亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本報告總結了網絡科學實驗方法項目期間的研究成果,大約涵蓋2017-2020年。該項目重點關注兩個主要議題:彈性網絡的上下文感知網絡和網絡安全。上下文感知網絡旨在改善戰術網絡及其支持服務的性能,使用上下文感知來加強目前的實踐方法,這些方法不一定考慮環境的動態和資源有限的邊緣設備和網絡的限制。彈性網絡的網絡安全旨在加強戰術網絡在動態和復雜對手面前的安全性。

參與本項目的美國陸軍作戰能力發展司令部陸軍研究實驗室的研究人員在相關主題的多個外部合作伙伴計劃的形成和合作中具有重要影響。這些項目的成果被納入任務資助的項目。這些合作伙伴計劃包括美國-英國分布式分析和信息科學國際技術聯盟(DAIS ITA)、戰場物聯網合作研究聯盟(IoBT CRA)、技術合作計劃(TTCP)和北約科學和技術組織信息系統技術(NATO STO IST)小組。

這項研究的影響包括:網絡模擬實驗驗證了支持理論結果的算法和技術的可行性,在網絡和通信研究界對研究成果進行了大量報道,并對陸軍概念科技(S&T)文件做出了貢獻。下文中總結的重點包括:利用沙堆模型開發網絡控制中的級聯故障的最佳控制,并確定可以防止級聯故障的條件;將密匙壽命提高一個數量級的物理層安全認證協議;以及對指揮與控制(C2)、火災和網絡科技概念文件的貢獻。

圖 1 包含理解、適應和執行周期的上下文感知網絡示意圖

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

(2021年10月20日,在亞利桑那州尤馬試驗場,被分配到人工智能集成中心的陸軍上士伊利斯-丹寧對無人駕駛航空系統進行維護,為21世紀項目融合做準備(美國陸軍/Destiny Jones))

為了在2030年、2040年或以后的未來沖突中取得成功,聯合部隊現在需要做什么?答案很清楚:我們必須一起試驗。我們必須評估未來作戰環境的特點(在物理環境、威脅和技術狀態方面)。我們必須開發、測試和完善我們將如何在該環境中運作的概念。我們還必須開發和提供聯合能力,使我們的軍人在該環境中比任何對手更有優勢。沒有實驗,這一切都不會發生。我們必須一起學習,失敗,再學習,再失敗,這樣我們才能最終成功。

我們將作為一個聯合團隊作戰,所以我們必須作為一個聯合團隊進行實驗。我們必須實驗和評估我們的能力,使聯合部隊指揮官能夠執行全域聯合指揮與控制(JADC2)。JADC2既是一個概念,也是 "指揮聯合部隊在所有作戰領域和整個電磁波譜中威懾并在必要時在全球任何時間和任何地點擊敗任何對手所需的能力"。這種分析必須導致在編寫要求和資源技術方面的行動。

有些人可能不相信各軍種有可能自愿合作進行試驗。我比較樂觀,并以 "融合項目"(PC)為例進行說明。在過去的兩年里,陸軍、海軍陸戰隊、海軍、空軍、太空部隊和美國特種作戰司令部通過PC以綜合實驗的名義進行了合作和協作。在這篇文章中,我描述了 "融合項目 "是如何作為聯合實驗的場所出現的,為JADC2從戰術層面到作戰層面的演變提供信息。

項目融合于2020年夏天首次執行,起源于一個年度頂點實驗,以解決軍隊問題,但不一定是聯合問題。不過,通向PC的道路早在幾年前就開始了,當時陸軍確立了其核心的六個現代化優先事項,并成立了八個跨職能團隊(CFT),每個團隊由一名將軍或高級行政人員領導,負責支持這些現代化優先事項的交付。

2018年11月,時任美陸軍部長馬克-T.埃斯珀和陸軍參謀長馬克-米利將軍公布了陸軍戰略(TAS),該戰略將現代化作為陸軍的四條努力方向之一。其他工作包括建立戰備、改革以及加強聯盟和伙伴關系。同年,陸軍部成立了陸軍未來司令部(AFC),作為其自1973年以來第一個新的四星級總部。它的任務是同步和整合整個未來部隊現代化企業的現代化進程。除了CFTs之外,AFC還獲得了對現有組織的指揮權,如未來和概念中心、聯合現代化司令部、研究和分析中心、戰斗能力發展司令部和醫學研究和發展司令部。

美國陸軍的實驗室和作戰實驗室現在都隸屬于AFC。每個實驗室都進行了大量的物資或概念實驗。問題是這種實驗的結果是什么,以及如何將其納入陸軍現代化的優先事項。答案是令人失望的;這些努力不一定能引導到任何地方,也不一定能與陸軍的優先事項相銜接。AFC是一個統一指揮這些實驗室的單一總部,并有能力在整個陸軍現代化企業中創造統一的努力,現在已經有能力解決這個問題。

項目融合始于2020年初白板上的一個想法,成為所有其他實驗的目標點。我們試圖在戰術層面將陸軍傳感器、指揮與控制(C2)節點和射手聯系起來,以便在 "誰能最先看到、理解、決定和行動,誰就能獲勝 "的前提下實現更快的決策。它將士兵、科學家和工業界在亞利桑那州尤馬的泥土中拉到一起,在戰術場景的壓力下對有前途的技術進行實驗,為期一個月。

在 "融合項目2020 "期間的實驗是初級的和以地面為中心的。我們開發了現實的戰術場景,并整合了一些技術,如機器人戰車(空中和地面)、自主性堆棧、數據結構、武器-目標配對技術和遠程精確彈藥。盡管我們在PC20期間學到了很多東西,但我們最大的收獲是需要包括聯合伙伴。我們清楚地認識到,將陸軍的傳感器、C2節點和射手聯系起來是不夠的;這種實驗甚至沒有反映出我們現在的戰斗方式,更不用說我們未來可能的戰斗方式。沒有任何一個軍種會單獨作戰。我們作為一個聯合團隊作戰。向前邁進,我們需要改變PC。

PC20一結束,AFC就開始計劃PC21,我們聯系了所有的聯合伙伴,邀請他們參與并利用PC21來推進他們自己的實驗目標。我們的前提是,陸軍將提供 "沙盒",如果他們同意在各軍種之間整合他們的技術,我們歡迎所有人來玩。他們都接受了。用陸軍參謀長詹姆斯-C-麥康維爾將軍的話說,PC21和連續的迭代將使聯合部隊發現,"提供未來決策主導權和大國競爭的過度匹配所需的尖端技術的速度、范圍和融合。"

作為一個確保軍方實驗需求得到滿足的機制,在PC21之前的每個月,我們都會召開一個聯合董事會(JBOD),其中包括每個合作伙伴的三星代表。盡管陸軍為PC21提供了大部分的管理費用,但每個合作伙伴都為自己的技術和參與提供資金。PC21實驗的重點是JBOD同意的七個聯合用例。一個用例無非是一個戰術場景或問題。聯合空中和導彈防御就是一個例子。每個用例都包括所有軍種的傳感器、C2節點和射手的組合。我們知道,我們最大的挑戰是移動數據和獲得操作授權、翻譯器和跨域解決方案,以便在國防部網絡上操作和共享數據的180多種技術。在實驗前幾個月,各部門提名了他們將帶入每個用例的技術,AFC的操作和系統架構師開始將這些技術映射在一起。我們在馬里蘭州阿伯丁試驗場的聯合系統集成實驗室進行了多次基于實驗室的風險降低活動,以驗證我們的網絡設計并確保準確的端到端數據流。

由于我們建立了聯合管理,以及軍人、文職人員和行業伙伴在實驗室和新墨西哥州尤馬和白沙導彈發射場實地進行的巨大努力,PC21取得了巨大的成功。

(2021年10月26日,在亞利桑那州尤馬試驗場,美陸軍航空醫學研究實驗室的飛行系統部門人員在與第82空降師的綜合視覺增強系統支持的空中突擊隊進行吊裝作業時,展示了載荷穩定系統-行李箱附件(美國陸軍/Scott C. Childress))

然而,成功不僅在于我們在尤馬當地能夠完成的工作,還在于我們未能完成的工作,以及如何推動變革。我們從PC21中得到的最大收獲之一是,我們在數據方面沒有做到位。我們吹噓 "數據是新的彈藥",但作為一支聯合部隊,我們仍然無法進入戰斗空間并無縫交換數據以實現JADC2。我們仍然在利用點對點的數據標準,有些已經有幾十年的歷史。PC21為我們提供了一個場所,使我們能夠識別出不足以應對未來戰斗的多種數據標準,并將這些建議直接提交給JADC2的CFTs采取行動,證明了自下而上的JADC2方法的價值。此外,在陸軍內部,已經開始對陸軍的需求流程進行了全面檢查,以確保在原型設計之前解決系統集成和數據中心化問題。

從PC21中獲得的其他主要經驗推動了新的需求文件的建立和對已經批準的需求文件的調整。PC21確定了需要開發和執行一個共同的數據標準、信息格式和單一的數據結構能力,以實現各部門的整合并擴大機器對機器的速度。這一發現為開發支持共同數據結構的需求文件提供了大量信息(Rainmaker項目)。PC21進一步完善了對聯合綜合火力控制網絡的需求--陸軍綜合防空和導彈防御是該軍種對這個火力網絡的貢獻。PC21還強調了有前途的技術,這些技術已經成熟,可以從科學和技術過渡到技術成熟計劃的發展中--目標-武器配對過程的自動化(FIRESTORM)和支持提高遠距離效果決策速度的工具(SHOT)。PC21使各軍種能夠影響聯合共同作戰圖的發展,并改進聯合全域態勢感知解決方案。

具體而言,各軍種能夠探索、測試和評分指揮所計算環境的雙向傳輸和互操作性,作為全球指揮和控制系統-聯合的潛在替代。這個機會告訴我們,還有更多的工作要完成;所測試的五個潛在的數據結構都沒有顯示出所需的成熟度,跨領域的解決方案在各軍種之間架起了信息共享的橋梁,提高了互操作性,但也成為了單點故障。最后,PC21重申了戰術網絡對聯合部隊一切工作的重要性。PC21項目已經證明,戰術網絡是我們行動的重心,我們需要繼續以相關的速度發展我們的網絡。

融合項目還確定了能力的不足,支持對具有新興技術技能的士兵的需求,以支持實現JADC2的意圖。這包括具有更多數據科學和敏捷軟件開發能力的士兵,以實現未來的作戰行動。為了滿足這一需求,人工智能集成中心(AI2C)和陸軍軟件工廠(ASWF)正在從全軍范圍內識別和招募具有技術才能的士兵,并教導他們運用敏捷工具和數據科學來實現任務操作的現代化和解決實際問題。AFC將繼續指導和支持諸如AI2C和ASWF這樣的組織,向士兵傳授關鍵的技能組合,為未來的部隊設計提供原型。

空軍部長弗蘭克-肯德爾三世說得很對:我們必須通過實驗來連接人們,處理信息,并創造出作戰影響。融合項目不斷地提醒我們,我們必須采取系統的方法,摒棄諸如翻譯機之類的附加解決方案,以實現跨軍種的互操作性。相反,我們必須編寫我們的要求,旨在實現與聯合部隊和我們的盟友的系統的全面整合。

2022年5月,陸軍部長克里斯蒂娜-沃姆斯和麥康威爾將軍在參議院軍事委員會作證時說,PC21包括來自陸軍、海軍陸戰隊、海軍、空軍和太空部隊的近1500名參與者,使其成為15年來最大的聯合部隊實驗。PC是該實驗的一個關鍵宗旨。該實驗為聯合部隊提供了使用任何傳感器、最佳射手和正確的C2節點的機會,以融合數據并加速傳感器到射手的時間。在PC期間,我們將F-35B與地面射手整合,以完成殺傷網。在其他情況下,我們將傳感器到射手的速度從幾分鐘提高到幾秒鐘。一次又一次,"融合項目 "為各部門提供了一個試驗新技術以解決重大作戰挑戰的場所。

(2021年11月11日,在亞利桑那州尤馬試驗場,被分配到224軍事情報營的陸軍一等兵特里-好萊塢對MQ-1C灰鷹進行維護,為 "21世紀融合項目 "做準備(美國陸軍/瑪麗塔-施瓦布))

盡管 "融合項目 "的學習活動取得了許多成功和經驗,但整個聯合部隊中也存在許多批評和誤解。一些人質疑為什么陸軍要領導一項聯合試驗。其他人問其他軍種在做什么。還有人想知道 "融合項目 "是否僅僅是一系列科學實驗的組合,看看它們是否可能成功。每個軍種都意識到實驗對于整合我們未來的平臺是必要的,并且每個軍種都進行了自己的旗艦實驗以促進JADC2--一個將現有傳感器和射手與所有領域的數據連接起來的領域和控制系統。所有這些都是必要的,但PC通過利用所有領域的治理和執行中的聯合性,提供了一個微妙而有價值的差異。

當這篇文章發表時,我們將處于執行 "融合項目 "第三次迭代的邊緣--PC22。PC22將是一個聯合部隊的實驗,旨在開發能夠在大規模作戰行動中擊敗對手的能力,在去年取得的成功基礎上,增加使用案例的規模和復雜性。此外,PC22歡迎我們一些最親密的盟友和伙伴作為參與者和觀察員。2022年1月,我們的JBOD擴大為聯合JBOD,除軍方外,還有來自澳大利亞、加拿大和英國的合作伙伴參加。

PC22以兩個場景為中心。第一個是在美國西海岸整個聯合部隊所在地復制的印度-太平洋情景實驗。第二個實驗是發生在美國西南部沙漠中的歐洲場景。在這兩個場景中,我們插入并整合了數百種有前途的技術,評估這些技術所提供的能力的可擴展性和能力,并關注它們失敗的地方。

為了國家和所有未來將處于危險境地的軍人,我們有責任進行聯合、綜合的實驗。融合項目已經成為為JADC2的發展提供信息的場所。它使我們能夠通過測試尖端技術的速度、范圍和融合來實現決策的主導地位。此外,PC提供了一個在整個聯合部隊以及與我們的盟友和伙伴進行試驗的框架。我們不知道我們何時會打下一場戰爭,但 "融合項目 "所提供的實驗確保我們有合適的軍事組織和合適的能力,以實現大國競爭的超強實力。

付費5元查看完整內容

背景

在與美陸軍分析小組及其研究促進實驗室進行CRADA的過程中,Entanglement, Inc.(EI)已經展示了比任何已知技術更快、更準確的網絡安全異常檢測能力--假陽性現象少得多。

全球大多數網絡安全報告(包括2022年Sonicwall報告)認為,2021年幾乎所有類型的網絡攻擊都大幅上升,包括zeroday和勒索軟件攻擊。所有這些攻擊都有一個共同點:網絡異常。網絡安全中的異常檢測是指識別罕見的發生、項目或事件,由于其特征與大多數處理的數據不同而引起關注,這使得組織能夠跟蹤安全錯誤、結構缺陷甚至欺詐。異常檢測的三種主要形式是:無監督的、有監督的和半監督的。安全運營中心(SOC)分析師在網絡安全應用中使用這些方法中的每一種,都有不同程度的有效性。局限于監督式機器學習的系統往往會標出許多潛在的異常現象,以至于分析員不得不與無休止地增長的假陽性警報作斗爭,遭受認知過載。

過多的登錄,兩點之間的流量高峰,以及異常大量的遠程登錄是異常的幾個例子。正如我們在2020年的大流行病應對中所了解到的,后一種 "異常 "對于許多組織來說是必要的,以便在工人被困在家里時保持業務運轉。鑒于COVID-19大流行期間遠程工作的規模所帶來的挑戰,以及2021年網絡威脅的增加,美國陸軍轉向私營部門,探索一系列可能的解決方案。

2021年5月,拜登發布了一項行政命令,授權所有聯邦機構采用零信任安全。2021年第三季度,提出了一種新的網絡安全方法,以解決最近授權的零信任安全架構的持續監測部分。如果成功的話,這種能力可以應用于軍隊和其他聯邦機構運營的更大的網絡,并幫助提供實時態勢感知。這部分是基于對深度神經網絡的研究,其目標是:(a)加速自動編碼器(AE)功能;(b)加速生成對抗網絡(GAN)功能;以及(c)整合一種叫做支持向量機(SVM)的量子啟發優化算法。該方法包括二次無約束二元優化(QUBO)在網絡安全異常和離群點檢測方面的新應用,是由美國政府委托的。在業務轉型辦公室的指導下,陸軍分析小組(AAG)立即開始與可能被用于擊敗網絡異常威脅的新興技術的廣泛潛在來源合作。2021年6月,AAG的主任丹-詹森先生了解到Entanglement公司的無償援助提議,該公司選擇了其戰略伙伴和團隊參與者美國半導體公司Groq公司,為陸軍提供新穎、突破性的專利技術以及計算服務。

Entanglement團隊提供服務,協助陸軍在12個月內確定一個最佳的網絡安全異常檢測能力。2021年6月,AAG和Entanglement延長了題為 "COVID-19資源分配優化 "的現有合作研究與開發協議(CRADA)。Entanglement團隊在接下來的幾周內與Clay Stanek博士領導的AAG研究促進實驗室一起工作,并在2021年10月展示了顯著的性能改進和可行性。

主要發現、影響和建議

CRADA下的工作最終驗證了解決網絡安全異常檢測的能力,比傳統方法更快,并具有更好的性能,正如關鍵性能參數(KPP)所衡量。關鍵性能參數涵蓋了與每秒總推斷量、檢測到的威脅百分比、準確性、召回率、精確度、其他基于混淆矩陣的指標以及曲線下面積(AUC)有關的指標。

對于額外的變量或更大的數據集,Entanglement/Groq能力提供了比傳統方法更高的效率,可以大規模地解決原本難以解決的問題。核心技術是一種專有的專用數字電路設計,具有高度的并行性,用于解決可表示為深度神經網絡模型和二次無約束二元優化(QUBO)問題的各類問題。AAG以前的努力顯示了每秒檢測12萬個推斷的能力。這是用QUBO模型作為基準和標準所能達到的指標。基準是基于一個解決方案集,它將算法解決方案與專有的量子啟發芯片結合起來。芯片解決方案可以擴展到卡、節點,甚至更多。此外,為CRADA的可行性而設定基準的現有解決方案已經在開發下一代的更新,這將提高模塊化程度并減少熱信號。

在六個月內,Entanglement能夠實現每秒72,000,000次推斷的異常檢測率,并展示了在廣泛的數據處理系統領域實現每秒120,000,000次推斷的潛力。

驗證案例由KDD Cup 1999(KDD99)數據集和CICIDS2017數據集構建。如模型性能部分所述,AE和GAN解決方案的計算輸出在確定異常情況方面非常有效。QUBO SVM是以量子化形式建立的,在異常檢測方面也很有效,最后能夠在大約250毫秒內完成整個數據集的計算。

付費5元查看完整內容

潛在對手的火炮系統的改進對美國軍隊特別是陸軍提出了挑戰。除了改進的火炮系統能力和新的使用技術的挑戰外,特殊彈藥的擴散--如精確、熱障和頂部攻擊彈藥--重新引起了對敵人的大炮和火箭炮對美國作戰行動和地面作戰系統的潛在影響的關注。

為了應對這一挑戰,美國陸軍正在尋求通過升級目前的火炮和導彈系統,開發新的長程火炮和高超音速武器,以及改造現有的空射和海射導彈和巡航導彈以便陸軍部隊進行地面發射來提高其所謂的遠程精確射擊(LRPF)能力。

2018年美國防戰略和陸軍的多域作戰概念都要求提高陸軍LRPF能力,以應對被稱為俄羅斯和中國的反介入、區域拒止(A2/AD)戰略,旨在限制美國軍隊在歐洲和太平洋地區的行動自由。

美陸軍有五個主要項目或工作正在進行或考慮中,以提高遠程精確射擊能力:

  • 增程加農炮計劃(ERCA)計劃開發一種能夠對70多公里外的目標進行精確射擊的系統,比目前系統的30公里目標距離有所改進。

  • 精確打擊導彈(PrSM)是一種地對地、全天候、精確打擊的導彈,由M270A1多管火箭系統(MLRS)和M142高機動性炮兵火箭系統(HIMARS)發射。PrSM旨在取代目前的MLRS和HIMARS導彈,并將目前的射速提高一倍,每個發射艙有兩枚導彈。

  • 美陸軍正在研究開發一種戰略遠程炮(SLRC)的可行性,這種炮可以以高超音速發射,射程可達1000英里,以打擊防空、火炮和導彈系統以及指揮和控制目標。

  • 美陸軍、海軍、空軍和導彈防御局(MDA)正在開發通用高超音速滑翔體(C-HGB),陸軍計劃將其作為遠程高超音速武器(LRHW)計劃的一部分,使C-HGB能夠從移動的陸軍地面導彈發射器發射。

  • 最后,美陸軍正試圖改造現有的海軍SM-6和UGM-109對地攻擊導彈,以便為陸軍提供一種中程導彈能力。

鑒于潛在的資源限制和陸軍對LRPF的重視,國會在其監督、授權和撥款方面可能會進一步研究陸軍的LRPF計劃。國會潛在的問題包括

  • 戰略大炮、高超音速導彈和中程戰場導彈的理由。

  • LRPF的估計總成本。

  • LRPF和美國印太司令部的太平洋威懾倡議(PDI)投資計劃。

  • 部隊結構要求。

  • 后備役部隊的LRPF。

  • 其他軍種對陸軍遠程防衛部隊的看法;以及

  • 指揮、控制和瞄準遠程火力。

付費5元查看完整內容

在遠征情況下長期執行任務的部隊需要具有移動性、穩健性和足夠自主性的技術,以提高團隊的效率。美國陸軍作戰能力發展司令部陸軍研究實驗室向工業界征集解決方案,以證明在與作戰有關的情況下的自主移動性和自主安全性。2022年7月期間,三家公司參加了DEVCOM陸軍研究實驗室的評估,以評估現成的能力,通過檢測和應對指定興趣區附近各種場景中的未知行為者來提高態勢感知。本報告描述了第一次工業自主技術評估,詳細介紹了挑戰、數據和性能分析、反饋和建議,開發者和利益相關者可以利用所展示的優勢并投資于需要更多能力的領域。結果表明,目前的技術可用于有限的監視和偵察任務,而且所展示的性能水平值得進一步開發,以提高不同環境、情況和任務集的能力。

執行總結

2022年7月18日至22日期間,美國陸軍作戰能力發展司令部陸軍研究實驗室、三家公司以及來自其他政府組織的眾多與會者聚集在馬里蘭州阿伯丁試驗場的機器人研究合作園區(R2C2),在其首次工業自主技術評估(IATA)活動中展示和評估具有在多種環境和情況下保護作業區、人員和基礎設施能力的地面機器人技術。該活動反映了DEVCOM陸軍研究實驗室在機器人研究方面與學術界、工業界和其他政府組織合作的承諾。

IATA的目的是通過自主技術的創新、發現、演示和實驗為陸軍現代化工作提供信息,并加速向作戰人員提供創新能力。它提供了一個與作戰相關的環境和問題集,使技術開發者能夠展示新技術并以創新的方式應用現有技術。它還為政府提供了一種手段,以評估已知差距和新需求的技術性能并提供反饋。IATA的主要目標是確定和評估能夠加速與軍隊現代化優先事項相關的解決方案的技術。IATA提出了一個審查和了解陸軍挑戰的環境,并向參與者提供評估數據,說明他們的技術如何應對挑戰。

我們的意圖是將每個參與公司的技術暴露在三種小模型中,每種小模型都有多種運行類型。

  • 安全的自主性:城市化的地形
  • 自主移動性
  • 安全的自主性:植被小徑地形

在這次活動中,共有三家公司展示了他們的地面機器人技術。參加IATA的公司有以下幾家:

  1. Asylon Robotics

  2. Booz Allen Hamilton

3)Ghost Robotics/ARES Security

參加活動的人員包括來自空軍研究實驗室、DEVCOM軍備中心、ARL、約翰-霍普金斯應用物理實驗室、海軍陸戰隊作戰實驗室和測試資源管理中心的代表。能源技術中心公司通過其與ARL的合作中介協議為IATA活動的規劃和執行提供了支持。

本報告描述了現場和評估方法,并提供了對所包括的技術性能的反饋。為了能夠坦率地報告機器人系統的性能,并排除對特定公司技術的歸屬,本報告提到了A、B和C公司,它們的順序與本執行摘要中的參與者名單的順序不相關。

提綱

本報告記錄了IATA活動的設計、執行和結果,并提供了結論和建議。第1節介紹了本文件,列舉了IATA的目的和本報告的概述。第2節描述了示范場地,包括照片。第3節簡要介紹了評估過程,包括評估的目標、提議的方案(附圖和照片)以及計劃和執行的各種運行。第4節列出了在IATA期間展示的技術配置。第5節提供了對每個小插曲的性能分析。第6節提供了各類評估的結果,第7節對結論進行了總結。

付費5元查看完整內容

美國陸軍最近制定了一項關于未來陸軍如何作戰的戰略以及實現這些軍事能力的相關現代化和研究重點。以高超音速飛行為基礎的遠程精確射擊對于確保美國能夠對任何競爭對手實施其意志至關重要。要實現一個有效的未來美國軍隊,必須克服許多障礙。其中一些差距是對高超音速飛行器空氣熱力學的理解,從而促使對基礎研究的需求。本報告的目標是定義一個經典的、與陸軍相關的配置,適合于基礎研究,以允許與適當的主題專家的關鍵數量的集中合作。從這種開放的幾何構型研究中獲得的數據和知識可能會受到更多的限制性分配

美國陸軍最近制定了一項關于未來陸軍如何作戰的戰略以及實現這些軍事能力的相關現代化和研究重點。以高超音速飛行為基礎的遠程精確射擊對于確保美國能夠對任何競爭對手實施其意志至關重要。

要實現一個有效的未來美國軍隊,必須克服許多障礙。其中一些差距是對高超音速飛行器空氣熱力學的理解,從而促使對基礎性研究的需求。缺乏對高超音速飛行器周圍發生的復雜物理和化學的預測性知識,抑制了及時的、優化的多部件設計。對邊界層過渡和沖擊-邊界層相互作用等具體現象了解不多。不能正確地對現象進行建模,會產生一些不確定的特征,如表面壓力分布和熱通量,這對飛行器技術,包括穩定性、控制和熱負荷管理,都有負面影響。

幸運的是,有一個先例,即通過定義政府基準飛行器來促進全社會的科學討論,這些飛行器包含功能相關的工件,但對具體的發展計劃不敏感(見陸軍-海軍基本芬納導彈、空軍改良基本芬納導彈、陸軍-海軍旋轉火箭、國家航空航天飛機和NASA研究)。本報告的目標是定義一個典型的、與軍隊相關的配置,適合于基礎研究,以便與足夠數量的適當的主題專家進行重點合作。從這個開放的幾何構型的研究中獲得的數據和知識可能會受到更多的限制性分配。

付費5元查看完整內容

2022 年 10 月 11 日,美國陸軍發布了一份綜合數據計劃(ADP),這是一種全軍范圍內改進數據管理以確保陸軍成為以數據為中心的組織的方法。

該計劃是一項為期三年的工作,將改善整個陸軍的數據管理、數據治理和數據分析。作戰任務是陸軍數據計劃的當前重點。ADP 在該任務領域的成果是通過進行必要的更改來確保作戰人員的數據得到正確管理和使用,從而為作戰人員提供優勢。陸軍已經開始對數據管理能力、工具和模型進行原型設計,以實現這一目標。

陸軍首席信息官 Raj Iyer 博士說:“數據以及如何在所有梯隊中整合這些數據以實現真正快速、敏捷的決策,才是真正為陸軍提供其在未來戰爭中所需的競爭優勢的關鍵。”

數據和數據分析將為 2030 年的陸軍提供動力。士兵將需要在正確的時間和正確的地點獲得正確的數據,以便在每個梯隊做出更快、更好的決策——以超越任何對手的思維和步伐。

與早期的軍事行動相比,現在的戰爭范圍更大且范圍不斷擴大。作為聯合全域作戰的一部分,多域作戰是陸軍必須準備并贏得下一場戰斗的地方。這是一個數據豐富的環境。

每個領域都有自己的信息和數據流,一些信息來自開源情報,一些來自天基傳感器,還有一些來自網絡空間。今天的士兵和指揮官需要跨領域的綜合來主宰戰場。

ADP 概述了工作的組織并提供了總體戰略目標。它側重于中期努力,未來將被另一個更新所取代。

通過陸軍數據計劃實現這一決策優勢是陸軍的關鍵目標。

付費5元查看完整內容

在過去17年的反叛亂行動中,美國陸軍的許多師級情報分析員和設備都停留在靜態、集中的戰術行動中心,以促進對地面行動的情報支持。最近出版的《作戰手冊》(FM)3-0(2017年10月)將美國陸軍的重點從反叛亂轉向大規模的地面作戰行動。這些行動要求各師能夠建立多個前沿指揮所(CPs),這些指揮所能夠生存并能夠在退化和有爭議的領域促進任務指揮。為了支持大規模的戰斗,情報部門必須重新平衡人員、能力和設備,在一個師能夠建立的所有前線指揮所中,使該師的情報作戰功能具有生存能力。這需要將人員和情報專用設備從主指揮所和戰術指揮所調出,以支持支援區/早期進入指揮所和機動指揮組(如果指揮官需要)。為了考慮到美國同行威脅對手通過電子和網絡攻擊來爭奪美國陸軍進入空間領域的能力,這次重組還需要調整師級的通信計劃,以考慮模擬通信。

引言

“大規模作戰行動的流動性和混亂性將對情報作戰功能造成最大程度的混亂、摩擦和壓力。” - 美國陸軍學說出版物2-0《情報》

在過去的17年中,美國陸軍的情報機構主要是為支持伊拉克和阿富汗的反叛亂行動而運作。陸軍各師總共部署了20多次,以支持伊拉克自由行動(OIF)和持久自由行動(OEF)。這是響應國家號召,支持擊敗基地組織、敘利亞伊斯蘭國(ISIS)、利比亞伊斯蘭國(ISIL)和其他在中央司令部負責區域內活動的恐怖組織。每一次部署都由不同的作戰環境、獨特的任務以及不同程度的作戰成功和失敗所決定,但有一個共同點:師部的情報行動主要由分析員使用靜態、集中的戰術行動中心(TOC)中的設備進行。隨著陸軍為未來的作戰行動做準備,《作戰手冊》(FM)3-0(2017年10月)將重點從反叛亂轉移到準備在大規模作戰行動(LSCO)中與同行競爭者作戰。FM 3-0明確指出,師的主要作用是 "作為戰術總部指揮各旅進行決定性的行動"。這些行動要求各師能夠建立多個前沿指揮所(CPs),這些指揮所具有機動性、可生存性,并且能夠在退化和有爭議的領域內促進任務指揮。

在OIF和OEF期間,促成師級情報行動的一個關鍵能力是一個無爭議的空間領域。指揮官和下屬單位通過一個使用衛星的情報架構,在叛亂團體沒有能力影響的空間領域,收到近乎實時的情報收集、處理、利用和傳播。除了無爭議的通信網絡,叛亂分子的游擊戰術主要集中在東道國的政府設施和人口中心,這使得師部情報部門可以在大型前沿作戰基地(FOB)開展行動,而不需要對情報部門的生存能力和機動性作出重大規劃。師中央情報局沒有受到敵人的持續和直接攻擊的威脅。大規模的戰斗不會給情報部門帶來領域優勢或假定的生存能力。同行對手將在所有領域與美軍進行較量,甚至可能在某些領域長期保持優勢。FM2-0《情報》指出:"部隊必須準備好對抗各種威脅、敵方陣型和未知因素的情報。"威脅的變化并沒有改變情報的作用,即提供 "及時、準確、相關和預測性的情報,以了解威脅的特征、目標和行動方案,從而成功執行進攻和防御任務。"然而,威脅的變化確實提高了對情報的期望。大規模的戰斗代表了情報行動執行方式的范式轉變。各師可能會在大的地理區域內建立多個不斷流動的中央情報局,以履行其任務指揮職責,而情報部門必須準備好支持他們。

美國陸軍理論討論了一個師能夠建立的五種類型的指揮所:主指揮所(MCP)、戰術指揮所(TAC)、機動指揮組、支援區指揮所(SACP)和早期進入指揮所(EECP)。每個指揮所執行不同的功能,從而使任務指揮更加有效。按照目前陸軍修訂的組織和裝備表(MTOE)的規定,師級情報部門只被授權在MCP和TAC中操作人員和裝備。不能假設在LSCO環境中不使用其他CPs。陸軍各師必須確保其情報部門的結構能夠在不斷受到攻擊威脅的多個中心點有效運作,需要有快速轉移的能力才能生存。

由于有爭議的空間領域,通信能力將受到限制,影響基于衛星的通信的可能性增加。目前的情報架構依靠衛星在下屬單位的信息收集器和師級中央情報局的分析小組之間傳輸關鍵情報。衛星可用性的喪失極大地影響了師部情報部門支持指揮官了解、可視化和描述敵人威脅的能力。用于建立師部情報架構的設備授權缺乏靈活性和冗余度,無法支持在衛星通信被拒絕的環境下執行的情報行動。

本專著探討了師級情報部門組織人員和情報架構的最佳方式,以便在大規模作戰行動(LSCO)期間,在加強機動性、生存能力和有爭議空間領域的環境中,在多個指揮所開展行動。為了支持多個指揮所的工作,師情報部門必須確保在不同的指揮所中,師情報部門的所有任務都是冗余的,這一點超出了修訂的組織和裝備表的授權。G-2總部、G-2X和分析與控制部門的精選士兵必須以機動的方式執行他們的任務。為了在被拒絕或有爭議的空間環境中行動,師情報部門應該建立主要的、備用的、應急的和緊急的通信計劃,其中包括一個模擬信使系統,以向其他師的CP和下屬單位傳播情報。在LSCO環境中,由于行動節奏的加快,特別是在進攻中,情報職能可能會被大大削弱。

師情報部門必須有適當的姿態來支持作戰層面上的LSCO。無論作戰環境如何,師的情報部門必須為指揮官、參謀部和下屬單位提供盡可能及時和準確的信息。此外,情報和行動之間的關系是相互的,"情報推動行動,行動促成情報",在正確的地方沒有正確的情報人員和設備會降低組織的作戰效率。進一步的分析可以確定:1)目前授權給該師的情報人員和設備是否足以支持多個指揮所;2)提供關于G-2應該如何組織這些資產以支持大規模作戰行動中的任務指揮行動的建議。

為了找到支持性證據來檢驗這一假設,**本研究依賴于四個研究問題。首先,在大規模的作戰行動中,師級情報部門應該在哪些作戰環境中行動?第二,目前的師級情報部門是如何設計運作的?在支持LSCO行動要求的能力方面存在哪些差距?第三,在過去的LSCO環境中,單位不斷移動,通信網絡不像最近的反叛亂行動中那樣可以評估,情報部門是如何運作的?最后,根據目前部隊的最佳做法,G-2在其部門內部可以做些什么來更好地支持師級LSCO?**為了更好地闡明所討論的問題和本專論的內容,需要對幾個關鍵術語進行定義。機動性被定義為 "軍隊的一種質量或能力,它允許軍隊從一個地方移動到另一個地方,同時保持完成其主要任務的能力。"本專著討論了情報部門在執行其主要任務的同時進行生存性移動的能力。關于生存能力的討論涉及到 "保護人員、武器和物資,同時欺騙敵人的所有方面"。

第一節描述了情報部門應在哪些環境中行動,以及師部情報部門必須解決哪些問題以最好地支持LSCO。

第二節研究師級的情報行動。本節回顧了第二次世界大戰(WWII)期間的一次師級情報行動,這是美國陸軍部隊最后一次在沒有使用衛星來促進通信和情報收集的情況下進行LSCO。特別是第80步兵師在1944年和1945年在喬治-巴頓將軍的美國第三軍中橫跨法國北部作戰時的情報使用情況。這項研究確定了在情報部門組織和信息傳播方面的經驗教訓和最佳做法。此外,本專著還討論了一個師的情報部門最近的MTOE歷史,這些變化如何影響該部門支持LSCO的能力。

第三部分研究了G-2師目前是如何為LSCO進行訓練的,以便在大規模戰斗之前找出目前訓練趨勢所不能解決的能力差距。第三節還推薦了一個組織結構,使師級情報部門能夠更好地支持大規模的地面作戰行動,并使用基于理論要求的篩選標準來評估這一建議,以確保中央情報局的生存能力和完成師級情報行動的要求。

第四節提出了對大規模作戰中執行情報行動至關重要的關鍵見解。

付費5元查看完整內容

網絡空間行動的早期成功為壓制對手提供了新途徑可能性。隨著美國陸軍開始向多域作戰過渡,他們依賴網絡空間并支持其他領域的行動。一個問題出現了:"軍隊如何將網絡空間行動納入支持其他領域的行動?" 對于如何將網絡行動納入其他領域的行動,目前還沒有有證據支持的實際規劃原則。基于最初的研究,產生了一個假設,即支持戰爭作戰層面的網絡空間行動與物理領域和虛擬信息領域的行動同步。利用美國軍方對作戰層面和作戰領域的公認定義,分析了作戰層面活動的案例研究。通過收集每個案例的以下信息,對盟軍行動以及以色列-哈馬斯沖突進行了分析:戰略背景、網絡空間行為者、網絡空間行動以及網絡空間行動如何支持其他領域的行動。分析的結果是,戰爭行動層面的網絡空間行動通過收集對手的情報來支持其他領域的行動;拒絕或破壞虛擬信息領域的傳遞途徑;以及影響在物理領域的實體

1806年10月,法軍在耶拿-奧爾斯塔特戰役中迅速擊敗了普魯士軍隊。普魯士軍官卡爾-菲利普-戈特弗里德-馮-克勞塞維茨(Carl Philipp Gottfried von Clausewitz)出席了這次戰斗,這次失敗讓他深感不安和困惑。 普魯士軍隊的人數超過了法國軍隊,但是,法國軍隊的戰術優于普魯士過時的線性作戰方式。克勞塞維茨見證了戰爭的未來,并決心將普魯士軍隊發展成為一支再次讓歐洲羨慕的力量。

2014年7月俄烏戰爭期間,在烏克蘭澤勒諾皮亞村附近,烏克蘭陸軍地面部隊的四個旅準備對俄羅斯邊境附近的分離主義分子的部隊發動進攻。2014年7月11日,一場三分鐘的密集炮擊襲擊了烏克蘭四個旅的人員,并摧毀了烏克蘭第79空中機動旅的一個營。對這次攻擊的分析表明,俄羅斯部隊使用無人駕駛飛行器來定位烏克蘭部隊,并將位置提供給間接火力平臺。從識別到效果的時間如此之快,以至于烏克蘭各旅無法采取保護行動。俄烏戰爭中的這一小段時間非常重要,以至于美國陸軍能力整合中心發起了對俄羅斯新一代戰爭研究,以確定俄烏沖突對未來戰爭的影響。

2015年,在美國陸軍戰爭學院的一次演講中,國防部副部長鮑勃-沃克概述了二十一世紀戰爭的問題,并責成美國陸軍開發空地戰2.0。2018年12月,美國陸軍邁出了理論演進的一步,出版了《2028年多域作戰中的美國陸軍》,以解決陸軍如何在多個層次和領域內作戰的問題。

耶拿-阿爾斯泰特戰役和俄烏戰爭雖然相隔幾個世紀,但都顯示了卓越戰術和行動安排的力量。克勞塞維茨和美國陸軍目睹了失敗,并作出了類似的反應,進行了深入的戰斗研究,以改善他們各自的軍隊。這些研究的成果是對未來戰爭行為的指導性文件。

美國陸軍采用多域作戰作為未來的作戰結構,依靠網絡空間作戰來支持其他領域的作戰。然而,關于如何將網絡行動納入其他領域的行動,目前還沒有基于證據的實際規劃原則。軍事規劃者的問題是如何整合網絡空間行動以支持其他領域的行動而不至于遭遇慘敗。該論點認為,網絡空間行動通過收集對手的情報來支持其他領域的行動;拒絕或破壞虛擬信息領域的傳遞途徑;以及影響物理領域的實體。

付費5元查看完整內容

摘要

我們總結了2021年10月19-21日舉行的“網絡防御深度機器學習研究專家研討會”的結果。我們通過論文向北約科學和技術組織報告了此次論壇上分析的深度學習當前和新興網絡安全應用。研討會的目的是介紹新的觀點,揭示政府在相關領域的研究,說明深度學習如何應用于網絡安全,并介紹在網絡空間軍事行動中應用深度學習的實施需求。總的來說,其結果提高了對問題和機會的認識,確立了各應用領域的共同需求,并確定了一條前進之路

1.0 引言

自20世紀后半葉現代計算機出現以來,人類對所有軟件進行了編程,并成為計算和算法進步的主要推動者。然而,截至21世紀初,深度學習的實際進展已經改變了軟件的格局。深度學習使計算機能夠通過訓練描述輸入和輸出之間關系的模型來"編程"自己的軟件。算法上的突破正在加速每個行業的進步,并取得了巨大的成功。最受歡迎的應用包括那些能夠識別物體[1]和翻譯語音[2]的應用,其精確度接近人類的實時水平。專家們雄心勃勃地表示,深度學習最終將能夠 "做一切事情",甚至可能復制人類智慧[3]。

與此同時,對軟件的日益依賴加強了保護計算機系統和網絡的重要性,使其提供的服務不受損害或破壞。在21世紀的前幾十年里,數據泄露的速度和影響進一步說明了網絡入侵是如何重塑全球安全形勢的。因此,對一個越來越有彈性的網絡空間需求,特別是當它與軍事系統相交時,正促使許多深度學習的新應用。這些應用可能會加強軍事戰略定位,并建立一個有彈性的網絡安全態勢,與不斷變化的威脅保持同步。然而,實現這一結果需要跨學科的應用研究和實驗,以便真正了解限制和實際效用。

因此,我們總結了2021年10月19-21日舉行的“網絡防御深度機器學習研究研討會”的成果。這個北約科學和技術組織(STO)論壇的重點是鞏固網絡防御的深度學習應用領域的知識。與會者包括來自澳大利亞、比利時、芬蘭、法國、德國、意大利、挪威、波蘭、土耳其、英國和美國的研究科學家和工程師。組織代表包括來自大學、民間研究組織、國防機構和軍事研究實驗室的強大觀點組合。

該論壇的目的是促進北約國家和盟國之間的合作,以確定和追求網絡領域最有前途的深度學習用例和方法,包括計算技術、架構和數據集或模型。為了實現這一愿景,它有助于提高對兩個主題之間共生關系的認識。深度學習通過將持續監測的繁瑣環節自動化,使網絡安全中的硬問題受益。另一方面,網絡安全也將受益于深度學習的實際應用和強大的實施設計。此外,隨著深度學習應用的擴散,以及與物理世界(即自主系統)越來越多的互動,傳統上描述和隔離網絡空間的邊界將被侵蝕。因此,要實現網絡安全,就必須采取超越傳統上用于網絡安全的新方法。

美國陸軍研究實驗室的Frederica Free-Nelson博士在研討會開幕詞中指出,深度學習和網絡安全領域都有許多未解決的問題,與其依靠幾個主要貢獻者來解決,不如分享過程、方法和成功案例,以避免浪費資源或阻礙進展。現實世界中,用戶驅動的問題與基礎研究和應用實驗適當匹配,可以實現信息主導和決策優勢。因此,本次研討會的預期愿景是,部分地捕捉那些讓領導層了解到需要為持續的挑戰投入資源的發現,并將科學家、從業者和最終用戶以一種有利于復制成功和持續進步的方式聯系起來。

本文的結構是按照研討會的目標進行的。第2節介紹了術語和觀點,這些術語和觀點限定了問題空間并形成了潛在的解決方案。第3節說明了深度學習是如何應用于網絡安全的,并提出了進一步獲得收益的機會。第4節介紹了北約STO內部的相關工作,并在多個應用領域之間進行了比較。第5節最后強調了關鍵的發現和對軍事環境的考慮。最終,我們旨在提高對深度學習在軍事背景下為網絡安全提供的有價值的認識,并確定了已經成熟的探索機會

2.0 從網絡安全和深度學習的交叉點看問題

根據美國軍事學說的定義[4],網絡空間是以使用電子、電磁頻譜和軟件來存儲、修改和通過網絡系統和相關物理基礎設施交換數據為特征的領域。這包括微電子、計算、通信、網絡和軟件技術,包括人工智能、機器學習和深度學習。網絡空間技術的應用是所有經濟部門、關鍵基礎設施和軍事行動的基礎。將繼續發展網絡空間的技術趨勢包括無處不在的連接和網絡邊緣的傳感,增加系統的可編程性和復雜性,自主性和加速決策循環的應用,越來越不可信和不透明的供應鏈,以及新的計算架構(即量子和神經形態計算)。非技術性的趨勢包括互聯網用戶數量的增長,為消費行業分析而積極利用用戶元數據,以及國際外交或國防考慮。鑒于技術變革的積極速度和非技術趨勢的不確定性,網絡空間將繼續以可能難以準確預測的方式發展。

在軍事方面保證網絡空間包括兩個不同的任務:網絡安全和網絡防御。網絡安全的目的是通過保證關鍵系統的屬性,如保密性、完整性和可用性,來限制脆弱性。隨著網絡物理系統,如關鍵基礎設施、智能制造、武器系統,以及最終的生物-神經接口的激增,網絡安全越來越多地包含了非傳統的屬性,包括安全性、及時性和復原力。此外,這些系統的物理性質提供了新的儀器和遙測技術,以確保其網絡態勢[5]。另一方面,網絡防御描述了為應對網絡空間中的敵對行為而采取的行動。雖然這些角色在一些組織中可能會重疊,但由于軍事單位如何組織和執行任務的基本功能,所以存在著區別。網絡安全是那些設計、開發和操作特定系統的人的責任。然而,網絡防御是一些重點活動的責任,這些活動專門負責監測和協調整個組織對敵對威脅的反應(即安全操作中心)。

網絡空間是戰略軍事格局的基礎,北約國家必須減輕對其軍事系統、平臺和任務的網絡威脅。深度學習是一種新興的軟件技術,其應用能夠加強這種彈性態勢。為此,北約科技組織的信息系統技術小組成立了一個關于 "網絡防御的深度機器學習 "的研究任務組(RTG)。Fraunhofer FKIE(德國)的Raphael Ernst先生在研討會開幕詞中澄清,RTG的章程不是開發新的深度學習技術,而是鞏固北約范圍內深度學習在網絡防御中的應用知識,確定民用解決方案和軍事需求之間的差距,并與其他北約國家合作,使用數據處理,共享數據,并尋求將最有希望的技術和應用轉移到軍事領域。由網絡安全和機器學習專家組成的RTG審查了技術標準、學術研究和商業技術產品的全面選擇,以評估當前的技術狀態。該研究對當前技術狀況的結果在第3節中進行了總結。

然而,人工智能領域的不斷進步和網絡物理系統的擴散將改變網絡格局,并為新類別的網絡攻擊讓路。網絡物理系統采用軟件來控制與其物理環境交織在一起的機制,在混合時間尺度上運行,并以隨環境變化的方式進行互動。例如,自動駕駛汽車將深度學習應用于車載攝像頭,以查看并決定如何在道路上行駛。研究表明,物理世界對這些軟件系統的攻擊可能造成傷害[6]。無人駕駛汽車進一步依賴持久的連接,與其他設備、網絡和車輛共享遙測信息。雖然是作為一種反饋機制,但這和類似的網絡物理系統設計暴露了攻擊面[7]。

最終,保證網絡物理系統的運行變得越來越困難,有彈性的網絡態勢需要超越傳統網絡安全方法的手段。因此,描述各種深度學習應用中的公開挑戰對于理解網絡風險至關重要。RTG發起了這次研討會,在一群對各種軍事和民用應用有深刻見解的不同專家之間推進這一議程。鑒于不同領域的參與,對術語的討論將提供有用的背景。

人工智能(AI)通常描述任何使計算機能夠模仿人類智能的技術。人工智能的早期成功源于基于規則的系統和捕捉人類專家知識的系統。盡管存在著對人工智能能力進行分類的標準,但我們選擇了機器學習和深度學習之間的簡單區別來構建我們的討論。研討會采用 "深度機器學習 "這一術語,表明對深度學習的重視,并不排斥傳統的機器學習,但也承認,持續的進步將鞏固深度學習作為人工智能領域最突出技術的地位。

機器學習是人工智能技術中最重要的子集,它提供了通過發現數據中的模式來提高計算性能的能力,而不需要遵循明確的編程指令。經過幾十年的緩慢進展,機器學習最近在包括消費者分析和社交媒體在內的各種應用中獲得了廣泛的采用。機器學習算法利用統計學在大量的數據中尋找模式,這些數據包括數字、文字、圖像或其他數字信息[8]。機器學習的應用采用了一個可以概括為四個階段的管道。首先,數據采集涉及識別和收集數據元素。第二,特征工程涉及預處理或提取有關該數據的統計數據。第三,初始數據或導出的統計數據被用來訓練一個能夠識別模式和關系的模型。最后,用輸入數據評估或部署模型,這些數據可能反映也可能不反映初始階段的訓練數據群。盡管這些階段的特征是線性的,但它們往往是迭代實施的,并且在它們之間有大量的反饋和調整。最終,數據的依賴性和質量決定了每個應用的有效性。

深度學習是指機器學習技術的一個特定子集,它允許模型通過將多層神經網絡暴露在大量的數據中來訓練自己。區別在于特別是上述管道的第二和第三階段。神經網絡是人類大腦中的神經元和突觸的簡化數字模型,由處理數據的簡單計算節點層組成。雖然早期的神經網絡僅限于幾層神經元,但一種被稱為反向傳播的突破性技術在理論上實現了這些層的擴展,從而為由更多層組成的 "深度"神經網絡鋪平了道路[9]。在最初發現的幾十年后,計算能力的提高使得深度神經網絡對圖像進行分類的能力得到了非常成功的展示,隨后將其確立為最先進的技術[10]。新興圖形和張量處理單元硬件帶來的計算能力提高,進一步加速了對越來越大的數據集的利用,使廣泛的模式識別和分類問題受益。

機器學習和深度學習都可以以多種方式應用。有監督的學習應用,通常被認為是最普遍的,利用被標記的訓練數據來告訴計算機它應該尋找什么模式。另一方面,無監督學習應用則利用了沒有標簽的訓練數據。強化學習是一個新興的前沿領域,算法通過試驗和錯誤,基于一些規定的獎勵函數,學習如何實現一個明確的目標。另外,"未來學習"技術包含了在不同操作環境下實現應用的新興方法。例如,遷移學習,將從解決應用中的一個問題中獲得的知識用于不同但相關的問題。聯邦學習,盡管仍然是一個活躍的研究領域,已經被證明可以通過將訓練功能分布在一些節點上來減少數據的依賴性。在RTG即將發布的技術報告中,詳細介紹了對這些和其他相關方法的徹底研究。

在討論深度機器學習系統的安全影響時,挪威國防研究機構的Espen Hammer Kjellstadli先生闡述了數據驅動的網絡安全的考慮,這些考慮超越了傳統的基于規則的方法。深度機器學習引入了圍繞特定模型的訓練和測試的新漏洞。在一個管道的初始階段獲得的訓練數據可以被操縱,從而影響模型的正確性。由于導致模型構建的特征之間的不平衡,該模型也可能在后期階段被利用。對這些漏洞的研究,以及如何防御或將其武器化,被稱為對抗性機器學習。一個全面的概述可以在美國國家標準研究所(NIST)[11]和MITRE[12]的工作中找到。這兩份參考資料都是對任何機器學習架構進行初步設計或安全評估的絕佳資源。

針對對抗性機器學習攻擊,已經提出了許多防御措施。例如,訓練階段的攻擊,即攻擊者推斷出模型可能學習的知識類型,可以通過加密、消毒、刻意選擇或對訓練語料庫引入其他人為限制來緩解訓練數據。訓練語料庫可以進一步泛化,要么通過增加其數量,要么通過探索其數據的替代表示法。這種方法已被證明在管道的每個階段都能提供性能提升和安全優勢。最后,合成對抗性數據已被證明可以補充傳統的訓練數據,并增強所產生的模型彈性。最終,數據質量在一個特定模型的性能中起著至關重要的作用,用于訓練模型的數據越多,該模型通常就越有效。

影響深度機器學習的另一個安全考慮涉及到對特定模型結果的可解釋或可解釋性描述。與傳統的算法系統不同,信任不能來自對決策標準的透明理解。這些系統的復雜性,擴展到數以百萬計的特征權重,有效地將深度機器學習應用轉化為黑盒。這是一個重要的考慮因素,因為人類必須越來越多地理解、驗證這些系統的判斷并采取行動。

3.0 網絡安全中的深度機器學習應用

深度機器學習在網絡安全方面有很多應用。在不同的演講中,美國海軍研究實驗室的Joseph Mathews先生和美國陸軍研究實驗室的Tracy Braun博士,通過報告RTG最近的研究結果,闡明了當前的技術狀況。該研究通過采用NIST[13]的指導來描述其研究結果,該指導幫助組織實施其資產的信息安全持續監控計劃,了解網絡威脅和漏洞,以及部署的安全控制的有效性。監控被定義為持續的檢查、監督和關鍵觀察,以確定與預期或所需性能的變化。這里的"持續"和"不斷"意味著組織風險的評估頻率足以支持風險管理活動和充分保護組織信息。

具體來說,[13]定義了11個安全自動化領域,解決了建立和保持持續的網絡安全感知所需的一系列安全控制。每個領域包括一組必須收集、分析和報告的工具、技術和數據。順便說一下,這些領域形成了一個有用的結構,通過它來描述深度學習當前和擬議的網絡安全應用。考慮到相似性和便于闡述,我們借用了這11個領域,并將其分成8個不同的類別。該研究的完整結果將在即將發布的技術報告中進行詳細報告。

3.1 惡意軟件檢測

惡意軟件是指在所有者不知情或不同意的情況下,故意設計成滲入、修改、破壞或損害計算機系統的任何惡意軟件。惡意軟件承擔了許多形式的數字內容,包括可執行代碼、腳本和嵌入交互式文件內的活動對象。惡意軟件檢測機制在事先了解惡意內容的情況下,對信息系統進行定期或接近實時的掃描。反病毒簽名和類似的識別技術(即啟發式方法)是詳盡的法醫分析產物,有必要結合靜態和動態方法。

在試圖改善惡意軟件檢測方面,深度機器學習已被廣泛探索。傳統的方法依賴于從該領域的專家知識中獲得的人工設計的特征。這些解決方案提供了一個抽象的軟件視圖,可以用來歸納其特征。特征工程和特征提取是工作流程中關鍵的、耗時的過程。跟隨其他領域的進展,惡意軟件檢測能力正越來越多地利用深度學習架構。

研究表明,該應用可能克服惡意軟件檢測中的傳統挑戰。行業趨勢表明,越來越多的公司提供基于人工智能的網絡安全解決方案,為惡意軟件檢測實施某種形式的深度學習。學術工作中的擬議應用進一步證明了用新的、獨特的程序數據表示法實現的更大功效[14]。然而,這些應用通常繼續遭受強大的訓練數據的不可用性,模型的過度擬合,缺乏解釋能力,以及隨著惡意軟件技術的發展而減少的持久性。

3.2 事件管理

事件管理包括監測信息系統中的可觀察到的事件,以及信息系統之間的事件。傳統的入侵檢測系統[15],在網絡或終端上實施,采用了基于簽名和基于異常的模型,這些模型存在缺陷。基于異常的模型已經被證明能夠產生高的假陽性率,而基于簽名的模型已經被證明能夠產生高的假陰性率。兩者都可以從深度機器學習的進展中獲益,因為它不依賴于特定攻擊模式的先驗知識。同樣,電子郵件過濾的進展也采用了自然語言處理(NLP)的深度學習應用來識別表明是垃圾郵件的信息模式。例如,谷歌已經使用TensorFlow大大增強了Gmail的垃圾郵件檢測能力[16]。

事件管理工具同樣有助于檢測和應對網絡攻擊。這些工具依賴于日志和審計記錄,這些記錄捕捉了信息系統的行為和狀態,通常與系統交易、安全控制或性能有關。幫助生成、傳輸、存儲、分析和處理日志數據的工具,對于許多網絡安全操作來說已經變得越來越重要。

目前這些領域的產品(即擴展檢測和響應的平臺或技術棧;安全信息和事件管理;以及安全協調、自動化和響應)收集的數據自然適合用深度學習來開發。許多商業工具已經為深度學習插件提供了一些本地支持。然而,大多數實現這種支持的嘗試都繞過了原生系統,而選擇了外部預處理和后處理管道,或者通過與第三方框架的整合。這表明深度學習能力將與他們平臺的原生能力同步發展。

值得注意的是,這些應用可能會受到專有數據格式的限制,無法公開或增加獲得數據的背景,以及對報告的輸出缺乏信任。專家們進一步表示擔心,現有的工具可能不會以最佳的保真度(例如,聚合元數據)收集數據,以解決實際問題。我們猜測,一旦安全運營中心團隊普遍部署的工具整合了深度學習框架或算法,事件管理中的深度學習應用研究將變得越來越受歡迎。同時,這些功能齊全的平臺在架構上與其他工具集成和共存時,可能會在復雜性和維護方面帶來新的挑戰。

3.3 信息管理

信息管理是指管理信息的位置和傳輸,這對保護組織數據的保密性、完整性和可用性至關重要。數字信息被有意或無意地儲存在無數的系統和設備中。因此,數據丟失、被盜和泄漏對一個組織的信息安全態勢構成了相當大的風險。數據丟失預防(DLP)工具具有清點、分類和跟蹤數據創建、使用、存儲、傳輸和處置的能力。

目前的DLP系統實現了一種混合的數據分類技術,包括標記數據、精確匹配、部分匹配、正則表達式和機器學習。目前DLP工具領域的許多研究都是圍繞著分析數據及其分類進行的。深度學習擅長解釋復雜的數據(如文本、圖像、視頻),因此可以提供對其中編碼信息的機器可讀訪問。

對強大的、與組織相關的訓練數據的訪問對于取得積極的結果尤為重要,然而零信任的信息安全原則通常會阻止對可能構成某些訓練語料庫基礎的敏感文件不受約束的訪問。對靜態數據和傳輸中的數據進行端對端加密的擴散,進一步給強大的數據獲取帶來了挑戰。業務流程建模和越來越多的多模態數據的頒布也帶來了新的挑戰和機遇[17]。

3.4 漏洞和補丁管理

漏洞是一種軟件缺陷,它引入了潛在的安全風險。補丁是一種消除或減少該漏洞的軟件修復。隨著漏洞和補丁的數量不斷增加,漏洞和補丁管理工具允許組織以協調的方式識別、報告和補救漏洞。例如,漏洞掃描器通常被用來識別端點、網絡、操作系統和應用程序的漏洞。補丁管理工具也同樣掃描系統的漏洞,并促進必要的補丁和其他更新的應用。

這一領域的許多商業產品都聲稱要實施機器學習,主要是為了確定補救措施的優先次序。值得注意的是,由DARPA贊助的2016年網絡大挑戰競賽展示了自動化網絡安全系統的潛力,該系統可以實時發現、評估和修補漏洞[18]。競爭團隊所使用的方法包括用深度學習增強的模糊工具。未來的愿景是采用類似的工具,可以掃描軟件的漏洞,并協助自主修補它們。正在進行的使能能力的開發持續進行,而且非常有希望,但缺乏成熟度。

3.5 軟件保證

軟件保證是一套有計劃的活動,以確保軟件按預期功能運行,沒有缺陷。常見的軟件保證技術包括安全編碼、源代碼分析和應用模糊工具。最終,軟件保證有助于實現可信性,即不存在可利用的漏洞;以及可預測性,即軟件有信心按預期執行。軟件分析的三種主要類型的工具和技術已經被確認。靜態分析工具在不執行的情況下檢查系統/軟件,包括檢查源代碼、字節碼和/或二進制文件。動態分析工具通過執行系統/軟件,給它特定的輸入,并檢查輸出來檢查系統/軟件。混合工具整合了靜態和動態方法;例如,測試覆蓋率分析器使用動態分析來運行測試,然后使用靜態分析來確定軟件的哪些部分沒有被測試。

在上面列出的工具和技術中,深度機器學習已經被應用于源代碼分析和模糊測試。此外,最近的實際應用可以在操作系統開發當中找到,維護者使用機器學習來區分修復錯誤的補丁和沒有修復的補丁[19]。除了這些增加軟件保證的傳統方法之外,商業領域的新興能力越來越多地試圖通過低/無代碼平臺使人工智能生成代碼。這是否能減少bug的數量,從而減少安全漏洞,還不確定。這可能是一個值得追求的方向,在未來的研究中。

3.6 資產和許可證管理

資產管理指的是維護組織內的軟件和硬件系統的庫存。這可以通過系統配置、網絡管理和許可證管理工具的組合,或者通過一個特殊用途的工具來完成。軟件資產和許可信息可以由軟件資產管理工具集中管理,以跟蹤許可的遵守情況,監測使用狀態,并管理軟件資產的生命周期。資產管理目前被人類用于計算硬件、軟件和設備的庫存和配置管理。

資產管理工具可以產生和記錄大量的數據,使人們能夠深入了解網絡安全和商業運作。最近在軍事系統的網絡防御方面的工作認為,分布式自主代理可以感知和適應性地防御他們的環境[20]。這些應用的共同主題是能夠減少人類的監督,適應性地管理技術消耗,優化資源利用,映射資產和數字工作流程之間的依賴關系,以及預測或應對有機商業風險。智能化、無處不在的設備趨勢將推動對資產管理創新方法的需求,在這種情況下,不僅是人類操作員,而且各種設備本身都能夠適應其環境,以不斷優化自己。

未來的應用,一般被稱為 "工業4.0"[21],設想通過邊緣計算和下一代無線技術(即5G),在每個設備上進行基于機器學習的資產管理。這種設備與設備之間的通信將促進和優化智能工廠的流程,這樣設備就可以通過動態感知其環境來調整其配置。在這種情況下,要擴大資產管理的深度學習應用,就必須采取全面的、跨學科的方法,與互補技術的進步保持一致,這些技術包括移動設備、物聯網平臺、位置檢測技術(如射頻識別、近場通信)、3D打印、智能傳感器、數據分析、增強現實、可穿戴計算,以及聯網的機器人和機器。

3.7 網絡管理

網絡管理工具包括主機發現、庫存、變更控制、性能監控和其他網絡設備管理能力。最近,機器學習被提議作為一種機制,用于動態配置和協調這些工具,以實現移動目標防御,挫敗對手的操縱。文獻中探討了這些應用,但許多用例僅限于簡單的場景,如帶寬節流和性能管理。在軍事背景下為戰略和戰術資產調整網絡管理技術也仍然是一個相當大的挑戰。

存在許多新興的應用,包括涉及用戶行為分析[22]和車輛網絡[23]的應用。在前者,可疑的用戶行為模式可能需要改變網絡配置。在后者,聚類算法可以有效地將網絡流量定性為可疑或良性。許多深度機器學習應用,特別是那些用于事件檢測和惡意軟件檢測的應用,已經被網絡管理工具收集或暴露的數據所支持。因此,之前的研究主要圍繞著網絡監測和事件分類。然而,最近的工作證明了基于深度學習的路由在分組交換網絡中的流量控制的有效性。同樣,提議將深度學習應用于網絡管理的目的是在沒有人類監督的情況下自動或優化網絡管理任務。

最終,移動目標防御(MTD)是一個可以從深度學習中大大受益的領域。傳統的網絡防御由于環境的靜態性而無法考慮到攻擊者的固有優勢,而MTD則會不斷改變該環境的配置,反過來降低網絡攻擊的成功率。深度學習已經被證明可以準確地對應用進行分類,其流量是由軟件定義的網絡控制器自然獲取的。為戰略和戰術資產調整網絡管理技術將是一個相當大的挑戰,因為軍事網絡由相當大的規模和多樣性組成。

3.8 配置管理

配置管理工具允許管理員設置、監控、證明和恢復配置設置。隨著網絡和設備的復雜性增加,管理信息系統之間的配置也變得越來越困難。自動化的解決方案提高了效率,改善了可靠性,同時普遍降低了規模成本。系統配置掃描工具提供了審計和評估目標系統的自動化能力,以確定其是否符合定義的安全基線配置。盡管深度學習在這一領域的實際應用很少,但在上一節討論的移動目標防御方面仍有很大的潛力。

4.0 相關軍事應用和開放性挑戰

深度學習的應用一般都有一個特點,那就是源于大量的數據,必須在此基礎上得出洞察力,或者希望有更大的自動化。這一觀點得到了許多探索一系列軍事信息系統技術應用的互補性RTG的響應。本文將詳細介紹這些互補性小組的研究結果。

4.1 半自主無人駕駛地面車輛的互操作性

挪威國防研究機構的Kim Mathiassen博士在《半自主無人駕駛地面車輛的互操作性》中指出了在追求軍事信息系統技術的互操作性方面所面臨的挑戰。互操作性是一個經常被認為是理所當然的重要話題,它被簡單地解釋為具有不同出處的不同技術能夠輕松地進行信息交流和同步。實現這一目標的標準制定和采用帶來了許多障礙。

北約國家正在為各種作戰任務(如情報、監視、偵察;化學、生物、放射性、核、高能炸藥探測等)投資于無人駕駛地面車輛(UGV)技術。為了在聯盟環境中運作,國家之間必須共享這些平臺的信息,甚至可能是控制。之前的實驗已經證明了實現這一目標的一些實際挑戰,包括獲取不同的視頻和遙測饋電格式,以及不同的網絡和無線電通信系統造成的干擾[24]。

目前的互操作性標準涉及如何從操作員控制單元傳輸控制數據,機器人應如何將數據傳回給操作員,以及如何在車輛之間共享數據。在構建這些標準的過程中遇到的挑戰包括時間同步、校準、測量精度、隱含假設以及數據(如地圖)和元數據的格式和表示。類似的或競爭的標準和開發工具包之間的特征重疊,進一步需要對具體要求和能力進行解讀。

隨著接口和標準的成熟,軍事指揮官設想以自主或半自主的方式采用UGV技術,這將越來越需要它們感知周圍環境。這種應用將阻止對機器人的直接控制,而采用傳輸中間航點進行導航等方法。因此,深度學習被廣泛認為是許多UGV項目的基本組成部分。現有的標準除了傳統的遙測和傳感器信息外,還需要適應網絡安全的考慮。網絡態勢可以是內省證明和共享的,也可以是外部觀察或查詢的。具有這種保真度的網絡物理資產的態勢感知可以為任務和控制決策提供信息,特別是當平臺在有爭議的環境中運行并預期對手會通過物理或電子攻擊載體進行操縱時。

4.2 確保無人駕駛和自主車輛的任務保障

挪威國防研究機構的Federico Mancini博士在《為保證任務而保護無人駕駛和自主飛行器》一文中,解釋了將自主平臺執行的多領域任務的一系列網絡安全挑戰。要了解無人系統帶來的風險,首先必須全面了解對其安全態勢起作用的所有因素,包括外部威脅。

自主平臺有許多形狀和大小,在陸地、海洋、空中和空間運行。這些固有的網絡物理系統依靠傳感器輸入來收集與他們手頭任務相關的數據,或感知他們的周圍環境,以做出如何導航的決定。軍事應用的移動、網絡連接的性質進一步為網絡保證帶來了獨特的挑戰。例如,在傳統的民用應用中,自動駕駛汽車被設計為遵守明確規定的交通法規和道路基礎設施。另一方面,自主的地面、海洋和空中平臺可能在沒有規定的規范和有爭議的條件下在開放環境中運行。

為了研究這個問題,研究人員提出了一個理論框架,解決平臺行為如何隨任務背景變化的問題。該框架主要以威脅為基礎,包括三個不同的層次。任務層定義了任務成功所需的功能和結果。車輛層定義了那些被分配到任務中并需要保護的平臺。最后,組件層定義了每個平臺內允許使用這些資產的子系統(即,執行器)。在每一層,該框架采用了一套定義與其他層關系的目錄。例如,通用的任務安全目標,如安全性、可靠性和保密性,可以映射到在實現這些屬性方面發揮作用的平臺組件。一些通用的例子包括自主導航、收集和處理傳感器信息、在其有效載荷能力之間進行通信和合作,以及安全地存儲敏感數據的能力。每項任務都將取決于平臺上的某些組件,而每個組件都容易受到某些威脅的影響。

防御這些威脅的一個主要考慮是平臺的自主響應能力。由于環境所帶來的操作限制,為無人系統實施安全能力是很棘手的。傳統的信息系統是在持續的連接和普遍有利的帶寬條件下運行的,而戰術環境必須能夠在斷開的、間歇的、潛在的或隱蔽的連接條件下運行。這些環境的網絡防御解決方案,包括那些實施深度學習的解決方案,必須在這些條件下適應和推理。這包括那些解決傳統網絡威脅的機制,以及那些解決旨在破壞其功能的網絡物理性質的物理攻擊。對問題的識別可能會引發各種反應,這些反應說明了任務成功的不同方面(例如,返回基地、關閉、自毀、刪除存儲內容)。深度學習在感知物理環境方面的成功很可能會推動其中一些算法決策。

4.3 用于混合軍事行動的人工智能、機器學習和大數據

美國海軍研究實驗室的Prithviraj Dasgupta博士在《人工智能、機器學習和大數據在混合軍事行動中的應用》一文中,談到了人工智能技術日益主導的軍事場景所帶來的挑戰,以及對抗性人工智能和博弈論在應對混合戰爭的挑戰中可以發揮的作用。為了使這一觀點與研討會的背景保持一致,隨后討論了對抗性人工智能在惡意軟件檢測方面的應用。

生成式對抗網絡(GANs)是一種基于深度學習的生成式模型,是一種創建與訓練數據共享特征的合成數據方法。雖然GANs在愚弄人工智能系統方面的應用已經被廣泛探索,但它們主要集中在圖像和文本數據上。在最近的網絡安全應用中,GANs已被證明可以有效地改造已知的惡意軟件,使其看起來是良性的,但仍然是惡意的,從而騙過傳統的檢測方法,包括機器學習分類器。然而,在實踐中這樣做會產生成本,因為對手必須發現在訓練樣本中插入多少和哪里的噪音。

現有技術因其對二進制程序數據中發現的特征空間的改變而受到限制,這可能會阻止所產生的GAN衍生程序被執行。因此,目前的工作重點是在字節級修改數據[25]。特別是三種策略,框住了一系列的報告實驗[26]。首先,填充攻擊增加了一些空白的 "填充"字節,然后用從訓練的惡意軟件的主體中提取的字節替換每個添加的字節。第二,DOS頭攻擊修改惡意軟件可執行程序頭的部分,因為大多數機器學習分類器將檢查限制在該部分。第三,遺傳攻擊根據遺傳算法選擇性地替換惡意軟件中的字節。

評估這些方法的結果包括量化規避率,或修改后的惡意軟件能夠騙過分類器的程度;執行修改所需的時間;以及產生修改后的惡意軟件所需的修改數量。實驗結果證實頭攻擊是最有效的,因為它的規避率高,所需時間和改動的衡量標準低。研究人員進一步指出,隨著操作系統變得越來越復雜,制作惡意軟件變體所需的修改數量也越來越多。研究人員繼續就如何使用GAN技術來制作能夠欺騙基于人工智能的探測器的惡意軟件樣本進行實驗。最終,博弈論方法可用于描述攻擊者-防御者互動之間的權衡,這些互動涉及制作對抗性樣本。

4.4 信息戰行動中的數據隱藏

波蘭軍事技術大學的Zbigniew Piotrowski博士在《信息戰行動中的數據隱藏》一文中詳細介紹了在現有通信渠道中實現隱藏數據層的技術,以及它們帶來的機遇、威脅和挑戰。隱藏數據層是隱藏信息的通信渠道,是對現有加密和隱寫方法的補充。傳統上被認為是一種挑戰和威脅,最近探索隱蔽信道方法的進展的工作表明,不同的研究分支如何能夠為彼此提供好處[27]。

目前,學術研究主要涉及創新的通信設備,例如,去除隱藏傳輸的隱寫過濾器、隱寫路由器、基于數字水印的多媒體數據隱藏的眾多方法、無線電通信中的新隱寫方法(無線電隱寫)以及計算機網絡(網絡隱寫)。軟件定義的網絡(SDN)在主要SDN接口被惡意軟件感染的情況下可以進一步支持隱藏的通信。同時,有許多關于分析和檢測隱藏數據的方法的描述,也有關于識別利用隱藏傳輸進行的攻擊的方法[28]。

這個領域的潛在主題包括檢測和防止有線和無線連接中的數據隱藏傳輸的方法;檢測和防止互聯網和文件中的多媒體內容水印;識別隱藏通信的行為標準;在軍事通信中使用隱藏傳輸和數字水印;北約隱寫應用和設備標準化,內置數據傳輸技術隱身類;數字對象和數據流的隱寫分析程序;感知測試的標準化和透明度(例如。語音、音頻、視頻)、穩健性和透明度的隱寫分析;以及在量子技術背景下保護數據的替代方法。

最近在實際應用中取得的成功包括在專用的戰術無線電通信手機中隱藏數據,這些手機可以通過信道內編碼的人員識別號碼獨立地驗證說話方(或語音經紀人)。許多類似的創造性應用正在被提出,而深度學習的應用自然適合利用那些涉及數字多媒體內容和信號。其他的例子包括與現有網絡和配置管理能力有共同特點的渠道選擇和協調。

4.5 機器學習系統的穩健性和責任性

美國海軍太平洋信息戰中心的Douglas Lange博士總結了研討會上討論的所有應用所面臨的挑戰。盡管許多研究探討了機器學習系統如何被創造性的輸入所操縱,但很少有努力解決如何使它們更加穩健。這樣的系統可能需要對訓練、測試、驗證和生產進行根本性的改變。

穩健性通常以障礙物為特征,如攻擊或敵人,并且可以包括許多不同的目標(即性能、安全性)。了解這些目標在系統和任務背景下的必要性和實用性,對于創建一個保證穩健性的方法至關重要。應用于機器學習系統,這可以表示為一個系統在新的數據中產生可預測的輸出和可比較的性能的能力,就像它被訓練出來的那樣。

不確定性同時存在于操作數據和訓練數據中,盡管前者在機器學習系統的設計和開發過程中被更多地認識和考慮。然而,從業人員必須期望他們的系統能夠處理訓練人群范圍內外的輸入。在軍事背景下,作戰應用的訓練數據的供應往往比商業應用的數據更有限,在商業應用中,不知情或不愿意的用戶行為可以被獲取(即廣告定位),這使得問題更加復雜。戰爭情況往往是不可觀察的和新穎的,用和平時期或軍事演習數據訓練的模型并不總是能反映沖突的動態性質。因此,那些能夠最快適應的系統最有可能獲得成功。

機器學習應用的目的是學習適合訓練人群的適當的模型參數集。這就需要開發一個成本函數,以衡量改變模型和噪聲對該模型的影響所帶來的誤差有多大。由此產生的不確定性通常可以被描述為認識上的或無知的。認識性的,或系統性的不確定性,定義了總不確定性的可減少部分。統計不確定性,定義了總不確定性中不可減少的部分。此外,輸入可能表現出噪聲和腐敗,或表現出與訓練數據的有意義的變化。前者反映了物理穩健性,而后者反映了語義穩健性。最終,機器學習系統在試圖描述穩健性之前必須正確表達分類器的作用。

最后,偏見是所有深度機器學習應用的一個重要考慮因素。在一個經過充分研究的應用中,研究人員通過演示斑馬投射到馬身上的圖像,使用周期一致的對抗網絡進行了圖像到圖像的轉換[29]。對這一演示的檢查表明,緊鄰動物的像素也從馬匹常見的草場轉化為斑馬常見的大草原。因此,訓練中描繪的環境證實了偏見,因為這些環境并不是馬和斑馬可能出現的唯一環境。

許多深度機器學習應用都表現出難以簡單地識別那些不屬于其訓練群體的輸入。僅僅實現這一點就能切實提高質量和穩健性。然而,通常情況下,模型被愚弄,而他們聲稱對他們的發現有很高的信心。ML應用傾向于在他們經常看到的事情上表現得更好,而在他們沒有看到的事情上表現得更差。例如,自動駕駛汽車是用數百萬小時的真實和模擬條件下的駕駛錄像來訓練的。從真實世界收集的數據經常被用來改進模擬。這種方法在軍事上是缺乏的,因為對手可能采用和平時期沒有觀察到的戰術。

5.0 結論

在研討會的開幕詞中,NATO STO的信息系統技術小組主席Nikolai Stoianov博士指出,北約研究網絡的力量來自其合作的商業模式。北約國家和合作伙伴選擇使用他們的國家資源來定義、開展和促進合作研究和信息交流。通過將士兵和研究人員聚集在一個共同的論壇,參與者從彼此的專業知識中受益,提高整體效率,并增強聯盟的集體力量。通過揭露國家努力、工業觀點和居民專長之間的共同點并找到平衡點,可以獲得進一步的優勢。這些主題在本文報告的結果中明顯可見。通過跨越網絡安全、計算機科學、人工智能、自主權和軍事行動的討論,研討會的參與者分享了深度機器學習的當前和趨勢性應用,準備加強軍事網絡的網絡安全態勢。在互補的RTG中發現的相似之處反映了許多類似的挑戰和機會。

深度機器學習可以通過加強數據驅動的決策和最大限度地減少人類專家的作用來改善幾乎所有的數字技術和應用,形成網絡態勢。應用實例包括自動化軟件開發(包括惡意軟件);自動化協議和架構設計,包括那些來自高級規范的設計;管理網絡運營的人機合作,包括虛擬化、容器化和云服務;網絡功能的自主協調,如頻譜管理、QoS管理和網絡切片;以及網絡物理系統和系統間的自主。這些應用需要一個全面和跨學科的方法,以適應數字技術的發展。

對網絡環境的理解還包括對聯盟或友好網絡的情況了解,以及對敵方威脅的描述。在IST-129 RTG8的補充工作中,研究結果顯示,深度機器學習可以加強對敵對行動的預測以及對攻擊和防御場景的分析。這種理解可能會導致分布式自主代理的實現,這些代理可以感知、響應并適應其環境和突發威脅[20]。最終,深度機器學習可以更有效地利用資源,更好地利用人類專家的時間。

深度機器學習在安全關鍵應用中的采用仍然是一個受到嚴格審查的問題[30]。算法已經被證明有錯誤功能的傾向,例如用無害的標志物進行誤導的情況。它們已經顯示出對數據中毒和數據稀少攻擊的脆弱性,導致了尷尬和損害。這自然促使軍方探索如何利用該技術,同時保持其功能的可預測性和可靠性。最終,存在著對設計、建造、部署和維持可信賴、安全和可靠的網絡物理系統的戰略的關鍵需求[31]。

在過去的十年中,深度機器學習的加速是由幾十年來計算能力的進步所推動的。高性能的硬件使得構建具有更多層次的連接和神經元的網絡成為可能,從而使人們有能力對復雜現象進行建模。然而,這一趨勢最近顯示出回報率遞減[32]。盡管硬件性價比曲線不斷進步,但在計算需求變得不可行之前,只能對模型性能進行邊際改善。新的硬件加速架構已被提出,以部分克服這一挑戰[33]。另一方面,它已經讓位于自主性的"低風險"應用,其中行動空間可以被明確定義,并產生最小的失敗影響。這種方法使模型部署適合于尺寸、重量和功率受限的平臺。

在研討會與會者的討論中,一個共同的主題是數據對任何應用的成功都至關重要。網絡空間的數據采集,反其道而行之,是一個具有挑戰性的命題。雖然一個組織的網絡空間往往充滿了豐富的數據,但以一種適合快速利用的形式和方式來暴露這些數據往往會帶來許多實際的挑戰。數據的來源、所有權、分類、管理、敏感性、法規、架構、模型、運輸、聯盟和其他考慮因素往往阻礙了能力的應用。軍事行動和聯盟網絡的額外敏感性和多分類性質使問題進一步復雜化。現有的挑戰表明,替代方法,如轉移和聯合學習方法,是值得追求的,并可能在沒有數據轉移或語義互操作性問題的情況下實現模型共享。另外,GANs和類似的新興工具越來越有能力產生大規模的合成數據。

我們認為在所有這些方面都有一條前進的道路。深度機器學習的成功應用需要全面的、跨學科的方法,與硬件和其他數字技術的進步同步,包括改進數據采集、數據生成和數據共享的技術。深度機器學習系統本身的安全性,在所有層面都必須得到維護。這包括數據集、分類器、模型和學習到的反應,必須保護它們不被操縱。可靠性和可解釋性是對建立可信賴的系統特別重要的考慮領域。最后,將深度機器學習推向戰術邊緣的愿望將需要在自主性、硬件尺寸、重量和功率方面進行改進。

在本文中,我們介紹了有助于約束網絡安全問題空間和塑造潛在的深度機器學習解決方案的術語和觀點。我們說明了深度機器學習是如何應用于網絡安全的,并提出了進一步發展的機會。我們展示了北約STO內部的相關工作,并在多個應用領域中進行了比較。最后,我們強調了在軍事和聯盟行動環境中成功應用的一些關鍵考慮和發現。

付費5元查看完整內容

  • 本研究由美國陸軍研究實驗室贊助,根據合作協議號W911NF-21-2-0227完成。

?在日益復雜的軍事行動環境中,下一代兵棋推演平臺可以減少風險,降低作戰成本,并改善整體結果。基于具有多模態交互和可視化能力軟件平臺的新型人工智能(AI)兵棋推演方法,對于提供滿足當前和新興戰爭現實所需的決策靈活性和適應性至關重要。我們強調了未來作戰人-機器交互的三個發展領域:由人工智能引導的決策指導,高計算力下的決策過程,以及決策空間的真實呈現。這些領域的進展將使有效的人機協作決策得以發展,以滿足當今戰斗空間日益增長的規模和復雜性。

關鍵詞:決策、交互、兵棋推演、人工智能、增強/混合現實、可視化

1 引言

在傳統的兵棋推演中,指揮官利用一個共同的基于地圖的作戰地形,并在軍事決策過程(MDMP,方框1)中模擬各種因素的組合如何產生行動方案(COA)、可能的反擊行動、資源使用估計和預測結果(美國陸軍,1997年,2014年,2015年)。在幾天或幾周的時間里,MDMP過程導致了一套精煉的COAs,它對作戰環境做出了一定的假設,包括地形、天氣以及戰區資產的可用性和能力(即塑造支持主要作戰行動的活動)。

方框1. 軍事決策過程(MDMP)
MDMP是美國陸軍解決問題的理論方法,從接到任務開始,到生成作戰命令結束。MDMP被用作一種工具,幫助指揮人員審查眾多的友軍和敵軍的作戰行動。MDMP的7個步驟在規劃新任務、擴展行動和執行訓練演習所需的決策過程中灌輸徹底、清晰、合理的判斷、邏輯和專業知識(美陸軍,1997年,2015年)。
指揮官在接到任務后啟動了MDMP。在MDMP的第1步中,所有的工作人員和關鍵的任務參與者都被告知任務和待定的規劃要求,包括進行MDMP的可用時間量。確定進行任務分析所需的工具,并收集與任務和作戰區有關的文件。步驟2,執行任務分析,建立對任務的全面理解,包括關鍵的事實和假設,形成擬議的任務說明和任務分析簡報,為制定COA做準備。
MDMP的第3至第6步著重于制定COA以進行分析和比較。這些步驟包括:第3步,制定COA;第4步,COA分析(兵棋推演);第5步,COA比較;第6步,COA批準。COA是對一個已確定的問題的潛在解決方案。每個COA都要使用篩選標準來檢查其有效性,如在既定的時間框架、空間和資源限制內完成任務。COA的選擇過程通常涉及到兵棋推演,它試圖在考慮到友軍力量和敵人能力的情況下,將行動的順序流程可視化,同時考慮到行動區域內平民的影響和要求(美陸軍,2014)。戰術模擬(兵棋推演)方法的好處是突出了作戰行動的優勢和劣勢。這往往是一個反復的過程,對作戰行動方案進行評估,然后根據需要進行修改,直到出現一個或多個具有最高成功概率的作戰行動方案來完成任務目標。
在一個具體的行動方案得到指揮部的批準后,MDMP的最后一步是制作行動指令,這是一份給下屬和鄰近單位的指令,旨在協調所有參與任務的組織的活動。這一步驟涉及到所有受命令傳播影響的組織之間的積極合作,并建立起對局勢的共同理解。

盡管MDMP幫助指揮官了解作戰環境和考慮作戰方法,但這個過程有很多局限性,如時間密集、假設僵化、跨場景訓練的機會有限,以及將人工智能(AI)指導納入決策過程的機會很少。傳統上,一項任務的成功與指揮部執行MDMP的能力直接相關。然而,鑒于當今多域作戰(MDO)的復雜性增加(Feickert,2021年),有大量的任務指揮系統和流程,與行動相關的所有活動的整合和同步變得越來越困難,甚至到了人為無法完成的地步。由于MDMP的缺陷而導致的規劃專業知識的缺乏,可能會導致不同步和不協調的行動,從而最終導致士兵的生命損失。

MDMP中沒有具體描述戰斗空間的可視化能力,但它顯然在決策過程中發揮著重要作用。最近,集成了先進可視化能力的新系統和新技術已經被開發出來,它們可以提高態勢感知,從而增強決策過程。美陸軍的例子包括Nett Warrior(Gilmore,2015),它使下馬戰士能夠直觀地看到附近的友軍和敵軍,同時根據當地的地形協同規劃戰術任務。盡管這項技術將無線電和數字地圖擴展到了下馬戰士,但它缺乏一個底層的人工智能引擎來提供決策幫助。戰斗空間可視化和交互平臺(BVI,前身為增強現實沙盤,ARES)是陸軍技術的另一個例子,它能夠為任務規劃提供分布式協作,具有從任意視角和廣泛選擇設備的共同作戰畫面的二維和三維可視化能力(Su等人,2021)。BVI架構的制定是為了拉入外部計算服務,如分析管道、模型和人工智能引擎。美陸軍研究實驗室正在努力將這些類型的服務納入BVI,包括用于加強決策支持的人工智能。

目前,MDMP并沒有將人工智能指導納入整體任務規劃方法中。美陸軍的自動規劃框架(APF)(Bailey,2017)開始通過將自主技術插入MDMP工作流程來解決人工智能輔助決策問題。指揮人員可以通過APF的數字規劃呈現、規劃創建和規劃監控工具,在任務規劃和COA開發期間獲得背景援助。任務執行和估計能力通過監測任務的規劃和實際進展,為改進決策跟蹤和支持活動提供自動協助。盡管APF為MDMP引入了基本的自動化水平,但它缺乏Nett Warrior和BVI所提供的先進的可視化和用戶互動能力。

提供地面部隊自動化和用戶可視化能力的是美陸軍最知名的兵棋推演平臺--半自動化部隊(OneSAF),為計算機生成的地面部隊提供建模和模擬能力(PEO_STRI, 2022)。OneSAF提供了半自動和全自動的軍事實體(即士兵、坦克、直升機和綜合單位)的建模,在類似真實世界的戰斗空間中以不同的保真度來支持特定的應用和場景。OneSAF主要用于訓練,并與目前的任務指揮系統具有互操作性。它可以使用多分辨率的地形和詳細的實體相關數據庫來模擬廣泛的作戰環境。然而,OneSAF對地形和實體系統的高保真建模的優勢使得它的設置和運行成本很高。它受到老化系統的限制,而且眾所周知,士兵需要大量的培訓來學習如何操作模擬,使用起來很困難(Ballanco,2019)。OneSAF的復雜功能并不適合開發人工智能能力,以實現快速和敏捷的戰士-機器決策。

除了MDMP和上面提到的陸軍平臺外,最近將人工智能納入決策過程的工作包括一些方法(Goecks等人,2021a),在模擬人類決策過程方面取得了一些成功。一般來說,人工智能在決策變量有限的問題上取得了一些成功,如資源分配(Surdu等人,1999)、飛行模擬器(Drubin,2020)和更簡單的場景。正在進行的挑戰包括需要提高人工智能的能力,以解決有多個行為者、不完整和可能沖突的信息、不斷變化的單位行動和環境屬性的復雜決策,以及需要將這些決策的后果在許多空間和時間尺度和領域內可視化。

以下各節描述了對MDMP的潛在改進。"未來軍事決策過程所需的進步"一節概述了支持MDO決策的三個研究領域,并以圖表形式描述了這些研究領域與軍事理論決策方法之間的關系。"未來軍事決策過程所需的進步 "一節中的小節對每個研究領域進行了更深入的討論。"展望推進人-人工智能團隊決策的交互技術 "一節概述了未來的作戰人員-機器接口(WMI)的發展方向,重點是與決策有關的人-人工智能團隊的跨學科研究。

2 未來軍事決策過程所需的進步

軍事決策過程在支持MDO復雜決策方面的局限性,突出了在三個研究領域的改進需要。首先,有必要將人工智能產生的指導和輔助決策支持納入MDMP。這既包括進一步開發和整合人工智能到戰斗空間決策規劃,也包括進一步改善人工智能決策過程的可解釋性和透明度(Chen等人,2018)。第二,有必要在戰略層面以及戰術邊緣,盡可能地將決策分析與高性能計算(HPC)的力量結合起來。這將能夠利用HPC系統的力量來支持建模、分析和計算時間,同時整合和同步來自所有戰區領域的信息。最后,有必要利用先進的可視化技術,如混合現實技術,對決策空間進行更準確和互動表述。不是簡單地在一個固定的時間尺度上顯示地形的二維渲染,而是需要可視化不同領域的決策是如何相互作用的,并利用混合現實技術來提高理解的吞吐量,并產生平面顯示不可能的洞察力。

除了MDMP之外,其他更廣泛適用的支持戰斗性問題解決的軍事理論包括:DOTMLPF[例如,學說、組織、訓練、物資、領導、人員和設施;(美陸軍,2018年)],這是一個確定差距并為當前和未來作戰要求提出設計解決方案的框架;以及METT-TC[例如,任務、敵人、地形和天氣、部隊、可用時間和民事考慮;(美陸軍,2019年)],這是一個結構化框架,用于捕捉任務相關因素的狀態,以便在軍事行動期間進行共享評估。這些理論定義了MDO戰場的信息背景,構成了應用于上述三個研究領域的軍事決策的核心基礎。如圖1所示,在為人類和人工智能指揮開發復雜軍事決策空間的新表述時,研究進展和MDO相關理論相互借鑒、相互啟發、相互加強(美陸軍,2010)。

圖1. 新型作戰人員-機器交互(WMIs)和人工智能輔助決策所需的三個研究發展領域,以支持和加強基本的MDO理論[右下圖來源:Lebsack(2021)]。

2.1 人工智能導向的決策指導

需要新的人工智能支持的WMI,以利用人工智能決策方面正在取得的進展,并為復雜的適應性決策的人工智能學習作出貢獻。在簡化的戰斗空間中測試人工智能決策輔助工具是開發過程中重要的第一步,也是將人工智能納入更成熟的戰斗空間平臺(即BVI、OneSAF)的前奏。開發用于決策輔助實驗的人工智能測試平臺可以在MDO中產生能力越來越強的潛在COA建議。圖2顯示了陸軍開發的兩個人工智能測試平臺的例子。

圖2. 兩個ARL人工智能測試平臺的例子。左邊:ARL Battlespace(Hare等人,2021)( //github.com/USArmyResearchLab/ARL_Battlespace )。右邊:ARL的Simple Yeho測試平臺。圖片由C. Hung制作。

人工智能測試平臺能夠開發出匯集所有領域信息的AI,并計算出人類和AI智能體的風險和預期回報。圖2的左側顯示了ARL戰斗空間測試平臺(Hare等人,2021年),它是從頭開始開發復雜決策的新型人工智能的理想場所。它對戰斗空間的抽象強調了軍隊相關場景下的核心推理原則,在這種情況下,用蜜罐進行網絡欺騙。較小的網格空間使人工智能的學習和發展能夠集中在不確定性下的復雜推理,有多個友好和敵對的agent。圖2的右側顯示了ARL的Simple Yeho測試平臺,它提供了將人工智能開發與更多真實世界場景中的默契推理結合起來的能力,有多個基于地形的海拔高度、視線范圍、障礙物、樹葉(隱蔽)、道路和城市區域。紅色陰影和黑色線條表示任務的起點和終點、左右邊界以及人工智能建議的路線。這種額外的真實性使其能夠與MDO理論相結合,包括DOTMLPF和METT-TC,并使人工智能與自然的、機會主義的士兵行為共同發展。這兩個人工智能測試平臺都可以擴展為傳統和沉浸式混合現實WMI開發平臺。

使用漸進式和可擴展的人工智能測試平臺,可以調查現有人工智能的幾個基本限制,特別是對于具有不確定性的復雜和適應性決策,以及人類和AI智能體的協作和對抗。對多智能體的協作和對抗性決策進行建模可能特別復雜,因為其遞歸性質,其他智能體是模型的一部分(Goldman,1973;Grüning和Krueger,2021),需要對決策特征、個性化的價值、風險規避、記憶和注意力進行動態和不斷發展的估計。這些具有高度不確定性、復雜性和動態性的情況是人類擅長的領域,適當設計的交互界面和人工智能測試平臺的人機協作可以提供加速和更有效的決策。對于有效的團隊合作,新穎的WMI應該幫助作戰人員篩選復雜的信息,并幫助人工智能發現決策的隱含規則。下面,我們提供了關于人機協作如何有效的案例。

多域兵棋推演中需要的復雜決策是開發有效人工智能決策輔助工具的直接挑戰。最近人工智能在圍棋、國際象棋、Minecraft和大富翁等游戲中的成功(Silver等人,2017;Goecks等人,2021b;Haliem等人,2021)是基于對世界現有狀態有完整了解的游戲(即 "開放 "游戲),而兵棋推演平臺通常包括關于作戰環境的不完整(如星際爭霸)、不確定或欺騙性信息(Vinyals等人,2019)。不確定性也可能來自變化的物理學或其他環境規則,正如在《憤怒的小鳥》中所探索的那樣(Gamage等人,2021)。由于世界狀態、不同行動者的狀態以及所采取的行動不確定性,知識的缺乏使得人工智能agent難以計算未來行動的風險回報情況(Cassenti和Kaplan,2021)。不確定性也限制了人工智能估計其他行為者的風險回報概況的能力,而這是計算有效的博弈論策略所需要的。人工智能被可能的最優和近似最優選擇的廣度所淹沒(Lavine,2019),即由于信息有限而選擇錯誤的選項,這種情況并不罕見,因為人類在制定有效探索隱藏信息的策略時,采用啟發式方法進行有效的選擇和預測(Gardner,2019)。為了幫助發展人工智能的隱性知識和探索能力,新型的WMI需要有效地解釋和展示決策景觀,以使作戰人員能夠快速和自然地瀏覽可能的選擇,同時使人工智能能夠在不施加認知負擔的情況下從人類的決策中機會主義地學習(Lance等人,2020)。這種機會主義學習可以包括:例如,凝視跟蹤,以捕捉吸引人類興趣和意圖的視覺區域和未標記的目標。它們還可以包括建立在自然的士兵選擇行為基礎上的行動者批評方法,以改善人工智能對人類專家在不確定、不完全信息和欺騙的情況下如何優先考慮某些選擇的學習,這取決于任務相關的背景。

開發人工智能的WMI的另一個基本挑戰是如何有效地整合和顯示MDO中所有五個領域的信息,特別是空間和網絡,因為這些領域的信息具有不同的時空尺度(Gil等人,2018)。對于網絡,決策的規模和速度可能比人類處理和理解的能力更快,需要人類的輸入來指導半自動化的決策,以及實施進攻和防御性欺騙策略的人工智能。WMI需要能夠以這樣的方式顯示決策圖景,即可以解釋一小部分最優和接近最優的決策策略(例如,圖3中的決策樹)。這應該包括對關鍵agent在不確定情況下的未來狀態和風險回報情況的估計(Hare等人,2020),以使有效的博弈論決策能夠被共同開發和相互理解。

圖3. 在頂部,是BVI網絡戰術規劃器應用程序中友軍與敵軍戰爭場景的三維視圖。三維視圖提供了一個比二維視圖更真實的決策視角,例如,顯示友軍(藍色)和敵軍(紅色)機載預警系統(AEWs)和周圍地形的海拔。這使得快速審查可能的視線和相對于周圍地形的感應。下面是人工智能的導航決策樹,為人工智能計算的幾個關鍵選擇的風險/回報概況以及它們如何映射到地形上提供透明度。這種抽象的決策空間還可以整合非空間決策,例如網絡欺騙。虛線表示與友方AEW的通信聯系和對敵方AEW的可能干擾。圖片由C. Hung制作。

這些挑戰為有效的WMIs設計提供了參考。也就是說,我們需要有能力從不同的來源(包括從其他國家的決策輔助工具)提取信息,以及一個能夠承載整合這些信息的計算能力的架構,同時還要處理基礎的人工智能計算(用于學習和部署)。我們還需要共同開發一個界面和算法設計,以適時地利用人類和人工智能agent的優勢并減少其局限性。

2.2 高計算能力下的決策過程

在復雜的決策過程中,需要大量的計算能力來處理和記錄所有組件、實體和狀態空間。從積累的動態狀態空間的數據集中建立過去、現在和預測模型,需要利用HPC資源來產生分析性的見解,并在決策背景下創建有用的表述。

實施HPC分析工作流程的一種方法是使用持久性服務框架(PSF)。PSF是一個最近可用的分布式虛擬化解決方案,它可以通過一個基于網絡的前端實現對HPC服務的非傳統訪問,而不像傳統的HPC環境,計算節點在特定的時間段內以批處理模式分配給用戶。此外,PSF提供對數據、數據庫、容器化工具集和其他托管平臺的分布式連續訪問(Su等人,2021)。

在一個PSF方法的例子中,一個模擬引擎連接到PSF,用于記錄人類和人工智能做出的所有決定。這允許分析在任務規劃和COA開發過程中發生的決策行為,以及識別決策模式和戰略,以開發競爭性和現實的兵棋推演場景。一個戰斗空間可視化平臺可以托管在PSF上,并使用消息傳遞協議來更新所有連接的設備接口。來自模擬引擎的狀態信息可用于生成戰斗空間和參與作戰單位的圖形表示。

使用PSF方法并利用HPC資源,可以實施人工智能輔助決策機制,利用大數據攝取和分析,同時可供地理分布的用戶用于協作決策工作和 "永遠在線 "的個性化培訓和紅色團隊。連接到PSF托管服務器的各種混合現實顯示模式可以支持一系列作戰場景,從戰略層面的指揮和控制到作戰邊緣的更多移動戰術使用。

2.3 決策空間的真實呈現

用圖形表示各級行動的軍事決策戰略需要新的可視化方法,這些方法可以應用于以規則變化、認知狀態、不確定性以及個人偏見和啟發式方法為特征的動態環境(Dennison等人,2020;Hung等人,2020;Raglin等人,2020)。戰斗空間的視覺表現應該在技術上盡可能準確和逼真,但又保持在人類可以理解和解釋的認知水平(Kase等人,2020;Larkin等人,2020;Hung等人,2021)。融合了混合現實技術的先進可視化方法有可能更好地表現多領域戰爭的變化特征及其不斷變化的威脅和動態環境。隨著最近混合現實可視化設備的技術進步,成本降低,硬件的可靠性和實用性顯著提高,混合二維和三維可視化方法現在已經成為可能。

由多個二維顯示器組成的混合現實方法增強了更先進的三維可視化能力,可以為指揮人員提供理解復雜的兵棋推演狀態空間所需的洞察力(Su等人,2021)。當需要一個共享的戰斗空間表示時,可以通過在不同的可視化模式上實現多個協調的視圖來實現協作的戰略規劃模式,以根據分布式指揮人員的輸入進行互動更新。

BVI(Garneau等人,2018)平臺表示地理空間地形信息和地圖圖像,允許指揮人員建立和修改戰術任務規劃和COA。作為一個數據服務器,BVI將地形和作戰數據分發給支持多種可視化模式的客戶端應用程序,包括頭戴式顯示器設備、基于網絡的界面、移動安卓平板設備和混合現實設備(例如,HoloLens 2、Oculus Quest)。

例如,圖3(頂部)顯示了位于加利福尼亞州圣貝納迪諾縣歐文堡國家訓練中心的高分辨率地形上的友軍與敵軍的兵棋推演場景(Wikipedia, 2021)。與MDMP期間經常使用的傳統2D地圖顯示相比,戰斗空間的3D視圖可以從多個觀察角度提供更豐富的用戶體驗。三維視圖,在BVI的網絡戰術計劃器(WTP)中,將地形和人工特征的空間信息以及由MIL-STD 2525C符號描繪的單位位置可視化(美國防部,2014)。可以想象,地理空間視角,如BVI提供的視角,支持決策者對動態戰斗空間環境的理解。與可導航的人工智能增強的決策空間(圖3,底部)搭配,組合的視角可以使人們更好地理解視覺空間依賴性、影響和因果關系、估計的風險和價值、不確定性以及復雜決策的欺騙性。將這種以地理空間和決策為中心的視角與人工智能相結合,可以提供必要的廣度,以協調物理行動與網絡和其他非空間領域的行動,跨越多個時間尺度,并具有快速適應變化的任務目標的靈活性。

3 人-人工智能團隊決策的交互技術展望

人工智能和人-人工智能團隊的快速發展需要WMI同步發展。隨著新型人工智能對有價值的COA產生更好的預測,并能更好地處理復雜的決策,它們也必須利用人類的專業知識,學習如何處理具有高度不確定性、欺騙、隱性知識和博弈論的決策。相反,人工智能的推理必須既抽象又能與兵棋推演環境相聯系,以實現透明和信任,同時又不造成過度的認知負擔。基于三維混合現實的WMI可以利用和增強人類固有的三維認知和預測能力(Welchman等人,2005;Kamitani和Tong,2006;Kim等人,2014;Boyce等人,2019;Krokos等人,2019),如果設計得當,其交互將感覺自然,同時擴大顯示多個領域的信息的能力,同時使AI能夠適時地從用戶的決策中學習。

我們強調了三個關鍵的發展領域,即人工智能引導的決策指導,支持這種指導的計算基礎設施,以及決策透明度的混合現實表現的發展。這些領域的進步需要跨越許多不同學科的專業知識。新的人工智能發展需要融合神經科學、心理學和數學的思想,以克服復雜決策中長期存在的問題的瓶頸。這包括跨時間尺度的學習和變化環境下的災難性遺忘,以及更具體的兵棋推演問題,如具有不確定性、欺騙和博弈論的多Agent決策。計算基礎設施也需要發展,因為計算能力和數據框架對于在戰術邊緣產生人-人工智能團隊的共同操作圖來說都是必不可少的。為了有效地開發,應該通過一個共同的框架來抽象出專有的限制和軟件的依賴性,并為使用和故障排除提供清晰的文檔,以使學術界、政府和工業界更好地專注于解決人與人工智能的合作問題。這個通用框架應該包括有效的信息傳遞,同時提供靈活性和適應性,以滿足人工智能開發和人類用戶在訓練和實際使用環境中的需求。最后,交互技術的開發本身需要跨學科的協同專業技術。一個基礎性的問題是如何壓縮信息使之被用戶有效地理解,以及如何最好地利用用戶的互動來進行機會主義學習。人類的大腦并不處理所有的感官信息,而是對世界進行預測和假設,以便在信息不完整的環境下節約計算。一個有效的WMI應該同時預測潛在的決策結果以及個人用戶的期望和假設。此外,人工智能決策輔助工具必須估計用戶的默契,使其能夠提供最相關的信息和最有希望的選擇,這些信息來自整個作戰領域。

結論

信息作戰和指揮與控制(C2)是美國陸軍可以向盟友和伙伴提供的兩種能力。在未來的作戰環境中,不僅要為動能作戰做準備,而且要為混合作戰和以信息為重點的戰爭做準備。這需要在復雜和默契推理的人工智能能力方面取得進展,在能夠提供持續訓練、分布式混合決策和大數據分析系統方面取得進展,以及在人與人工智能協作決策和機會主義學習方面取得進展,以實現人工智能的持續進步和人與人工智能的共同適應。這些進展中的每一項都需要跨學科的計劃性努力,以克服復雜的技術挑戰,創造新的決策原則、理論和理論方法,包括持續開發綜合測試平臺和技術,以實現政府、學術界和工業界的合作和協同發展。

付費5元查看完整內容
北京阿比特科技有限公司