亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本研究的目的是通過使用供應鏈優化軟件anyLogistix來檢查空軍醫務處(AFMS)的戰爭儲備物資(WRM)的供應鏈管理。其目的是闡明對影響庫存管理的策略的潛在改進,并測試特定投入的效果,如網絡支持的涌入和能力的擴展,進入模型。網絡優化顯示了這些因素的成本效益分析以及需求是否通過所有的需求點得到滿足。

這項研究具體考察了五種院前鎮痛藥物的供應鏈管理:氯胺酮、嗎啡、芬太尼靜脈注射(IV)、芬太尼口服液和氫嗎啡酮。通過最近兩項涵蓋中東地區戰斗護理的研究,本論文預測了需求并將其建立在網絡中。為了說明供應鏈的有效性,本研究著眼于朝鮮地區的潛在沖突。通過三種不同的戰時情景和十種不同的投入,本研究考察了30個模型和投入對這些情景的影響。

通過運輸成本、攜帶成本、供應成本、擴張成本和滿足需求的范圍,本研究評估了所有30個模型。研究表明,鑒于對韓國戰爭需求的預測,用AFMS資產將很難滿足某些產品的需求,如氯胺酮和芬太尼口服液。網絡能力的擴展將減輕這種需求的不足,而引入具有必要資源的供應商將完全消除這些不足。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

美國空軍正在投資人工智能(AI)以加速分析,努力使自主無人駕駛戰斗飛行器(AUCAVs)在打擊協調和偵察(SCAR)任務中的使用現代化。這項研究探討了AUCAV在SCAR任務中執行目標打擊和提供偵察的能力。一個定向問題被制定為馬爾可夫決策過程(MDP)模型,其中一個AUCAV必須優化其目標路線,以幫助消除時間敏感的目標,并收集所要求的指定興趣區域的圖像,同時躲避作為障礙物的地對空導彈(SAM)電池威脅。AUCAV根據SAM電池和目標進入戰斗空間的位置來調整其路線。開發了一種近似動態規劃(ADP)的解決方案,其中數學規劃技術與成本函數近似(CFA)政策一起被用來開發高質量的AUCAV路由政策,以提高SCAR任務的性能。CFA政策與確定的重復定向問題(DROP)基準政策進行了比較,在四個實例中探討了動態目標和SAM電池的不同到達行為。當AUCAV被分配到120分鐘來完成它的任務,并且防空導彈電池到達戰斗空間時,結果顯示,所提出的CFA政策優于DROP政策。總的來說,擬議的CFA策略在所有四種情況下的表現幾乎與DROP策略相同或更好。

關鍵字:馬爾科夫決策過程(MDP)、近似動態規劃(ADP)、強化學習(RL)、人工智能(AI)、定向問題(OP)、車輛路由問題(VRP)、目標定位、成本函數近似(CFA)、直接前瞻近似(DLA)、網格自適應直接搜索(MADS)

I. 引言

根據美國國防部長(SecDef)的說法,美國(US)軍隊近期的重點是將目前的 "能力現代化,以應對未來的先進威脅",并確保美國軍隊仍然是 "世界上最杰出的戰斗力量"(國防部,2021)。國防部長的重點可以通過美國國防部(DoD)有效調整其資源以應對不斷變化的威脅來實現(國防部,2021)。本論文支持國防部未來的首要任務,這些任務涉及使用自主無人駕駛作戰飛行器(AUCAVs)來壓制敵方防空(SEAD)和打擊任務。這些優先事項包括人工智能(AI)、偵察機能力、作戰司令部(COCOM)策略和威懾對手方面的進步。通過開發用于AUCAV路徑規劃和目標選擇的近似動態規劃(即基于模型的強化學習)算法,我們可以探索空軍打擊深度、時間敏感目標和威懾對手的能力,與國防部的主要倡議直接保持一致(國防部副部長(主計長)/首席財務官辦公室,2021)。這些資產的一個共同點是它們都對司令部的任務至關重要,并且可以與AUCAV打擊高價值目標的能力一起工作。

1.1 美國防部的舉措

AUCAV有多種方式可以用來支持COCOM的任務。一種獨特的方式是對時間敏感目標(TST)的位置進行偵察,使其他盟軍飛機或地面資產能夠打擊該目標。第五代F-35可以在不被發現的情況下遠距離攻擊地面目標,包括地對空導彈(SAM),并使用精確武器成功完成空對地任務(Military Advantage, 2014)。AUCAVs對薩姆導彈可能沒有那么有效,可能會被它們擊落。然而,AUCAVs有能力對要求命名的興趣區(NAIs)或更適合其他軍事資產打擊的目標類型進行偵察,如F-35或B-52。

F-15EX是美國國防部批準的項目,與F-35不同,它不是隱形的,不能在敵后不被察覺。然而,空軍已經考慮將F-15EX與隱形戰斗機配對,并將這對戰斗機作為遠程空對空導彈發射平臺(Mizokami,2021)。盡管F-15EX也有能力進行空對地打擊,但該機的主要優勢在于其雷達和攜帶大量武器載荷的能力,包括二十多枚空對空導彈或高超音速武器(Mizokami, 2021)。這種作戰能力是需要考慮的,因為將一架隱身飛機(如F-35)與一架不具備相同屬性的飛機(如F-15EX)配對,以完成時間敏感的目標打擊任務,作為AUCAV的目標確認能力的結果,可能會達到優越的性能。

在每個COCOM的責任區(AOR),指揮官要求提供NAI和高價值目標打擊的圖像。假設沒有能夠擊落AUCAV的敵方威脅(例如,防空導彈炮臺),AUCAV可以滿足指揮官的要求。然而,這種假設忽略了一個現實,即敵人可能會施加障礙,嚴重影響精心策劃的任務。路徑規劃必須結合禁飛區(NFZ)的情報信息,以達到避免威脅的目的。本論文討論的近似動態規劃(ADP)算法將探討未預見的NFZ或戰斗區(例如,由于防空導彈電池)如何影響AUCAV的目標選擇,以及AUCAV如何隨著時間的推移學會避免這些區域。

美國軍方已經對使用JDAMs打擊目標的無人駕駛作戰飛行器(UCAV)進行了作戰測試和評估(OT&E)(Butler and Colarusso, 2002)。因此,本論文假設AUCAVs使用JDAMs來打擊高價值目標。JDAM能夠使用從聯合監視目標攻擊雷達系統(JSTARS)傳送的飛行中目標更新(IFTU)信息單獨指向其目標(Butler and Colarusso, 2002)。已經完成的測試表明,使用負擔得起的移動水面目標攻擊系統(AMSTE)而不是JSTAR,使UCAV打擊移動目標的能力大大增強。這一發展應作為后續工作進一步探討,但在本論文中不會詳細討論。

美國特種作戰司令部(USSOCOM)正在投資人工智能(AI)以加快分析速度(國防部副部長(主計長)/首席財務官辦公室,2021)。這篇論文的重點是建立一個人工智能算法,使戰斗指揮部,如USSOCOM,能夠及時有效地執行目標打擊,并對要求的國家情報機構進行偵察。除各司令部外,聯合情報支援部隊(JISE)和聯合特遣部隊(JTF)也依賴偵察機,這是因為他們在管理各種形式的偵察和監視敵人方面的作用,這些偵察和監視對了解情況、確定目標和合適的目標以及向部隊提供警告是必要的(國防部,2018a)。如果目前的AUCAV路徑規劃AI算法得到改進,所有這三個適用的軍事組織都可以提供更多的情報信息,從而在目前的限制性資源(如燃料容量、彈藥或在戰區的時間)下,產生更多的目標打擊和NAI的圖像。

1.2 空軍關于目標選擇的學說

鎖定目標是一項指揮職能,需要指揮官的監督和參與,以確保正確執行(美國空軍部,2019年)。它不是某類專業或部門的專屬領域,如情報或行動,而是融合了許多學科的專業知識(美國空軍部,2019)。本論文通過將AUCAV任務前收到的情報與美軍的聯合、戰術和空軍理論相結合,探索這種專業知識的融合。最好同時考慮聯合學說和空軍學說,以更好地理解空軍如何定義目標。根據聯合學說,目標是一個實體或物體,被視為可能的交戰或其他行動(國防部,2018b)。實體可以被描述為設施、個人、虛擬(非物質)事物、設備或組織(美國空軍部,2019)。

有兩類目標:故意的和動態的(美國空軍部,2019年)。當有足夠的時間將目標添加到空中任務單或其他計劃中時,故意瞄準適用。蓄意的目標定位包括計劃由待命資源攻擊的目標。動態目標定位包括那些發現得太晚或沒有及時選擇而被列入蓄意目標定位的目標,但當發現或定位時,符合實現目標的特定標準。

本論文試圖確定AUCAV的最佳路線,以選擇故意和動態目標的組合。AUCAV進入戰斗空間時,有一組要求攻擊或偵察的故意目標。一旦進入戰斗空間,AUCAV就會遇到新的目標請求(即動態目標到達),必須重新計算其最佳目標選擇路線,并考慮到新到達的目標。

需要特別考慮的兩個目標子集是敏感和時間敏感(Department of the United States Air Force, 2019)。敏感目標是指指揮官估計在軍事行動中發生的對平民和/或非戰斗人員、財產和環境的實際影響和附帶影響超過既定的國家級通知門檻的目標(Department of Defense, 2018b)。敏感目標并不總是與附帶損害相關(美國空軍部,2019)。它們也可能包括那些超過國家一級交戰規則閾值的目標,或者作戰指揮官確定打擊目標的效果可能會產生不利的政治影響(美國空軍部,2019)。時間敏感目標是聯合部隊指揮官確認的目標或需要立即做出反應的目標集,因為它們是高度有利可圖的、轉瞬即逝的機會目標,或者它們對友軍構成(或即將構成)危險(國防部,2018b)。

這篇論文的重點是AUCAV對時間敏感的目標進行打擊,并對可能包括敏感目標的NAI進行偵察,同時避開代表薩姆電池威脅區的NFZ。這是通過使用ADP方法、整數規劃技術和馬爾科夫決策過程(MDP)模型框架解決具有隨機目標到達的無人駕駛飛機定向問題,同時避開障礙物來實現的。車輛路由問題MDP模型框架被用來對AUCAV的目標選擇進行基線分析,同時避開障礙物(即防空導彈電池),并確定哪些時間敏感的目標應該在指定的時間段內被摧毀。然后,采用CFA策略的ADP解決方法來優化AUCAV的目標路線,在做決定時利用未來動態時間敏感目標和障礙物到達的預測位置。

本論文的其余部分的結構是:第二章討論類似于具有隨機目標到達的自主車輛定向問題的文學作品,第三章討論問題的制定框架和解決方法,第四章討論計算測試和結果,第五章討論結論。第二章從ADP的角度詳細探討了具有隨機到達、服務時間和等待時間的類似路徑規劃問題。第三章對用于建模和解決問題的方法進行了深入探討。第4章揭示了分析的結果和建議。第5章是本論文的結論,提出了為AUCAV選擇目標和躲避敵人威脅而產生改進的解決程序的未來建議。

付費5元查看完整內容
北京阿比特科技有限公司