亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本報告介紹了美國陸軍研究實驗室內容理解處的研究人員在 2023 財年為采用增強型戰術推理(ETI)框架所做的工作。ETI 的開發旨在支持多智能體環境(數據源智能體、推理模型智能體和決策者智能體)中人工推理研究的實驗和演示。在本報告中,ETI 被用于在跨現實環境中演示基于不確定性的決策推薦功能。從模擬場景的數據開始,再加上額外的外部環境,ETI 智能體對態勢感知信息中的不確定性進行推理,為決策者提供建議選擇。最后,ETI 的產品被轉化為跨現實可視化,以探索新的人機交互模式。

增強戰術推理(ETI)框架的設計和創建是為了支持人工推理研究的實驗和演示。ETI 目前的結構包括三個主要智能體:數據源智能體、推理模型智能體和決策者智能體。數據源智能體分為幾大類:信息(圖像、音頻、文本)、設備、網絡和可視化。數據源智能體可以捕獲數據并將數據傳輸給其他智能體。其他信息系統也可以向這些智能體提供數據。推理模型智能體執行不同方面和不同層次的推理。推理智能體的輸出將有助于生成建議的決策。決策者智能體負責做出最終決策。這些 ETI 智能體可以是模塊化的,允許串行或并行處理,以及獨立或相互依存。在這項工作中,ETI 發揮著決策輔助工具的作用。主要的推理模型是信息不確定性(UoI)模塊。該 UoI 模塊可在決策建議中考慮任何信息的不確定性。ETI 的另一項功能是實現與人類的互動,包括未來的可視化和協作環境。我們在跨現實(XR)環境--運籌、研究與分析加速用戶推理(AURORA)中進行了演示。與 AURORA 等系統集成后,可以探索智能系統與人類交互的新模式。在本報告中,將詳細介紹我們的演示開發過程,包括將模擬環境中的數據映射到可視化環境中,將決策點和 ETI 建議納入行動方案中,以及用 "假設 "情況來增強場景,以探索基于推理的框架的影響。

這項研究的目標是開發、整合和演示基于推理的決策框架。ETI 框架的決策建議被用于師演習訓練和審查系統(DXTRS)中的模擬場景,并在 XR 環境 AURORA 中實現可視化。下文將介紹 DXTRS、場景和 AURORA 可視化的背景情況。

  • DXTRS場景

在該場景中,藍軍(BLUFOR)的目標是向東推進,穿過阿塞拜疆名為阿格達姆區的地區,同時與部署在河東的對方部隊(OPFOR)交戰并將其消滅。(見圖 1)

隨著任務的展開,BLUFOR 將遇到一條阻礙他們前進的河流,他們需要在那里進行濕空隙穿越。(見圖 2)

  • AURORA跨現實共同作戰圖 (XRCOP)

為了探索可視化和與 ETI 的交互,DXTRS 場景和相關的 ETI 推理信息在 XR 環境中顯示。該環境由美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)開發,名為 AURORA。AURORA 為安全、聯網、多設備跨現實信息調解和交互提供了一個通用作戰框架。為了便于可視化,將場景數據集合映射為 AURORA 可以處理的目標光標(CoT)信息。本報告第 3 部分將詳細解釋映射過程。圖 3 和圖 4 顯示了AURORA環境中的場景截圖。

  • ETI 決策建議

如前所述,ETI 的設計是利用各種推理模型作為模塊,允許不同的推理配置。本次工作的推理模型是用戶體驗模塊。UoI 的概念包括產生或捕捉一個值,并用描述符對不確定值進行分類。這為決策者提供了不確定性的上下文信息,并支持對由此產生的建議進行推理。描述符基于格申論文中提出的不完全信息的性質。目前,該分類法包括不一致、損壞、不連貫、不完整、不精確、復雜和可疑。它們共同描述了特定信息源不確定性的原因和類型。

當前版本的UoI表達式是一個加權和,如式1所示。

公式 1. UoI 計算,其中 dp 為決策點,D 為變量,表示可能是任務關鍵因素的決策組成部分,W 為與這些組成部分的重要性相關的權重,T 為分類權重類別(相當于 G),S 為數據來源類別。UoI 值表示數據源和因素對所分類的不確定性的貢獻。

以下是分類法中七個術語的描述:

  • 不一致: 由于來源不同或不一致而導致的不確定性。
  • 錯誤: 因數據源含有錯誤而導致的不確定性。
  • 可疑: 由于信息來源缺乏信息或信息來源可疑而導致的不確定性。
  • 不連貫: 由于信息來源缺乏連貫性或組織性而造成的不確定性。
  • 不完整: 由于信息來源未完成或不完整而造成的不確定性。
  • 不準確: 由于信息來源不準確或不詳細而造成的不確定性。
  • 復雜: 由于信息來源錯綜復雜或令人困惑而造成的不確定性。
付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

本報告研究了如何利用人工智能(AI)解決方案,結合傳感器數據和更高級的企業級機器學習(ML)算法,改進戰術決策,提供先進的目標定位解決方案,并為艱苦環境中的步行作戰人員推薦行動方案(COA)。該團隊采用系統工程分析方法,為戰術邊緣的人工智能輔助決策系統提出要求并進行概念設計。團隊將這一未來能力命名為 "地面感知作戰決策(GAWD)系統"。設想中的 GAWD 能力將提供一個功能強大的人工智能/ML 骨干架構,用于在邊緣傳輸戰術相關數據,供士兵實時處理和分析,以確定目標和選擇路線。此外,該能力還能監測士兵的健康狀況,并將信息提供給指揮部。未來的 GAWD 系統概念將利用人工智能、ML、增強現實 (AR)、虛擬現實 (VR) 和機身處理來分析數據,從而在終端用戶設備 (EUD) 或平視顯示器 (HUD) 上觸發實時通知和建議行動方案 (COA),以幫助下裝作戰人員及時做出作戰決策。研究小組進行了場景分析,探討了在三種不同的地面部署士兵場景中使用 GAWD 系統的問題。研究小組研究了在軍事行動中引入 GAWD 系統的道德影響。

圖 14. 用于瞄準的地面感知作戰決策邊緣計算系統架構圖。

雖然具有未來性,但將人工智能(AI)和機器學習(ML)作為下馬兵棋推演的輔助工具,是美國在戰場內外保持優勢的下一步。美國國防部(DOD)和聯合軍種正在探索將人工智能/機器學習用于各種應用,以支持作戰人員執行任務。本畢業設計項目研究了如何使用人工智能/ML 來實現未來的兵棋推演決策輔助功能,以支持下裝士兵執行任務。頂點團隊(Linchpin 小組)采用系統分析方法,研究人工智能和機器學習的當前和預期能力,了解下裝士兵的需求和任務,并利用人工智能和機器學習開發決策輔助系統的概念設計。

頂點團隊設想實施一種前沿、全面的人工智能/ML 機器兵棋推演決策輔助系統,稱為地面感知作戰決策(GAWD)系統。該系統是一個數據套件,搭配最先進的軟件(SW),可確保步兵單元在艱苦環境中的戰術決策能力,有助于挽救生命。利用人工智能、機器學習和先進的數據分析技術,這一創新工具可以提供一個適應性強、可擴展的系統,可以滿足各種單元規模的需求,并能與現有的軍事技術和網絡無縫集成。

這種實時和不斷發展的系統有可能使下馬士兵能夠清晰、全面地了解作戰環境,包括對手陣地的位置、地形特征以及使用各種傳感器和數據集提供戰場最新信息的友軍。此外,這種兵棋推演輔助工具將通過利用機器學習和歷史數據,為士兵及其指揮部提供態勢感知(SA)。這些信息將能夠快速分析各種場景,預測敵人的潛在動向,并根據當前形勢和單元目標提出最佳行動方案(COA),從而做出關鍵的戰術決策。

Linchpin 集團為下馬士兵設計的概念性人工智能/機器學習 GAWD 系統代表了步兵戰的突破性進展。通過利用人工智能/機器學習的力量,這一尖端工具將為下馬士兵提供無與倫比的戰略部署、決策支持和協調能力。根據設想,這一工具還將作為一個訓練平臺,使士兵能夠參與虛擬兵棋推演和模擬場景。該系統可記錄個人和單元在訓練演習和真實場景中的表現,從而為行動后評估(AAR)和持續改進單兵和整個陸軍提供有價值的見解。

該小組進行了一項情景分析,以探討士兵在地面任務中如何使用 GAWD 系統。團隊確定了三種相關場景,這些場景將通過添加人工智能支持的 GAWD 系統得到增強。這三種情況是 (1) 目標交戰,(2) 路線選擇,以及 (3) 士兵健康和狀態監控。研究小組探討了每種場景,然后比較了三種場景下未來 GAWD 能力所需的功能。

人工智能/機器學習作為一種力量倍增器,有可能顯著提高下裝單元的戰斗力和生存能力,確保現代戰場上的軍事優勢。它的部署將徹底改變下裝作戰,并為軍隊的卓越戰術設定新的標準。

付費5元查看完整內容

在本技術說明中,報告了有關傳感器技術和避讓方法的最新研究與開發文獻綜述,這些技術和方法可用于未來在有人-無人協同(MUM-T)行動中在小型無人系統上實施感知與避讓(SAA)能力。

在傳感器技術方面,研究了協作和非協作傳感器,其中非協作傳感器又分為主動和被動傳感器。我們認為:(1) 被動非協作傳感器在尺寸、重量和功率(SWAP)方面比其他傳感器更有優勢。被動工作可確保無人平臺在惡劣環境中的安全。為了補充單個傳感器能力的約束和限制,我們還認為,(2) 傳感器和數據融合的趨勢和未來需求前景廣闊,能夠在動態、不確定的環境中進行連續和彈性測量。此外,我們還認為應關注無人系統領域正在開發的 (3) 新型傳感器套件。

在探測和規避方法方面,我們按照 SAA 流程進行了全面研究,從探測沖突、危險或潛在威脅,到跟蹤目標(物體)的運動;評估風險和可信度;根據評估參數確定沖突的優先級;然后宣布或確認沖突以及沖突的程度;確定正確的沖突解決方法;隨后下達命令并最終執行。為了支持這一過程,我們審查了各種 SAA 算法,包括探測算法、跟蹤算法和規避策略。我們認為,(4)基于學習的智能算法需要列入未來 SAA 的要求中,因為它們具有支持任務的自適應能力。

最后,從不同的使用案例中回顧了支持 MUM-T 行動的 SAA。我們認為,(5) 與蜂群式小型 UxV 的人機系統接口可提供半自主的 SAA 能力,而人的參與程度有限。這種集成的人機交互提供了智能決策支持工具。該系統旨在使單個人類操作員能夠有效地指揮、監控和監督一個 UxV 系統。根據技術重點的發展趨勢,我們的最終觀點是:(6) 就研發進展而言,現階段實現無士兵參與的完全自主還為時過早,但我們將積極關注該領域的最新發展。

付費5元查看完整內容

本最終技術報告總結了 2018 年 9 月至 2022 年 9 月期間 AFRL 項目 "嵌入式深度學習和高級計算 "的研發工作。該項目涉及兩個重要的技術趨勢:使用深度神經網絡(DNN)的深度學習正迅速成為許多機器學習應用的首選方法,而網絡邊緣的嵌入式設備正變得越來越廣泛。通過這兩種技術的融合,我們可以看到新一代嵌入式設備的出現,它們可以執行智能任務,如學習未知環境和感興趣的目標、周圍環境的三維映射、執行數據分析以及根據本地數據進行預測。這些設備構成了所謂的人工智能物聯網(AIoT)[1]。

本研究項目研究的基礎技術可促進未來嵌入式深度學習的高效訓練和推理計算系統。研究的主要方法包括 (1) 使用隨機舍入的可變精度分塊浮點;(2) 采用術語量化,將浮點數量化為 2 次冪術語,而不是傳統的均勻量化;(3) 使用特定領域詞匯對預訓練語言模型進行調整;(4) 通過使用恒定帶寬塊的調度最大限度地減少內存訪問;(5) 在算法的協同設計中應用全棧優化、 (6) 為可穿戴計算拆分神經網絡,(7) 設計用于檢測輸入到 DNN 的非分布式輸入的算法,(8) 為高效的 DNN 系統陣列實現打包稀疏 DNN,(9) 為 DNN 的 3DIC 實現設計內存邏輯架構和系統構建模塊,以及 (10) 在內存計算中利用位級稀疏性。

引言

卷積神經網絡(CNN)等深度神經網絡(DNN)實現了深度學習。它們具有多層非線性特征轉換,每增加一層就能提取出越來越好的特征。然而,訓練一個大型 DNN 并在這樣的網絡上執行推理需要耗費大量的時間和精力。對于大型語言模型(LLM)和生成式對抗網絡(GAN)等大型深度網絡來說,訓練成本很高。由于小型人工智能物聯網(AIoT)設備在處理能力、內存占用和功耗預算方面存在嚴格的資源限制,因此在這些設備上進行訓練和推理更具挑戰性。有必要共同設計算法、模型和硬件參數,以便在這些嵌入式設備上執行高效的訓練和推理。在為嵌入式設備訓練復雜的深度模型時,并行處理、管理內存訪問時間表和利用數據稀疏性等高級計算技術至關重要。

本項目旨在針對嵌入式深度學習和推理中的關鍵挑戰開展廣泛研究。例如,我們探索了嵌入式深度學習與基于并行和分布式計算的高級計算之間的相互作用。該項目利用了 PI 在相關領域的經驗,包括他早期在系統陣列以及分布式和嵌入式神經網絡架構方面的工作。我們將在本報告的其余部分重點介紹我們已發表的部分成果。

付費5元查看完整內容

喬治敦大學安全與新興技術中心(CSET)和艾倫-圖靈研究所新興技術與安全中心(CETaS)的這份聯合報告評估了目前自主網絡防御的最先進水平及其未來潛力,確定了進展的障礙,并建議采取具體行動來克服這些障礙。這些發現和討論將與參與開發自主網絡防御能力的網絡安全從業人員、政策制定者和研究人員有關。

鑒于網絡攻擊造成的巨大經濟和社會損失以及人工智能(AI)的最新進展,近年來,人們對應用人工智能加強網絡防御的興趣越來越大。對自主網絡防御的研究正在擴大,它不僅可以檢測威脅,而且可以參與防御措施,如加固或恢復。本報告重點關注創建這些自主網絡防御代理的一種有前途的方法:強化學習(RL)。

自主網絡防御沒有一個統一的定義,但在最基本的層面上,這些代理將完成人類網絡防御者的一些任務,保護網絡和系統,檢測惡意活動,并對異常或惡意行為作出反應,但要以數字攻擊的速度。

本報告提出了自主網絡防御的擬議定義,調查了自主網絡防御的現狀以及該技術成為可行的網絡安全工具所必須克服的相關挑戰。不能保證自主網絡防御會成功,但該技術正處于一個需要政策支持的階段,以實現潛在的好處,并幫助網絡防御者處理現代網絡安全行動的速度和不確定性。

RL是創建網絡防御代理的領先AI方法,這是有效的自主網絡防御的核心要求。2012年,當RL代理首次在簡單的雅達利游戲中擊敗人類專家時,這項技術的地位日益突出。在這一成功的基礎上,從2015年到2018年,DeepMind為更具挑戰性的游戲建立了系統,包括圍棋和國際象棋,取得了意想不到的成功水平。研究人員對RL趨之若鶩,部分原因是這些成功,但也是因為OpenAI的一個開放框架,它允許創建簡單的模擬訓練環境或 "健身房"。OpenAI健身房的形式簡化了研究和開發,在過去的幾年里,網絡健身房已經開始出現,允許訓練和創建網絡防御代理。甚至在最近,這些健身房成為名為 "網絡自主實驗健身房"(CAGE)的公開網絡安全競賽的一部分。

我們的研究立足于基于強化學習(RL)的人工智能代理的潛力,以提供實現部分或全部自主網絡防御概念所需的自主能力。雖然與自主網絡防御有關的有前途的相關建模方法、技術和工藝的范圍很廣,但我們對RL的關注是由于在網絡防御中應用RL的努力增加,以及RL在其他問題領域取得的可喜成果。

雖然自主網絡防御的核心技術在過去十年中進展迅速,但在系統能夠投入使用之前仍有許多挑戰。在這個研究項目的過程中,我們采訪了政府和非政府專家,以確定建立和部署可信系統的要求,其中包括:

  • 適應性--一個潛在的自主網絡防御系統將需要對網絡威脅環境的變化做好未來準備。
  • 可審計性--自主網絡防御系統必須能夠生成日志,并將代理人的決定和采取行動的理由歸檔,以便進行審查和審計,盡管操作節奏可能超過人類能力。審計日志也可以用來保證所采取的行動是合法的和相稱的,并遵守商定的規范。
  • 可指導性 - 人類操作者需要能夠在需要時重新指導或終止系統。
  • 可觀察性--系統需要為人類操作者提供足夠的數據采集和分辨率,以提供準確的、最新的態勢感知,并提供系統性能指標以支持人類監督。
  • 安全性--自主網絡防御系統和其中的代理都需要保證安全,防止被泄露、被盜或被破壞。
  • 可轉移性--自主網絡防御代理將需要在實際環境中部署,而這些環境與他們所受的訓練不完全相同。

為了滿足這些要求并繼續取得進展,自主網絡防御這一新生領域需要得到培育。RL最近才開始在網絡安全方面起飛。近年來,學術出版物激增,培訓網絡RL代理也開始大量涌現。然而,與這些代理將面臨的更復雜的現實世界的網絡環境相比,能力仍然是初級和不完整的。持續的資金、協調的努力以加強模擬、仿真和評估工具、確保熟練的人員,以及提供對現實數據和基礎設施的訪問,將有助于確保進展。

如果能夠克服技術挑戰,自主網絡防御有很大的發展潛力。目前為網絡防御建立的代理和環境考慮的變量和可能性比更著名的RL代理(如圍棋或視頻游戲如Atari或DOTA2)少。這意味著有足夠的潛力讓代理越來越智能;它們可以管理更多可能的防御行動,并在更復雜的環境中運作,需要它們探索更多的情況。我們對技術挑戰的探索表明,自主網絡防御將是一個長期的雄心壯志,只能在未來幾年內實現。

建議

盡管在自主網絡防御領域取得了重大進展,但我們的研究表明,還沒有自主網絡防御系統被實際部署。鑒于目前技術的成熟度,我們提出了發展這些能力以使技術成熟的建議(建議的完整清單見第4節)。

對擴大規模進行投資。該領域可以通過做更大、更真實的網絡模擬,納入更復雜的場景和攻擊者的行為來改進。更高的保真度將導致更有能力的網絡防御代理。此外,發布和維護工具,如健身房或訓練有素的代理,可以幫助吸引學術界或其他研究人員來做這項工作。最后,持續的資金也將使研究人員更容易向這些項目看齊。

建立并提供測試和訓練場。更大和更復雜的代理將需要更多的計算密集型訓練和測試,這可能使一些研究人員的資源緊張。建立和維護大型計算系統也是一個挑戰,這需要難以得到的人才。提供必要的基礎設施、人才和資金資源--也許是以補貼成本的方式,也可以幫助加速進展并提供連續性。

協調數據共享。政府和行業的政策制定者有權力發布有關需要防御的網絡和他們所觀察到的威脅的網絡數據。這些都是需要仔細考慮的微妙問題,但只要共享數據能改善網絡安全,所有組織都會受益。

舉辦比賽。繼續舉辦自主的網絡防御競賽,并輔以財政獎勵,作為改善健身房和代理商的一種手段,同時培養未來的人才。

優先考慮能使自主網絡防御的利益最大化的領域。并非所有的網絡防御情況都需要自主代理,如速度不是限制因素或防御已經有效的情況。優先考慮自主性影響最大的領域可以幫助指導研究。同樣地,一些技術,如漏洞發現,對防御者或攻擊者都有幫助。政策制定者應投資于研究,以確定哪些情況和技術會導致更好的防御,而不是改進攻擊。

確定防御者代理是否需要攻擊者代理。在創建現實的模擬時,不清楚在多大程度上可以在沒有進攻者代理的情況下建立防御者代理來驅動它們。研究人員和政策制定者應該探索在不犧牲防御者有效性的情況下限制進攻代理的能力的方法,并對代理技術和知識的擴散建立嚴格的控制。他們還應該投資于研究,以了解哪些具體情景和技術需要進攻性制劑。

確定自主網絡防御代理的授權門檻。自主網絡防御代理將需要達到對一個組織的高度信任,以獲得高度的自主權。需要制定政策指導,為能力和可信度設定初始目標,與代理被授權做出的決定的風險相匹配。這種指導可以類似于為自主車輛制定的自主水平。它們也可以根據情況或威脅環境的各個方面而變化。

付費5元查看完整內容

本文提出了一個海軍作戰管理系統(CMS)架構,考慮到電子戰(EW)與人工智能(AI),以應對現代高超音速和低觀測能力的威脅,其中反應時間可能很短,需要自動化。它使用一個反制措施案例研究作為數據要求,拍賣傳感器任務,人工智能過程,以及認知復合感應的數據融合。該文件還強調了已經公布的關鍵認知電子戰能力,以證明該架構的合理性。該架構的方向是用高反應時間的自動化人工智能驅動的認知DM來取代人類決策者(DM)。

引言

當把人工智能(AI)應用于電子戰(EW)時,它不僅要幫助決策者(DM)進行態勢感知(SA),還要滿足點、區域和區域防御以及反目標活動的需要。電磁波譜是密集的,有許多通信和雷達發射器。因此,挑戰在于如何將人工智能應用于能夠滿足管理部門需求的EW系統。因此,它必須能夠整理出感興趣的信號(SoI)[1],如部隊的信號和與指定任務無關的信號。這項工作的基礎是 "常規戰爭 "中的反導彈反應,以便與傳統的交戰進行更直接的比較。影響反艦導彈(ASM)成功的一些主要因素是雷達橫截面(RCS)、紅外橫截面(IRCS)、視覺和紫外線(UV)特征。因此,目標艦的特征是決定被動軟殺傷[2]反措施(也叫伎倆)性能的一個基本因素。然而,反坦克導彈也可以使用主動雷達尋的方式進行瞄準和跟蹤。因此,射頻(RF)和微波(MW)的截面特征是重要的,同時還有光輻射量子(或光子)、方位角和機動中的方位率,以及它們的戰術影響。因此,現代操作環境在處理電磁波譜方面存在挑戰,人工智能的自動化和自主性是解決這一挑戰的理想選擇。

A. 動機、方法和限制

本文描述了一個架構,其中包括用糠和干擾器進行軟殺傷;用導彈、火炮和火控系統進行硬殺傷;以及一個跟蹤目標并協調軟殺傷和硬殺傷反應的指揮和控制系統。本文僅限于假設反坦克導彈是使用射頻主動雷達尋的目標和跟蹤的海上滑行。因此,這項工作的中心是簽名管理、大型目標船的規避動作、船上被動型誘餌系統(如金屬箔片和反射器)的操作性能,涉及反坦克導彈的跟蹤方案和交戰環境,包括風速和風向。擊敗導彈威脅的一個基本因素是反應時間;隨著高超音速的出現,時間因素成為反應殺傷鏈的決定性因素。潛在導彈平臺的識別標準是最基本的;它們將允許更精確的SA,迅速讓DM消除發射平臺。鑒于反導鏈反應的時間很短,人的頭腦無法計算巨大的信息量,并在短時間內決定反應的類型,要么是硬殺傷,要么是軟殺傷,要么是兩者兼而有之;那么人工智能就成為反導系統中的基礎[3] [4]。因此,人類的DM理論不能用于遙遠的未來,因為它要求對形勢的分析速度、識別能力、對威脅的立即反應,以及在人類思維的指揮鏈中進行計算和決定,因此不能提供所需的反應時間。本文的最后部分介紹了幫助平臺保護速度的架構,朝著定義CMS中的設備連接方向發展,同時還介紹了一些已經發表的關鍵技術。

B. 論文的結構

第1節是介紹、動機、方法和論文結構。第2節提供了一個常規條令性例子戰術和反擊方法,用于在架構中需要支持的硬殺和軟殺。同時,在第2節中,還介紹了軟殺傷反擊方法的主動、被動和綜合方法。此外,第3節是一個使用飛毛腿和機動性的交戰例子,展示了所需的關鍵數據。第4節介紹了所提出的AI/EW技術的架構。最后,第5節是結論。

AI/EW技術的架構

人工智能應用于電子戰時,不僅要保證DM(決策者)的SA(態勢感知),而且還必須滿足點和區防御以及反目標活動的需要。電磁波譜因無線電和雷達發射器而加劇,一個挑戰是將人工智能應用于能夠滿足DM需求的EW系統,因此它必須能夠分出感興趣的信號,例如其海軍部隊的信號。另外,哪些信號對指定的任務沒有影響。

一個陸軍師的基本 "有機 "通信和電子設備,在一個典型的70公里乘45公里的地區作戰,是超過10,700個單獨的發射器。一個支持性的空中遠征部隊(AEF)會帶來另外1400個,而一個典型的海軍航母戰斗群會帶來另外2400個發射器[20]。比如說: 在沙漠盾牌/沙漠風暴中,六個陸軍師和一個海軍陸戰隊師都占據了相同的地理和電磁波譜空間,還有許多其他聯軍和指揮控制網絡[21]。鑒于這種信息密度,認知型EW也必須與人工智能概念和認知循環階段的相關挑戰相一致。

A. EW活動和AI對應的術語

為幫助EW和AI的受眾,我們提供了一個AI和EW術語的表格,在表1中,這些術語有一些對應關系。

表1 等效AI和EW術語

B. EW核心概念

電子戰被正式定義為三個部分:

  • ES(電子支持):了解誰在使用頻譜,出于什么目的。使用寬窄帶探測和攔截過程,它定位、識別、辨認、轉錄、分析可能的意圖,并評估致命性、敵對性和忠誠度。現代形式包括多層次的情報產品,如網絡電磁活動(CEMA),從地理到人物網絡。
  • EA(電子攻擊):利用頻譜,以EW效應爭奪該頻譜對自己的優勢。
  • EP(電子保護):是為保護和抵制干擾等攻擊而采取的行動。反干擾也可能包括抵抗ES、EA和CEMA產品的措施。

C. 查找、定位、追蹤、瞄準、攻擊、評估

在圖10中,Haigh和Andrusenko[15]提出了一個EW和AI的組合架構,它跨越了殺傷鏈階段,將AI的特征和分類輸入一個融合引擎,以建立一個意圖,這個意圖是由因果關系和異常檢測階段推斷出來的。

圖10 與EW功能相關的EW和AI能力[15]。

Haigh和Andrusenko的論文與EA之前的ES的數據融合觀點一致,同時保持EP。因此,人工智能方法被應用于特定發射器的分析、特征描述和分類,作為數據融合之前的模式匹配工作。然后,這些方法被用于異常檢測和因果關系搜索,以實現意圖識別。這是一個信息漏斗,在EA/EP方面,這些方法更多的是優化適應性,而不是智能,這貫穿于整個殺傷鏈,并應用于任務管理的決策援助和與電子戰令(EOB)和網絡管理有關的人為因素。不難看出,AI態勢評估、DM和機器學習(ML)能力與所有EW功能相關。每個認知型EW系統的第一步是電子支持(ES),以了解射頻頻譜。在人工智能界被稱為情況評估,ES確定誰在使用頻譜,他們在哪里和何時使用,以及是否有可以 "利用 "的模式。AI/ML技術可以使用特征估計、發射器特征和分類、數據融合、異常檢測和意圖識別。圖11顯示了任務前準備和任務后分析與任務中需求的重疊。

圖11 任務中、任務前和任務后的重疊部分

ES對環境進行分析,并創造出驅動決策者(DM)的觀測數據。日益復雜的情況將頻譜態勢感知(SSA)定義為 "收集有關頻譜使用的不同信息并處理這些信息以產生一個融合的頻譜圖"[15]。SSA收集、組織和處理EW所需的頻譜數據。SSA必須以近實時(NRT)的方式進行,以滿足任務中的決策者的需要,SSA必須結合各種支持技術,包括傳統的和認知的。然而,一個挑戰在于相關技術的整合和展示,其中只有少數是認知的,以減少脆性和處理新的發射器。人工智能和ML能力可以在每個層面上改善SSA,這是在其他相關SSA技術背景下對這些AI/ML技術的看法。一個完整的EW系統必須有多層面的SSA。未來的SSA系統可以用深度學習模型來生成潛在的特征,用經典的ML模型來進行任務中的更新,以及用混合模型來抵消有限的數據。此外,SSA不一定要完全依賴射頻數據: 它可以與非射頻數據融合,如視頻和靜態圖像、自由空間光學、或開源、戰術或作戰情報。跨越多個異質來源的分布式數據融合必須創建一個在空間、時間和頻率上都準確的連貫的戰地頻譜共同作戰圖。異常檢測、因果推理和意圖推理使作戰圖更加完整,以了解事件的影響并支持管理部門。

D. 影響范圍

Rudd-Orthner等人[14]用圖12中的 "影響范圍 "概念[18]擴展了這一概念,并增加了一個 "保護洋蔥 "框架,以根據數據需要選擇對策。

圖12 影響范圍

他們指出,威脅武器系統有變得更加復雜的趨勢,這種復雜性的增加至少可以部分歸因于:戰術的演變、技術發展的速度和數字化的現代化,但也有一種趨勢,即隨著人類決策和反應時間的減少,威脅的作用也在擴大;隨著自主系統的效力和使用的增加,這種情況也許更加明顯。自主系統的崛起在所有領域都在發展: 陸地、空中、海上、太空和網絡。自主系統的規模各不相同,從無人值守的槍支系統到自主空中平臺。這些自主平臺運作的作用也在不斷擴大,因此在打擊它們時,可能需要在綜合防御輔助系統中匹配復雜性,作為打擊復雜威脅系統的戰略。這些復雜平臺的作用和能力的增加,可能導致單一平臺的作用不大,并為其他平臺提供 "保護投射 "的要求。與此相結合,利益相關者群體也更加多樣化,科學家/工程師、機組人員和任務生產程序員之間的溝通機制也是挑戰,這樣他們都可能做出有意義的貢獻,并與他們的利益相關者群體的價值互補,正如Rudd-Orthner等人所說。

E. 拒止、降級、擾亂、欺騙、毀壞

圖12中的維恩圖顯示了數據可用性的 "影響范圍":保護平臺/部隊、威脅或武器系統和防御限制與反措施設計考慮相疊加。Rudd-Orthner等人指出,這些不同的反措施考慮加上不同的可用數據,可能對反措施戰術設計形成影響范圍。

F. 保護洋蔥的映射

Rudd-Orthner等人在[14]和[19]中應用了多視角威脅分析圖解技術,該技術基于判別器、操作視角、系統視角以及對策設計考慮和影響范圍的維恩圖,適用于保護的洋蔥。他們在維恩圖中描述了反措施的設計考慮,將反措施的設計意圖描繪成一種規范,而不是ECM干擾器技術設施。在這種情況下,反措施設計考慮表示戰術的反意圖。論文[14]和[19]還建立了一個保護洋蔥的概念,利用反措施設計的影響因素和組織成洋蔥層的數據源,將揭示的數據分層管理。其中這些層級建議的對策方法也是與該威脅殺傷鏈階段的威脅意圖直接相反的,使得它也是一個測量的反應和保護數據模型在所揭示的數據。表2顯示的是保護洋蔥的層級(第1層是最外層)和反措施設計考慮,影響范圍與威脅系統的殺傷鏈意圖的映射。表2提供了保護洋蔥的六個層次。

表2 保護洋蔥

洋蔥層/影響范圍/CM設計考慮因素 注釋
第1層發現/受保護的平臺/減少的可探測性 對抗早期預警、空中搜索或地面控制攔截雷達的探測或行為,使被保護平臺脫穎而出。該戰術針對的是殺傷鏈的意圖,并不顯眼,是利用對自身平臺數據的了解。
第2層定位/受保護的平臺/降低可探測性 誘餌和欺騙 具有欺騙性和誘騙性的反目標獲取或高度查找雷達可用于降低信息或反擊某個范圍或高度。
第三層識別/保護平臺 武器系統/降低可探測性 誘餌和欺騙 分散注意力 拒絕破壞 用旨在造成混亂的措施來對抗識別,以延遲對你的分類或身份的評估,識別可以基于行為或使用特殊雷達模式,如NCI。
第4層跟蹤/保護平臺武器系統/降低可探測性 誘餌和欺騙性分散注意力 用干擾、分散注意力和拒絕的方式來對抗威脅,可以是目標獲取雷達或更高數據率的搜索模式,如窄掃描軌道,同時掃描模式。
第5層 交戰/防御限制 武器系統保護平臺/降低可探測性 誘餌和欺騙 分散注意力 拒絕 破壞 破壞 使用所有可用的能力擊敗威脅,硬殺和軟殺取決于ROE,是傳統的平臺自我保護。可以使用破鎖和信號處理以及跟蹤目標的戰術。
第6層 處置和效應/防御性限制 武器系統保護平臺/減少可探測性 誘餌和欺騙 分散注意力 拒絕 破壞 毀滅 使用所有可用的軟硬殺傷能力擊敗威脅,是傳統的平臺自我保護。可能使用破鎖和信號與跟蹤處理的目標戰術,并可能同時采用針對尋的器和雷達的技術。

G. 認知電子戰系統

認知型電子戰系統的設計必須提供態勢感知、決策和學習能力。一般來說,系統要求推動了一系列關于哪些問題和它可能需要回答的問題的決定。決策可能是反復的,要么是集中的,要么是隨部隊效應范圍分布的。他們將一個問題表示為規格,并受制于AI代理的拍賣。就我們如何定義和調整優化函數而言,利用領域的物理學與參與的進展可能會減少狀態和交易空間。問題來自于像干擾這樣的設計結果所需的緊迫性和缺失的數據。因此,選擇對策和感覺的C4L參數、'while'或'if'條款都是數據要求,可能形成問題對話鏈或問題樹,在殺傷鏈的不同處置路線中需要。因此,這些對話鏈或問題樹就像專家系統的規則庫格式。因此,所需的數據就以拍賣的方式給投標的傳感器。這樣一來,邏輯路線總是有目的性的結果,而DM和傳感器的使用也是如此。另外,隨機森林[22]可以減少熵,增加信息增益。

雖然具有高度的適應性,但先進的雷達和軟件定義無線電(SDR)架構通常依賴于定制的API,單獨暴露每個參數。這種方法不適合EW系統中的近實時認知控制,因為緊密的耦合意味著人工智能不能做出全局性的決定。組成模塊必須是高度模塊化和可組合的,以消除這一障礙。通用接口允許模塊暴露其參數和依賴關系,從而實現全局優化和跨多個處理器的計算負載平衡。通常,由RESM(雷達電子支持措施)攔截的發射物是通過發射物數據庫識別的。發射者被識別出來,并在本地認可的海上圖像(LRMP)中得到體現。當通過數據庫確認為一種威脅時,它可以接受DM的詢問和拍賣:

  • RECM C4L反措施規范可能需要威脅、獲取類型、速度、仰視距離和威脅的各種電子反措施(ECCMs)邏輯;
  • DLS(誘餌發射系統)可能需要C4L數據并計算出發射角度和時間;
  • CMS可能會要求C4L說明采取的最佳路線(避免武器系統的盲弧)。

為此,我們需要一個中間代理,提供一個模塊化的結構組件,允許不同的技術提供不同的服務,并確保信息/控制的一致流動,與John Boyd的OODA循環[23]一致,但適用于數據處理和DM。

圖13 模塊化架構

軟件架構的一個例子是ADROIT。自適應動態無線電開源智能團隊(ADROIT):用中間代理認知控制SDR節點之間的協作。ADROIT項目正在建立一個開源的軟件定義的數據無線電,旨在由認知應用程序控制。模塊暴露了它的參數和它們的屬性(特別是讀/寫)。當一個模塊發生變化時(例如,增加一個新的參數),它只需揭示新的參數,并在一個發布-訂閱機制中公開參數(名稱、屬性),而不是為該新參數增加一個新的API函數;這也可以擴展為一個組播目的地,給后來仍需要定義的模塊。ADROIT用圖14所示的模塊實例化了中間代理。

圖14 ADROIT體系結構支持認知代理

處理不同的或變化的傳感器的一種可擴展的方式是,如果所有的設備可以減少不確定性或提供額外的數據來回答一個殺戮鏈階段的問題,就將它們定義為傳感器。因此,這些傳感器可以成為拍賣算法的參與者,以其回答問題的能力來競標。在不同的操作環境下,拍賣算法中的分數可以改變,因此,不同的傳感器選擇提供較低的可觀察性或與當前的ROE、受限的EMCON或當前的傳感器利用相一致。通過這種方式,形成了一個問答循環,完善了對情況的理解,同時在提問的基礎上做出增量決定,并使環境情況有利于他們的部隊使用保護洋蔥的一個版本。此外,同樣的拍賣優化可以與反措施一起執行,其概念是,如果一切都能影響當地的殺戮鏈決策或導致結論或問題發生在受害者身上,那么它就是一個影響者。由此可見,C4L提供了一種以標準形式指定反措施行動和傳感規格的方法;這些規格可以一起拍賣,以便在一個可適應的模型中獲得最佳效果和傳感,然后該模型將優化殺戮鏈的進展,為跟蹤的對手的殺戮鏈進展提供優勢。在圖15中,本文展示了EW系統如何在拍賣優化的基礎上與具有認知DM的作戰管理系統(CMS)集成。威脅的檢測/識別/鑒定/分類被轉移到不同的數據庫中,但這些過程和數據庫的不確定性導致了傳感器的重新任務。這些都是拍賣,根據傳感器解決情況的不確定性的能力來分配任務,并根據緊急程度來確定優先次序;這使用了從保護的角度預測威脅的殺傷鏈意圖。這些過程越可靠,立即識別和反應的概率就越高。為了進一步提高這一結果,管理部門必須考慮機器學習中的其他參數,以適應當地環境的傳感任務和對策效果的拍賣。

圖15 數據布局EWS與CMS集成

有些參數可能不為人所知,也可能沒有方法或傳感器來提供這些參數;因此,Rudd-Orthner等人[24]的專家系統的神經網絡形式作為數據庫的疊加,在這些情況下提供一個估計值。它還可以提供一個由貝葉斯網絡進一步引導的值,該網絡可以將從環境中收集的傳感器事實與來自其規則的知識結合起來,使其不容易被收集的事實所欺騙。此外,在圖16中,也是在人工智能的背景下,所提出的架構將EW系統與CMS結合起來。它通過一個反饋回路支持 "態勢感知",根據威脅殺傷鏈的位置重新安排傳感器的任務,以快速解決識別和確認的不確定性,更新跟蹤的準確性,并為CMS和EW系統資源提供戰術清單作為選擇。

圖16 ID標準交互模型

在圖16中,DM能力因此積極主動地利用感知能力直接處置威脅,并為反制措施/部署制定了時間表。這些反措施/部署應按照RuddOrthner等人的保護理念,利用推斷出的威脅的殺傷鏈位置階段,直接對抗威脅的意圖。因此,傳感要求可以在拍賣算法中與可供選擇的策略/反措施交錯安排。同樣,在威脅分析和處置的關鍵時刻,一些所需信息可能無法在DM中獲得,但可以使用RuddOrthner論文中提出的神經符號-AI專家系統方法的代數專家系統部分進行估計。可控的可觀察數據可能來自人工智能環境中的數學或認知學習發展過程。我們可以認為這些有助于識別目標的元素是可觀察的,這些元素在DM中是可控的。

圖17 CMS和EW CM系統中的威脅數據路徑

在圖17中,本文展示了一個威脅發射器從EW系統進入CMS部分的順序。從EW系統的庫或數據庫中識別截獲的發射器;該數據庫包含物理雷達特征: PRI、頻率、PW、振幅、掃描類型、掃描周期平臺等級和威脅名稱;采集類型的特征,ECCM,如原點干擾(HOJ)Chaffs辨別,紅外,雙導射頻和紅外。如果發射物未被識別為威脅,則在本地識別的海上圖像中直接代表發行者。如果被確認為威脅,它將遵循不同的路徑,如前所述。導彈的獲取和ECCM的類型在反應鏈中具有巨大的價值。如果它有HOJ能力,最好是通過C4L中捕獲的特定計算直接干預硬殺傷和誘餌發射;該選定的C4L規格是由保護的洋蔥頭選擇的,它與頻譜中的感應計劃一起安排。該規格將誘餌定位在C4L所確定的與發射船的一定距離和特定的β值。除了在CMS上表示威脅的到達方向外,EW系統還將C4L搜索數據和傳感規范發送到多功能雷達(MFR)和火控雷達(FCR)作為即時硬殺傷系統。本文在圖18中畫出了由人工智能支持的戰斗管理系統(CMS)的架構基礎。在標準環境塊中,還有四個相互關聯的組件:

1.傳感器管理,提供設備監視器(資源管理器)的管理,傳感器信息的收集和軌道管理;在這個塊中,所有的相關數據都匯聚到機載傳感器,如雷達、聲納、ESM雷達、通信ESM、導航輔助設備和氣象數據。在這個架構中,一個傳感器的任務和它的優先權來自于它的成熟度和殺傷鏈。在這方面,關于Rudd-Orthner等人,威脅意圖的成熟度被評估為使用保護洋蔥的反意圖對策,并嵌入到Haigh和Andrusenko的殺傷鏈階段,其中的整合是通過ADROIT架構的發布和訂閱機制,這允許快速和靈活的整合和擴展。

2.在架構的第二塊,有信息管理,其中本地軌道與來自鏈接網絡的軌道相關聯,根據識別標準識別目標的追蹤,管理技術決策輔助工具和信息,共享共同的操作畫面,該畫面中的不確定性和異常情況引起了傳感器的任務。

3.第三塊代表戰斗管理,它提供了對威脅的評估計劃和武器優先權的分配--演習的計算和艦隊內與戰斗有關的信息交流。

4.最后一個區塊是資產管理,使用C4L規范和序列,允許艦艇同時協調幾個進攻和確定的目標。

圖18 AI應用于CMS結構

在DM處理環境之外,人工智能也同樣適用于智能處理環境,類似的技術疊加數據庫和ML提取,走向專家系統規則捕獲[25]。在人工智能輔助的CMS中,數據流入信息管理數據融合,使計算機系統在沒有明確編程的情況下利用歷史數據進行預測或做出一些決定。機器學習使用從IMDF(信息管理數據融合)獲得的大量結構化和半結構化的數據,這樣機器學習模型就能產生準確的結果,或根據這些數據提供預測。

付費5元查看完整內容

作者正在研究分布式雷達在穿墻感應中的應用。這項技術的預期操作場景是在建筑物外的(安全)遠程距離內探測和識別建筑物內的人員和武器裝備。本研究使用的雷達結構和信號處理算法類似于美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)實施的埋藏和隱蔽表面目標探測的設計;目前的雷達發射和接收頻率更高。

在這項研究中,實驗是在ARL的阿德爾菲實驗中心(ALC)507號樓("沙盒 "區域)進行的,使用的是室內低金屬兩層夾板結構。用來測試分布式雷達的受控環境與用來測試ARL針對電子目標的諧波雷達的低金屬環境相同。

圖1 步進頻率雷達收發器:(a)賽靈思的RFSoC與Alion/HII的雷達固件,以及(b)定制的發射器/接收器(Tx/Rx)濾波器和放大器PCB,由28VDC供電

結論及后續工作

本研究中收集的數據表明,在低矮的金屬建筑中,相互成直角的天線對能夠探測到多個移動目標,而這些目標從建筑外是看不到的。隨時間變化的距離圖顯示了目標所遵循的路徑;在一個頻道中跟蹤的目標路徑的模糊性可以通過在另一個頻道中跟蹤同一目標來緩解。仍需努力將同時收集的數據的IQ振幅一致地結合起來,以解決多個目標。一個目標是在二維(下行和上行)圖像上繪制目標位置,也許是以視頻動畫的形式疊加在場景的俯視圖上(即被成像的建筑物的典型平面圖)。在對移動目標進行成像時,發射器和接收器天線的雙穩態配對是否具有優勢(與標準的單穩態發射器天線配對相比)還有待確定。

付費5元查看完整內容

本報告總結了迄今為止在路線偵察領域的本體開發的進展,重點是空間抽象。我們的重點是一個簡單的機器人,一個能夠感知并在其環境中導航的自主系統。該機器人的任務是路線偵察:通過觀察和推理,獲得有關條件、障礙物、關鍵地形特征和指定路線上的敵人的必要信息。路線偵察通常是由一個排的騎兵和非騎兵進行的。這項研究探討了機器人執行部分或全部必要任務的合理性,包括與指揮官進行溝通。

1.1 背景與動機

這是一項具有挑戰性的對抗性任務,即地形穿越加上信息收集和解釋。偵察的解釋方面需要考慮語義學--確定相關的信息和確定它如何相關(即有意義)。語義信息在本質上是定性的:例如,危險是一個定性的概念。為了將危險與某些特定的區域聯系起來,我們需要一種方法來指代該區域。這意味著至少能夠給空間的某些部分附上定性的標簽。

Kuipers在他的空間語義層次的早期工作中指出了空間的定性表示對機器人探索的重要性。例如,層次結構的拓撲層次包含了 "地方、路徑和區域的本體",歸納產生了對較低層次的因果模式的解釋。

最近,Izmirlioglu和Erdem為定性空間概念在機器人技術中的應用提供了以下理由:

  • 各種任務,如導航到一個目的地或描述一個物體的位置,涉及處理物體的空間屬性和關系。......或某些應用(如探索未知環境),由于對環境的不完全了解,可能并不總是有定量的數據。......可理解的相互作用和可接受的解釋往往比高精確度更可取(Kuipers 1983)。對于這些應用,定性的空間關系似乎更適合。

對于負責路線偵察的無人地面車輛(UGV)來說,其架構中的不同模塊將消費和產生語義信息:負責語義感知和目標識別、計劃和執行、自然語言對話等的模塊,加上主要負責維護信息的語義世界模型。例如,在美國陸軍作戰能力發展司令部陸軍研究實驗室的自主架構中,語義/符號世界模型被用來 "實現符號目標(例如,去接近一個特定的物體)",*其中接近是一個語義概念。

一個關鍵問題是如何在世界模型和其他模塊之間分配維護和處理不同類型語義信息的責任。從語義世界模型的角度來看,這取決于有多少符號推理是合適的。例如,假設要接近的物體位于一個給定區域的某個位置,而不是靠近該區域的外部邊界。一旦機器人靠近物體,就可以推斷出機器人在物體的位置附近,而且也在同一區域內。如果有公制信息,就可以用幾何例程得出這個結論。在沒有公制信息的情況下,是否會出現在純粹的定性空間中推斷有用的情況?

本報告不涉及這個問題。我們的目標是確定什么應該被代表,而把如何代表和在哪里代表留給未來的工作。

1.2 路線偵察

以下片段取自FM7-92中對路線偵察的描述。空間表達是彩色的,周圍有一些文字作為背景。

  • 路線偵察的重點是獲得關于一條指定路線和敵人可能影響沿該路線移動的所有地形的信息。路線偵察的方向可以是一條道路、一條狹窄的軸線(如滲透通道),或一個總的攻擊方向......防御陣地。......部隊可以機動的可用空間......所有障礙物的位置和類型以及任何可用的繞道位置。障礙物可包括雷區、障礙物、陡峭的峽谷、沼澤地或核生化污染 ......沿途和鄰近地形的觀察和火力范圍 ......沿途提供良好掩護和隱蔽的地點 ......。橋梁的結構類型、尺寸和分類。著陸區和接駁區。與路線相交或穿越的道路和小徑。. . 如果建議路線的全部或部分是道路,則該排認為該道路是一個危險區域。它使用有掩護和隱蔽的路線與道路平行移動。當需要時,偵察和安全小組靠近道路,以偵察關鍵區域。

路線偵察的結果是一份報告,以圖表的形式,并附有文字說明。FM7-92給出了一個例子,我們可以從中提取一些更必要的概念:

  • 網格參考。磁性北方箭頭..道路彎道..陡峭的坡度..道路寬度的限制(橋梁,隧道等)..岔道的位置..隧道..

讓我們把這段關于路線偵察的描述中提到的概念建立一個綜合清單,重點放在空間概念上,并盡可能地保留軍事術語:

1)必須指定環境中的位置、路線、區域和感興趣的物體。稱這些為 "實體"。

2)這些實體之間的空間關系是相關的(例如,一個地點在另一個地點的北邊)。值得注意的是,不同類型的實體之間的關系是被指定的。

a. 物體(例如,障礙物)在位置或區域。

b. 一些地點在空間上與路線有關(例如,沿著路線,毗鄰,或靠近道路)。

c. 地點可能代表更大的區域(例如,雷區的位置)。

d. 道路和小徑可以與路線相關:它們可能相交、重疊(部分疊加),或平行運行。

  1. 一些實體對路線具有戰術價值,無論是進攻還是防御(例如,雷區)。

a. 一些地點相對于其他地點或區域有方向性的定位(例如,一個防御性的位置)。

b. 有些區域是由其與另一個區域或地點的關系來定義的,這可能不是一種局部的關系(例如,觀察和火力場是由一個潛在的遠程位置來定義的,該位置有一條通往路線上的一個區域的線路)。

4)路線可能被障礙物阻擋,障礙物可能是明確的物體或更大的區域(例如,一個障礙物與一個雷區)。

  1. 路線和地形的三維幾何特性是相關的:道路上的急轉彎,陡峭的坡度,等等。

6)有時,描述物理基礎設施(如道路、橋梁)及其屬性是很重要的。

1.3 路線偵察抽象

路線偵查收集和解釋不同種類和不同來源的信息:

  • 背景知識。這包括關于環境特征的類型和預期成為任務一部分的物體的信息,包括道路、障礙物、溝壑、橋梁等等。

  • 任務規范。確定偵查的區域和路線,以及當時可獲得的任何信息。

  • 環境。通過空間分析(包括幾何學、拓撲學等)、感知、地圖衛星數據的離線圖像處理和其他類型的分析,確定環境的相關特征。

  • 任務執行期間的通信。我們假設指揮官或人類操作員在偵察過程中可以向UGV提出詢問或命令,提供新信息或集中注意力。

  • 如前所述,一份報告。

原則上,所有這些信息都以某種抽象的形式組合在一個語義世界模型中。我們把環境的物理屬性和特征稱為 "實體"。把我們用來表示這些實體和它們之間關系的抽象概念稱為 "概念"。

不同類型的實體的概念。層次結構在語義表征中很常見,用來捕捉關于世界上遇到的實體類型的一般知識。一個類型就是一個概念,類型被組織在一個層次中:MRZR是一種輕型的、戰術性的、全地形的車輛,它是一種輪式地面車輛,它是一種地面車輛的類型,等等。屬性和關系可以與一個給定的概念相關聯,而下級概念則繼承這些屬性。在路線偵察中,如果有信息說某一地區有一條道路,但沒有更多的細節,仍然可以從道路的概念中推斷出它的預期屬性:它比它的寬度長得多;它在人們感興趣的地點之間通向;在其他條件相同的情況下,它可能比周圍的地形行駛得快。從實用的角度來看,這意味著如果有可能將某物歸類為一個已知的概念,那么語義世界模型就不需要記錄關于該物的每一條相關信息。

用于實體的目的和用途的概念。一個代表道路典型用途的概念可以進一步區分其長度和寬度的語義,這反過來又導致了跨越和沿途、穿越和跟隨等概念之間的區別。這將使UGV能夠以不同的方式對待 "偵察道路對面的區域 "和 "偵察前方的道路 "的命令。前方的道路也是一個語義概念:它取決于對過去去過的地方的了解。

代表部分信息的概念。有時可能會有定性的信息。想象一下,任務規范的一部分是關于雷區在計劃路線上存在的信息,但不知道具體位置,或者知道雷區的位置,但不知道其范圍。這種無知可以很容易地在代表實體的概念中得到體現。

新概念適用于新環境。另一個交流的例子可能是信息性的。想象一下,當一輛UGV穿越一條東西走向的道路時,它與遠程指揮官進行交流,指揮官問道:"道路北側是什么?"* 需要識別的物體可能不在道路和地形的邊界上(與 "建筑物的一側 "形成對比),而是在以道路邊緣為界的某個感興趣的區域內,距離UGV的位置向北不遠,向東和向西也有一些距離。這個區域可能沒有事先作為一個概念被劃定;相反,它是在當前的背景下構建或推斷出來的。這是一個有趣的例子,一個概念不是從公制數據中抽象出來的,而是被強加在公制數據上的。

背景中的概念的適應和組合。想象一下,對一張地圖的分析產生了對代表區域、道路等等的概念的分解。這些概念可能直接適用于某些目的。例如,與道路相聯系的概念在推理兩點之間的導航時是有用的。然而,在其他情況下,這些概念可能需要調整或與其他概念相結合。例如,如果一條道路被指定為 "危險區域",那么這個區域的概念可能會超出道路的邊界,延伸到周圍的地形。

付費5元查看完整內容

本報告是在 FA9453-19-1-0078 資助下編寫的。首先,提出了兩種數值方法來解決通信和導航中產生的非線性優化問題。其次,開發了兩個關于機器學習模型的解決方案質量和安全性的結果。

該研究項目的目標是開發高效的大規模非線性優化算法,以解決通信和導航方面的數據分析問題。這些問題被公認為在數學上具有挑戰性,并與空軍的利益直接相關。

在資助期間,我們成功研究了兩個研究方向。首先,我們設計了大規模非線性優化問題的最佳一階方法。在這個方向上,我們提出了兩個一階方法,可以對決策變量進行近似梯度更新。這兩種方法都可以解決分散通信的多Agent優化所產生的非線性優化問題。通過將多代理優化重新表述為約束性問題,我們開發的方法可以以最佳梯度/操作者評估復雜度來解決問題。我們開發的方法也可用于解決圖像重建問題。

第二,我們分析了機器學習模型中的解決方案質量和安全問題。在這個方向上,我們完成了兩個研究結果。我們的第一個成果是關于在多集群環境下,從二元結果的條件邏輯回歸模型中計算出來的估計值的屬性。我們表明,當每個單獨的數據點被無限次復制時,來自該模型的條件最大似然估計值漸進地接近最大似然估計值。我們的第二個結果是關于安全的矩陣乘法問題,我們設計了一種準確和安全地進行分布式矩陣乘法的方法。我們的安全協議可以確保在進行這種矩陣乘法的通信過程中沒有任何信息被泄露。

付費5元查看完整內容

機器人是一個具有挑戰性的領域,需要軟件和硬件的融合來完成所需的自主任務。任何工作流程的關鍵是在部署到生產環境之前對軟件進行自動構建和測試。本報告討論了美國陸軍作戰能力發展司令部陸軍研究實驗室(ARL)的無人自主車輛軟件研究平臺MAVericks的軟件開發過程中使用的持續集成/持續交付工具的重要性和創建情況。這個工具在ARL進行的快速研究和開發中起著至關重要的作用--包括模擬和嵌入式硬件目標的自動構建測試,以及驗證軟件在環模擬中的預期行為。

持續集成/持續交付(CI/CD)是軟件開發中常用的工具,用于自動構建、測試和部署代碼。這個工具對于提高研究的速度和效率至關重要,同時確保在增加或改變新功能時功能不受阻礙。在CI/CD之前,軟件開發過程是具有挑戰性的,隨著越來越多的合作者修改代碼庫,任何新的開發都有可能破壞現有的功能--比如代碼不再構建,自主行為和故障保護裝置不再按預期工作。

本報告重點關注美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的MAVericks無人自主飛行器(UAV)軟件平臺的CI/CD集成,該平臺建立在開源平臺ROS2和PX4之上。ROS2是一套用于構建機器人應用的軟件庫和工具,而PX4是一個強大的無人機飛行控制軟件。利用這兩個平臺,MAVericks是一個專注于敏捷飛行的大型合作項目,在模擬和機器人平臺上都能發揮作用。MAVericks的目標是在ModalAI的VOXL和RB5硬件平臺上運行,因為它提供了尺寸、重量和功率,同時也是藍色無人機項目的合作伙伴,這意味著他們得到了國防創新部門的資助,以符合2020年國防授權法第848條的規定。

合作者包括美國軍事學院的西點軍校,作為分布式和協作式智能系統和技術項目的一部分;加州大學伯克利分校,作為規模化和穩健的自治項目的一部分;以及馬里蘭大學的人工智能和多代理系統的自治項目--而且這個名單一直在增加。此外,ARL一直在尋求提高其算法的穩健性和成熟的能力,以過渡到DEVCOM和國防部的其他組織。隨著許多合作者加入MAVericks,重要的是要確保每次修改后有最低限度的可用功能,以鼓勵快速加入和貢獻。MAVericks是一個由一百多個軟件包組成的大型研究平臺,重要的是每個軟件包都能可靠地構建和運行。通常情況下,合作者只關心幾個軟件包,他們可以很容易地進行修改和添加,而不需要對不相關的問題進行排查,這一點至關重要。由于這種不斷增長的社區,很容易偶然地引入錯誤或破壞不相關的功能。因此,CI/CD是一個很好的解決方案,它將為不同的用戶群體提高平臺的可靠性和可用性。

CI/CD管道實現了許多簡化開發的功能。它可以完全構建整個平臺,確保新用戶的依賴性安裝成功,在模擬環境中運行和測試平臺,以確保自主行為正常工作,并快速構建壓縮的工作空間,以防止在無人機上構建。

在自主系統的軟件開發中,一個有問題的情況是,用戶修改了幾個包,但只構建和測試了一個特定包。這樣,代碼就被合并到了生產中,而沒有驗證它對其他人是否有效。如果未經測試的修改被合并,依賴這些修改的包可能不再構建或通過所有的測試案例。

從用戶的角度來看,CI/CD是由用戶創建代碼合并請求(MR)來觸發的,將他們的修改添加到主分支。這就啟動了CI/CD,建立了一個管道。該管道包括四個階段:構建-依賴、構建-完整、測試和部署。對于每個階段,可以并行地運行多個作業來完成該階段。在每個作業中,流水線首先將合并后的變化復制到一個新的環境中,并完成一個特定的任務。在流水線的最后,一個完全構建的版本被上傳,并準備在無人機上閃現。如果任何步驟失敗,其余的管道階段將被中止,并通知用戶到底是什么地方出了問題,以便他們能夠解決任何問題。管線的概述見圖1。

在本報告中,描述了MAVericks CI/CD的基礎,然后詳細介紹了管道中的每個階段,以及所克服的幾個挑戰。

付費5元查看完整內容

這項工作的目的是開發能夠成功處理復雜動態環境中順序決策的深度終身學習方法,重點是多Agent情報、監視和偵察(ISR)場景。我們為深度卷積神經網絡開發了一個新的架構,支持通過去卷積因子化的終身學習(DF-CNN),探索了通過Distral和Sobolev訓練的策略提煉的組合,并開發了一個混合控制器,將深度學習應用于ISR智能體。我們的方法在標準基準深度學習數據集、DOOM環境和ATE3模擬環境中的ISR場景中進行了評估。

我們的主要貢獻是反卷積因子卷積神經網絡(DFCNN)。DF-CNN框架調整了標準卷積神經網絡(CNN)框架,以實現任務之間的轉移。它在每個CNN層維護一個共享知識庫,并通過這個共享知識促進不同任務的CNN之間的轉移。每個具體任務的CNN模型的各個過濾層都是由這個共享知識庫重建的,隨著網絡在多個任務中的訓練,這個知識庫會隨著時間的推移而調整。DF-CNN代表了ELLA終身學習框架對深度網絡的概括。

實驗表明,DF-CNN在終身中的基準識別任務上的表現優于其他方法(包括單任務學習、低層的硬參數共享和漸進式神經網絡)。此外,該框架能夠抵抗災難性遺忘,同時仍然允許從未來的學習中反向轉移到以前學習的模型。

對于深度強化學習,我們研究了將Sobolev訓練整合到Distral多任務框架中,以努力改善轉移和訓練,探索了DF-CNN在深度RL中的應用,并開發了一個混合控制器,將本地學習的深度RL策略結合在一起,在ATE3仿真環境中完成ISR場景。

付費5元查看完整內容
北京阿比特科技有限公司