伙伴關系為數字時代提供政策解決方案,目標只有一個:改善各地人民的生活。CIGI總部設在加拿大滑鐵盧,得到了加拿大政府、安大略省政府和創始人吉姆-巴爾西利的支持。

付費5元查看完整內容
北京阿比特科技有限公司