亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

生成高質量標注合成圖像數據的能力,是構建和維護機器學習數據集的關鍵工具。然而,確保計算機生成數據質量達標極具挑戰性。本報告旨在評估并改進"虛擬自主導航環境系統與環境傳感器引擎"(VANE::ESE)生成的合成圖像數據,同時記錄為處理、分析VANE::ESE圖像數據集并基于其訓練模型所開發的全套工具集。研究還呈現多項實驗結果,涵蓋對可解釋AI技術應用的探索,以及在不同合成數據集訓練的多模型性能對比分析。

虛擬自主導航環境(VANE)是由軟件工具與虛擬場景構成的自動駕駛建模與仿真系統集合。其環境傳感器引擎組件(VANE::ESE)專用于在虛擬環境中高精度模擬車輛傳感器物理特性(涵蓋攝像頭、激光雷達、毫米波雷達等)(Carrillo et al. 2020)。本報告聚焦評估、優化VANE::ESE仿真引擎在生成合成圖像數據方面的性能——該類數據用于訓練機器學習(ML)計算機視覺模型,以執行目標檢測與圖像分類任務。合成數據生成能力的核心價值體現在兩方面:首先,因數據基于預設場景生成,可為每個圖像樣本實現自動標注,能零成本構建超大規模數據集;其次,可構建特定虛擬場景生成數據,有效覆蓋現實采集難以企及的高危邊界場景(例如戰損建筑或車輛的圖像數據)。快速生成特定場景的標注數據集對機器人與自主系統等廣泛領域具有重要價值。

然而,利用合成數據訓練ML模型仍面臨雙重挑戰:其一,海量合成數據集存在標注準確性保障及多格式標簽轉換等通用問題;其二,彌合真實數據與合成數據之間的差異尤為困難。現有研究提出多種解決方案——包括通過全域自適應技術改進模型(Wang and Deng 2018)、采用生成對抗網絡轉換圖像(Pfeiffer et al. 2019),以及直接提升仿真圖像的視覺真實感。真實圖像數據存在巨大差異(即便同類物體樣本間亦如此),要在保留準確標注的前提下復現這種差異性與真實度極具挑戰。本研究采用務實性操作路徑優化VANE::ESE圖像數據:接收生成數據集→運用本報告記錄的多重方法與工具分析→向開發團隊反饋優化建議→迭代提升后續數據集質量。

本工作的核心目標是提升VANE::ESE合成圖像數據在目標檢測與分類神經網絡訓練中的泛化能力,次要目標是開發并完整記錄用于處理分析VANE::ESE數據集的軟件工具集。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

網絡空間如同陸地領域,必須予以防御。美國陸軍正通過"防御性網絡作戰項目辦公室"(PM DCO),根據任務與威脅態勢向網絡作戰人員(如網絡防護分隊和區域網絡中心)提供創新型主導性網絡能力。本前沿技術報告深入探析防御性網絡作戰(DCO)的網絡安全測試活動,涵蓋漏洞探測、脆弱性分析、持續監控、情報支持、風險緩釋/修復、事件關聯、滲透測試、威脅仿真及惡意軟件分析等環節。報告界定并闡釋適用于DCO的美國國防部核心網絡安全戰略與政策,探索驗證被測系統效能與網絡彈性的軟件工具及測試場景,最后通過三個具體用例詳述PM DCO實施網絡測試與評估的操作流程。

測試與評估(T&E)對國防部門整體采辦流程至關重要。T&E活動提供關鍵數據,用以驗證全域作戰的功能性、技術性與實戰能力,并在最終采辦或列裝決策前識別、分析、修正系統缺陷。T&E流程賦予決策者與實操工程師充分洞見,協助管控作戰風險、度量技術進展,并在采辦進程演進中評估作戰效能、適用性、生存性及殺傷力。依據《國防部網絡安全測試與評估指南》:網絡安全T&E旨在系統部署前識別并消除威脅軍事能力作戰韌性的可被利用漏洞,涵蓋安全性、生存力及安保體系。早期漏洞發現能顯著降低修復成本,減少對項目進度與性能的影響。

為推進國防網絡安全T&E體系建設,美軍多部門協同保障陸軍武器系統、裝備、網絡安全體系、信息系統及電子戰行動的網絡能力與生存性。國防部已制定相關硬件軟件的研發測試策略指南,并配備專用工具支撐整體T&E與網絡任務。面對日新月異的網絡安全態勢,確保國防部人員掌握規范流程、程序及工具以實施風險管控,保障網絡軍事行動與作戰人員安全至關重要。本報告首先闡述美軍核心測試組織架構;第二章解析適用于DCO的網絡安全戰略;隨后界定DCO項目采用的網絡T&E活動,逐項說明陸軍網絡司令部(ARCYBER)對應的工具鏈與分析手段;最終通過三個典型用例展現PM DCO實施網絡T&E的全過程。

付費5元查看完整內容

在各層次,特別是在戰術邊緣快速傳播地理空間數據的能力,對于應對多域作戰條令所描述的威脅至關重要。美國陸軍工程研發中心地理空間研究實驗室(ERDC-GRL)正在研究如何優化最終用戶設備(EUD)使用的地理空間產品的格式、數據模型、文件大小和質量。本報告介紹了一種由定制軟件和開源工具組成的處理方法,用于優化陸軍地理空間標準可共享地理空間基金會和行業認可的產品,以便在 EUD 上利用。重點研究了綜合視覺增強系統(IVAS),但也對其他設備進行了研究,包括 Nett Warrior 和項目執行辦公室-士兵瞄準系統。此外,還開發了一種壓縮方法,在不降低數據質量的情況下將三維模型數據的大小減少了 9 倍。成果摘要介紹了解決剩余技術問題的步驟,并考慮了未來進一步優化地理空間數據以用于更多 EUD 和戰術應用的工作。

圖 15. 六種計算環境中消耗地理空間數據的陸軍系統總數。(圖片轉載自 AGC 2021。公有領域)。

付費5元查看完整內容

現代戰爭的特點是在復雜的多域作戰環境中與對手展開較量,而對手同樣也會采取一系列復雜的戰術。盡管人們早已認識到在這種環境下作戰所面臨的挑戰,但卻很少以結構化的方式對這種環境的復雜性進行界定或研究。

在本報告中,作者評估了量化戰時環境復雜性的數學策略。在對基于線性代數的方法和蒙特卡羅模擬策略進行比較后,他們提供了一個通用路線圖,明確了每種方法的優勢和局限性。這些方法在兩個作戰案例中進行了演示:一個是簡化的壓制敵方防空力量場景,另一個是古巴導彈危機。

研究問題

  • 文獻中有哪些衡量復雜性的方法和指標?
  • 如何利用這些指標為美國在各作戰空間領域提供作戰優勢?

主要結論

  • 有一些有用的復雜性衡量標準,可用于評估整體系統和決策者個人層面的復雜性。
  • 系統層面的復雜性衡量的是決策過程不斷增加的卷積,反映的是決策者面臨的總體困難。
  • 第二種更細化的方法是研究如何使用不同的指標來確定模擬決策過程中的關鍵點,從而確定可作為目標的特定影響點,以利用其對敵方行動產生巨大影響的潛力。

圖 1.1. 戰略先發制人的對手決策計算圖

圖 3.1. SEAD 流程的概念表示法

圖 3.2. SEAD 流程的二級示意圖

圖 3.3. SEAD 流程的三級示意圖

圖 6.1. 采用藍色反制措施的 SEAD 流程

付費5元查看完整內容

本報告由兩部分組成,第二部分旨在介紹根據小型航行器自動目標識別(SCATR)數據集建立的雷達截面(RCS)預測模型。本部分提供了用于開發 RCS 模型的自適應機器學習策略的路線圖。介紹了分別基于五個自適應特征、兩個真實特征和四個全球定位系統(GPS)特征的 RCS 模型的八個變體。此外,每個 RCS 模型還考慮了 26 個子變體。這些模型子變體涵蓋了大量流行的回歸方法,我們的目標是找到一個最忠實地代表反合成孔徑雷達(ISAR)數據集的回歸器,用于 RCS 預測。性能結果以判定系數和均方根誤差表示。高斯過程回歸在 RCS 建模方面表現突出。報告末尾提出了重要的意見和結論。

加拿大政府(GoC)為其最新的監視衛星星座 RADARSAT Constellation Mission (RCM) 投資超過 15 億美元。國防部/加拿大武裝部隊(DND/CAF)極地 Epsilon 2 (PE2) 資本項目利用從加拿大的三顆 RCM 衛星獲得的合成孔徑雷達 (SAR) 圖像,對海上航道進行全天候監視,以完成其主要國防任務之一。從一開始,加拿大空軍就對其專用的 RCM 船舶探測模式 (SDM) 的性能質量提出了嚴格要求,以履行其保障加拿大海上進場的運行任務。PE2 目前的運行要求是在五級海況下探測大于 25 米的船只,對于大型船只的 RCS,存在相當簡單的半經驗模型,通常用于設計和評估 C 波段專用廣域 SDM 的性能。目標的 RCS 以物理單位平方米(m2)或相對于平方米的分貝(dBsm)為單位,用于衡量反射回雷達的能量大小。盡管 RCS 會因目標屬性(包括尺寸、方向、形狀、入射角、結構和材料等)的不同而產生數量級的變化,但所提出的簡單模型包含一個僅取決于艦船長度的平均值,而忽略了所有其他因素。

未來的下一代系統將面臨更嚴格的要求,例如,DND/CAF 最新版本的《天基監視要求文件》(SBS-RD)中[要求 400.7]規定的對小至 5 米的船只的探測。SBS-RD 正式確定了未來天基監視系統的設計和開發所需的 UNCLASSIFIED 監視要求,代表了整個 CAF 的業務和職能當局所確定的需求,為繼續研究和開發(R&D)提供了信息,并旨在影響未來任務中實施的設計。然而,對于此類小型艦艇而言,簡單的模型無法移植到其他同頻或異頻雷達上,而且任何射頻(RF)都不存在可靠的 RCS 模型。文獻[3]首次嘗試將文獻[1]中的簡單模型適用于 5 至 15 米的小型船只,但仍然只考慮了船只的長度。

本科學報告中的工作旨在向更復雜的 RCS 模型邁出一步,該模型包含多個相關的目標屬性,可用于行業設計符合更嚴格要求的特定 SDM,并評估小型船只的探測性能。這種 RCS 模型可用于可靠地預測未來雷達傳感器的性能和針對小型船只探測進行優化的模式,例如,為 DND/CAF 主要資本國防空間監視增強項目(DESSP)所設想的模式。

付費5元查看完整內容

本報告介紹了美國陸軍研究實驗室內容理解處的研究人員在 2023 財年為采用增強型戰術推理(ETI)框架所做的工作。ETI 的開發旨在支持多智能體環境(數據源智能體、推理模型智能體和決策者智能體)中人工推理研究的實驗和演示。在本報告中,ETI 被用于在跨現實環境中演示基于不確定性的決策推薦功能。從模擬場景的數據開始,再加上額外的外部環境,ETI 智能體對態勢感知信息中的不確定性進行推理,為決策者提供建議選擇。最后,ETI 的產品被轉化為跨現實可視化,以探索新的人機交互模式。

增強戰術推理(ETI)框架的設計和創建是為了支持人工推理研究的實驗和演示。ETI 目前的結構包括三個主要智能體:數據源智能體、推理模型智能體和決策者智能體。數據源智能體分為幾大類:信息(圖像、音頻、文本)、設備、網絡和可視化。數據源智能體可以捕獲數據并將數據傳輸給其他智能體。其他信息系統也可以向這些智能體提供數據。推理模型智能體執行不同方面和不同層次的推理。推理智能體的輸出將有助于生成建議的決策。決策者智能體負責做出最終決策。這些 ETI 智能體可以是模塊化的,允許串行或并行處理,以及獨立或相互依存。在這項工作中,ETI 發揮著決策輔助工具的作用。主要的推理模型是信息不確定性(UoI)模塊。該 UoI 模塊可在決策建議中考慮任何信息的不確定性。ETI 的另一項功能是實現與人類的互動,包括未來的可視化和協作環境。我們在跨現實(XR)環境--運籌、研究與分析加速用戶推理(AURORA)中進行了演示。與 AURORA 等系統集成后,可以探索智能系統與人類交互的新模式。在本報告中,將詳細介紹我們的演示開發過程,包括將模擬環境中的數據映射到可視化環境中,將決策點和 ETI 建議納入行動方案中,以及用 "假設 "情況來增強場景,以探索基于推理的框架的影響。

這項研究的目標是開發、整合和演示基于推理的決策框架。ETI 框架的決策建議被用于師演習訓練和審查系統(DXTRS)中的模擬場景,并在 XR 環境 AURORA 中實現可視化。下文將介紹 DXTRS、場景和 AURORA 可視化的背景情況。

  • DXTRS場景

在該場景中,藍軍(BLUFOR)的目標是向東推進,穿過阿塞拜疆名為阿格達姆區的地區,同時與部署在河東的對方部隊(OPFOR)交戰并將其消滅。(見圖 1)

隨著任務的展開,BLUFOR 將遇到一條阻礙他們前進的河流,他們需要在那里進行濕空隙穿越。(見圖 2)

  • AURORA跨現實共同作戰圖 (XRCOP)

為了探索可視化和與 ETI 的交互,DXTRS 場景和相關的 ETI 推理信息在 XR 環境中顯示。該環境由美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)開發,名為 AURORA。AURORA 為安全、聯網、多設備跨現實信息調解和交互提供了一個通用作戰框架。為了便于可視化,將場景數據集合映射為 AURORA 可以處理的目標光標(CoT)信息。本報告第 3 部分將詳細解釋映射過程。圖 3 和圖 4 顯示了AURORA環境中的場景截圖。

  • ETI 決策建議

如前所述,ETI 的設計是利用各種推理模型作為模塊,允許不同的推理配置。本次工作的推理模型是用戶體驗模塊。UoI 的概念包括產生或捕捉一個值,并用描述符對不確定值進行分類。這為決策者提供了不確定性的上下文信息,并支持對由此產生的建議進行推理。描述符基于格申論文中提出的不完全信息的性質。目前,該分類法包括不一致、損壞、不連貫、不完整、不精確、復雜和可疑。它們共同描述了特定信息源不確定性的原因和類型。

當前版本的UoI表達式是一個加權和,如式1所示。

公式 1. UoI 計算,其中 dp 為決策點,D 為變量,表示可能是任務關鍵因素的決策組成部分,W 為與這些組成部分的重要性相關的權重,T 為分類權重類別(相當于 G),S 為數據來源類別。UoI 值表示數據源和因素對所分類的不確定性的貢獻。

以下是分類法中七個術語的描述:

  • 不一致: 由于來源不同或不一致而導致的不確定性。
  • 錯誤: 因數據源含有錯誤而導致的不確定性。
  • 可疑: 由于信息來源缺乏信息或信息來源可疑而導致的不確定性。
  • 不連貫: 由于信息來源缺乏連貫性或組織性而造成的不確定性。
  • 不完整: 由于信息來源未完成或不完整而造成的不確定性。
  • 不準確: 由于信息來源不準確或不詳細而造成的不確定性。
  • 復雜: 由于信息來源錯綜復雜或令人困惑而造成的不確定性。
付費5元查看完整內容

該項目為與使用無人系統支持分布式海戰(DMO)有關的作戰概念和系統設計決策提供信息。研究通過系統地改變仿真模型中的系統設計特征和作戰活動,支持對無人系統(UVC)進行能力級分析。分析結果表明,UVC 可提高各種無人系統的作戰可用性(Ao)和使用時間(TOS),因為它可隨時進入維護、加油和重新武裝設施,而無需長時間前往岸基設施或分布式支援艦艇。在比較使用 UVC 的配置與在自適應兵力包 (AFP) 中分配無人系統支持的配置時,單個無人系統的 Ao 提高了 6% 到 31%。仿真模型分析確定了 UVC 架構,其中包括至少 8 個無人機發射回收站、至少 3 個船舷托架和至少 5 個甲板井托架,以最大限度地提高 Ao。

在支持分布式海上作戰(DMO)時,無人系統有可能發揮兵力倍增器的作用,在提高殺傷力的同時降低有人系統的風險。然而,無人系統到岸基維護、加油和重新武裝設施的轉運時間減少了可用于支持執行 DMO 的自適應兵力包(AFP)的總體駐扎時間(TOS)。本項目研究了無人水面艦艇 (USV)、無人水下航行器 (UUV) 和無人機 (UAV) 在美國海軍現有艦艇上的集成問題,該艦艇已被重新改裝為無人載具 (UVC)。在本報告中,"UxV "一詞用于描述無人系統這一類別。

如 Van Bossuyt 等人(2019 年)所述,項目團隊采用了系統定義、系統建模和系統分析的通用系統工程流程序列。在系統定義過程中,項目團隊重點開發了作戰概念(CONOPS),并定義了 UVC 的系統要求。系統建模活動的重點是構建 UVC 的離散事件仿真模型。在系統分析階段,團隊利用所開發的模型來評估 UVC 的各種設計參數對每種無人系統類型的運行可用性(Ao)的影響。

A. 系統定義

在系統定義階段,從自上而下和自下而上的角度開發和考慮了 UVC 要求。從自上而下的角度來看,團隊分析并確定了滿足總體任務有效性目標所需的能力,而與任何現有的候選平臺無關。從自下而上的角度來看,團隊評估了一艘登陸直升機船塢(LHD)艦,以確定該平臺可實現的最大 UVC 能力。通過查閱文獻和分析利益相關者的需求,項目團隊確定了 UVC 的以下關鍵能力:指揮與控制 (C2)、UxV 發射、UxV 維護和 UxV 回收。根據設想,UVC 將包括著陸甲板無人機發射和回收站、無人機維護/布防/燃料艙、用于大型 USV/UUV 操作的船舷艙或站,以及用于小型 USV/UUV 操作的井甲板艙。

B. 系統建模

項目構想將 UVC 視為針對地面和岸上敵對兵力實施 DMO 的 AFP 的一部分。UVC 的作用是支持 UxV 對敵方岸基導彈基地進行偵察和打擊。在打擊階段之前、期間和之后,UxV 提供全天候的情報、監視和偵察(ISR)、目標定位和戰損評估服務。UVC 的總體目標是通過消除到岸基支持設施的較長運輸時間來增加 UxV 的全時服務時間。為實現這一總體目標,研究小組選擇 "航程 "和 "持續停留時間 "作為性能指標(MOP),并選擇 "UxV 任務時間"、"UxV 停機時間 "和 "維護灣利用率 "作為效果指標(MOE)。

設計并開發了一個離散事件仿真模型,用于分析 UVC 設計參數對 MOP 和 MOE 的影響。該模型是通過 ExtendSim10 建模程序開發的。該模型包括 UxV 發射和回收、UxV 維護活動以及 UxV 重新武裝和加油活動。UxV 的發射時間表和總模擬運行時間是根據擬議的 UVC CONOPS 制定的。目前,該模型并未考慮 UxV 的損失或故障;這是未來可能開展工作的一個領域。模型的主要輸出是每種 UxV 的 Ao。

C. 系統分析

為了廣泛探索實驗空間,同時減少試驗總數和模型運行時間,我們專門設計了一個填充空間的拉丁超立方設計。每次試驗重復模擬 30 次并收集結果。合并所得的 Ao 值,得出每個試驗的統計平均值。

分析結果表明,UVC 可隨時提供維護、加油和重新武裝設施,而無需在岸基設施或分布式支援艦艇之間進行長時間的轉運,從而改善了每種 UxV 的 Ao 值和 TOS 值。對于任何特定的 UxV,通過增加 UVC 發射、回收和維護站的數量,從而消除或減少這些服務的排隊時間,可獲得最大的 Ao。分析表明,UVC 在設計時應至少配備 8 個無人機發射/回收站、至少 3 個船舷托架和至少 5 個焊接甲板托架。這些參數沒有確定上限,這也是未來研究的一個潛在領域。

有趣的是,雖然 UVC 的存在改善了大型無人水面艦艇(LUSV)的航速,但 UVC 的實際設計似乎對 LUSV 的航速沒有影響。這可能是由于 LUSV 的假定任務持續時間長,假定維護間隔長,因此不可能出現任何排隊現象。單個船側停泊區似乎足以為多艘 LUSV 提供服務,但即使是單個船側停泊區,也可通過消除到岸基設施的轉運時間來改善 Ao。

付費5元查看完整內容

本報告總結了迄今為止在路線偵察領域的本體開發的進展,重點是空間抽象。我們的重點是一個簡單的機器人,一個能夠感知并在其環境中導航的自主系統。該機器人的任務是路線偵察:通過觀察和推理,獲得有關條件、障礙物、關鍵地形特征和指定路線上的敵人的必要信息。路線偵察通常是由一個排的騎兵和非騎兵進行的。這項研究探討了機器人執行部分或全部必要任務的合理性,包括與指揮官進行溝通。

1.1 背景與動機

這是一項具有挑戰性的對抗性任務,即地形穿越加上信息收集和解釋。偵察的解釋方面需要考慮語義學--確定相關的信息和確定它如何相關(即有意義)。語義信息在本質上是定性的:例如,危險是一個定性的概念。為了將危險與某些特定的區域聯系起來,我們需要一種方法來指代該區域。這意味著至少能夠給空間的某些部分附上定性的標簽。

Kuipers在他的空間語義層次的早期工作中指出了空間的定性表示對機器人探索的重要性。例如,層次結構的拓撲層次包含了 "地方、路徑和區域的本體",歸納產生了對較低層次的因果模式的解釋。

最近,Izmirlioglu和Erdem為定性空間概念在機器人技術中的應用提供了以下理由:

  • 各種任務,如導航到一個目的地或描述一個物體的位置,涉及處理物體的空間屬性和關系。......或某些應用(如探索未知環境),由于對環境的不完全了解,可能并不總是有定量的數據。......可理解的相互作用和可接受的解釋往往比高精確度更可取(Kuipers 1983)。對于這些應用,定性的空間關系似乎更適合。

對于負責路線偵察的無人地面車輛(UGV)來說,其架構中的不同模塊將消費和產生語義信息:負責語義感知和目標識別、計劃和執行、自然語言對話等的模塊,加上主要負責維護信息的語義世界模型。例如,在美國陸軍作戰能力發展司令部陸軍研究實驗室的自主架構中,語義/符號世界模型被用來 "實現符號目標(例如,去接近一個特定的物體)",*其中接近是一個語義概念。

一個關鍵問題是如何在世界模型和其他模塊之間分配維護和處理不同類型語義信息的責任。從語義世界模型的角度來看,這取決于有多少符號推理是合適的。例如,假設要接近的物體位于一個給定區域的某個位置,而不是靠近該區域的外部邊界。一旦機器人靠近物體,就可以推斷出機器人在物體的位置附近,而且也在同一區域內。如果有公制信息,就可以用幾何例程得出這個結論。在沒有公制信息的情況下,是否會出現在純粹的定性空間中推斷有用的情況?

本報告不涉及這個問題。我們的目標是確定什么應該被代表,而把如何代表和在哪里代表留給未來的工作。

1.2 路線偵察

以下片段取自FM7-92中對路線偵察的描述。空間表達是彩色的,周圍有一些文字作為背景。

  • 路線偵察的重點是獲得關于一條指定路線和敵人可能影響沿該路線移動的所有地形的信息。路線偵察的方向可以是一條道路、一條狹窄的軸線(如滲透通道),或一個總的攻擊方向......防御陣地。......部隊可以機動的可用空間......所有障礙物的位置和類型以及任何可用的繞道位置。障礙物可包括雷區、障礙物、陡峭的峽谷、沼澤地或核生化污染 ......沿途和鄰近地形的觀察和火力范圍 ......沿途提供良好掩護和隱蔽的地點 ......。橋梁的結構類型、尺寸和分類。著陸區和接駁區。與路線相交或穿越的道路和小徑。. . 如果建議路線的全部或部分是道路,則該排認為該道路是一個危險區域。它使用有掩護和隱蔽的路線與道路平行移動。當需要時,偵察和安全小組靠近道路,以偵察關鍵區域。

路線偵察的結果是一份報告,以圖表的形式,并附有文字說明。FM7-92給出了一個例子,我們可以從中提取一些更必要的概念:

  • 網格參考。磁性北方箭頭..道路彎道..陡峭的坡度..道路寬度的限制(橋梁,隧道等)..岔道的位置..隧道..

讓我們把這段關于路線偵察的描述中提到的概念建立一個綜合清單,重點放在空間概念上,并盡可能地保留軍事術語:

1)必須指定環境中的位置、路線、區域和感興趣的物體。稱這些為 "實體"。

2)這些實體之間的空間關系是相關的(例如,一個地點在另一個地點的北邊)。值得注意的是,不同類型的實體之間的關系是被指定的。

a. 物體(例如,障礙物)在位置或區域。

b. 一些地點在空間上與路線有關(例如,沿著路線,毗鄰,或靠近道路)。

c. 地點可能代表更大的區域(例如,雷區的位置)。

d. 道路和小徑可以與路線相關:它們可能相交、重疊(部分疊加),或平行運行。

  1. 一些實體對路線具有戰術價值,無論是進攻還是防御(例如,雷區)。

a. 一些地點相對于其他地點或區域有方向性的定位(例如,一個防御性的位置)。

b. 有些區域是由其與另一個區域或地點的關系來定義的,這可能不是一種局部的關系(例如,觀察和火力場是由一個潛在的遠程位置來定義的,該位置有一條通往路線上的一個區域的線路)。

4)路線可能被障礙物阻擋,障礙物可能是明確的物體或更大的區域(例如,一個障礙物與一個雷區)。

  1. 路線和地形的三維幾何特性是相關的:道路上的急轉彎,陡峭的坡度,等等。

6)有時,描述物理基礎設施(如道路、橋梁)及其屬性是很重要的。

1.3 路線偵察抽象

路線偵查收集和解釋不同種類和不同來源的信息:

  • 背景知識。這包括關于環境特征的類型和預期成為任務一部分的物體的信息,包括道路、障礙物、溝壑、橋梁等等。

  • 任務規范。確定偵查的區域和路線,以及當時可獲得的任何信息。

  • 環境。通過空間分析(包括幾何學、拓撲學等)、感知、地圖衛星數據的離線圖像處理和其他類型的分析,確定環境的相關特征。

  • 任務執行期間的通信。我們假設指揮官或人類操作員在偵察過程中可以向UGV提出詢問或命令,提供新信息或集中注意力。

  • 如前所述,一份報告。

原則上,所有這些信息都以某種抽象的形式組合在一個語義世界模型中。我們把環境的物理屬性和特征稱為 "實體"。把我們用來表示這些實體和它們之間關系的抽象概念稱為 "概念"。

不同類型的實體的概念。層次結構在語義表征中很常見,用來捕捉關于世界上遇到的實體類型的一般知識。一個類型就是一個概念,類型被組織在一個層次中:MRZR是一種輕型的、戰術性的、全地形的車輛,它是一種輪式地面車輛,它是一種地面車輛的類型,等等。屬性和關系可以與一個給定的概念相關聯,而下級概念則繼承這些屬性。在路線偵察中,如果有信息說某一地區有一條道路,但沒有更多的細節,仍然可以從道路的概念中推斷出它的預期屬性:它比它的寬度長得多;它在人們感興趣的地點之間通向;在其他條件相同的情況下,它可能比周圍的地形行駛得快。從實用的角度來看,這意味著如果有可能將某物歸類為一個已知的概念,那么語義世界模型就不需要記錄關于該物的每一條相關信息。

用于實體的目的和用途的概念。一個代表道路典型用途的概念可以進一步區分其長度和寬度的語義,這反過來又導致了跨越和沿途、穿越和跟隨等概念之間的區別。這將使UGV能夠以不同的方式對待 "偵察道路對面的區域 "和 "偵察前方的道路 "的命令。前方的道路也是一個語義概念:它取決于對過去去過的地方的了解。

代表部分信息的概念。有時可能會有定性的信息。想象一下,任務規范的一部分是關于雷區在計劃路線上存在的信息,但不知道具體位置,或者知道雷區的位置,但不知道其范圍。這種無知可以很容易地在代表實體的概念中得到體現。

新概念適用于新環境。另一個交流的例子可能是信息性的。想象一下,當一輛UGV穿越一條東西走向的道路時,它與遠程指揮官進行交流,指揮官問道:"道路北側是什么?"* 需要識別的物體可能不在道路和地形的邊界上(與 "建筑物的一側 "形成對比),而是在以道路邊緣為界的某個感興趣的區域內,距離UGV的位置向北不遠,向東和向西也有一些距離。這個區域可能沒有事先作為一個概念被劃定;相反,它是在當前的背景下構建或推斷出來的。這是一個有趣的例子,一個概念不是從公制數據中抽象出來的,而是被強加在公制數據上的。

背景中的概念的適應和組合。想象一下,對一張地圖的分析產生了對代表區域、道路等等的概念的分解。這些概念可能直接適用于某些目的。例如,與道路相聯系的概念在推理兩點之間的導航時是有用的。然而,在其他情況下,這些概念可能需要調整或與其他概念相結合。例如,如果一條道路被指定為 "危險區域",那么這個區域的概念可能會超出道路的邊界,延伸到周圍的地形。

付費5元查看完整內容

機器人是一個具有挑戰性的領域,需要軟件和硬件的融合來完成所需的自主任務。任何工作流程的關鍵是在部署到生產環境之前對軟件進行自動構建和測試。本報告討論了美國陸軍作戰能力發展司令部陸軍研究實驗室(ARL)的無人自主車輛軟件研究平臺MAVericks的軟件開發過程中使用的持續集成/持續交付工具的重要性和創建情況。這個工具在ARL進行的快速研究和開發中起著至關重要的作用--包括模擬和嵌入式硬件目標的自動構建測試,以及驗證軟件在環模擬中的預期行為。

持續集成/持續交付(CI/CD)是軟件開發中常用的工具,用于自動構建、測試和部署代碼。這個工具對于提高研究的速度和效率至關重要,同時確保在增加或改變新功能時功能不受阻礙。在CI/CD之前,軟件開發過程是具有挑戰性的,隨著越來越多的合作者修改代碼庫,任何新的開發都有可能破壞現有的功能--比如代碼不再構建,自主行為和故障保護裝置不再按預期工作。

本報告重點關注美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的MAVericks無人自主飛行器(UAV)軟件平臺的CI/CD集成,該平臺建立在開源平臺ROS2和PX4之上。ROS2是一套用于構建機器人應用的軟件庫和工具,而PX4是一個強大的無人機飛行控制軟件。利用這兩個平臺,MAVericks是一個專注于敏捷飛行的大型合作項目,在模擬和機器人平臺上都能發揮作用。MAVericks的目標是在ModalAI的VOXL和RB5硬件平臺上運行,因為它提供了尺寸、重量和功率,同時也是藍色無人機項目的合作伙伴,這意味著他們得到了國防創新部門的資助,以符合2020年國防授權法第848條的規定。

合作者包括美國軍事學院的西點軍校,作為分布式和協作式智能系統和技術項目的一部分;加州大學伯克利分校,作為規模化和穩健的自治項目的一部分;以及馬里蘭大學的人工智能和多代理系統的自治項目--而且這個名單一直在增加。此外,ARL一直在尋求提高其算法的穩健性和成熟的能力,以過渡到DEVCOM和國防部的其他組織。隨著許多合作者加入MAVericks,重要的是要確保每次修改后有最低限度的可用功能,以鼓勵快速加入和貢獻。MAVericks是一個由一百多個軟件包組成的大型研究平臺,重要的是每個軟件包都能可靠地構建和運行。通常情況下,合作者只關心幾個軟件包,他們可以很容易地進行修改和添加,而不需要對不相關的問題進行排查,這一點至關重要。由于這種不斷增長的社區,很容易偶然地引入錯誤或破壞不相關的功能。因此,CI/CD是一個很好的解決方案,它將為不同的用戶群體提高平臺的可靠性和可用性。

CI/CD管道實現了許多簡化開發的功能。它可以完全構建整個平臺,確保新用戶的依賴性安裝成功,在模擬環境中運行和測試平臺,以確保自主行為正常工作,并快速構建壓縮的工作空間,以防止在無人機上構建。

在自主系統的軟件開發中,一個有問題的情況是,用戶修改了幾個包,但只構建和測試了一個特定包。這樣,代碼就被合并到了生產中,而沒有驗證它對其他人是否有效。如果未經測試的修改被合并,依賴這些修改的包可能不再構建或通過所有的測試案例。

從用戶的角度來看,CI/CD是由用戶創建代碼合并請求(MR)來觸發的,將他們的修改添加到主分支。這就啟動了CI/CD,建立了一個管道。該管道包括四個階段:構建-依賴、構建-完整、測試和部署。對于每個階段,可以并行地運行多個作業來完成該階段。在每個作業中,流水線首先將合并后的變化復制到一個新的環境中,并完成一個特定的任務。在流水線的最后,一個完全構建的版本被上傳,并準備在無人機上閃現。如果任何步驟失敗,其余的管道階段將被中止,并通知用戶到底是什么地方出了問題,以便他們能夠解決任何問題。管線的概述見圖1。

在本報告中,描述了MAVericks CI/CD的基礎,然后詳細介紹了管道中的每個階段,以及所克服的幾個挑戰。

付費5元查看完整內容

迅速設計專門針對特定應用的材料的能力取決于預測性材料模型的使用。在過去的幾十年里,多尺度建模已經成為構建材料模型的主要范式。本報告總結了作為美國陸軍作戰能力發展司令部陸軍研究實驗室跨領域工作的一部分,即2011年至2021年的材料多尺度研究企業(PE 611102.AA7.13 "新型材料的多尺度建模")在發展多尺度建模方法方面的工作。這項工作包括與兩個為期5年的合作研究聯盟(CRAs)的耦合研究:極端動態環境中的材料CRA和電子材料的多尺度/多學科建模CRA(PE 611104.AB7.09 "材料的多尺度建模中心")。

三個研究方向構成了整體工作。

第一個研究方向的首要目標是構建計算方法,以促進多尺度模型層次中的尺度模型之間的數據傳輸,以便通過直接連接尺度模型來構建多尺度模型。這個研究方向的一個主要貢獻是為尺度橋接開發了一個靈活的模塊化軟件環境。

第二個重點是開發新的方法,以便能夠從第一原理上探索真實材料的原子尺度結構特征與其宏觀特性之間的關系。該研究方向對一個領先的大規模第一原理軟件套件進行了重大改進,大大降低了對凝聚相系統的計算要求,同時擴展了該套件的功能,以解決軍隊的問題。

最后,第三個方向是致力于小規模塑性的中尺度建模的新方法,即材料內部位錯的運動。這個研究方向導致了一種獨特的計算能力的發展,使我們能夠將最先進的小規模塑性計算模型與有限元相融合。這種能力允許在有微觀結構的情況下對小尺度塑性進行精確建模。

圖6 嵌入協議的摘要。(a) 進行MD模擬以產生溶劑配置的平衡集合。(b) 對MD模擬中的單個分子("活性區域")進行嵌入CCSD(T)計算,紅圈表示。活躍區氧化時產生的電子洞由藍色電子云表示。附近的分子在B3LYP水平上處理,由藍色圓圈表示。更遠的分子使用點電荷MM模型處理,用棕色圓圈表示。

付費5元查看完整內容

地理定位精度測試報告介紹了當前戰術優勢網絡指揮與控制(TEC3)系統的地理定位精度研究結果。該文件由加拿大萊茵金屬公司提交給加拿大國防研究與發展,任務TA-04。

萊茵金屬加拿大公司于2018年2月至2021年3月為加拿大國防研究與發展部(DRDC)開發了戰術邊緣網絡指揮與控制(TEC3)技術演示器。TEC3展示了網絡和安全態勢感知以及網絡指揮和控制功能在一個示范性的下馬士兵網絡中的應用。根據核心工作成果,TEC3包括本地組中節點之間的移動特設網絡(MANET)通信,以及估算、地理標簽和顯示目標發射器位置的地理定位功能。

本報告詳細介紹了通過任務授權(TA)實施的進展情況,以測量TEC3系統對無人機系統(UAS)進行地理定位的性能,使用本報告的測試計劃中記錄的特定拓撲結構和距離。這些拓撲結構取決于最大距離參數,該參數本身也是一個實驗測量的對象。最大距離參數是軟件定義無線電(SDR)能夠接收UAS傳輸的最長距離。除了掃描頻譜進行地理定位外,SDR還記錄了地理定位過程中的通信頻段,以便將來分析。

實驗被成功執行,在某些情況下,UAS可以通過三個TEC3節點的不同城域網拓撲結構和距離來進行地理定位。例如,在某些情況下,它可以在直徑為420米(平均)的圓形/橢圓形區域內進行一定精度的地理定位。在其他情況下,橢圓覆蓋了TEC3的部署區域;在這些情況下,準確性差是由于SDR和全向天線輻射模式之間對同一發射器/位置的測量功率不一致。

探測發射器的最大距離估計約為600米。 實驗產生了108份60秒的記錄,將用于未來的分析。

付費5元查看完整內容
北京阿比特科技有限公司