經典機器學習算法假設訓練數據和測試數據具有相同的輸入特征空間和相同的數據分布。在諸多現實問題中,這一假設往往不能滿足,導致經典機器學習算法失效。領域自適應是一種新的學習范式,其關鍵技術在于通過學習新的特征表達來對齊源域和目標域的數據分布,使得在有標簽源域訓練的模型可以直接遷移到沒有標簽的目標域上,同時不會引起性能的明顯損失。本文介紹領域自適應的定義,分類和代表性算法,重點討論基于度量學習的領域自適應算法和基于對抗學習的領域自適應算法。最后,分析領域自適應的典型應用和存在挑戰,明確領域自適應的發展趨勢,并提出未來可能的研究方向。
小目標檢測一直是目標檢測領域中的熱點和難點,其主要挑戰是小目標像素少,難以提取有效的特征信息.近年來,隨著深度學習理論和技術的快速發展,基于深度學習的小目標檢測取得了較大進展,研究者從網絡結構、訓練策略、數據處理等方面入手,提出了一系列用于提高小目標檢測性能的方法.該文對基于深度學習的小目標檢測方法進行詳細綜述,按照方法原理將現有的小目標檢測方法分為基于多尺度預測、基于數據增強技術、基于提高特征分辨率、基于上下文信息,以及基于新的主干網絡和訓練策略等5類方法,全面分析總結基于深度學習的小目標檢測方法的研究現狀和最新進展,對比分析這些方法的特點和性能,并介紹常用的小目標檢測數據集.在總體梳理小目標檢測方法的研究進展的基礎上,對未來的研究方向進行展望.
生成對抗網絡(GAN)是無監督學習領域最近幾年快速發展的一個研究方向,其主要特點是能夠以一種間接的方 式對一個未知分布進行建模。在計算機視覺研究領域中,生成對抗網絡有著廣泛的應用,特別是在圖像生成方面,與其他的 生成模型相比,生成對抗網絡不僅可以避免復雜的計算,而且生成的圖像質量也更好。因此,本文將對生成對抗網絡及其在 圖像生成中的研究進展做一個小結和分析;本文首先從模型的架構、目標函數的設計、生成對抗網絡在訓練中存在的問題, 以及如何處理模式崩潰問題等角度對生成對抗網絡進行一個詳細的總結和歸納;其次介紹生成對抗網絡在圖像生成中的兩 種方法;隨后對一些典型的、用來評估生成圖像質量和多樣性的方法進行小結;并且對基于圖像生成的應用進行詳細分析;最后對生成對抗網絡和圖像生成進行總結,同時對其發展趨勢進行一個展望。
行人再識別的主要任務是利用計算機視覺對特定行人進行跨視域匹配和檢索。相比于傳統算法,由數據驅 動的深度學習方法所提取的特征更能表征行人之間的區分性。對行人再識別的背景及研究歷史、主要面臨的挑 戰、主要方法、數據集及評價指標進行了梳理和總結。主要從特征表達、局部特征、生成對抗網絡三個方面對行人 再識別的算法進行分析,列舉了行人再識別9個常用數據集、3個評價標準和14種典型方法在 Market1501數據集 上取得的準確率,最后對行人再識別的未來研究方向進行展望。
目前諸多模式識別任務的識別精度獲得不斷提升,在一些任務上甚至超越了人的水平。單從識別精度的角度來看,模式識別似乎已經是一個被解決了的問題。然而,高精度的模式識別系統在實際應用中依舊會出現不穩定和不可靠的現象。因此,開放環境下的魯棒性成為制約模式識別技術發展的新瓶頸。實際上,在大部分模式識別模型和算法背后蘊含著三個基礎假設:封閉世界假設、獨立同分布假設、以及大數據假設。這三個假設直接或間接影響了模式識別系統的魯棒性,并且是造成機器智能和人類智能之間差異的主要原因。本文簡要論述如何通過打破三個基礎假設來提升模式識別系統的魯棒性。
盡管生成式對抗網絡(GAN)的歷史并不長,但它已被廣泛地研究和用于各種任務,包括其最初的目的,即合成樣品的生成。然而,將GAN用于具有不同神經網絡結構的不同數據類型,由于其在訓練方面的局限性,使得模型很容易出現混亂。這種臭名昭著的GAN訓練是眾所周知的,并已在許多研究中提出。因此,為了使GAN的訓練更加穩定,近年來提出了許多正則化方法。本文綜述了近年來引入的正則化方法,其中大部分是近三年來發表的。具體地說,我們關注的是那些可以被普遍使用的方法,而不管神經網絡體系結構如何。根據其運算原理將其分為若干組,并分析了各方法之間的差異。此外,為了提供使用這些方法的實際知識,我們調研了在最先進的GANs中經常使用的流行方法。此外,我們還討論了現有方法的局限性,并提出了未來的研究方向。
在許多實際應用中,獲取足夠的大規模標記數據以充分訓練深度神經網絡通常是困難和昂貴的。因此,將學習到的知識從一個單獨的、標記過的源域轉移到一個未標記或標記稀疏的目標域成為一種有吸引力的選擇。然而,直接轉移常常由于域轉移而導致顯著的性能下降。域適應(DA)通過最小化源域和目標域之間域轉移的影響來解決這個問題。多源域自適應(Multi-source domain adaptation, MDA)是一種功能強大的擴展,可以從具有不同分布的多個源收集標記數據。由于DA方法的成功和多源數據的流行,MDA在學術界和工業界都受到越來越多的關注。在本次綜述中,我們定義了各種MDA策略,并總結了可供評估的可用數據集。我們還比較了深度學習時代的MDA方法,包括潛在空間轉換和中間域生成。最后,討論了未來MDA的研究方向。