亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

人形機器人是人工智能與物理世界交互的優質載體。 大模型問世是人工智能發展的分水嶺, 以人工智能大模型為代表的人工智能第三發展階段未來會有一段較長的發展紅利期, 將成為新一輪科技革命和產業變革的重要驅動力量。 人形機器人作為人工智能落地物理世界的優質載體, 將受益于人工智能的快速發展, 其擁有感知、 思考、 決策等能力不再遙不可及。 人形機器人集成人工智能、 高端制造、 新材料等先進技術, 有望成為繼計算機、 智能手機、 新能源汽車后的顛覆性產品。 當前人形機器人正處于從實驗室研發到產業化轉化的關鍵時期, 產業規模快速增長, 生態活力不斷提升。

  應用場景多元化, 勞動力缺口加速機器人產業化進程。 人形機器人下游應用場景豐富, 包括生產制造、 應急救援、 家庭陪護、 教育、 醫療等。 在產業場景中, 人形機器人主要在智能制造領域發力, 如IBM結合AI、 遙感和邊緣計算的力量打造新一代安防巡檢機器人, 亞馬遜采用AI技術驅動機器人用于自動化的倉庫操作和物流處理等。 勞動力缺口擴大導致用工成本上升, 工廠機器替人需求逐漸增加, 有望進一步加速機器人產業化進程。     多方入局, 人形機器人正迎來產業高速發展窗口期。 外資巨頭紛紛加速推進人形機器人業務進程, 2024年3月, OpenAI與FigureAI合作推出通用型機器人Figure01, 全球AI算力頭部廠商英偉達發布人形機器人通用基礎模型ProjectGR00T; 4月, 波士頓動力新版Atlas人形機器人亮相; 5月, 特斯拉發布人形機器人Optimus最新進展視頻, 展現其已具備分揀電池、 行走、 執行工廠任務的能力。 在激烈競爭的市場環境下, 我國人形機器人產業也呈現出蓬勃發展的態勢。 優必選Walker、 小米CyberOne、 達闥Ginger、 傅利葉GR-1等一批國產人形機器人陸續面市, 全球人形機器人產業競爭按下加速鍵。

付費5元查看完整內容

相關內容

具身智能+人形機器人或將成為AI終極形態:人工智能的進步正在成為機器人產業發展的關鍵引擎。生成式人工智能的爆發,催生了初代“AI+機器人”的人形機器人。   政策推進人形機器人發展:國家層面頻繁發布關于機器人的相關政策,特別關注人形機器人這一未來產業的關鍵領域。相關政府部門調整戰略方向,出臺一系列政策推動和引領中國人形機器人產業向高質量方向發展。   市場空間廣闊:隨著人形機器人功能邁向多樣化和普適化,產業分工日趨成熟,成本持續下探,潛在應用場景有望涵蓋制造業、家庭服務等多個領域,市場機遇廣闊。中國電子學會數據顯示,到2030年,中國人形機器人市場規模有望達約8700億元。  

付費5元查看完整內容

人形機器人到達發展奇點:全球又進入新一輪科技涌現期,AI助力下海外人形機器人研發不斷迭代更新,同時國內人形機器人產業也迅速發展,小米、優必選、達闥、追覓、宇數、智元、伊艾克斯、博實股份(排名不分先后)等多家優秀人形機器人公司開始不斷涌現。

  運控算法迭代,機器人走好第一步:谷歌deep mind團隊推出RT-2,李飛飛團隊開發具身智能等系列運控算法推陳出新,大模型、深度學習等前沿內容逐步深入機器人運控算法。多模態大模型主力下,人形機器人產業化進程有望加速。

  硬件設計方案與選擇呈現多元化趨勢:電機、減速器方案,傳感器方案、外觀結構方案多樣化,根據應用場景與應用需求不斷調整。  

付費5元查看完整內容

人形機器人:從專用到通用,打開機器人市場空間。

  人形機器人打開機器人市場空間。人形機器人指具備人類的外形特征和行動能力的智能機器人。傳統機器人一般應用于單一場景,通過特定數據庫進行訓練,例如搬運、送餐、掃地機器人等;而人形機器人基于通用大模型,不限制固定應用領域,運轉時可根據人的指令無縫生成相關代碼并指揮機器人行動。從專用到通用場景的升級,人形機器人有望打開機器人應用場景,遠期市場空間大。

  行業市場空間廣闊。根據優必選招股書,預期2026年全球人形機器人解決方案市場規模將達到80億美元。馬斯克認為,人形機器人將會是今后特斯拉主要的長期價值來源。如果人形機器人和人的比例在2比1左右,則人們對機器人的需求量約100億至200億個,遠超電動車的數量。

  AI助力+商業巨頭入局,產業進展加速。

  人形機器人發展多年,為何近年發展加速?全球第一臺人形機器人于1973年誕生于日本,已發展多年,2022年以來行業迎來密集催化,行業進展加速。我們認為主要原因有以下兩點:(1)通用大模型發展,人形機器人有望迎來技術奇點;(2)特斯拉憑借強大的軟件技術、供應鏈能力有望帶動整個產業的發展。

  人形機器人發展的難點:人形機器人有三大關鍵技術模塊:運動模塊、傳感模塊和人工智能模塊,是現有機器人技術的延伸。目前人形機器人的難點存在三個:(1)人形機器人工作場景復雜,需要更強大的通用型算法以保證動作執行的成功率;(2)人形機器人應用會帶來隱私和安全性問題,需完善行業標準規范;(3)成本控制以實現經濟可行。

  關注上游核心零部件投資機會。

  人形機器人主要由關節、靈巧手、軀干、算法構成。關節:采用減速機+電機的傳動方式,包括旋轉關節和線性關節;靈巧手:能實現細微操作。軀干:軀干包含傳感器、電池管理、和冷卻系統。算法:復用電動車全自動駕駛系統和感知計算單元,硬件包括芯片、攝像頭等。

付費5元查看完整內容

 AI技術發展,機器視覺正從傳統標準化場景過渡到非標準化應用場景。機器視覺行業經過多年發展,目前已被廣泛應用在各行各業,發揮著識別、測量、定位及檢測功能,但其使用場景主要聚焦在標準化檢測領域,整體呈現出自動化、標準化程度高等特點,但伴隨AI技術發展,機器視覺有望從過去標準化應用場景逐步過渡到非標準化應用場景,市場規模有望進一步打開。

  在AI賦能下,行業有望迎來空前發展機會。(1)深度學習算法不斷迭代,人工智能生成內容百花齊放。根據GGII數據,國內機器視覺市場規模有望從21年138億元增長至25年349億元。(2)AI背景下,SAM模型應用不斷拓展。近日Meta發布SAM模型是機器視覺領域的底層突破性技術,極大降低了圖像處理門檻,有望更好推動機器視覺在下游各場景領域的應用。     國產機器視覺廠商正逐步崛起,成為國內市場中堅力量。雖然國內機器視覺行業起步較晚,但經過多年發展,目前也已陸續涌現出優秀的機器視覺廠商,逐步實現進口替代。如以光源為代表的核心零部件已逐步實現國產替代,且正往高端化趨勢發展;3D視覺傳感器正不斷探索潛在的細分領域應用,尋找潛在的增長爆點;而軟件算法亦伴隨AI技術發展不斷升級更新。我們認為:伴隨以SAM模型為代表的AI技術發展,軟件算法門檻有望極大降低,因此更應該關注具備核心技術能力  

付費5元查看完整內容

特斯拉強勢入局人形機器人:廣闊藍海,搶占先機

  人形機器人具備通用性,理論上幾乎能完成所有人類進行的任務,未來將擁有比汽車更大的市場空間。馬斯克曾稱特斯拉汽車是放在輪子上的機器人,特斯拉必然利用這個天然優勢搶占人形機器人廣闊市場的先機。人形機器人與智能汽車協同,也將助力特斯拉以更低的成本實現完全自動駕駛的電車。     AI是特斯拉投入人形機器人的最強競爭力,數據、大模型賦能加速迭代落地     Optimus問世前,人形機器人存在成本高、不智能、控制水平差的缺陷,無法實現量產。而Optimus突破了不智能、難控制的缺陷,采用類似汽車域控制器的控制方式并復用FSD系統,通過閉環數據引擎,不斷升級的感知、規劃控制算法以及高算力、模型訓練效率達8分鐘/個的超算系統共同打通“感知-認知-決策”鏈路,擁有了智能屬性。2023年,以GPT-4為代表的AI大模型迎來突破性進展,將進一步提升特斯拉機器人交互、決策、感知能力,加速迭代落地。OpenAI領投人形機器人公司1X證明了AI在人形機器人領域大有可為。     特斯拉機器人降本潛力大,國產硬件供應商迎來重要機遇     特斯拉機器人在設計上也選擇了硬成本最低、軟成本最大的方式后發制人,類似在自動駕駛感知領域以純視覺方案代替激光雷達。特斯拉機器人硬件成本包括40個關節執行器以及其他結構件。根據我們測算,目前硬件成本占BOM表比例超過50%,要達到2萬美金售價還有84%的降價空間。特斯拉機器人關節執行器采用的零部件種類和現有的工業機器人基本一致,由于沒有像工業機器人一樣對實現高速運動的要求,一定程度上降低了生產難度,因此只需根據人形機器人的特點對零部件進行調整修改就可以進行標準化的大批量生產,而且軸承、齒輪箱、滾珠絲杠、電機等部件可復用特斯拉汽車的供應鏈。國產硬件供應商具備很強的低成本大規模量產能力,迎來了導入特斯拉機器人硬件供應鏈的重要機遇。     站在特斯拉機器人產業化落地起點,國產廠商增長動能充沛  

付費5元查看完整內容

來源:中國信息通信研究院

人工智能技術是釋放數字化疊加倍增效應、加快戰略新興產業發展、構筑綜合競爭優勢的必然選擇。縱觀全球,國內外人工智能相關不斷強化,持續推動釋放人工智能紅利;以深度學習為代表的人工智能技術飛速發展,新技術開始探索落地應用;工程化能力不斷增強,在醫療、制造、自動駕駛等領域的應用持續深入;可信人工智能技術引起社會廣泛關注。人工智能治理受到全球高度關注,各國規制進程不斷加速,基于可信人工智能的產業實踐不斷深入。

近日,中國信息通信研究院正式發布《人工智能白皮書(2022年)》,全面回顧了2021年以來全球人工智能在政策、技術、應用和治理等方面的最新動向,重點分析了人工智能所面臨的新發展形勢及其所處的新發展階段,致力于全面梳理當前人工智能發展態勢,為各界提供參考,共同推動人工智能持續健康發展。

白皮書核心觀點

1、人工智能邁入新階段,將由技術創新、工程實踐、可信安全“三維”坐標來定義和牽引

第一個維度突出創新,圍繞著算法和算力方面的創新仍會不斷涌現。第二個維度突出工程,工程化能力逐漸成為人工智能大規模賦能千行百業的關鍵要素。第三個維度突出可信,發展負責任和可信的人工智能成為共識,將抽象的治理原則落實到人工智能全生命流程將成為重點。

2、人工智能技術創新仍是主旋律,新算法不斷涌現

超大規模預訓練模型推動技術效果不斷提升,繼續朝著規模更大、模態更多的方向發展;“生成式人工智能”技術不斷成熟,未來聽、說、讀、寫等能力將有機結合;知識計算成為推動人工智能從感知智能向認知智能轉變的重要探索;人工智能與科學研究融合不斷深入,開始“顛覆”傳統研究范式。

3、人工智能工程化聚焦工具體系、開發流程、模型管理全生命流程的高效耦合

工具體系層面:體系化與開放化成為研發平臺技術工具鏈的發展特點。 開發流程層面:工程化關注人工智能模型開發的生命流程,追求高效且標準化的持續生產、持續交付和持續部署,最終以最佳的模型進入應用層面產生商業價值。 模型管理層面:企業需要建設對模型生命周期的管理機制,對模型的版本歷程、性能表現、屬性、相關數據、衍生的模型檔案等進行標準化的管理運維。

4、人工智能治理邁入軟硬法協同和場景規制新階段

人工智能治理實質化進程加速推進:各國人工智能治理側重各有不同,但整體上呈現加速演進態勢,即從初期構建以“軟法”為導向的社會規范體系,開始推進以“硬法”為保障的風險防控體系。 典型場景化治理加速落地:各國紛紛注意到人工智能應用場景多樣化和差異化給治理帶來的復雜性,典型場景的治理成為各國的工作重點,特別聚焦于自動駕駛、智慧醫療和人臉識別等領域。

付費5元查看完整內容

從2018年谷歌提出BERT預訓練語言模型至今,超大規模智能模型已經走過了三年的發展歷 程。近年來,預訓練模型成為人工智能領域一大重點研究方向。

大模型技術不僅是學術界重點關注的領域,產業領域也在期待其能夠在各個場景加速落地。人們期待,大模型不僅能夠提升應用服務的智能水平,甚至還能夠催生新的場景和產業模式。

然而,當前全球大模型商業落地仍處于早期探索階段,目前已有很多模型落地的探索,但真正讓大模型成為推動智能產業發展的核心引擎,目前仍存在不小的差距。

今日,智源研究院推出了《超大規模智能模型產業發展報告》,旨在梳理當前大模型領 域產業的發展情況,為讀者提供交流和討論的機會。

本報告將主要分為以下五部分內容。首先,報告將介紹大模型領域的技術發展情況和趨勢。接著,報告將梳理目前已經出現的大模型產業落地模式,提出該模式誕生的條件、特點和優勢。

然后,報告將重點介紹目前大模型已經開展商業化的發展領域,包括國際和國內的落地領域和應用 場景。最后,報告將用兩章內容論述應用存在的問題和解決案例,并提出下一步工作建議。

報告鏈接://baai.org/l/MdRePort

付費5元查看完整內容
北京阿比特科技有限公司