亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本最終技術報告總結了 2018 年 9 月至 2022 年 9 月期間 AFRL 項目 "嵌入式深度學習和高級計算 "的研發工作。該項目涉及兩個重要的技術趨勢:使用深度神經網絡(DNN)的深度學習正迅速成為許多機器學習應用的首選方法,而網絡邊緣的嵌入式設備正變得越來越廣泛。通過這兩種技術的融合,我們可以看到新一代嵌入式設備的出現,它們可以執行智能任務,如學習未知環境和感興趣的目標、周圍環境的三維映射、執行數據分析以及根據本地數據進行預測。這些設備構成了所謂的人工智能物聯網(AIoT)[1]。

本研究項目研究的基礎技術可促進未來嵌入式深度學習的高效訓練和推理計算系統。研究的主要方法包括 (1) 使用隨機舍入的可變精度分塊浮點;(2) 采用術語量化,將浮點數量化為 2 次冪術語,而不是傳統的均勻量化;(3) 使用特定領域詞匯對預訓練語言模型進行調整;(4) 通過使用恒定帶寬塊的調度最大限度地減少內存訪問;(5) 在算法的協同設計中應用全棧優化、 (6) 為可穿戴計算拆分神經網絡,(7) 設計用于檢測輸入到 DNN 的非分布式輸入的算法,(8) 為高效的 DNN 系統陣列實現打包稀疏 DNN,(9) 為 DNN 的 3DIC 實現設計內存邏輯架構和系統構建模塊,以及 (10) 在內存計算中利用位級稀疏性。

引言

卷積神經網絡(CNN)等深度神經網絡(DNN)實現了深度學習。它們具有多層非線性特征轉換,每增加一層就能提取出越來越好的特征。然而,訓練一個大型 DNN 并在這樣的網絡上執行推理需要耗費大量的時間和精力。對于大型語言模型(LLM)和生成式對抗網絡(GAN)等大型深度網絡來說,訓練成本很高。由于小型人工智能物聯網(AIoT)設備在處理能力、內存占用和功耗預算方面存在嚴格的資源限制,因此在這些設備上進行訓練和推理更具挑戰性。有必要共同設計算法、模型和硬件參數,以便在這些嵌入式設備上執行高效的訓練和推理。在為嵌入式設備訓練復雜的深度模型時,并行處理、管理內存訪問時間表和利用數據稀疏性等高級計算技術至關重要。

本項目旨在針對嵌入式深度學習和推理中的關鍵挑戰開展廣泛研究。例如,我們探索了嵌入式深度學習與基于并行和分布式計算的高級計算之間的相互作用。該項目利用了 PI 在相關領域的經驗,包括他早期在系統陣列以及分布式和嵌入式神經網絡架構方面的工作。我們將在本報告的其余部分重點介紹我們已發表的部分成果。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

本報告總結了 SEI 的 2022 年新興技術研究 (ETS),研究結果對 SEI、美國防部贊助商和軟件工程社區都非常重要。此外,本報告還討論了新興技術知識庫 (ETKB),這是 SEI 的一個內部工具,采用類似維基百科的結構來編纂研究期間收集的數據和信息。通過 ETKB,可以確定所調查的新興技術與 SEI、其客戶和贊助商的總體目標和目的之間的關系和聯系。

本報告討論了以下七種新興技術,我們從純粹的軟件工程角度(即實踐和技術)選擇了這七種技術。這些技術在人工智能和機器學習 (AI/ML)、網絡安全、數字化轉型和分布式計算等領域不斷發展。

在介紹這些技術時,特別強調了子課題(及其技術就緒水平[TRL]):

  • 先進計算

  • 先進材料

  • 人工智能/機器學習

    • 智能數據管理(極早期 TRL): 利用人工智能建立用于大規模軟件測試的真實數據集,有助于解決真實世界數據集缺乏的問題。
    • 人工智能輔助軟件開發(中級 TRL): 亞馬遜的 Code Whisperer 和 GitHub 的 CoPilot 等一些早期生產工具正在出現。
  • 生物技術

  • 網絡安全

    • 零信任(TRL 早中期): 雖然這一主題得到了廣泛宣傳,但支持零信任原則的技術仍然缺乏。
  • 數字化轉型

    • 智能邊緣(TRL 中后期)和數字化轉型: 深度數據語義(TRL 早期)(可能與先進計算的泛在計算相結合): 對這些主題的研究正在不斷增長,預計在新興技術領域將變得更加重要。
    • 保真度更高的基于模型的軟件工程(MBSE)(TRL 早期): 這項工作以 SEI 和軟件工程界其他機構之前開展的研究(如架構分析與設計語言 [AADL]、可認證代碼的可預測組裝 [PACC] 和自適應服務質量 [AQoS])為基礎,可推動 MBSE 的實踐發展。之前的 SEI 工作,如 PACC,可能已經過時了: 我們與低代碼/云計算和 MBSE 領域的一些主題專家進行了交談,他們描述了 "下一代 "MBSE,即 "模型成為軟件"(即,通過消除軟件和系統模型到運行代碼的人在環翻譯)。
  • 分布式計算

    • 將 2022 ETS 的主題和分主題與之前 ETS 的主題和分主題進行比較,發現其他新興技術仍占主導地位,包括量子計算、區塊鏈和人工智能。有趣的是,盡管量子計算等一些技術仍包含在本報告中,但其時間線仍在 10 年之后,更具有 "未來性"。不過,國防部對后量子加密技術(也稱為抗量子加密技術)最迫切和最現實的擔憂并不令人驚訝,因為它可能會在無形中破壞傳統(或前量子)加密算法。

付費5元查看完整內容

威斯康星大學(UW)在 2017 年 6 月至 2021 年 5 月期間得到了國土安全部(DHS)網絡風險與信任政策和分析信息市場(IMPACT)計劃的支持。技術專題領域 #1 數據提供者 (DP) 和 #2 決策分析即服務 (DASP) 的研發工作已經完成。這些活動的方法是從網絡協議棧的不同層收集和組合數據集,以提供關于網絡安全風險、降低風險的機會、用戶行為以及網絡安全研究和企業所有者和運營商感興趣的事件的取證調查的獨特和重要的視角。

我們的數據提供商活動主要集中在擴展和增強互聯網 Atlas 存儲庫和門戶網站上,這些存儲庫和門戶網站最初是在上一代 IMPACT 計劃/防御網絡威脅基礎設施保護存儲庫 (PREDICT) 計劃期間開發的(參見第 8 節中的參考文獻 #22)。除 Internet Atlas 外,威斯康星大學還開發并分發了其他幾個數據集,包括 DShield 入侵檢測系統 (IDS)/ 防火墻日志、邊界網關協議 (BGP) 更新日志、網絡時間服務器日志和網絡抓取日志。

我們的 "決策分析即服務"(decision-analytics-as-a-service)工作重點是開發基于網絡時間協議(NTP)數據實時識別互聯網事件(包括中斷、攻擊、路由變化等)的能力,這些數據是從 14 臺 NTP 服務器收集的,它們在整個執行期間提供數據。我們還致力于開發各種方法和工具,將協議棧不同層的數據融合在一起,以深入了解性能、連接性和風險,這在其他情況下是不可能實現的。我們還花費大量時間開發了一個系統,用于從愿意提供數據的用戶那里收集網絡瀏覽數據。我們與威斯康星大學機構審查委員會 (IRB) 和法律部門合作,確保這些活動獲得適當授權。

在執行期間,我們向研究界分發了數百個數據集。在 17 年 6 月至 21 年 5 月期間,互聯網 Atlas 門戶網站的頁面訪問量超過 2.7 萬次,來自世界各地的獨立訪客超過 1.6 萬人。提供了 21 個詳細訪問 Atlas 的賬戶。同期,根據通過 IMPACT 門戶網站(impactcybertrust.org)提出的請求,提供了 117 個數據集(主要是互聯網長途基礎設施數據)。

除了分發數據集和開發決策分析即服務功能外,我們的研究工作還在高質量刊物上發表了 15 篇論文,2 篇論文已發布到 arxiv.org 公共檔案庫并將提交發表,另有 4 篇手稿正在準備中,不久將提交發表。這些正在準備的論文的主題包括:域名系統(DNS)的實證分析、基于端到端延遲測量的互聯網連接識別新方法、停電對美國互聯網客戶端可用性的影響分析以及互聯網路由超圖的地理定位方法。第 8 節提供了該資助項目發表的論文、arXiv 論文和正在準備的論文的完整清單。我們還做了 25 場與這些研究論文和數據集相關的技術演講。最后,我們的互聯網地圖集及相關地圖和研究成果已成為技術和大眾媒體上眾多文章的主題。

本資料基于國土安全部和空軍研究實驗室 (AFRL) 贊助的研究,協議編號為 FA8750-18-2-0036。

圖 1:BigBen 的系統架構。測量組件位于每個提供數據的遠程 NTP 服務器上,其余組件在云基礎設施中運行。(csv - 逗號分隔值,OWD - 單向延遲,RPCA - 強健主成分分析,API - 應用程序編程接口)

付費5元查看完整內容

喬治敦大學安全與新興技術中心(CSET)和艾倫-圖靈研究所新興技術與安全中心(CETaS)的這份聯合報告評估了目前自主網絡防御的最先進水平及其未來潛力,確定了進展的障礙,并建議采取具體行動來克服這些障礙。這些發現和討論將與參與開發自主網絡防御能力的網絡安全從業人員、政策制定者和研究人員有關。

鑒于網絡攻擊造成的巨大經濟和社會損失以及人工智能(AI)的最新進展,近年來,人們對應用人工智能加強網絡防御的興趣越來越大。對自主網絡防御的研究正在擴大,它不僅可以檢測威脅,而且可以參與防御措施,如加固或恢復。本報告重點關注創建這些自主網絡防御代理的一種有前途的方法:強化學習(RL)。

自主網絡防御沒有一個統一的定義,但在最基本的層面上,這些代理將完成人類網絡防御者的一些任務,保護網絡和系統,檢測惡意活動,并對異常或惡意行為作出反應,但要以數字攻擊的速度。

本報告提出了自主網絡防御的擬議定義,調查了自主網絡防御的現狀以及該技術成為可行的網絡安全工具所必須克服的相關挑戰。不能保證自主網絡防御會成功,但該技術正處于一個需要政策支持的階段,以實現潛在的好處,并幫助網絡防御者處理現代網絡安全行動的速度和不確定性。

RL是創建網絡防御代理的領先AI方法,這是有效的自主網絡防御的核心要求。2012年,當RL代理首次在簡單的雅達利游戲中擊敗人類專家時,這項技術的地位日益突出。在這一成功的基礎上,從2015年到2018年,DeepMind為更具挑戰性的游戲建立了系統,包括圍棋和國際象棋,取得了意想不到的成功水平。研究人員對RL趨之若鶩,部分原因是這些成功,但也是因為OpenAI的一個開放框架,它允許創建簡單的模擬訓練環境或 "健身房"。OpenAI健身房的形式簡化了研究和開發,在過去的幾年里,網絡健身房已經開始出現,允許訓練和創建網絡防御代理。甚至在最近,這些健身房成為名為 "網絡自主實驗健身房"(CAGE)的公開網絡安全競賽的一部分。

我們的研究立足于基于強化學習(RL)的人工智能代理的潛力,以提供實現部分或全部自主網絡防御概念所需的自主能力。雖然與自主網絡防御有關的有前途的相關建模方法、技術和工藝的范圍很廣,但我們對RL的關注是由于在網絡防御中應用RL的努力增加,以及RL在其他問題領域取得的可喜成果。

雖然自主網絡防御的核心技術在過去十年中進展迅速,但在系統能夠投入使用之前仍有許多挑戰。在這個研究項目的過程中,我們采訪了政府和非政府專家,以確定建立和部署可信系統的要求,其中包括:

  • 適應性--一個潛在的自主網絡防御系統將需要對網絡威脅環境的變化做好未來準備。
  • 可審計性--自主網絡防御系統必須能夠生成日志,并將代理人的決定和采取行動的理由歸檔,以便進行審查和審計,盡管操作節奏可能超過人類能力。審計日志也可以用來保證所采取的行動是合法的和相稱的,并遵守商定的規范。
  • 可指導性 - 人類操作者需要能夠在需要時重新指導或終止系統。
  • 可觀察性--系統需要為人類操作者提供足夠的數據采集和分辨率,以提供準確的、最新的態勢感知,并提供系統性能指標以支持人類監督。
  • 安全性--自主網絡防御系統和其中的代理都需要保證安全,防止被泄露、被盜或被破壞。
  • 可轉移性--自主網絡防御代理將需要在實際環境中部署,而這些環境與他們所受的訓練不完全相同。

為了滿足這些要求并繼續取得進展,自主網絡防御這一新生領域需要得到培育。RL最近才開始在網絡安全方面起飛。近年來,學術出版物激增,培訓網絡RL代理也開始大量涌現。然而,與這些代理將面臨的更復雜的現實世界的網絡環境相比,能力仍然是初級和不完整的。持續的資金、協調的努力以加強模擬、仿真和評估工具、確保熟練的人員,以及提供對現實數據和基礎設施的訪問,將有助于確保進展。

如果能夠克服技術挑戰,自主網絡防御有很大的發展潛力。目前為網絡防御建立的代理和環境考慮的變量和可能性比更著名的RL代理(如圍棋或視頻游戲如Atari或DOTA2)少。這意味著有足夠的潛力讓代理越來越智能;它們可以管理更多可能的防御行動,并在更復雜的環境中運作,需要它們探索更多的情況。我們對技術挑戰的探索表明,自主網絡防御將是一個長期的雄心壯志,只能在未來幾年內實現。

建議

盡管在自主網絡防御領域取得了重大進展,但我們的研究表明,還沒有自主網絡防御系統被實際部署。鑒于目前技術的成熟度,我們提出了發展這些能力以使技術成熟的建議(建議的完整清單見第4節)。

對擴大規模進行投資。該領域可以通過做更大、更真實的網絡模擬,納入更復雜的場景和攻擊者的行為來改進。更高的保真度將導致更有能力的網絡防御代理。此外,發布和維護工具,如健身房或訓練有素的代理,可以幫助吸引學術界或其他研究人員來做這項工作。最后,持續的資金也將使研究人員更容易向這些項目看齊。

建立并提供測試和訓練場。更大和更復雜的代理將需要更多的計算密集型訓練和測試,這可能使一些研究人員的資源緊張。建立和維護大型計算系統也是一個挑戰,這需要難以得到的人才。提供必要的基礎設施、人才和資金資源--也許是以補貼成本的方式,也可以幫助加速進展并提供連續性。

協調數據共享。政府和行業的政策制定者有權力發布有關需要防御的網絡和他們所觀察到的威脅的網絡數據。這些都是需要仔細考慮的微妙問題,但只要共享數據能改善網絡安全,所有組織都會受益。

舉辦比賽。繼續舉辦自主的網絡防御競賽,并輔以財政獎勵,作為改善健身房和代理商的一種手段,同時培養未來的人才。

優先考慮能使自主網絡防御的利益最大化的領域。并非所有的網絡防御情況都需要自主代理,如速度不是限制因素或防御已經有效的情況。優先考慮自主性影響最大的領域可以幫助指導研究。同樣地,一些技術,如漏洞發現,對防御者或攻擊者都有幫助。政策制定者應投資于研究,以確定哪些情況和技術會導致更好的防御,而不是改進攻擊。

確定防御者代理是否需要攻擊者代理。在創建現實的模擬時,不清楚在多大程度上可以在沒有進攻者代理的情況下建立防御者代理來驅動它們。研究人員和政策制定者應該探索在不犧牲防御者有效性的情況下限制進攻代理的能力的方法,并對代理技術和知識的擴散建立嚴格的控制。他們還應該投資于研究,以了解哪些具體情景和技術需要進攻性制劑。

確定自主網絡防御代理的授權門檻。自主網絡防御代理將需要達到對一個組織的高度信任,以獲得高度的自主權。需要制定政策指導,為能力和可信度設定初始目標,與代理被授權做出的決定的風險相匹配。這種指導可以類似于為自主車輛制定的自主水平。它們也可以根據情況或威脅環境的各個方面而變化。

付費5元查看完整內容

這份最終報告描述了在AFOSR獎勵FA2386-20-1-4043下進行的三個分支研究成果。我們在針對神經網絡分類器的中間人(MitM)對抗性攻擊的最先進對抗性防御框架、針對離散序列數據(如自然語言文本、蛋白質序列等)的快速而準確的黑盒對抗性攻擊算法以及離線強化學習的穩健策略優化算法方面取得了重大進展。研究成果通過以下方式傳播:(i) 在人工智能領域的頂級出版場所(NeurIPS、AAAI、ICML)發表文章;(ii) 在Github上公開源代碼,以實現可重復性和傳播;(iii) 在首爾國立大學為本科和研究生水平的人工智能課程授課。

付費5元查看完整內容

本報告是在 FA9453-19-1-0078 資助下編寫的。首先,提出了兩種數值方法來解決通信和導航中產生的非線性優化問題。其次,開發了兩個關于機器學習模型的解決方案質量和安全性的結果。

該研究項目的目標是開發高效的大規模非線性優化算法,以解決通信和導航方面的數據分析問題。這些問題被公認為在數學上具有挑戰性,并與空軍的利益直接相關。

在資助期間,我們成功研究了兩個研究方向。首先,我們設計了大規模非線性優化問題的最佳一階方法。在這個方向上,我們提出了兩個一階方法,可以對決策變量進行近似梯度更新。這兩種方法都可以解決分散通信的多Agent優化所產生的非線性優化問題。通過將多代理優化重新表述為約束性問題,我們開發的方法可以以最佳梯度/操作者評估復雜度來解決問題。我們開發的方法也可用于解決圖像重建問題。

第二,我們分析了機器學習模型中的解決方案質量和安全問題。在這個方向上,我們完成了兩個研究結果。我們的第一個成果是關于在多集群環境下,從二元結果的條件邏輯回歸模型中計算出來的估計值的屬性。我們表明,當每個單獨的數據點被無限次復制時,來自該模型的條件最大似然估計值漸進地接近最大似然估計值。我們的第二個結果是關于安全的矩陣乘法問題,我們設計了一種準確和安全地進行分布式矩陣乘法的方法。我們的安全協議可以確保在進行這種矩陣乘法的通信過程中沒有任何信息被泄露。

付費5元查看完整內容

這個項目的目標是開發在具有挑戰性的多目標環境中自主分布式傳感器管理和融合所需的基礎方法。這涉及到開發能夠自動跟蹤多個目標的算法,根據從具有數據關聯不確定性和高誤報率的多個平臺收到的信息進行分類并分配資源。在研究者最近在多目標跟蹤和分布式傳感器融合方面的發展基礎上,該工作方案開發了能夠在大規模多傳感器多目標跟蹤應用中基于信息理論標準實現自主傳感器分配的方法。這是通過重新評估信息理論中的關鍵工具來實現的,這些工具適用于基于點過程理論的多目標監視的挑戰,該理論旨在適應單個目標的狀態和目標數量的不確定性。所開發的信息理論方法被應用于多傳感器問題,使人們能夠決定如何分配傳感器資源,以及完善對場景的認識。所開發的工具將有助于減少監測單一傳感器饋電的勞動密集型負擔,并能做出適應性決定,以優化多模式網絡的運行,并增強對監測區域的整體認識。對多目標跟蹤情景的信息理論表述的關注,將使人們能夠驗證傳感器饋電是否能夠可靠地融合,以避免數據損壞的可能性。該項目在智能傳感方面提供了關鍵的先進技術,以實現動態環境中的連續和適應性監視。這些將是可擴展的,可用于從多個分布式傳感器對許多目標進行大規模跟蹤。

該項目的總體目標是研究和開發基于信息理論原則的分布式多傳感器多目標系統的自主傳感器控制的新策略:

  • 為大規模系統的多目標跟蹤開發可擴展的解決方案。

  • 開發基于信息論原理的多傳感器融合的分布式解決方案。

  • 確定多傳感器多目標跟蹤系統可以交換多少信息。

該項目為多傳感器多目標跟蹤開發了基本的解決方案:

  • 對許多目標進行大規模跟蹤。問題的規模越來越大,因此解決方案需要可擴展,跟蹤許多目標需要減輕組合復雜性的算法。多目標跟蹤的低復雜度解決方案將被開發出來,并在復雜環境中進行測試。開發了一種用于穩健地跟蹤大量目標的方法,該方法在目標數量和測量數量上是可擴展的,這使得數百萬目標可以被跟蹤。

  • 確定多傳感器多目標跟蹤系統的信息含量。在具有高密度信息的傳感器網絡中,帶寬可能是多傳感器多目標跟蹤的一個制約因素。這個項目得出了確定用于多目標跟蹤的傳感器網絡的信息含量的結果。預計這將有助于評估傳感網絡的效率和有效性,并與發送數據的數量和頻率相平衡。

  • 來自多個傳感器的數據的分布式整合。操作員需要根據來自多個跟蹤系統的信息做出決定,以提高整體的態勢感知。為多傳感器集成開發了一種分布式多傳感器多目標跟蹤的新方法,該方法可減輕來自不準確或誤導性數據源的損壞。

  • 對多目標監視應用中的威脅進行評估。對許多物體的大規模跟蹤能夠識別直接威脅。然而,有些威脅可能比其他威脅更有針對性。開發了一種新的對抗性風險的表述,為操作人員提供態勢感知,以幫助確定傳感資產的優先次序。

  • 目標跟蹤估計器的性能界限。費舍爾信息的倒數,即克拉默-拉奧約束,為參數的估計器提供了一個約束,是統計分析的基礎。它為一個參數提供了一個可實現的最小方差或協方差。根據量子場理論的數學概念,為點過程推導出克拉默-拉奧約束,將這一概念推廣到具有空間變量的變量。

付費5元查看完整內容

本報告總結了網絡科學實驗方法項目期間的研究成果,大約涵蓋2017-2020年。該項目重點關注兩個主要議題:彈性網絡的上下文感知網絡和網絡安全。上下文感知網絡旨在改善戰術網絡及其支持服務的性能,使用上下文感知來加強目前的實踐方法,這些方法不一定考慮環境的動態和資源有限的邊緣設備和網絡的限制。彈性網絡的網絡安全旨在加強戰術網絡在動態和復雜對手面前的安全性。

參與本項目的美國陸軍作戰能力發展司令部陸軍研究實驗室的研究人員在相關主題的多個外部合作伙伴計劃的形成和合作中具有重要影響。這些項目的成果被納入任務資助的項目。這些合作伙伴計劃包括美國-英國分布式分析和信息科學國際技術聯盟(DAIS ITA)、戰場物聯網合作研究聯盟(IoBT CRA)、技術合作計劃(TTCP)和北約科學和技術組織信息系統技術(NATO STO IST)小組。

這項研究的影響包括:網絡模擬實驗驗證了支持理論結果的算法和技術的可行性,在網絡和通信研究界對研究成果進行了大量報道,并對陸軍概念科技(S&T)文件做出了貢獻。下文中總結的重點包括:利用沙堆模型開發網絡控制中的級聯故障的最佳控制,并確定可以防止級聯故障的條件;將密匙壽命提高一個數量級的物理層安全認證協議;以及對指揮與控制(C2)、火災和網絡科技概念文件的貢獻。

圖 1 包含理解、適應和執行周期的上下文感知網絡示意圖

付費5元查看完整內容

機器人是一個具有挑戰性的領域,需要軟件和硬件的融合來完成所需的自主任務。任何工作流程的關鍵是在部署到生產環境之前對軟件進行自動構建和測試。本報告討論了美國陸軍作戰能力發展司令部陸軍研究實驗室(ARL)的無人自主車輛軟件研究平臺MAVericks的軟件開發過程中使用的持續集成/持續交付工具的重要性和創建情況。這個工具在ARL進行的快速研究和開發中起著至關重要的作用--包括模擬和嵌入式硬件目標的自動構建測試,以及驗證軟件在環模擬中的預期行為。

持續集成/持續交付(CI/CD)是軟件開發中常用的工具,用于自動構建、測試和部署代碼。這個工具對于提高研究的速度和效率至關重要,同時確保在增加或改變新功能時功能不受阻礙。在CI/CD之前,軟件開發過程是具有挑戰性的,隨著越來越多的合作者修改代碼庫,任何新的開發都有可能破壞現有的功能--比如代碼不再構建,自主行為和故障保護裝置不再按預期工作。

本報告重點關注美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的MAVericks無人自主飛行器(UAV)軟件平臺的CI/CD集成,該平臺建立在開源平臺ROS2和PX4之上。ROS2是一套用于構建機器人應用的軟件庫和工具,而PX4是一個強大的無人機飛行控制軟件。利用這兩個平臺,MAVericks是一個專注于敏捷飛行的大型合作項目,在模擬和機器人平臺上都能發揮作用。MAVericks的目標是在ModalAI的VOXL和RB5硬件平臺上運行,因為它提供了尺寸、重量和功率,同時也是藍色無人機項目的合作伙伴,這意味著他們得到了國防創新部門的資助,以符合2020年國防授權法第848條的規定。

合作者包括美國軍事學院的西點軍校,作為分布式和協作式智能系統和技術項目的一部分;加州大學伯克利分校,作為規模化和穩健的自治項目的一部分;以及馬里蘭大學的人工智能和多代理系統的自治項目--而且這個名單一直在增加。此外,ARL一直在尋求提高其算法的穩健性和成熟的能力,以過渡到DEVCOM和國防部的其他組織。隨著許多合作者加入MAVericks,重要的是要確保每次修改后有最低限度的可用功能,以鼓勵快速加入和貢獻。MAVericks是一個由一百多個軟件包組成的大型研究平臺,重要的是每個軟件包都能可靠地構建和運行。通常情況下,合作者只關心幾個軟件包,他們可以很容易地進行修改和添加,而不需要對不相關的問題進行排查,這一點至關重要。由于這種不斷增長的社區,很容易偶然地引入錯誤或破壞不相關的功能。因此,CI/CD是一個很好的解決方案,它將為不同的用戶群體提高平臺的可靠性和可用性。

CI/CD管道實現了許多簡化開發的功能。它可以完全構建整個平臺,確保新用戶的依賴性安裝成功,在模擬環境中運行和測試平臺,以確保自主行為正常工作,并快速構建壓縮的工作空間,以防止在無人機上構建。

在自主系統的軟件開發中,一個有問題的情況是,用戶修改了幾個包,但只構建和測試了一個特定包。這樣,代碼就被合并到了生產中,而沒有驗證它對其他人是否有效。如果未經測試的修改被合并,依賴這些修改的包可能不再構建或通過所有的測試案例。

從用戶的角度來看,CI/CD是由用戶創建代碼合并請求(MR)來觸發的,將他們的修改添加到主分支。這就啟動了CI/CD,建立了一個管道。該管道包括四個階段:構建-依賴、構建-完整、測試和部署。對于每個階段,可以并行地運行多個作業來完成該階段。在每個作業中,流水線首先將合并后的變化復制到一個新的環境中,并完成一個特定的任務。在流水線的最后,一個完全構建的版本被上傳,并準備在無人機上閃現。如果任何步驟失敗,其余的管道階段將被中止,并通知用戶到底是什么地方出了問題,以便他們能夠解決任何問題。管線的概述見圖1。

在本報告中,描述了MAVericks CI/CD的基礎,然后詳細介紹了管道中的每個階段,以及所克服的幾個挑戰。

付費5元查看完整內容

這項工作的目的是開發能夠成功處理復雜動態環境中順序決策的深度終身學習方法,重點是多Agent情報、監視和偵察(ISR)場景。我們為深度卷積神經網絡開發了一個新的架構,支持通過去卷積因子化的終身學習(DF-CNN),探索了通過Distral和Sobolev訓練的策略提煉的組合,并開發了一個混合控制器,將深度學習應用于ISR智能體。我們的方法在標準基準深度學習數據集、DOOM環境和ATE3模擬環境中的ISR場景中進行了評估。

我們的主要貢獻是反卷積因子卷積神經網絡(DFCNN)。DF-CNN框架調整了標準卷積神經網絡(CNN)框架,以實現任務之間的轉移。它在每個CNN層維護一個共享知識庫,并通過這個共享知識促進不同任務的CNN之間的轉移。每個具體任務的CNN模型的各個過濾層都是由這個共享知識庫重建的,隨著網絡在多個任務中的訓練,這個知識庫會隨著時間的推移而調整。DF-CNN代表了ELLA終身學習框架對深度網絡的概括。

實驗表明,DF-CNN在終身中的基準識別任務上的表現優于其他方法(包括單任務學習、低層的硬參數共享和漸進式神經網絡)。此外,該框架能夠抵抗災難性遺忘,同時仍然允許從未來的學習中反向轉移到以前學習的模型。

對于深度強化學習,我們研究了將Sobolev訓練整合到Distral多任務框架中,以努力改善轉移和訓練,探索了DF-CNN在深度RL中的應用,并開發了一個混合控制器,將本地學習的深度RL策略結合在一起,在ATE3仿真環境中完成ISR場景。

付費5元查看完整內容
北京阿比特科技有限公司