亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

這個項目的目標是開發在具有挑戰性的多目標環境中自主分布式傳感器管理和融合所需的基礎方法。這涉及到開發能夠自動跟蹤多個目標的算法,根據從具有數據關聯不確定性和高誤報率的多個平臺收到的信息進行分類并分配資源。在研究者最近在多目標跟蹤和分布式傳感器融合方面的發展基礎上,該工作方案開發了能夠在大規模多傳感器多目標跟蹤應用中基于信息理論標準實現自主傳感器分配的方法。這是通過重新評估信息理論中的關鍵工具來實現的,這些工具適用于基于點過程理論的多目標監視的挑戰,該理論旨在適應單個目標的狀態和目標數量的不確定性。所開發的信息理論方法被應用于多傳感器問題,使人們能夠決定如何分配傳感器資源,以及完善對場景的認識。所開發的工具將有助于減少監測單一傳感器饋電的勞動密集型負擔,并能做出適應性決定,以優化多模式網絡的運行,并增強對監測區域的整體認識。對多目標跟蹤情景的信息理論表述的關注,將使人們能夠驗證傳感器饋電是否能夠可靠地融合,以避免數據損壞的可能性。該項目在智能傳感方面提供了關鍵的先進技術,以實現動態環境中的連續和適應性監視。這些將是可擴展的,可用于從多個分布式傳感器對許多目標進行大規模跟蹤。

該項目的總體目標是研究和開發基于信息理論原則的分布式多傳感器多目標系統的自主傳感器控制的新策略:

  • 為大規模系統的多目標跟蹤開發可擴展的解決方案。

  • 開發基于信息論原理的多傳感器融合的分布式解決方案。

  • 確定多傳感器多目標跟蹤系統可以交換多少信息。

該項目為多傳感器多目標跟蹤開發了基本的解決方案:

  • 對許多目標進行大規模跟蹤。問題的規模越來越大,因此解決方案需要可擴展,跟蹤許多目標需要減輕組合復雜性的算法。多目標跟蹤的低復雜度解決方案將被開發出來,并在復雜環境中進行測試。開發了一種用于穩健地跟蹤大量目標的方法,該方法在目標數量和測量數量上是可擴展的,這使得數百萬目標可以被跟蹤。

  • 確定多傳感器多目標跟蹤系統的信息含量。在具有高密度信息的傳感器網絡中,帶寬可能是多傳感器多目標跟蹤的一個制約因素。這個項目得出了確定用于多目標跟蹤的傳感器網絡的信息含量的結果。預計這將有助于評估傳感網絡的效率和有效性,并與發送數據的數量和頻率相平衡。

  • 來自多個傳感器的數據的分布式整合。操作員需要根據來自多個跟蹤系統的信息做出決定,以提高整體的態勢感知。為多傳感器集成開發了一種分布式多傳感器多目標跟蹤的新方法,該方法可減輕來自不準確或誤導性數據源的損壞。

  • 對多目標監視應用中的威脅進行評估。對許多物體的大規模跟蹤能夠識別直接威脅。然而,有些威脅可能比其他威脅更有針對性。開發了一種新的對抗性風險的表述,為操作人員提供態勢感知,以幫助確定傳感資產的優先次序。

  • 目標跟蹤估計器的性能界限。費舍爾信息的倒數,即克拉默-拉奧約束,為參數的估計器提供了一個約束,是統計分析的基礎。它為一個參數提供了一個可實現的最小方差或協方差。根據量子場理論的數學概念,為點過程推導出克拉默-拉奧約束,將這一概念推廣到具有空間變量的變量。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

認知方法在幾乎所有方面可提高現有雷達的性能,這導致了近年來研究的激增,空軍雷達建模和仿真(M&S)工具的一個關鍵差距是缺乏針對分布式全適應雷達(FAR)系統的全面、動態分布式雷達情景生成能力。截至2015年初,所有的研究都是在理論上推進概念,并通過模擬檢驗其性能,或者最多使用預先錄制的數據。沒有關于實驗驗證概念的報告,主要是因為還沒有開發出測試它們的必要硬件。然而,為了確定應用認知處理方法的真正性能潛力,這一步驟是至關重要的。為了解決這個問題,俄亥俄州立大學(OSU)電子科學實驗室(ESL)的認知傳感實驗室(CSL)與Metron公司、空軍研究實驗室(AFRL)和空軍科學研究辦公室(AFOSR)一起,已經開始了一項研究計劃,從分析和實驗上開發和檢驗認知雷達處理概念。

CSL設計并建造了認知雷達工程工作區(CREW),這是世界上第一個專門用來測試完全自適應和認知算法的雷達測試平臺,Metron和OSU開發了一個認知FAR系統的理論框架,在單一傳感器和目標的目標探測和跟蹤范圍內確定了關鍵的系統組件并進行了數學建模。我們一直在開發建模、模擬、分析和實驗能力,以證明FAR系統比傳統的前饋雷達(FFR)系統取得的性能改進。我們從OSU的軟件定義雷達(SDR)系統的模擬場景和預先記錄的數據開始。我們現在有能力利用CREW演示認知雷達跟蹤系統的實時操作。

這個項目的目標是為分布式FAR雷達開發一個基于MATLAB的M&S架構,從而能夠在模擬的、以前收集的和實時的流式數據上進行算法開發和測試。在第一階段,我們開發了一個基線FAR M&S架構,該架構采用面向對象編程(OOP)方法在MATLAB中編碼。它包括一個控制感知-行動(PA)周期運行的FAR引擎和確定下一組傳感參數的軟件對象;從傳感器獲取數據;處理數據以跟蹤目標;存儲和顯示傳感和跟蹤過程的結果。我們開發的模塊實現了模擬和預先錄制的SDR數據實例,以及實時和模擬的CREW數據實例。

第一階段開發的FAR M&S架構允許在模擬和實驗CREW數據源之間,以及在驅動傳感的FAR算法之間進行透明切換。輕松交換傳感和處理對象的能力將允許快速開發和測試認知雷達算法,通過構建M&S功能來避免重復工作和 "單點 "解決方案。它將使工業界、學術界和空軍的研究人員之間的合作成為可能,因為不同研究人員開發的算法可以使用一致的模擬、收集的數據和實驗室條件進行測試和比較。

付費5元查看完整內容

本報告介紹了在三個主要議題方面取得的成果:

  • 對小型無人機系統(SUAS)的分布式團隊進行實驗驗證,以協調執行復雜的行為。

  • 開發了一個現實的多架無人機模擬器,以應用強化學習技術來協調一組小型無人機系統以達到特定目的。

  • 設計并驗證了安裝在無人機上的帶有主動多輸入多輸出(MIMO)毫米波雷達傳感器的融合光學相機。

與驗證SUAS團隊有關的工作提出并實驗測試了我們的態勢感知、分布式SUAS團隊所使用的框架,該團隊能夠以自主方式實時運行,并在受限的通信條件下運行。我們的框架依賴于三層方法:(1)操作層,在這里做出快速的時間和狹窄的空間決定;(2)戰術層,在這里為智能體團隊做出時間和空間決定;以及(3)戰略層,在這里為智能體團隊做出緩慢的時間和廣泛的空間決定。這三層由一個臨時的、軟件定義的通信網絡協調,即使在通信受限的情況下,也能確保各層的智能體小組和團隊之間的信息傳遞稀少而及時。實驗結果顯示,一個由10個小型無人機系統組成的團隊負責在一個開放區域搜索和監測一個人。在操作層,我們的用例介紹了一個智能體自主地進行搜索、探測、定位、分類、識別、跟蹤和跟蹤該人,同時避免惡意碰撞。在戰術層,我們的實驗用例介紹了一組多個智能體的合作互動,使其能夠在更廣泛的空間和時間區域內監測目標人物。在戰略層,我們的用例涉及復雜行為的檢測--即被跟蹤的人進入汽車并逃跑,或者被跟蹤的人離開汽車并逃跑--這需要戰略反應以成功完成任務。

目標搜索和檢測包括各種決策問題,如覆蓋、監視、搜索、觀察和追逐-逃避以及其他問題。我們開發了一種多智能體深度強化學習(MADRL)方法來協調一組飛行器(無人機),以定位未知區域內的一組靜態目標。為此,我們設計了一個現實的無人機模擬器,它復制了真實實驗的動態和擾動,包括從實驗數據中提取的統計推斷,用于其建模。我們的強化學習方法,利用這個模擬器進行訓練,能夠為無人機找到接近最優的政策。與其他最先進的MADRL方法相比,我們的方法在學習和執行過程中都是完全分布式的,可以處理高維和連續的觀察空間,并且不需要調整額外的超參數。

為了給在受限通信條件下運行的SUAS開發一個分布式的分類和協調框架,我們的第一個目標是在無人駕駛飛行器(UAV)上建立一個多傳感器系統,以獲得高探測性能。眾所周知,安裝在無人機上的光學和熱傳感器已被成功用于對難以進入的區域進行成像。然而,這些傳感器都不提供關于場景的范圍信息;因此,它們與高分辨率毫米波雷達的融合有可能改善成像系統的性能。我們提出了一個配備了無源光學攝像機和有源多輸入多輸出(MIMO)毫米波雷達傳感器的下視無人機系統的初步實驗結果。毫米波雷達的三維成像是通過收集通過運動線的數據來實現的,從而產生一個合成孔徑,并使用垂直于運動軌跡的結線MIMO陣列。我們的初步結果顯示,融合的光學和毫米波圖像提供了形狀和范圍信息,最終導致無人機系統的成像能力增強。

付費5元查看完整內容

認知型雷達,根據IEEE標準雷達定義686[1],是 "在某種意義上顯示智能的雷達系統,根據不斷變化的環境和目標場景調整其操作和處理"。特別是,嵌入認知型雷達的主動和被動傳感器使其能夠感知/學習動態變化的環境,如目標、雜波、射頻干擾和地形圖。為了達到探測、跟蹤和分類等任務的優化性能,認知雷達中的控制器實時適應雷達結構并調整資源分配策略[2, 3, 4]。對于廣泛的應用,已經提出了不同的適應技術和方法,例如,自適應重訪時間調度、波形選擇、天線波束模式和頻譜共享,以推進認知雷達背景下的數學基礎、評估和評價[5, 6, 7, 8, 9, 10]。

雖然認知方法和技術在提高雷達性能方面取得了很大進展,但認知雷達設計和實施的一個關鍵挑戰是它與最終用戶的互動,即如何將人納入決策和控制的圈子。在國家安全和自然災害預報等關鍵情況下,為了提高決策質量和增強態勢感知(SA),將人類的認知優勢和專業知識納入其中是必不可少的。例如,在電子戰(EW)系統中,在設計適當的反措施之前,需要探測到對手的雷達。在這種情況下,戰役的進程和成功取決于對一個小細節的觀察或遺漏,僅靠傳感器的自動決策可能是不夠的,有必要將人納入決策、指揮和控制的循環中。

在許多應用中,人類也充當了傳感器的角色,例如,偵察員監測一個感興趣的現象(PoI)以收集情報。在下一代認知雷達系統中,最好能建立一個框架來捕捉基于人類的信息來源所建議的屬性,這樣,來自物理傳感器和人類的信息都可以被用于推理。然而,與傳統的物理傳感器/機器4的客觀測量不同,人類在表達他們的意見或決定時是主觀的。人類決策的建模和分析需要考慮幾個因素,包括人類的認知偏差、處理不確定性和噪音的機制以及人類的不可預測性,這與僅由機器代理組成的決策過程不同。

已經有研究工作利用信號處理和信息融合的理論來分析和納入決策中的人類特定因素。在[11]中,作者采用了先驗概率的量化來模擬人類在貝葉斯框架下進行分類感知而不是連續觀察的事實,以進行協作決策。在[12,13]中,作者研究了當人類代理人被假定使用隨機閾值進行基于閾值的二元決策時的群體決策性能。考慮到人類受到起點信念的影響,[14]中研究了數據的選擇、排序和呈現對人類決策性能的影響。在人類協作決策范式中,已經開發了不同的方案和融合規則來改善人類人群工作者的不可靠和不確定性[15, 16]。此外,在[17,18]中,作者將前景理論(PT)用于描述人類的認知偏見,如風險規避,并研究了現實環境中的人類決策行為。在[19, 20]中也探討了基于人類和機器的信息源在不同場景下的信息融合。在[19]中,作者表明,人類的認知力量可以利用多媒體數據來更好地解釋數據。一個用戶細化階段與聯合實驗室主任(JDL)融合模型一起被利用,以在決策中納入人類的行為因素和判斷[20]。

未來的戰場將需要人類和機器專業知識的無縫整合,他們同時在同一個環境模型中工作,以理解和解決問題。根據[21],人類在隨機應變和使用靈活程序、行使判斷和歸納推理的能力方面超過了機器。另一方面,機器在快速反應、存儲大量信息、執行常規任務和演繹推理(包括計算能力)方面勝過人類。未來雷達系統中的高級認知尋求建立一種增強的人機共生關系,并將人類的優點與機器的優點融合在一起[22]。在本章中,我們概述了這些挑戰,并重點討論了三個具體問題:i)人類決策與來自物理傳感器的決策的整合,ii)使用行為經濟學概念PT來模擬人類在二元決策中的認知偏差,以及iii)在相關觀測下半自主的二元決策的人機協作。

本章的其余部分組織如下。在第11.1節中,我們介紹了一項工作,說明如何將人類傳感器的存在納入統計信號處理框架中。我們還推導出當人類擁有機器無法獲得的輔助/側面信息時,這種人機一體化系統的漸進性能。我們采用行為經濟學的概念前景理論來模擬人類的認知偏差,并在第11.2節中研究人類在二元假設檢驗框架下的決策行為。第11.3節討論了一種新的人機協作范式來解決二元假設檢驗問題,其中人的知識和機器的觀察的依賴性是用Copula理論來描述的。最后,我們在第11.4節中總結了與這個問題領域相關的當前挑戰和一些研究方向,然后在第11.5節中總結。

付費5元查看完整內容

本報告是在 FA9453-19-1-0078 資助下編寫的。首先,提出了兩種數值方法來解決通信和導航中產生的非線性優化問題。其次,開發了兩個關于機器學習模型的解決方案質量和安全性的結果。

該研究項目的目標是開發高效的大規模非線性優化算法,以解決通信和導航方面的數據分析問題。這些問題被公認為在數學上具有挑戰性,并與空軍的利益直接相關。

在資助期間,我們成功研究了兩個研究方向。首先,我們設計了大規模非線性優化問題的最佳一階方法。在這個方向上,我們提出了兩個一階方法,可以對決策變量進行近似梯度更新。這兩種方法都可以解決分散通信的多Agent優化所產生的非線性優化問題。通過將多代理優化重新表述為約束性問題,我們開發的方法可以以最佳梯度/操作者評估復雜度來解決問題。我們開發的方法也可用于解決圖像重建問題。

第二,我們分析了機器學習模型中的解決方案質量和安全問題。在這個方向上,我們完成了兩個研究結果。我們的第一個成果是關于在多集群環境下,從二元結果的條件邏輯回歸模型中計算出來的估計值的屬性。我們表明,當每個單獨的數據點被無限次復制時,來自該模型的條件最大似然估計值漸進地接近最大似然估計值。我們的第二個結果是關于安全的矩陣乘法問題,我們設計了一種準確和安全地進行分布式矩陣乘法的方法。我們的安全協議可以確保在進行這種矩陣乘法的通信過程中沒有任何信息被泄露。

付費5元查看完整內容

在學習型網絡物理系統(LE-CPS)中使用的機器學習模型,如自動駕駛汽車,需要能夠在可能的新環境中獨立決策,這可能與他們的訓練環境不同。衡量這種泛化能力和預測機器學習模型在新場景中的行為是非常困難的。在許多領域,如計算機視覺[1]、語音識別[2]和文本分析[3]的標準數據集上,學習型組件(LEC),特別是深度神經網絡(DNN)的成功并不代表它們在開放世界中的表現,在那里輸入可能不屬于DNN被訓練的訓練分布。因此,這抑制了它們在安全關鍵系統中的部署,如自動駕駛汽車[4]、飛機防撞[5]、戰場上的自主網絡物理系統(CPS)網絡系統[6]和醫療診斷[7]。這種脆性和由此產生的對基于DNN的人工智能(AI)系統的不信任,由于對DNN預測的高度信任而變得更加嚴重,甚至在預測通常不正確的情況下,對超出分布范圍(OOD)的輸入也是如此。文獻[8, 9]中廣泛報道了這種對分布外(OOD)輸入的不正確預測的高信心,并歸因于模型在負對數似然空間中的過度擬合。要在高安全性的應用中負責任地部署 DNN 模型,就必須檢測那些 DNN 不能被信任的輸入和場景,因此,必須放棄做出決定。那么問題來了:我們能不能把這些機器學習模型放在一個監測架構中,在那里它們的故障可以被檢測出來,并被掩蓋或容忍?

我們認為,我們已經確定了這樣一個用于高安全性學習的CPS的候選架構:在這個架構中,我們建立一個預測性的上下文模型,而不是直接使用深度學習模型的輸出,我們首先驗證并將其與上下文模型融合,以檢測輸入是否會給模型帶來驚喜。這似乎是一個語義學的練習--即使是通常的機器學習模型通常也會 "融合 "來自不同傳感器的解釋,這些解釋構成了模型的輸入,并隨著時間的推移進行整理--但我們認為,我們提出的監測架構相當于重點的轉移,并帶來了新的技術,正如我們將在本報告中說明的。我們建議,一個更好的方法是根據背景模型來評估輸入:模型是我們所學到的和所信任的一切的積累,根據它來評估新的輸入比只預測孤立的輸入更有意義。這是我們推薦的方法的基礎,但我們把它定位在一個被稱為預測處理(PP)的感知模型中[10],并輔以推理的雙重過程理論[11]。在這份報告中,我們還提供了這個運行時監控架構的候選實現,使用基于歸一化流的特征密度建模來實現第一層監控,以及基于圖馬爾科夫神經網絡的神經符號上下文建模來實現第二層。

我們用一個自主汽車的簡單例子來解釋我們方法背后的基本原理,并展示了上下文模型如何在監測LEC中發揮作用。考慮一下汽車視覺系統中有關檢測交通線的部分。一個基本的方法是尋找道路上畫的或多或少的直線,自下而上的方法是在處理每一幀圖像時執行這一過程。但這是低效的--當前圖像幀中的車道很可能與前幾幀中的車道相似,我們肯定應該利用這一點作為搜索的種子,而且它是脆弱的--車道標記的缺失或擦傷可能導致車道未被檢測到,而它們本來可以從以前的圖像中推斷出來。一個更好的方法是建立一個道路及其車道的模型,通過預測車道的位置,用它來作為搜索當前圖像中車道的種子。該模型及其對車道的預測將存在一些不確定性,因此發送給視覺系統的將是最好的猜測,或者可能是幾個此類估計的概率分布。視覺系統將使用它作為搜索當前圖像中車道的種子,并將預測和當前觀察之間的差異或 "誤差 "發送回來。誤差信號被用來完善模型,旨在最小化未來的預測誤差,從而使其更接近現實。

這是一個 "綜合分析 "的例子,意味著我們提出假設(即候選世界模型),并偏向于那些預測與輸入數據相匹配的模型。在實際應用中,我們需要考慮有關 "預測 "的層次:我們是用世界模型來合成我們預測傳感器將檢測到的原始數據(如像素),還是針對其局部處理的某個更高層次(如物體)?

這種自上而下的方法的重要屬性是,它專注于世界模型(或模型:一個常見的安排有一個模型的層次)的構建和前利用,與更常見的自下而上的機器學習模型形成對比。我們將展開論證,自上而下的方法對于自主系統中感知的解釋和保證是有效的,但有趣的是,也許可以放心的是,人們普遍認為這是人類(和其他)大腦中感知的工作方式,這是由Helmholtz在19世紀60年代首次提出的[12]。PP[13],也被稱為預測編碼[14]和預測誤差最小化[15],認為大腦建立了其環境的模型,并使用這些模型來預測其感覺輸入,因此,它的大部分活動可以被視為(近似于)迭代貝葉斯更新以最小化預測誤差。PP有先驗的 "預測 "從模型流向感覺器官,貝葉斯的 "修正 "又流回來,使后驗模型跟蹤現實。("自由能量"[16]是一個更全面的理論,包括行動:大腦 "預測 "手,比如說,在某個地方,為了盡量減少預測誤差,手實際上移動到那里。) 這與大腦從上層到下層的神經通路多于反之的事實是一致的:模型和預測是向下流動的,只有修正是向上流動的。

有趣的是,大腦似乎以這種方式工作,但有獨立的理由認為,PP是組織自主系統感知系統的好方法,而不是一個主要是自下而上的系統,其中傳感器的測量和輸入被解釋和融合以產生一個世界模型,很少有從模型反饋到傳感器和正在收集的輸入。2018年3月18日在亞利桑那州發生的Uber自動駕駛汽車與行人之間的致命事故說明了這種自下而上的方法的一些不足之處[17]。

純粹的自下而上的系統甚至不能回憶起之前的傳感器讀數,這就排除了從位置計算速度的可能性。因此,感知系統通常保持一個簡單的模型,允許這樣做:林的視覺處理管道的物體跟蹤器[18]就是一個例子,Uber汽車也采用了這樣的系統。Uber汽車使用了三個傳感器系統來建立其物體追蹤器模型:攝像頭、雷達和激光雷達。對于這些傳感器系統中的每一個,其自身的物體檢測器都會指出每個檢測到的物體的位置,并試圖將其分類為,例如,車輛、行人、自行車或其他。物體追蹤器使用一個 "優先級方案來融合這些輸入,該方案促進某些追蹤方法而不是其他方法,并且還取決于觀察的最近時間"[17,第8頁]。在亞利桑那車禍的案例中,這導致了對受害者的識別 "閃爍不定",因為傳感器系統自己的分類器改變了它們的識別,而且物體追蹤器先是喜歡一個傳感器系統,然后是另一個,如下所示[17,表1]。

  • 撞擊前5.6秒,受害者被列為車輛,由雷達識別
  • 撞擊前5.2秒,受害者被歸類為其他,通過激光雷達
  • 撞擊前4.2秒,根據激光雷達,受害者被歸類為車輛
  • 在撞擊前3.8秒和2.7秒之間,通過激光雷達,在車輛和其他之間交替進行分類
  • 撞擊前2.6秒,根據激光雷達,受害者被歸類為自行車
  • 撞擊前1.5秒,根據激光雷達,受害者被歸類為不知名。
  • 撞擊前1.2秒,根據激光雷達,受害者被歸類為自行車。

這種 "閃爍 "識別的深層危害是:"如果感知模型改變了檢測到的物體的分類,在生成新的軌跡時就不再考慮該物體的跟蹤歷史"[17,第8頁]。因此,物體追蹤器從未為受害者建立軌跡,車輛與她相撞,盡管她已經以某種形式被探測了幾秒鐘。

這里有兩個相關的問題:一個是物體追蹤器保持著一個相當不完善的世界和決策背景的模型,另一個是它對輸入的決策方法沒有注意到背景。預測性處理中的感知所依據的目標是建立一個準確反映世界的背景模型;因此,它所編碼的信息要比單個輸入多得多。我們想要的是一種測量情境模型和新輸入之間的分歧的方法;小的分歧應該表明世界的常規演變,并可以作為模型的更新納入;大的分歧需要更多的關注:它是否表明一個新的發展,或者它可能是對原始傳感器數據解釋的缺陷?在后面兩種情況中的任何一種,我們都不能相信機器學習模型的預測結果。

預測處理方法的實施可以采用貝葉斯方法[19]。場景模型表示環境中的各種物體,以及它們的屬性,如類型、軌跡、推斷的意圖等,并對其中的一些或全部進行概率分布函數(pdf s)。觀察更新這些先驗,以提供精確的后驗估計。這種貝葉斯推理通常會產生難以處理的積分,因此預測處理采用了被稱為變異貝葉斯的方法,將問題轉化為后驗模型的迭代優化,以最小化預測誤差。卡爾曼濾波器也可以被看作是執行遞歸貝葉斯估計的一種方式。因此,像神經科學、控制理論、信號處理和傳感器融合這樣不同的領域都可能采用類似的方法,但名稱不同,由不同的歷史派生。思考PP的一種方式是,它將卡爾曼濾波的思想從經典的狀態表征(即一組連續變量,如控制理論)擴展到更復雜的世界模型,其中我們也有物體 "類型 "和 "意圖 "等表征。預測處理的一個有吸引力的屬性是,它為我們提供了一種系統的方法來利用多個輸入和傳感器,并融合和交叉檢查它們的信息。假設我們有一個由相機數據建立的情境模型,并且我們增加了一個接近傳感器。預測處理可以使用從相機中獲得的模型來計算接近傳感器預計會 "看到 "什么,這可以被看作是對模型準確性的可驗證的測試。如果預測被驗證了,那么我們就有了對我們上下文模型某些方面的獨立確認。我們說 "獨立 "是因為基于不同現象的傳感器(如照相機、雷達、超聲波)具有完全不同的解釋功能,并在不同的數據集上進行訓練,這似乎是可信的,它們會有獨立的故障。在一個完全集成的預測處理監視器中,情境模型將結合來自所有來源的信息。情境模型將保守地更新以反映這種不確定性,監測器將因此降低其對機器學習模型的信心,直到差異得到解決。

請注意,上下文模型可以是相當簡單粗暴的:我們不需要場景的照片,只需要知道我們附近的重要物體的足夠細節,以指導安全行動,所以相機和接近傳感器 "看到 "的相鄰車輛的輪廓之間的差異,例如,可能沒有什么意義,因為我們需要知道的是他們的存在,位置,類型和推斷的意圖。事實上,正如我們將在后面討論的那樣,我們可以在不同的細節層次上對上下文進行建模,自上而下的生成模型的目標是生成不同層次的感知輸入的抽象,而不是準確的傳感器值。在報告中討論的我們的實現中,我們在兩個層次上對上下文進行建模--第一個層次使用深度神經網絡的特征,第二個層次對場景中物體之間更高層次的空間和時間關系進行建模。除了傳感器,感知的上層也將獲得關于世界的知識,可能還有人工智能對世界及其模型的推理能力。例如,它可能知道視線和被遮擋的視野,從而確定在我們附近的車輛可能無法看到我們,因為一輛卡車擋住了它的去路,這可以作為有關車輛的可能運動("意圖")的增加的不確定性納入世界模型中。同樣,推理系統可能能夠推斷出反事實,比如 "我們將無法看到可能在那輛卡車后面的任何車輛",這些可以作為 "幽靈 "車輛納入世界模型,直到它們的真實性被證實或被否定。我們對監控架構第2層的神經符號建模的選擇對于整合這種背景和學習的知識以及對這些知識進行推理至關重要。

在這方面,另一個關于人腦組織的理論很有意思;這就是 "雙過程 "模型[20, 21],由卡尼曼推廣的獨立 "快慢 "思維系統[22]。它的效用最近已經通過一個非常有限的實現被證明用于計算機器學習模型的信心[23, 24]。系統1是無意識的、快速的、專門用于常規任務的;系統2是有意識的、緩慢的、容易疲勞的、能夠斟酌和推理的,這就是我們所說的 "思考"。就像預測處理一樣,我們提倡雙過程模型并不僅僅是因為它似乎符合大腦的工作方式,而是因為它似乎是獨立的,是一個好架構。在這里,我們可以想象一個特征密度正常化的流生成模型形成一個高度自動化的 "系統1",而更多的深思熟慮的神經符號模型構成一個 "系統2",當系統1遇到大的預測錯誤時,該系統會主動參與。系統1維持一個單一的生成性世界模型,而系統2或者對其進行潤色,或者維持自己的更豐富的世界模型,具有對符號概念進行反事實的 "what-if "推理能力。人們認為,人類保持著一個模型的層次結構[20, 21, 22],這似乎也是自主系統的一個好方法。我們的想法是,在每一對相鄰的模型(在層次結構中)之間都有一個預測處理的循環,因此,較低的層次就像上層的傳感器,其優先級和更新頻率由預測誤差的大小決定。

人類的預測處理通常被認為是將 "驚訝 "降到最低的一種方式,或者說是保持 "情況意識"。加強這一點的一個方法是在構建世界模型時增加系統2對假設推理的使用,以便將沒有看到但 "可能存在 "的東西明確地表示為 "幽靈 "或表示為檢測到的物體屬性的不確定性增加。一個相關的想法是利用人工智能進行推斷,例如,檢測到前面有許多剎車燈,就可以推斷出某種問題,這將被表示為世界模型中增加的不確定性。這樣一來,本來可能是意外情況的驚奇出現,反而會發展為不確定性的逐漸變化,或將幽靈解決為真實的物體。圖馬爾科夫神經網絡提供了一個有效的機制,既可以對這些關系和更豐富的背景進行建模,又可以通過反事實查詢和背景知情的預測進行審議。因此,雙重過程理論激發了我們的運行時監控器的兩層預測編碼結構。雖然這些理論旨在解釋人類的認知,但我們將這些作為運行時監控器來計算底層模型的驚喜,因此,當模型由于新奇的或超出分布的或脫離上下文的輸入而不能被信任時,就會被發現。

圖 1:基于預測處理和雙過程理論的自主量化保障架構

圖1展示了所提出的深度學習模型運行時監控的整體架構。如圖所示,該架構有兩個層次(由雙重過程理論激發)。在第一層,我們使用生成模型,學習輸入的聯合分布、預測的類輸出和模型提供的解釋。在第二層,我們使用圖馬爾可夫神經網絡來學習物體檢測任務的物體之間的空間和時間關系(更一般地說,輸入的組成部分)。在這兩層中,我們在本報告中的重點是運行時監測,而不是開發一個認知系統本身(而使用所提出的方法建立一個強大的、有彈性的、可解釋的系統將是自然的下一步)。因此,由這兩層檢測到的驚喜被監控者用來識別底層LEC何時不能被信任。這也可以作為LE-CPS的一個定量保證指標。

提綱

第3節介紹了預測性處理和雙進程架構(低級別的自動化和高級別的審議),并認為這可以支持一種可信的方法來保證自主系統的穩健行為。它也被廣泛認為反映了人類大腦的組織。我們提出了使用不同的神經架構和神經符號模型的組成來可擴展地完成這些的機制。結果在第4節報告。第5節提供了一些與工業建議的比較,并提出了結論和額外研究的建議。

付費5元查看完整內容

美國陸軍最近制定了一項關于未來陸軍如何作戰的戰略以及實現這些軍事能力的相關現代化和研究重點。以高超音速飛行為基礎的遠程精確射擊對于確保美國能夠對任何競爭對手實施其意志至關重要。要實現一個有效的未來美國軍隊,必須克服許多障礙。其中一些差距是對高超音速飛行器空氣熱力學的理解,從而促使對基礎研究的需求。本報告的目標是定義一個經典的、與陸軍相關的配置,適合于基礎研究,以允許與適當的主題專家的關鍵數量的集中合作。從這種開放的幾何構型研究中獲得的數據和知識可能會受到更多的限制性分配

美國陸軍最近制定了一項關于未來陸軍如何作戰的戰略以及實現這些軍事能力的相關現代化和研究重點。以高超音速飛行為基礎的遠程精確射擊對于確保美國能夠對任何競爭對手實施其意志至關重要。

要實現一個有效的未來美國軍隊,必須克服許多障礙。其中一些差距是對高超音速飛行器空氣熱力學的理解,從而促使對基礎性研究的需求。缺乏對高超音速飛行器周圍發生的復雜物理和化學的預測性知識,抑制了及時的、優化的多部件設計。對邊界層過渡和沖擊-邊界層相互作用等具體現象了解不多。不能正確地對現象進行建模,會產生一些不確定的特征,如表面壓力分布和熱通量,這對飛行器技術,包括穩定性、控制和熱負荷管理,都有負面影響。

幸運的是,有一個先例,即通過定義政府基準飛行器來促進全社會的科學討論,這些飛行器包含功能相關的工件,但對具體的發展計劃不敏感(見陸軍-海軍基本芬納導彈、空軍改良基本芬納導彈、陸軍-海軍旋轉火箭、國家航空航天飛機和NASA研究)。本報告的目標是定義一個典型的、與軍隊相關的配置,適合于基礎研究,以便與足夠數量的適當的主題專家進行重點合作。從這個開放的幾何構型的研究中獲得的數據和知識可能會受到更多的限制性分配。

付費5元查看完整內容

摘要

本報告涵蓋了與設計評估人類和智能軟件Agent之間通信有關的問題,這些通信是實現協作關系所必需的。為了使人與Agent之間的互動在動態的現實世界中保持穩定,軟件Agent和人類都必須能夠在任務目標方面溝通他們的整體意圖。由于推理過程、能力和知識庫的不同,人類和Agent并不是人類團隊的模擬。我們討論了有效通信所涉及的技術問題,包括相互透明的模型、自然語言處理(NLP)、人工智能(AI)和可解釋的AI。由于缺乏使人類能夠洞察其隊友心理過程的心智理論,Agent很難預測人類的信息需求和未來行動。涉及多個Agent的協作計劃研究和合成共享心智模型的研究被作為嘗試將人類和Agent整合成一個協同單位典范。然而,我們的結論是,在人類和Agent在復雜的、不確定的任務中像人類團隊一樣通信之前,NLP、可解釋人工智能和人類科學的進展將是必要的。

1. 引言

自主系統的前景和問題都將改變未來系統的動態,這不僅體現在自主系統對社會的影響上,也體現在它們與人類的互動上(《經濟學人》2016;Schaefer等人,2017)。人類和自主系統之間的伙伴關系涉及到將人工和人類融合成一個有凝聚力的系統,這種結合意味著所有的優勢和限制(Bradshaw等人,2009;Chen和Barnes,2014)。自主系統的范圍可以從那些獨立的、只由人類偶爾監控的系統到由人類指導的、受到密切監督的系統(Barnes等人,2017)。能夠自主行動并根據新信息更新行動以實現其目標的軟件系統被確定為智能Agent(IA);Russell和Norvig 2009)。在人類與IA的合作關系中,人類和IA共享決策空間的混合倡議能力,但人類擁有最終的權力,在危險的時間有限的情況下,允許靈活性,同時保持人類的責任(Chen和Barnes 2015;Barnes等人2017)。在大多數情況下,不可能先驗地將每個人分配到動態環境中的特定角色,因為他們的角色可以隨著情況的變化而改變。例如,自適應Agent可以在高工作負荷的任務段中掌握決策主動權,而不需要等待操作者的許可,但在正常的操作中會將決策主動權還給操作者(Chen和Barnes 2014)。一些與任務分配有關的規定性規則可以根據任務的優先級預先設定。其他規則可能會根據情況的緊急程度而改變(例如,在時間期限過后自主擊落來襲導彈[Barnes等人,2017;Parasuraman等人,2007])。然而,在動態環境中,溝通、對意圖的理解和共同的態勢感知(SA)是有效協作的必要條件(Barnes等人,2017;Evans等人,2017;Holder,2018;Chen等人,2018)。

隨著IA復雜性的增加,有效通信的必要性也隨之增加。Cooke(2015)認為,高效的團隊合作關系更多的是取決于有效的互動,而不是擁有廣泛的共享知識庫。除了有一個共同的語言框架,每個團隊成員都必須知道什么時候向他們的伙伴推送信息,什么時候要求提供信息。因此,人類和IA不僅要有任務環境的SA,而且要有彼此角色的SA,以便在沒有公開交流的情況下回應伙伴的要求(Scherri等人,2003;Chen等人,2018)。我們討論三個主要的主題。第一個主題是對人-Agent架構的描述,以及為什么它與人-人團隊不同,強調相互透明度的重要性。接下來,我們討論了人類與人工智能(AI)系統通信所涉及的技術問題,包括多模態交互、語言限制、AI的類型以及可解釋AI(XAI)的重要性,以確保相互理解。最后,我們討論了共享意圖的重要性,以促進操作者和人工智能之間信息交互的自然節奏

付費5元查看完整內容

該研究項目的目標是開發高效的大規模非線性優化算法,以解決通信和導航方面的數據分析問題。這些問題被公認為在數學上具有挑戰性,并與空軍的利益直接相關。

在資助期間,我們成功研究了兩個研究方向。首先,我們設計了大規模非線性優化問題的最佳一階方法。在這個方向上,我們提出了兩個一階方法,可以對決策變量進行近似梯度更新。這兩種方法都可以解決分散通信的多Agent優化所產生的非線性優化問題。通過將多代理優化重新表述為約束性問題,我們開發的方法可以以最佳梯度/操作者評估復雜度來解決問題。我們開發的方法也可用于解決圖像重建問題。

第二,我們分析了機器學習模型中的解決方案質量和安全問題。在這個方向上,我們完成了兩個研究結果。我們的第一個成果是關于在多集群環境下,從二元結果的條件邏輯回歸模型中計算出來的估計值的屬性。我們表明,當每個單獨的數據點被無限次復制時,來自該模型的條件最大似然估計值漸進地接近最大似然估計值。我們的第二個結果是關于安全的矩陣乘法問題,我們設計了一種準確和安全地進行分布式矩陣乘法的方法。我們的安全協議可以確保在進行這種矩陣乘法的通信過程中沒有任何信息被泄露。

兩名博士生作為研究生研究助理得到支持,并在執行期間接受培訓。擬議項目的成果包括四篇學術期刊論文。一篇論文已經發表,另一篇正在進行第二輪審查,另外兩篇正在準備,不久將提交發表。[1-3]

付費5元查看完整內容

現代數字雷達在其波形、雷達參數設置和傳輸方案方面提供了前所未有的靈活性,以支持多種雷達系統目標,包括目標探測、跟蹤、分類和其他功能。這種靈活性為提高系統性能提供了潛力,但需要一個閉環感知和響應方法來實現這種潛力。完全自適應雷達(FAR),也被稱為認知雷達,是模仿認知的感知-行動周期(PAC),以這種閉環方式適應雷達傳感器。在這項工作中,我們將FAR概念應用于雷達資源分配(RRA)問題,以決定如何將有限的雷達資源如時間、帶寬和天線波束寬度分配給多個相互競爭的雷達系統任務,并決定每個任務的傳輸參數,使雷達資源得到有效利用,系統性能得到優化。

已經提出了一些感知-行動的RRA方法。這一領域的最新工作被稱為認知雷達資源管理,而較早的相關工作則被稱為簡單的傳感器管理或資源分配。這些算法依賴于兩個基本步驟。首先,它們以概率方式捕獲(感知)監視區域的狀態。其次,他們使用這種概率描述,通過確定哪些行動有望實現效用最大化來選擇未來的傳感行動。

任何RRA算法的一個關鍵挑戰是平衡目標探測、跟蹤、分類和其他雷達任務的多個競爭性目標。這一點通過優化步驟中用于選擇下一步雷達行動的目標函數來解決。目標函數也被稱為收益、標準、價值或成本函數。因此,以適合優化的數學形式闡明系統目標,對完全自適應雷達資源分配(FARRA)系統的運行至關重要。隨著可用于適應的參數數量和雷達系統任務數量的增加,這變得越來越困難。這種優化有兩種基本方法:任務驅動和信息驅動。

在任務驅動的方法中,為每個任務指定性能服務質量(QoS)要求,如探測目標的預期時間或跟蹤的均方根誤差(RMSE),并通過加權各種任務的效用來構建一個綜合目標函數。這樣做的好處是能夠分別控制任務性能,并確定任務的相對重要性。然而,它需要用戶有大量的領域知識和判斷力,以指定任務要求和傳感器成本,并構建成本/效用函數和加權,以結合不同的任務性能指標。

在信息驅動的方法中,一個全局信息測量被優化。常見的信息測量包括熵、相互信息(MI)、Kullback-Leibler分歧(KLD)和Renyi(alpha)分歧。信息指標隱含地平衡了一個雷達可能獲得的不同類型的信息。這具有為所有任務提供共同的衡量標準(信息流)的理想特性,但沒有明確優化諸如RMSE等任務標準。因此,信息理論的衡量標準可能很難被終端用戶理解并歸結為具體的操作目標。此外,如果沒有額外的特別加權,它們不允許單獨控制任務,并可能產生以犧牲其他任務為代價而過度強調某些任務的解決方案,或者選擇在用戶偏好判斷下只提供邊際收益的傳感器行動。

在這項工作中,我們考慮一個雷達系統對多個目標進行同步跟蹤和分類。基于隨機優化的FAR框架[28],為我們的PAC提供了結構。我們開發并比較了用于分配系統資源和設置雷達傳輸參數的任務和信息驅動的FARRA算法,并在模擬機載雷達場景和俄亥俄州立大學的認知雷達工程工作區(CREW)實驗室測試平臺上說明其性能。這項工作結合并擴展了我們以前在傳感器管理[8-14]和FAR[18, 21, 27, 29-31]的工作。初步版本發表于[32]。結果表明,任務和信息驅動的算法具有相似的性能,但選擇不同的行動來實現其解決方案。我們表明,任務和信息驅動的算法實際上是基于共同的信息理論量,所以它們之間的區別在于所使用的指標的粒度和指標的加權程度。

本章的組織結構如下。在第10.2節中,我們提供了FAR框架的概述,在第10.3節中,我們通過為這個問題指定FAR框架的組成部分來開發多目標多任務FARRA系統模型。在第10.4節中,我們描述了組成FARRA PAC的感知和執行處理器,包括我們采用的任務和基于信息的目標函數。在第10.5節中,我們提供了比較優化方法的機載雷達仿真結果,在第10.6節中,我們展示了CREW測試平臺的結果。最后,第10.7節介紹了這項工作的結論。

完全自適應雷達框架

單個PAC的FAR框架是在[18, 27]中開發的,在此總結一下。圖10.1是一個系統框圖。PAC由感知處理器和執行處理器組成。PAC通過硬件傳感器與外部環境互動,通過感知處理器和執行處理器與雷達系統互動。感知處理器接收來自硬件傳感器的數據,并將其處理為對環境的感知。該感知被傳遞給雷達系統以完成系統目標,并傳遞給執行處理器以決定下一步行動。執行處理器接收來自感知處理器的感知以及來自雷達系統的要求,并解決一個優化問題以決定下一個傳感器的行動。執行處理器通知硬件傳感器下一次觀察的設置,傳感器收集下一組數據,然后循環往復。

圖10.1: 單一PAC FAR框架

付費5元查看完整內容
北京阿比特科技有限公司