摘要 : 零樣本圖像分類指訓練集和測試集在數據的類別上沒有交集的情況下進行圖像分類 . 該技術 是解決類別標簽缺失問題的一種有效手段 , 因此受到了日益廣泛的關注 . 自提出此問題至今 , 零樣本 圖像分類的研究已經大致有十年時間 . 本文系統地對過去十年中零樣本圖像分類技術的研究進展進行 了綜述 , 主要包括以下 4 個方面 . 首先介紹零樣本圖像分類技術的研究意義及其應用價值 , 然后重點 總結和歸納零樣本圖像分類的發展過程和研究現狀 , 接下來介紹常用的數據集和評價準則 , 以及與零 樣本學習相關的技術的區別和聯系 , 最后分析有待深入研究的熱點與難點問題 , 并對未來的發展趨勢 進行了展望 .
關鍵詞: 零樣本圖像分類 , 屬性 , 詞向量 , 跨模態映射 , 領域適應學習
隨著圖像處理,語音識別等人工智能技術的發展,很多學習方法尤其是采用深度學習框架的方法取得了優異的性能,在精度和速度方面有了很大的提升,但隨之帶來的問題也很明顯,這些學習方法如果要獲得穩定的學習效果,往往需要使用數量龐大的標注數據進行充分訓練,否則就會出現欠擬合的情況而導致學習性能的下降。因此,隨著任務復雜程度和數據規模的增加,對人工標注數據的數量和質量也提出了更高的要求,造成了標注成本和難度的增大。同時,單一任務的獨立學習往往忽略了來自其他任務的經驗信息,致使訓練冗余重復因而導致了學習資源的浪費,也限制了其性能的提升。為了緩解這些問題,屬于遷移學習范疇的多任務學習方法逐漸引起了研究者的重視。與單任務學習只使用單個任務的樣本信息不同,多任務學習假設不同任務數據分布之間存在一定的相似性,在此基礎上通過共同訓練和優化建立任務之間的聯系。這種訓練模式充分促進任務之間的信息交換并達到了相互學習的目的,尤其是在各自任務樣本容量有限的條件下,各個任務可以從其它任務獲得一定的啟發,借助于學習過程中的信息遷移能間接利用其它任務的數據,從而緩解了對大量標注數據的依賴,也達到了提升各自任務學習性能的目的。在此背景之下,本文首先介紹了相關任務的概念,并按照功能的不同對相關任務的類型進行劃分后再對它們的特點進行逐一描述。然后,本文按照數據處理模式和任務關系建模過程的不同將當前的主流算法劃分為兩大類:結構化多任務學習算法和深度多任務學習算法。其中,結構化多任務學習算法采用線性模型,可以直接針對數據進行結構假設并且使用原有標注特征表述任務關系,同時,又可根據學習對象的不同將其細分為基于任務層面和基于特征層面兩種不同結構,每種結構有判別式方法和生成式方法兩種實現手段。與結構化多任務學習算法的建模過程不同,深度多任務學習算法利用經過多層特征抽象后的深層次信息進行任務關系描述,通過處理特定網絡層中的參數達到信息共享的目的。緊接著,以兩大類算法作為主線,本文詳細分析了不同建模方法中對任務關系的結構假設、實現途徑、各自的優缺點以及方法之間的聯系。最后,本文總結了任務之間相似性及其緊密程度的判別依據,并且分析了多任務作用機制的有效性和內在成因,從歸納偏置和動態求解等角度闡述了多任務信息遷移的特點。 //gb.oversea.cnki.net/KCMS/detail/detail.aspx?filename=JSJX20190417000&dbcode=CJFD&dbname=CAPJ2019
本文綜述了元學習在圖像分類、自然語言處理和機器人技術等領域的應用。與深度學習不同,元學習使用較少的樣本數據集,并考慮進一步改進模型泛化以獲得更高的預測精度。我們將元學習模型歸納為三類: 黑箱適應模型、基于相似度的方法模型和元學習過程模型。最近的應用集中在將元學習與貝葉斯深度學習和強化學習相結合,以提供可行的集成問題解決方案。介紹了元學習方法的性能比較,并討論了今后的研究方向。
摘要:圖像分類的應用場景非常廣泛,很多場景下難以收集到足夠多的數據來訓練模型,利用小樣本學習進行圖像分類可解決訓練數據量小的問題.本文對近年來的小樣本圖像分類算法進行了詳細綜述,根據不同的建模方式,將現有算法分為卷積神經網絡模型和圖神經網絡模型兩大類,其中基于卷積神經網絡模型的算法包括四種學習范式:遷移學習、元學習、對偶學習和貝葉斯學習;基于圖神經網絡模型的算法原本適用于非歐幾里得結構數據,但有部分學者將其應用于解決小樣本下歐幾里得數據的圖像分類任務,有關的研究成果目前相對較少.此外,本文匯總了現有文獻中出現的數據集并通過實驗結果對現有算法的性能進行了比較.最后,討論了小樣本圖像分類技術的難點及未來研究趨勢.
摘要: 大數據時代,數據呈現維度高、數據量大和增長快等特點。如何有效利用其中蘊含的有價值信息,以實現數據的智能化處理,已成為當前理論和應用的研究熱點。針對現實普遍存在的多義性對象,數據多標簽被提出并被廣泛應用于數據智能化組織。近年來,深度學習在數據特征提取方面呈現出高速、高精度等優異性,使基于深度學習的多標簽生成得到廣泛關注。文中分五大類別總結了最新研究成果,并進一步從數據、關系類型、應用場景、適應性及實驗性能方面對其進行對比和分析,最后探討了多標簽生成面臨的挑戰和未來的研究方向。
摘要: 目標檢測算法應用廣泛,一直是計算機視覺領域備受關注的研究熱點。近年來,隨著深度學習的發展,3D圖像的目標檢測研究取得了巨大的突破。與2D目標檢測相比,3D目標檢測結合了深度信息,能夠提供目標的位置、方向和大小等空間場景信息,在自動駕駛和機器人領域發展迅速。文中首先對基于深度學習的2D目標檢測算法進行概述;其次根據圖像、激光雷達、多傳感器等不同數據采集方式,分析目前具有代表性和開創性的3D目標檢測算法;結合自動駕駛的應用場景,對比分析不同 3D 目標檢測算法的性能、優勢和局限性;最后總結了3D目標檢測的應用意義以及待解決的問題,并對 3D 目標檢測的發展方向和新的挑戰進行了討論和展望。
簡介:
如今,深度學習已被廣泛應用于圖像分類和圖像識別的問題中,取得了令人滿意的實際效果,成為許多人 工智能應用的關鍵所在.在對于模型準確率的不斷探究中,研究人員在近期提出了“對抗樣本”這一概念.通過在原有 樣本中添加微小擾動的方法,成功地大幅度降低原有分類深度模型的準確率,實現了對于深度學習的對抗目的,同時 也給深度學習的攻方提供了新的思路,對如何開展防御提出了新的要求.在介紹對抗樣本生成技術的起源和原理的 基礎上,對近年來有關對抗樣本的研究和文獻進行了總結,按照各自的算法原理將經典的生成算法分成兩大類——全像素添加擾動和部分像素添加擾動.之后,以目標定向和目標非定向、黑盒測試和白盒測試、肉眼可見和肉眼不可見的二級分類標準進行二次分類.同時,使用 MNIST 數據集對各類代表性的方法進行了實驗驗證,以探究各種方法的優缺點.最后總結了生成對抗樣本所面臨的挑戰及其可以發展的方向,并就該技術的發展前景進行了探討.
內容簡介:
本文重點對生成對抗樣本的已有研究工作進行綜述,主要選取了近年來有代表性的或取得比較顯著效果的方法進行詳細的原理介紹和優缺點分析.按照其生成方式和原理的不同,分為全像素添加擾動和部分像素添 加擾動兩類.在此基礎上,根據目標是否定向、是否黑盒和是否肉眼可見這 3 個標準進行細分,將各類方法中的 代表性算法在統一數據集(MNIST)上進行測試,驗證并分析其優缺點,終總結提出未來的發展前景. 本文第 1 節主要介紹對抗樣本的基本概念和基礎知識,包括對抗樣本本身的定義、其延伸有關的相關概念 以及基本操作流程.第 2 節則指出對抗樣本是從深度學習中衍生出來的概念,同時介紹了對抗樣本有效性的評估方法.第 3 節則介紹對抗樣本的起源,說明了對抗樣本的產生契機和原理解釋.第 4 節介紹生成對抗樣本的發展狀況,以全像素添加擾動和部分像素添加擾動兩大類進行算法說明,同時總結生成方法中常用的數據集.第 5 節是對第 4 節中代表方法的實驗,結合對同一數據集的效果測試來說明各類方法的優缺點.通過這些優缺點,在 第 6 節中討論對抗樣本生成技術面臨的挑戰和前景預測.
目錄:
1 簡 介
2 前 傳
3 起源
4 發 展
5 實驗結果對比
6 面臨挑戰與前景預測
零樣本動作識別是近年來備受關注的研究領域,針對圖像和視頻中物體、事件和動作的識別提出了多種方法。由于收集、注釋和標記視頻是一項困難而費力的任務,因此需要一些方法來將實例從模型訓練中不存在的類中分類,特別是在復雜的自動視頻理解任務中。我們發現在文獻中有許多可用的方法,然而,很難對哪些技術可以被認為是最先進的技術進行分類。盡管有一些關于靜止圖像零樣本動作識別的調研和實驗,但是沒有針對視頻的研究。因此,在這篇文章中,我們提出了一個調查的方法,包括技術進行視覺特征提取和語義特征提取,以及學習這些特征之間的映射,特別是零鏡頭動作識別的視頻。我們還提供了一個完整的數據集,實驗和協議的描述,提出了開放的問題和未來的工作方向,這對計算機視覺研究領域的發展至關重要。