亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

目前諸多模式識別任務的識別精度獲得不斷提升,在一些任務上甚至超越了人的水平。單從識別精度的角度來看,模式識別似乎已經是一個被解決了的問題。然而,高精度的模式識別系統在實際應用中依舊會出現不穩定和不可靠的現象。因此,開放環境下的魯棒性成為制約模式識別技術發展的新瓶頸。實際上,在大部分模式識別模型和算法背后蘊含著三個基礎假設:封閉世界假設、獨立同分布假設、以及大數據假設。這三個假設直接或間接影響了模式識別系統的魯棒性,并且是造成機器智能和人類智能之間差異的主要原因。本文簡要論述如何通過打破三個基礎假設來提升模式識別系統的魯棒性。

付費5元查看完整內容

相關內容

深度學習在很多人工智能應用領域中取得成功的關鍵原因在于,通過復雜的深層網絡模型從海量數據中學習豐富的知識。然而,深度學習模型內部高度的復雜性常導致人們難以理解模型的決策結果,造成深度學習模型的不可解釋性,從而限制了模型的實際部署。因此,亟需提高深度學習模型的可解釋性,使模型透明化,以推動人工智能領域研究的發展。本文旨在對深度學習模型可解釋性的研究進展進行系統性的調研,從可解釋性原理的角度對現有方法進行分類,并且結合可解釋性方法在人工智能領域的實際應用,分析目前可解釋性研究存在的問題,以及深度學習模型可解釋性的發展趨勢。為全面掌握模型可解釋性的研究進展以及未來的研究方向提供新的思路。

付費5元查看完整內容

摘要: 大數據時代,數據呈現維度高、數據量大和增長快等特點。如何有效利用其中蘊含的有價值信息,以實現數據的智能化處理,已成為當前理論和應用的研究熱點。針對現實普遍存在的多義性對象,數據多標簽被提出并被廣泛應用于數據智能化組織。近年來,深度學習在數據特征提取方面呈現出高速、高精度等優異性,使基于深度學習的多標簽生成得到廣泛關注。文中分五大類別總結了最新研究成果,并進一步從數據、關系類型、應用場景、適應性及實驗性能方面對其進行對比和分析,最后探討了多標簽生成面臨的挑戰和未來的研究方向。

付費5元查看完整內容

摘要 : 零樣本圖像分類指訓練集和測試集在數據的類別上沒有交集的情況下進行圖像分類 . 該技術 是解決類別標簽缺失問題的一種有效手段 , 因此受到了日益廣泛的關注 . 自提出此問題至今 , 零樣本 圖像分類的研究已經大致有十年時間 . 本文系統地對過去十年中零樣本圖像分類技術的研究進展進行 了綜述 , 主要包括以下 4 個方面 . 首先介紹零樣本圖像分類技術的研究意義及其應用價值 , 然后重點 總結和歸納零樣本圖像分類的發展過程和研究現狀 , 接下來介紹常用的數據集和評價準則 , 以及與零 樣本學習相關的技術的區別和聯系 , 最后分析有待深入研究的熱點與難點問題 , 并對未來的發展趨勢 進行了展望 .

關鍵詞: 零樣本圖像分類 , 屬性 , 詞向量 , 跨模態映射 , 領域適應學習

付費5元查看完整內容
北京阿比特科技有限公司