美國空軍正在投資人工智能(AI)以加速分析,努力使自主無人駕駛戰斗飛行器(AUCAVs)在打擊協調和偵察(SCAR)任務中的使用現代化。這項研究探討了AUCAV在SCAR任務中執行目標打擊和提供偵察的能力。一個定向問題被制定為馬爾可夫決策過程(MDP)模型,其中一個AUCAV必須優化其目標路線,以幫助消除時間敏感的目標,并收集所要求的指定興趣區域的圖像,同時躲避作為障礙物的地對空導彈(SAM)電池威脅。AUCAV根據SAM電池和目標進入戰斗空間的位置來調整其路線。開發了一種近似動態規劃(ADP)的解決方案,其中數學規劃技術與成本函數近似(CFA)政策一起被用來開發高質量的AUCAV路由政策,以提高SCAR任務的性能。CFA政策與確定的重復定向問題(DROP)基準政策進行了比較,在四個實例中探討了動態目標和SAM電池的不同到達行為。當AUCAV被分配到120分鐘來完成它的任務,并且防空導彈電池到達戰斗空間時,結果顯示,所提出的CFA政策優于DROP政策。總的來說,擬議的CFA策略在所有四種情況下的表現幾乎與DROP策略相同或更好。
關鍵字:馬爾科夫決策過程(MDP)、近似動態規劃(ADP)、強化學習(RL)、人工智能(AI)、定向問題(OP)、車輛路由問題(VRP)、目標定位、成本函數近似(CFA)、直接前瞻近似(DLA)、網格自適應直接搜索(MADS)
根據美國國防部長(SecDef)的說法,美國(US)軍隊近期的重點是將目前的 "能力現代化,以應對未來的先進威脅",并確保美國軍隊仍然是 "世界上最杰出的戰斗力量"(國防部,2021)。國防部長的重點可以通過美國國防部(DoD)有效調整其資源以應對不斷變化的威脅來實現(國防部,2021)。本論文支持國防部未來的首要任務,這些任務涉及使用自主無人駕駛作戰飛行器(AUCAVs)來壓制敵方防空(SEAD)和打擊任務。這些優先事項包括人工智能(AI)、偵察機能力、作戰司令部(COCOM)策略和威懾對手方面的進步。通過開發用于AUCAV路徑規劃和目標選擇的近似動態規劃(即基于模型的強化學習)算法,我們可以探索空軍打擊深度、時間敏感目標和威懾對手的能力,與國防部的主要倡議直接保持一致(國防部副部長(主計長)/首席財務官辦公室,2021)。這些資產的一個共同點是它們都對司令部的任務至關重要,并且可以與AUCAV打擊高價值目標的能力一起工作。
AUCAV有多種方式可以用來支持COCOM的任務。一種獨特的方式是對時間敏感目標(TST)的位置進行偵察,使其他盟軍飛機或地面資產能夠打擊該目標。第五代F-35可以在不被發現的情況下遠距離攻擊地面目標,包括地對空導彈(SAM),并使用精確武器成功完成空對地任務(Military Advantage, 2014)。AUCAVs對薩姆導彈可能沒有那么有效,可能會被它們擊落。然而,AUCAVs有能力對要求命名的興趣區(NAIs)或更適合其他軍事資產打擊的目標類型進行偵察,如F-35或B-52。
F-15EX是美國國防部批準的項目,與F-35不同,它不是隱形的,不能在敵后不被察覺。然而,空軍已經考慮將F-15EX與隱形戰斗機配對,并將這對戰斗機作為遠程空對空導彈發射平臺(Mizokami,2021)。盡管F-15EX也有能力進行空對地打擊,但該機的主要優勢在于其雷達和攜帶大量武器載荷的能力,包括二十多枚空對空導彈或高超音速武器(Mizokami, 2021)。這種作戰能力是需要考慮的,因為將一架隱身飛機(如F-35)與一架不具備相同屬性的飛機(如F-15EX)配對,以完成時間敏感的目標打擊任務,作為AUCAV的目標確認能力的結果,可能會達到優越的性能。
在每個COCOM的責任區(AOR),指揮官要求提供NAI和高價值目標打擊的圖像。假設沒有能夠擊落AUCAV的敵方威脅(例如,防空導彈炮臺),AUCAV可以滿足指揮官的要求。然而,這種假設忽略了一個現實,即敵人可能會施加障礙,嚴重影響精心策劃的任務。路徑規劃必須結合禁飛區(NFZ)的情報信息,以達到避免威脅的目的。本論文討論的近似動態規劃(ADP)算法將探討未預見的NFZ或戰斗區(例如,由于防空導彈電池)如何影響AUCAV的目標選擇,以及AUCAV如何隨著時間的推移學會避免這些區域。
美國軍方已經對使用JDAMs打擊目標的無人駕駛作戰飛行器(UCAV)進行了作戰測試和評估(OT&E)(Butler and Colarusso, 2002)。因此,本論文假設AUCAVs使用JDAMs來打擊高價值目標。JDAM能夠使用從聯合監視目標攻擊雷達系統(JSTARS)傳送的飛行中目標更新(IFTU)信息單獨指向其目標(Butler and Colarusso, 2002)。已經完成的測試表明,使用負擔得起的移動水面目標攻擊系統(AMSTE)而不是JSTAR,使UCAV打擊移動目標的能力大大增強。這一發展應作為后續工作進一步探討,但在本論文中不會詳細討論。
美國特種作戰司令部(USSOCOM)正在投資人工智能(AI)以加快分析速度(國防部副部長(主計長)/首席財務官辦公室,2021)。這篇論文的重點是建立一個人工智能算法,使戰斗指揮部,如USSOCOM,能夠及時有效地執行目標打擊,并對要求的國家情報機構進行偵察。除各司令部外,聯合情報支援部隊(JISE)和聯合特遣部隊(JTF)也依賴偵察機,這是因為他們在管理各種形式的偵察和監視敵人方面的作用,這些偵察和監視對了解情況、確定目標和合適的目標以及向部隊提供警告是必要的(國防部,2018a)。如果目前的AUCAV路徑規劃AI算法得到改進,所有這三個適用的軍事組織都可以提供更多的情報信息,從而在目前的限制性資源(如燃料容量、彈藥或在戰區的時間)下,產生更多的目標打擊和NAI的圖像。
鎖定目標是一項指揮職能,需要指揮官的監督和參與,以確保正確執行(美國空軍部,2019年)。它不是某類專業或部門的專屬領域,如情報或行動,而是融合了許多學科的專業知識(美國空軍部,2019)。本論文通過將AUCAV任務前收到的情報與美軍的聯合、戰術和空軍理論相結合,探索這種專業知識的融合。最好同時考慮聯合學說和空軍學說,以更好地理解空軍如何定義目標。根據聯合學說,目標是一個實體或物體,被視為可能的交戰或其他行動(國防部,2018b)。實體可以被描述為設施、個人、虛擬(非物質)事物、設備或組織(美國空軍部,2019)。
有兩類目標:故意的和動態的(美國空軍部,2019年)。當有足夠的時間將目標添加到空中任務單或其他計劃中時,故意瞄準適用。蓄意的目標定位包括計劃由待命資源攻擊的目標。動態目標定位包括那些發現得太晚或沒有及時選擇而被列入蓄意目標定位的目標,但當發現或定位時,符合實現目標的特定標準。
本論文試圖確定AUCAV的最佳路線,以選擇故意和動態目標的組合。AUCAV進入戰斗空間時,有一組要求攻擊或偵察的故意目標。一旦進入戰斗空間,AUCAV就會遇到新的目標請求(即動態目標到達),必須重新計算其最佳目標選擇路線,并考慮到新到達的目標。
需要特別考慮的兩個目標子集是敏感和時間敏感(Department of the United States Air Force, 2019)。敏感目標是指指揮官估計在軍事行動中發生的對平民和/或非戰斗人員、財產和環境的實際影響和附帶影響超過既定的國家級通知門檻的目標(Department of Defense, 2018b)。敏感目標并不總是與附帶損害相關(美國空軍部,2019)。它們也可能包括那些超過國家一級交戰規則閾值的目標,或者作戰指揮官確定打擊目標的效果可能會產生不利的政治影響(美國空軍部,2019)。時間敏感目標是聯合部隊指揮官確認的目標或需要立即做出反應的目標集,因為它們是高度有利可圖的、轉瞬即逝的機會目標,或者它們對友軍構成(或即將構成)危險(國防部,2018b)。
這篇論文的重點是AUCAV對時間敏感的目標進行打擊,并對可能包括敏感目標的NAI進行偵察,同時避開代表薩姆電池威脅區的NFZ。這是通過使用ADP方法、整數規劃技術和馬爾科夫決策過程(MDP)模型框架解決具有隨機目標到達的無人駕駛飛機定向問題,同時避開障礙物來實現的。車輛路由問題MDP模型框架被用來對AUCAV的目標選擇進行基線分析,同時避開障礙物(即防空導彈電池),并確定哪些時間敏感的目標應該在指定的時間段內被摧毀。然后,采用CFA策略的ADP解決方法來優化AUCAV的目標路線,在做決定時利用未來動態時間敏感目標和障礙物到達的預測位置。
本論文的其余部分的結構是:第二章討論類似于具有隨機目標到達的自主車輛定向問題的文學作品,第三章討論問題的制定框架和解決方法,第四章討論計算測試和結果,第五章討論結論。第二章從ADP的角度詳細探討了具有隨機到達、服務時間和等待時間的類似路徑規劃問題。第三章對用于建模和解決問題的方法進行了深入探討。第4章揭示了分析的結果和建議。第5章是本論文的結論,提出了為AUCAV選擇目標和躲避敵人威脅而產生改進的解決程序的未來建議。
最佳的飛行員-飛機互動一直被認為是實現有效操作性能的基石,同時在任務或使命中保持高水平的安全。隨著飛行任務越來越復雜,越來越多的信息到達機組成員手中。市場上有新的技術解決方案,任務中的表現是可以衡量的。當考慮到基于神經科學進步的人機互動時,就有可能衡量和評估任何人機接口(HMI)的有效性。為了支持空勤人員的表現,必須利用現有的創新,如數據融合或人工智能(AI)輔助決策和任務管理,以成功執行軍事任務。人工智能和大數據管理與機器學習相結合,是改善和運行現代作戰場景的關鍵因素。以網絡為中心的綜合武器系統為聯合部隊指揮官提供了靈活性,有助于當前和即將到來的聯合任務的成功。
在聯合行動中,當兩個或更多的國家使用所有可用的領域時,盡可能快速有效地利用所有的資產和能力,以獲得戰斗空間的最佳總體情況將是至關重要的。因此,解決和驗證為機組人員優化的下一代駕駛艙的創建是很重要的。先進的指揮和控制系統,為執行任務提供安全和可互操作的支持,將確保獲得一個綜合和同步的系統,并將實現戰場上的信息優勢。在未來,各級指揮官對戰場的可視化和理解方式,利用某些輔助手段來指導和引導他們的部隊,將成為勝利的決定因素。
根據JAPCC在2021年發布的聯合全域作戰傳單,全域作戰包括 "快速處理數據和管理情報,以及實現高效作戰所需的技術能力和政策,包括所有貢獻的資產"。其他北約出版物使用術語多域作戰(MDO),主要描述任務環境的相同挑戰。找到一個連貫的、共同使用的術語是不斷發展的,但它不會改變HMI定義背后的含義。此外,重要的是開發一個連接的、復雜的接口,能夠協助指揮官和他們的下屬軍事人員同時和毫不拖延地分享信息,并迅速做出決定和采取行動。
正如Todd Prouty在他的一篇文章中所認識到的,"聯合全域指揮與控制(JADC2)正在形成,成為連接行動的指導性概念","將使用人工智能和機器學習,通過以機器速度收集、處理和計算大量的數據來連接聯合部隊"。兩種類型的態勢感知(SA)都同樣重要,因為它們不僅可能影響任務的成功完成,甚至還可能影響戰略層面的意圖。定義SA的最簡單方法是對周圍環境的徹底了解。戰術上的SA意味著機組人員知道這個場景,知道自己在任務中的任務和角色,以及所有參與同一行動區域的部隊。他們知道如何飛行任務,也知道成功或失敗的目的和后果。飛行SA主要關注的是飛行的性能和參數,空間和時間上的位置,以及飛機的性能。這兩個SA是不同的,需要在飛行過程中不斷監測。通常情況下,兩者在任務的不同階段需要不同程度的關注,如果有能力的話,可以由機組成員共享。一些技術上的改進可以只提高一個SA,但最好是同時提高兩個SA,以滿足要求并提高整體SA。這些發展也必須支持戰略層面的意圖,并提供其在決策過程中需要的SA。
現代機體和駕駛艙應支持機組人員的機載工作量,戰斗飛行員需要這種支持以保持有效。這可以通過人工智能自動管理,使機組人員能夠將更多的精力放在他們的任務和使命上。可以說,用算法來增強機體的基本需要,以補充機組人員處理飛行期間增加的信息流的能力。
在開展行動期間,預計情況可能會迅速變化,指揮官必須立即采取行動,重新安排部隊的任務。在地面或飛行中,飛行員可能會在短時間內收到一個新的任務。這個新命令不應該被格式化為純粹的基本信息;當整個更新包也能被可視化時,支持將是最佳的。一個例子是數字移動地圖系統,它描述了關于友軍和敵軍的詳細信息,包括協調信息。當飛行員改變飛行計劃時,駕駛艙及其所有設置都將自動更新。正如《國防雜志》所指出的,"從無限的資源中收集、融合和分析數據,并將其轉化為可操作的情報傳遞到戰術邊緣的能力,需要前所未有的移動處理能力"。為了符合這些要求,推動下一代人機接口的整合應該在所有現代駕駛艙中實現標準化。
HMI-Cockpit的演變。左至右:Ramon Berk, Comando Aviazione dell'Eercito, Leonardo
值得注意的是,最近飛機駕駛艙的技術發展已經出現了巨大的轉變。在短短幾年內,駕駛艙已經從帶有模擬象限的 "經典飛行甲板 "過渡到現代的 "玻璃駕駛艙",其中經典的儀表通過復雜的多功能顯示器呈現。大多數信息在儀表、飛行管理系統和自動駕駛功能之間是相互聯系的。在現代駕駛艙中,傳統的 "旋鈕和表盤 "已經被拋棄,取而代之的是電子可重新配置的顯示器和多功能可重新配置的控制,即所謂的 "軟鍵"。
傳統上,駕駛艙設計和信息顯示方式的發展是由安全和性能提升驅動的,而現在似乎更多的是由效率和競爭力標準驅動。5例如,在全狀態操作和創新駕駛艙基礎設施(ALICIA)項目中,來自14個國家的41個合作伙伴正在合作進行研究和開發活動,旨在實現一個能夠提供全狀態操作的駕駛艙系統。考慮到在不久的將來商業航班數量的增加,該項目旨在通過使用新的操作概念和駕駛艙設計來實現更高水平的效率和競爭力。
ALICIA承諾新的解決方案能夠為機組人員提供更大的SA,同時減少機組人員的工作量并提高整個飛機的安全性。這是對HMI概念的徹底反思,尋求技術的整體整合。在設想的概念中,ALICIA利用多模態輸入/輸出設備,提供一個集成在增強的機組接口中的全條件操作應用程序。
改進軍用飛機的人機接口是一項更為復雜的任務。與商業飛行相比,需要分析的情況很多,也更復雜。在軍用駕駛艙中,與飛行本身相關的任務與完成戰斗任務所需的任務合并在一起,而且往往是在危險地區和退化的環境中飛行。此外,軍用飛機配備了更多的設備,旨在處理綜合戰斗任務和軍備系統管理。
軍事飛行的典型任務可分為兩類:
駕駛和導航:在整個飛行過程中執行。
戰斗任務:只在飛行任務的某些階段執行。
當戰斗任務發生時,它們必須與駕駛和導航任務同時進行,這是軍事和商業航空的主要區別。根據自己的經驗,軍事飛行員必須判斷在任何特定的飛行階段哪一個是優先的。因此,他們將大部分資源用于該任務,而將那些經常被誤認為不太重要的任務留給機載自動系統或利用他們的注意力的殘余部分來完成。
不幸的是,軍事飛行在任務、風險、威脅、持續時間、天氣條件等方面的復雜性和不可預測性,常常使機組人員很容易超過他們的個人極限。一旦發生這種情況,風險是任務無法完成,甚至可能被放棄。在最壞的情況下,飛機和機組人員可能會丟失,或者機組人員可能會在沒有適當或最佳SA的情況下采取行動,導致附帶損害的風險增加。
新興和顛覆性的技術可以改善未來軍用飛機上的人機接口。它們可以引入基于人工智能、深度學習或實時卷積神經網絡(RT/CNN)的新解決方案,以整合新的能力,如具有認知解決方案的系統。作為一個例子,認知人機接口和互動(CHMI2)的發展和演變,用于支持多個無人駕駛飛行器的一對多(OTM)概念中的自適應自動化,也可以被利用來支持完成 "軍事駕駛艙的多項任務 "的自適應自動化。
同樣地,研究和開發CHMI2來監測飛行員的認知工作量并提供適當的自動化來支持超負荷的機組。這些先進的系統應該能夠閱讀到達駕駛艙的命令,分析相關的威脅,并提出最 "適合任務 "的任務簡介和操作概念。同時,它們應該計算所有任務所需的數據,如燃料消耗、目標時間、"游戲時間"、路線、戰斗位置、敵人和友軍的部署、武器系統和彈藥的選擇、附帶損害估計以及適當的交戰規則等。然后,考慮到船員的認知狀態,將動態地選擇自動化水平和人機接口格式及功能。
在2009年的一項研究中,Cezary J. Szczepanski提出了一種不同的HMI優化方法,其依據是任務成功的關鍵因素是飛機操作員的工作量。如果工作量超過了一個特定的限度,任務就不能成功完成。因此,他提出了一種客觀衡量機組人員在執行任務期間的工作量的方法;具體來說,就是在設計人機接口時,要確保即使在最壞的情況下,工作量也不能超過人類操作員的極限。
將近11年后的2020年,北約科技組織成立了一個研究小組,以評估空勤人員是否有能力執行其分配的任務,并有足夠的備用能力來承擔額外的任務,以及進一步應對緊急情況的能力。該小組旨在確定和建立一種基于具體指標的實時客觀方法,以評估人機接口的有效性。
通過對神經生理參數的實時測量來評估認知狀態,有望支持新形式的適應性自動化的發展。這將實現一個增強的自主水平,類似于一個虛擬的機載飛行員,這將協助機組人員進行決策,并將他們從重復性的或分散注意力的任務中解放出來。自適應自動化似乎是實現最佳人機接口的一個重要組成部分。它有望支持高水平的自主性,以減少人類的工作量,同時保持足夠的系統控制水平。這在執行需要持續工作量的任務時可能特別重要。這預示著要全面分析與自主決策機相關的倫理和道德問題。然而,這已經超出了本文的范圍。
未來的戰斗將變得越來越快節奏和動態。新興的和顛覆性的技術有望徹底改變各級指揮官計劃和實施戰場行動的方式。人工智能、機器學習、增強的指揮和控制系統以及先進的大數據管理將大大有利于指揮官,改善SA,并極大地加快決策過程。現代軍隊設想未來的行動是完全集成的、連接的和同步的,這催生了MDO概念,以完善指揮官在多個領域快速和有效地分派/重新分派所有部隊的能力。
在概念和規劃階段的這種明顯的動態性也必須反映在執行階段。因此,必須假定,雖然指揮官能夠在很少或沒有事先通知的情況下重組和重新分配部隊任務,但機組人員也必須能夠快速、有效和安全地處理和執行這些新命令,很少或沒有時間進行預先計劃或排練。
這些新要求無疑將影響下一代軍用飛機駕駛艙的設計和開發。有必要采用一種新的方式來構思下一代人機接口,更加關注飛行員的真正認知能力。此外,需要新的解決方案來為機組人員提供更大的安全空間,同時將他們的工作量減少到可以接受的最大水平,使他們保持高效。他們應該結合任務優先級原則,審慎地考慮機組人員可以將哪些任務交給自主程序或系統。
本文重點討論了空中力量和飛行員在飛機上的工作量。可以預見,在現代情況下,所有平臺都將面臨同樣的挑戰。在行動的各個層面,所有的軍事人員都應該發展一種新的思維方式,以反映人機接口的更多整合和使用。要做到這一點,需要重新認識到人的因素的重要性。與民用航空類似,北約將需要制定和采用新的標準來指導未來軍用航空接口的設計。人機接口的改進必須包括所有的航空任務,并著重于實現實時規劃和執行。如果不仔細關注軍事飛行員所面臨的壓力,人機接口的改進只會讓飛行員更加安全,而在任務執行過程中的效率卻沒有類似的提高。開發通過實時測量神經生理參數來評估機組人員的認知狀態的方法,以及隨后開發新形式的適應性自動化,對于實現符合未來戰場要求的人機接口至關重要。
Imre Baldy,中校,于1988年加入匈牙利國防軍,并在匈牙利的'Szolnok'軍事航空學院開始了他的軍事教育。1992年,他作為武器操作員/副駕駛獲得了第一個少尉軍銜。1997年,他得到了他的第一個更高級別的任命,他加入了位于韋斯普雷姆的匈牙利空軍參謀部,在那里他獲得了國際關系和空軍防御規劃方面的經驗。2007年,他被調到塞克斯費厄爾,在那里建立了新的匈牙利聯合部隊司令部。除與直升機業務有關的其他職責外,他還負責空軍的短期規劃。他曾駕駛過米24、米8和AS-350直升機。從2018年7月開始,他成為JAPCC的載人空中/攻擊直升機的SME。
利維奧-羅塞蒂,中校,于1993年在意大利軍隊中被任命為步兵軍官。三年后,他轉入陸軍航空學校,并于1998年畢業,成為一名旋翼機飛行員。他曾擔任過排長、中隊指揮官和S3小組長。他曾駕駛過通用直升機。AB-206,AB-205,AB-212,AB-412,以及AW-129 Mangusta戰斗直升機。他曾多次作為機組成員或參謀被部署到巴爾干半島(阿爾巴尼亞,科索沃),中東(黎巴嫩,伊拉克)和中亞(阿富汗)。他還是一名合格的CBRN(化學、生物、輻射和核)專家,一名空中機動教官,他目前駐扎在JAPCC,擔任戰斗航空處的空地行動SME。
現代綜合防空系統(IADS)所帶來的日益復雜的反介入區域拒止(A2AD)威脅,加上高端隱形平臺所提供的日益強大的優勢,促使美國空軍高級領導人投資于徹底改變2030年及以后的空中力量。這一新設想的一個突出因素是蜂群武器,其目的是通過用大量低成本、可損耗的航空資產來壓倒國際航空運輸系統,并通過自主能力來解決這一挑戰。這項研究提出了一個框架,按照三個獨立的維度對不同級別的自主能力進行分類,即單獨行動的能力、合作能力和適應能力。使用模擬、集成和建模高級框架(AFSIM)構建了一個虛擬作戰模型,模擬以有人駕駛的穿透式轟炸機和自主巡航導彈群為特征的友軍空襲包與以A2AD角色行動的敵軍IADS之間的交戰。通過使用自主性框架作為設計實驗的基礎,評估了不同水平的自主性對攻擊包性能的影響。對實驗結果的分析揭示了哪些方面和什么級別的自主性對促進這一模擬場景的生存能力和殺傷力最有影響。
戰爭的技術性質正在迅速發展,人們越來越重視對大量數據的收集、處理和決策。隨著指揮與控制(C2)決策空間的復雜性增加,指揮系統根據現有信息采取行動的速度越來越成為一個限制性因素。具有不同程度的人與系統互動的自主系統為緩解這一不足提供了機會。美國2018年國防戰略(NDS)[18]明確要求國防部(DoD)"廣泛投資于自主性的軍事應用",作為促進大國競爭優勢的一項關鍵能力。
參與大國競爭的一個自然后果是反介入區域拒止(A2AD)環境在聯合沖突的所有方面擴散。從美國空軍(USAF)的角度來看,現代綜合防空系統(IADS)構成了卓越的A2AD威脅,這嚴重抑制了通過常規手段建立空中優勢的前景[2, 20]。這一挑戰促使部隊結構的優先事項發生了變化,因為將能力集中在相對較少的高端系統中的感知風險越來越大。美國空軍科學和技術戰略[26]設想,數量龐大的低成本、易受攻擊的航空資產將很快發揮曾經由數量有限的高價值資產完成的作用。這種大規模的蜂群的任務規劃和空戰管理(ABM)工作的規模可能很快超過人類的認知能力,這使得它成為非常適合自主性研究和開發的應用領域。
本研究試圖評估幾種自主巡航導彈群的行為對A2AD環境中藍方(友方)空中性能的影響。具體來說,所研究的A2AD場景考慮了紅方(對手)的IADS被藍方聯網的自主巡航導彈群吸引,以促進穿透式轟炸機的后續打擊。在任務規劃時沒有考慮到的突然出現的威脅,可能會進入該場景以增加紅色IADS的力量。蜂群必須在沒有外部反彈道導彈的幫助下,檢測并應對這些突發威脅以及任何其他對抗性任務參數的變化。A2AD場景的建模是使用模擬、集成和建模高級框架(AFSIM)完成的。
為了解決問題陳述,本研究將對以下問題提供答案:
1.具有自主反彈道導彈能力的巡航導彈蜂群能在多大程度上提高藍方空襲包在A2AD環境下的生存能力(即避免被紅方IADS發現和摧毀的能力)?
2.具有自主反彈道導彈能力的巡航導彈群能在多大程度上提高A2AD環境下藍方空襲包的殺傷力(即探測和摧毀紅方IADS元素的能力)?
本論文的其余部分包含四章,組織如下:第二章對包括自主性、A2AD環境、基于代理的建模和仿真(ABMS)以及實驗設計(DOE)等主題的參考材料進行了回顧。第三章建立了A2AD場景、AFSIM模型實現和實驗設計的結構,作為本研究的框架。第四章介紹了實驗模擬運行的結果和附帶的分析。最后,第五章討論了從這項研究中得出的結論,以及對未來研究方向的建議。
兵棋模擬是一種決策工具,可以為利益相關者分析的場景提供定量數據。它們被廣泛用于制定軍事方面的戰術和理論。最近,無人駕駛飛行器(UAVs)已經成為這些模擬中的一個相關元素,因為它們在當代沖突、監視任務以及搜索和救援任務中發揮了突出的作用。例如,容許戰術編隊中的飛機損失,有利于一個中隊在特定戰斗場景中勝利。考慮到無人機的分布可能是這種情況下的決定性因素,無人機在超視距(BVR)作戰中的位置優化在文獻中引起了關注。這項工作旨在考慮敵人的不確定性,如射擊距離和位置,使用六種元啟發法和高保真模擬器來優化無人機的戰術編隊。為紅軍蜂群選擇了一種空軍經常采用的戰術編隊,稱為line abreast,作為案例研究。優化的目的是獲得一個藍軍蜂群戰術編隊,以贏得對紅軍蜂群的BVR戰斗。采用了一個確認優化的穩健性程序,將紅軍蜂群的每個無人機的位置從其初始配置上改變到8公里,并使用兵棋方法。進行了戰術分析以確認優化中發現的編隊是否適用。
索引詞:優化方法,計算機模擬,無人駕駛飛行器(UAV),自主智能體,決策支持系統,計算智能。
兵棋是在戰術、作戰或戰略層面上模擬戰爭的分析性游戲,用于分析作戰概念,訓練和準備指揮官和下屬,探索情景,并評估規劃如何影響結果。這些模擬對于制定戰術、戰略和理論解決方案非常有用,為參與者提供了對決策過程和壓力管理的洞察力[1]。
最近,無人駕駛飛行器(UAVs)作為一種新的高科技力量出現了。利用它們來實現空中優勢可能會導致深刻的軍事變革[2]。因此,它們的有效性經常在兵棋中被測試和評估。
由于具有一些性能上的優勢,如增加敏捷性、增加過載耐久性和增加隱身能力,無人機已經逐漸發展起來,并在許多空中任務中取代了有人系統[3]。然而,由于戰斗的動態性質,在視覺范圍之外的空戰中用無人系統取代有人平臺是具有挑戰性的。在空戰中,無人機可以被遠程控制,但由于無人機飛行員對形勢的認識有限,它將在與有人平臺的對抗中處于劣勢。然而,這種限制可以通過自動戰斗機動[4]和戰術編隊的優化來克服。此外,使用無人機可以允許一些戰術編隊和戰略,而這些戰術編隊和戰略在有人駕駛的飛機上是不會被考慮的,例如允許中隊的飛機被擊落,如果它有助于團隊贏得戰斗。文獻中最早的一篇旨在優化超視距(BVR)作戰中的飛機戰術編隊的文章[5]表明,空戰戰術是用遺傳算法(GA)進行優化的候選方案。該實施方案采用分層概念,從小型常規作戰單位建立大型編隊戰術,并從兩架飛機的編隊開始,然后是四架飛機,最后是這些飛機的倍數。在模擬中沒有對導彈發射進行建模。當一架飛機將其對手置于武器交戰區(WEZ)的高殺傷概率(Pkill)區域內一段特定時間,簡化的交戰模擬器就宣布傷亡。事實證明,所提出的方法的應用是有效的,它消除了團隊中所有沒有優化編隊的飛機,并為整個優化編隊的飛機團隊提供了生存空間。
Keshi等人[6]使用了與[5]相同的分層概念,從由兩架飛機組成的元素中構建大型戰術編隊。模擬退火遺傳算法(SAGA)被用來優化編隊,使其能夠克服對局部最優解的收斂。對16架飛機的編隊進行了優化,提出的最優解表明SAGA比基本的GA更有效。最后,為了探索一個穩健的SAGA,對不同的馬爾科夫鏈進行了比較,事實證明自調整馬爾科夫電流更適合所提出的問題。
Junior等人[7]提出使用計算機模擬作為一種解決方案,以確定BVR空戰的最佳戰術,使擊落敵機的概率最大化。在低分辨率下使用通用參數對飛機和導彈進行建模,并改編了名為COMPASS的模擬優化算法,模擬了兩架飛機對一架飛機的BVR戰斗。低分辨率模型假定在水平面的二維空間內有一個均勻的直線運動。使用優化的戰術表明,擊落敵機的平均成功率從16.69%提高到76.85%。 Yang等人[8]提出了一種方法來優化飛機對一組目標的最佳攻擊位置和最佳路徑。該工作考慮到飛機能夠同時為每個目標發射導彈,并將飛機與目標有關的攻擊性和脆弱性因素作為評價攻擊位置的指標。一個高保真模擬被用來模擬每個導彈的飛機、雷達、導彈和WEZ的動態特性。這項工作并沒有解決在BVR戰斗場景中優化一組飛機對另一組飛機的編隊問題。
Li等人[9]提出了一種基于指揮員主觀認識的編隊優化方法,即在空戰中目標設備信息不確定的情況下選擇飛機編隊的問題。首先,計算戰斗機的戰斗力,這是通過指揮員的主觀認識評估目標戰斗力的基礎。戰斗機的戰斗力以能力的形式表現出來,包括攻擊、探測、生存能力、通信、電子戰、預警系統等。因此,通過采用前景理論和綜合模糊評估來優化空戰訓練。最后,一個應用實例證明了該方法在小規模空戰中的可行性。作者聲稱,利用戰斗力評估戰斗情況的能力為優化空戰訓練提供了一種新的方法。
?zpala等人[10]提出了一種在兩個對立小組中使用多個無人駕駛戰斗飛行器(UCAVs)進行空戰的決策方法。首先,確定兩隊中每個智能體的優勢地位。優勢狀態包括角度、距離和速度優勢的加權和。在一個團隊中的每個智能體與對方團隊中的每個智能體進行比較后,每個航空飛行器被分配到一個目標,以獲得其團隊的優勢而不是自己的優勢。為一對對立的團隊實施了一個零和博弈。對許多智能體參與時的混合納什均衡策略提出了一種還原方法。該解決方案基于博弈論方法;因此,該方法在一個數字案例上進行了測試,并證明了其有效性。
Huang等人[11]開發了新的方法來處理UCAV編隊對抗多目標的合作目標分配和路徑規劃(CTAPPP)問題。UCAV的編隊是基于合作決策和控制的。在完成目標偵察后,訓練指揮中心根據戰場環境和作戰任務向每架UCAV快速傳輸任務分配指令。UCAV機動到由其火控系統計算出的最佳位置,發射武器裝備。合作目標分配(CTAP)問題通過增強型粒子群優化(IPSO)、蟻群算法(ACA)和遺傳算法(GA)來解決,并在歸因、精度和搜索速度等方面進行了比較分析。在進化算法的基礎上發展了UCAV多目標編隊的合作路徑規劃(CPPP)問題,其中提供并重新定義了獨特的染色體編碼方法、交叉算子和突變算子,并考慮燃料成本、威脅成本、風險成本和剩余時間成本來規劃合作路徑。
Ma等人[12]開展的工作解決了在BVR作戰場景中優化兩組(R和B)無人機對手之間的優勢地位問題。一個無人機ri∈R對一個無人機bj∈B的優勢是通過ri和bj之間的距離、ri的導彈發射距離的下限和上限、ri的高度和bj的高度之差以及ri的最佳發射高度來估計的。決定性的變量是無人機在兩組中的空間分布和每架飛機在這些組中的目標分配。無人機在三維作戰空間BVR中的可能位置被簡化(離散化),通過立方體的中心位置來表示。每個無人機組都有一組立方體。優化問題被建模為一個零和博弈,并被解決以獲得納什均衡。
Ma等人[12]提出的工作沒有使用高保真模擬來分析無人機空間分布的選擇和分配給它們的目標對BVR作戰的影響。高保真模擬對飛機、雷達、導彈及其導彈的WEZ的動態特性進行建模。這些動態特性也影響到BVR作戰時每架飛機的行動觸發,因此也影響到最終的結果。例如,如果在兩組無人機之間第一次沖突后的時間窗口內考慮高保真BVR作戰模擬,新的沖突可能會發生,直到模擬結束。因此,每個在交戰中幸存的無人機將能夠選擇一個新的目標,這取決于可用目標的優勢值。在[12]中沒有考慮與無人機行為有關的不確定性。有關敵方無人機在戰術編隊中的確切位置及其導彈發射距離的信息是行為不確定性的例子。這兩個信息和上面描述的其他信息在BVR戰斗中是相關的:它們直接影響飛機之間的交戰結果。
在這項研究中,我們試圖解決文獻中發現的一些局限性,如低分辨率模擬、與敵人有關的不確定性的處理以及缺乏對優化解決方案的穩健性的確認,旨在提高兵棋結果的質量。我們的目標是驗證哪些藍色蜂群的戰術編隊可以在BVR戰斗中戰勝紅色蜂群。作為一個案例研究,RED蜂群使用了空軍經常采用的戰術編隊,稱為line abreast[13]。為了評估BLUE蜂群解決方案的穩健性,我們解決了新的問題,改變了RED蜂群每架飛機的位置,目的是估計新的RED蜂群編隊對BLUE蜂群的優化戰術編隊的效率的影響。
我們使用自主智能體和高保真計算機模擬來優化BVR戰斗中的無人機戰術編隊,考慮與敵人相關的不確定性,如戰術編隊中的位置誤差和導彈發射距離。統一行為框架(UBF)被采納為創建自主智能體的基礎。飛機和導彈在三維環境中用六個自由度(DoFs)建模。
該程序將在接下來的章節中進一步討論。
在可視范圍內執行空戰,需要飛行員在接近1馬赫的飛行速度下,每秒鐘做出許多相互關聯的決定。戰斗機飛行員在訓練中花費數年時間學習戰術,以便在這些交戰中取得成功。然而,他們決策的速度和質量受到人類生物學的限制。自主無人駕駛戰斗飛行器(AUCAVs)的出現利用了這一限制,改變了空戰的基本原理。然而,最近的研究集中在一對一的交戰上,忽略了空戰的一個基本規則--永遠不要單獨飛行。我們制定了第一個廣義的空戰機動問題(ACMP),稱為MvN ACMP,其中M個友軍AUCAVs與N個敵軍AUCAVs交戰,開發一個馬爾可夫決策過程(MDP)模型來控制M個藍軍AUCAVs的團隊。該MDP模型利用一個5自由度的飛機狀態轉換模型,并制定了一個定向能量武器能力。狀態空間的連續和高維性質阻止了使用經典的動態規劃解決方法來確定最佳策略。相反,采用了近似動態規劃(ADP)方法,其中實施了一個近似策略迭代算法,以獲得相對于高性能基準策略的高質量近似策略。ADP算法利用多層神經網絡作為價值函數的近似回歸機制。構建了一對一和二對一的場景,以測試AUCAV是否能夠超越并摧毀一個優勢的敵方AUCAV。在進攻性、防御性和中立性開始時對性能進行評估,從而得出六個問題實例。在六個問題實例中的四個中,ADP策略的表現優于位置-能量基準策略。結果顯示,ADP方法模仿了某些基本的戰斗機機動和分段戰術。
人工智能(AI)正在成為國防工業的一個重要組成部分,最近美國DARPA的AlphaDogfight試驗(ADT)證明了這一點。ADT試圖審查能夠在模擬空對空戰斗中駕駛F-16的人工智能算法可行性。作為ADT的參與者,洛克希德-馬丁公司(LM)的方法將分層結構與最大熵強化學習(RL)相結合,通過獎勵塑造整合專家知識,并支持策略模塊化。該方法在ADT的最后比賽中取得了第二名的好成績(共有8名競爭者),并在比賽中擊敗了美國空軍(USAF)F-16武器教官課程的一名畢業生。
由DARPA組建的空戰進化(ACE)計劃,旨在推進空對空作戰自主性并建立信任。在部署方面,空戰自主性目前僅限于基于規則的系統,如自動駕駛和地形規避。在戰斗機飛行員群體中,視覺范圍內的戰斗(dogfighting)學習包含了許多成為可信賴的機翼伙伴所必需的基本飛行動作(BFM)。為了使自主系統在更復雜的交戰中有效,如壓制敵方防空系統、護航和保護點,首先需要掌握BFMs。出于這個原因,ACE選擇了dogfight作為建立對先進自主系統信任的起點。ACE計劃的頂峰是在全尺寸飛機上進行的實戰飛行演習。
AlphaDogfight Trials(ADT)是作為ACE計劃的前奏而創建的,以減輕風險。在ADT中,有八個團隊被選中,其方法從基于規則的系統到完全端到端的機器學習架構。通過試驗,各小組在高保真F-16飛行動力學模型中進行了1對1的模擬搏斗。這些比賽的對手是各種敵對的agent。DARPA提供了不同行為的agent(如快速平飛,模仿導彈攔截任務),其他競爭團隊的agent,以及一個有經驗的人類戰斗機飛行員。
在本文中,我們將介紹環境、agent設計、討論比賽的結果,并概述我們計劃的未來工作,以進一步發展該技術。我們的方法使用分層強化學習(RL),并利用一系列專門的策略,這些策略是根據當前參與的背景動態選擇的。我們的agent在最后的比賽中取得了第二名的成績,并在比賽中擊敗了美國空軍F-16武器教官課程的畢業生(5W - 0L)。
自20世紀50年代以來,人們一直在研究如何建立能夠自主地進行空戰的算法[1]。一些人用基于規則的方法來處理這個問題,使用專家知識來制定在不同位置背景下使用的反機動動作[2]。其他的探索以各種方式將空對空場景編成一個優化問題,通過計算來解決[2] [3] [4] [5] [6]。
一些研究依賴于博弈論方法,在一套離散的行動上建立效用函數[5] [6],而其他方法則采用各種形式的動態規劃(DP)[3] [4] [7]。在許多這些論文中,為了在合理的時間內達到近似最優的解決方案,在環境和算法的復雜性方面進行了權衡[5] [6] [3] [4] [7] 。一項值得注意的工作是使用遺傳模糊樹來開發一個能夠在AFSIM環境中擊敗美國空軍武器學校畢業生的agent[8]。
最近,深度強化學習(RL)已被應用于這個問題空間[9] [10] [11] [12] [13] [14]。例如,[12]在一個定制的3-D環境中訓練了一個agent,該agent從15個離散的機動動作集合中選擇,并能夠擊敗人類。[9]在AFSIM環境中評估了各種學習算法和場景。一般來說,許多被調查的深度RL方法要么利用低保真/維度模擬環境,要么將行動空間抽象為高水平的行為或戰術[9] [10] [11] [12] [13] [14]。
與其他許多作品相比,ADT仿真環境具有獨特的高保真度。該環境提供了一個具有六個自由度的F-16飛機的飛行動力學模型,并接受對飛行控制系統的直接輸入。該模型在JSBSim中運行,該開源軟件被普遍認為對空氣動力學建模非常精確[15] [16]。在這項工作中,我們概述了一個RL agent的設計,它在這個環境中展示了高度競爭的戰術。
將一個復雜的任務劃分為較小的任務是許多方法的核心,從經典的分而治之算法到行動規劃中生成子目標[36]。在RL中,狀態序列的時間抽象被用來將問題視為半馬爾科夫決策過程(SMDP)[37]。基本上,這個想法是定義宏觀行動(例程),由原始行動組成,允許在不同的抽象層次上對agent進行建模。這種方法被稱為分層RL[38][39],它與人類和動物學習的分層結構相類似[40],并在RL中產生了重要的進展,如選項學習[41]、通用價值函數[42]、選項批評[43]、FeUdal網絡[44]、被稱為HIRO的數據高效分層RL[45]等。使用分層RL的主要優點是轉移學習(在新的任務中使用以前學到的技能和子任務),可擴展性(將大問題分解成小問題,避免高維狀態空間的維度詛咒)和通用性(較小的子任務的組合允許產生新的技能,避免超級專業化)[46]。
我們使用策略選擇器的方法類似于選項學習算法[41],它與[47]提出的方法密切相關,在這些方法中,子策略被分層以執行新任務。在[47]中,子策略是在類似環境中預訓練的基元,但任務不同。我們的策略選擇器(類似于[47]中的主策略)學習如何在一組預先訓練好的專門策略下優化全局獎勵,我們稱之為低級策略。然而,與關注元學習的先前工作[47]不同,我們的主要目標是通過在低級策略之間動態切換,學習以最佳方式對抗不同的對手。此外,考慮到環境和任務的復雜性,我們不在策略選擇器和子策略的訓練之間進行迭代,也就是說,在訓練策略選擇器時,子策略agent的參數不被更新。
為dogfighting場景提供的環境是由約翰霍普金斯大學應用物理實驗室(JHU-APL)開發的OpenAI體育場環境。F-16飛機的物理特性是用JSBSim模擬的,這是一個高保真的開源飛行動力學模型[48]。環境的渲染圖見圖1。
圖1: 仿真環境的渲染圖
每個agent的觀察空間包括關于自己的飛機(燃料負荷、推力、控制面偏轉、健康狀況)、空氣動力學(α和β角)、位置(本地平面坐標、速度和加速度)和姿態(歐拉角、速率和加速度)的信息。agent還獲得其對手的位置(本地平面坐標和速度)和態度(歐拉角和速率)信息以及對手的健康狀況。所有來自環境的狀態信息都是在沒有建模傳感器噪聲的情況下提供的。
每一模擬秒有50次行動輸入。agent的行動是連續的,并映射到F-16的飛行控制系統(副翼、升降舵、方向舵和油門)的輸入。環境給予的獎勵是基于agent相對于對手的位置,其目標是將對手置于其武器交戰區(WEZ)內。
圖2:武器交戰區(WEZ)
WEZ被定義為位于2度孔徑的球形錐體內的點的位置,該錐體從機頭延伸出來,也在500-3000英尺之外(圖2)。盡管agent并沒有真正向其對手射擊,但在本文中,我們將把這種幾何形狀稱為 "槍響"。
我們的agent,PHANG-MAN(MANeuvers的自適應新生成的策略層次),是由兩層策略組成的。在低層,有一個策略陣列,這些策略已經被訓練成在狀態空間的一個特定區域內表現出色。在高層,一個單一的策略會根據當前的參與情況選擇要激活的低層策略。我們的架構如圖4所示。
圖4:PHANG-MAN agent的高層結構
美國防戰略(NDS)確定了一個復雜的全球安全環境,其特點是對當前國際秩序的公開挑戰和國家間長期戰略競爭的重新出現。它要求建立一支致命的、靈活的、有彈性的和可快速部署的部隊,以對抗、威懾和贏得對所有對手的勝利。海軍執行CNO的指導,以我們的海上控制和力量投射的核心原則以及前瞻性的艦隊設計概念為中心,開展分布式海上作戰(DMO),提供NDS所需要的強大海上組成部分。作為NDS的組成部分,海軍航空兵強烈關注更新現有能力,使新的先進平臺投入使用,并通過加強戰術和程序來補充今天的作戰能力,以應對高端戰斗。
今天的航母攻擊群(CSG)--以大甲板、核動力航空母艦及其搭載的艦載機聯隊為中心--通過為艦隊指揮官提供多領域的軍事力量來實現這一創新的艦隊設計。艦載機在殺傷力、戰斗空間態勢和機動性方面為任何海上戰場帶來了無可比擬的貢獻,確保了海軍建立和維持海上控制、實現海上優勢和遠距離投射力量的能力。
海軍的固定翼和旋翼飛機、有人和無人飛機構成了世界上分布最廣的航空平臺,為CSG、遠征打擊群(ESG)和水面艦艇提供支持,提供廣泛的支持性任務。
《海軍航空遠景2030-2035年規劃》取代了《海軍航空遠景2025年規劃》,并反映了一些關鍵概念,以滿足CNO對海軍的愿景,即在海面上一擁而上,在每個軸心和每個領域提供同步的致命和非致命努力。
當海軍計劃建立和維持一支致命的、有彈性的部隊時,必須要有一個明確的路線圖,與此同時,也要有一個明確的計劃。
鑒于威脅快速發展,海軍航空必須投資并追求先進的技術和作戰概念,以便在戰爭的戰役層面上取得成功。美國防部長奧斯汀指出:"盡管在過去30年中進行了兵力結構的削減,但聯合部隊有必要的能力和實力來實施國防戰略(NDS)的優先事項并應對今天的威脅。在國會的支持下,國防部將通過繼續投資聯合部隊的戰備和部隊現代化,以及加快對人工智能(AI)、機器學習(ML)和其他先進技術的投資,提高聯合部隊的戰斗潛力。這些投資,加上盟友和合作伙伴的合作,將優化部隊結構,產生一支能夠威懾或擊敗對手的有戰斗力的聯合部隊。"
海軍航空的先進技術包括:
無線電頻率(RF)和紅外線(IR)信號降低技術
增強被動和主動殺傷鏈
載人/無人機組隊(MUM-T)
MUM-T減少了駐扎在CVW內的有人飛機的風險,同時也提高了性能、容量和生存能力。無人機系統(UAS)將在未來的機翼和分布式水面艦隊中扮演不同的角色,如加油、通信中繼、后勤、空中電子攻擊、打擊和ISR&T等任務。
MQ-25將是海軍第一個基于航空母艦的無人平臺,并將增加CVW的殺傷力和覆蓋范圍,作為一個油輪,它具有輔助ISR作用。
MQ-4C "海獅"在2020年1月實現了早期作戰能力(EOC),通過人機和自主團隊提供持久的海上ISR&T。它將按計劃在2023年實現初始作戰能力(IOC)。當與任務管理工具配對時,如Minotaur與IFC 4多信息配置,"海獅"將提供傳感器的敏捷性,以定位、跟蹤、分類、識別和報告感興趣的目標。
MQ-8C "火力偵察兵 "無人機系統將在不久的將來首次部署先進的雷達、Link 16和Minotaur任務系統。
正在推進物資和非物資解決方案,以加強MQ-8、MH-60和瀕海戰斗艦之間的互操作性。納入Link 16的信息傳遞以及Minotaur的整合,將提高分布式水面艦隊的有機瞄準能力,并提高戰斗空間態勢感知。
提高速度和射程--推進器解決方案在為先進任務系統提供動力和冷卻的同時,還能提高速度、射程和續航能力(即可變循環發動機)。
長距離、高容量和高超音速武器--下一代武器不僅要擴大空對空和地對空的覆蓋范圍,而且要同時擊敗機動空中目標和地對空防御。這可以通過增加運動量(即高超音速)和/或其他破壞性技術(如定向能武器)來實現。
減少決策時間--通過納入自動化、最佳機組-機隊交互和利用人工智能(AI)和機器學習(ML)的團隊化有人/無人部隊,推動戰術的簡單化。
電磁機動戰(EMW)能力--對抗敵人殺傷鏈和防空系統的能力。
網絡能力--對抗敵方網絡效應的能力,同時加強網絡能力和平臺。
先進的網絡--海軍戰術網格(NTG),具有彈性的可生存的波形。
福特級航空母艦--設計用于支持這些和其他技術到未來的發展。
在海軍航空部門實現這些技術革新的過程中,與工業界合作是至關重要的。與商業企業合作必須包括對開放架構的明確需求,避免獨特和專有的硬件和軟件,以及開發、測試和實施,推動分段而不是整體的變化。這種聯盟和合作將在正確的時間為正確的理由加速正確的變革。
"我們的武裝部隊作為世界歷史上最有能力的軍隊,已經配備了人員、訓練、裝備,并準備好響應國家的號召。" -美國防部長勞埃德-J-奧斯汀三世
當海軍航空展望未來時,很明顯正面臨著一個快速演變的威脅,需要大量的部隊現代化。領導層必須采取大膽的行動并做出艱難的選擇,以產生在各種沖突中獲勝所需的變化。這將需要重新關注海軍所需的能力、容量、戰備和訓練,以提高和保持作戰優勢。
海軍航空將接受可負擔性。通過明智地應用資源和進化的投資戰略,海軍航空2030-2035年遠景規劃概述了一種在所有戰爭領域提供完整的殺傷鏈的方法,有助于在未來幾年內保證進入、權力投射和海上控制。今天為2035年開發和采購的航空機隊是一個混合體:互補的第四代和第五代飛機;NGAD FOS;有人和無人平臺;以及網狀的傳感器和武器,以確保海軍能夠決定性地擊敗日益先進的近距離威脅。海軍航空兵必須能夠用下一代飛機在更遠的距離和更快的速度對任何目標提供精確的效果。
如果我們堅持這一愿景,海軍航空兵將能夠整合海基和陸基飛機--有人駕駛和無人駕駛--以提供一支持久、靈活、可調整的部隊,具有提供穩定存在、緩和地區緊張局勢或使用武力向我們的對手施加代價的靈活性和響應性。
縱觀其歷史,海軍航空兵一直處于海戰的戰術、作戰和戰略創新的前沿。空軍司令部的設想延續了這一傳統,并保留了海軍航空兵給我們國家帶來的作戰優勢。
本研究論文使用問題解決框架,研究了美國武器系統如何在采購生命周期的操作和支持階段陷入持續的陳舊和停滯循環,并提供了解決這種情況的方案。一些美國武器系統保持著它們最初在幾十年前投入使用時的能力。關鍵的發現,如厭惡風險的文化、系統要求低于計劃目標備忘錄的切割線、對財務指導的誤解、嚴格的維持法規、繁瑣的采購流程以及高于必要的決策,都被認為是導致根本問題的原因。這篇研究論文提出了幾個解決方案,解決了部分包容性的問題。對解決方案的整體可行性、對作戰人員的好處以及與實施相關的任何潛在風險進行了權衡。最后的建議包括鞏固和利用財務條例對作戰人員的好處,允許增加運營和維護資金的靈活性,允許在F3I重新設計中增加靈活性和性能,盡可能利用領先的商業技術,以及改變維持的心態,從保持準備狀態到保持相關性。結論強調,美國空軍在技術上落后于近似對手,高級領導人必須像對手一樣思考,以確保美國的法規不會抑制空軍比敵人更快地穿越OODA循環的能力。
自朝鮮戰爭以來,美國在每次交戰中都保持著空中優勢;然而,一些跡象表明,空中優勢在未來的沖突中可能不再有保障。據報道,他們最新的S-500防空導彈系統成功擊中了近300英里外的目標。中國在過去十年中對其軍事進行了大量投資,現在已經達到了一個關鍵的自信點。
這個問題可能源于美國如何運作和資助其軍事項目。美國空軍將 "維持 "定義為維持一個武器系統的現有基線能力。任何改進武器系統超過其現有性能閾值的手段都被認為是開發工程的努力,需要從研究開發測試和評估(RDT&E)撥款中獲得資金。許多系統一旦投入使用就不會獲得RDT&E資金,通常在其生命周期的剩余時間內由運營和維護(O&M)撥款資助。由于對現行財務條例的嚴格解釋,財務經理通常會拒絕使用運營和維護資金來提高系統能力和應對不斷變化的威脅的創造性努力。這使得綜合產品小組(IPTs)沒有什么選擇,只能對他們的武器系統進行意義不大的改變,以保持它們在操作上的相關性。
美國不僅在做錯誤的財務決定,而且在做這些決定時也很緩慢。在過去的幾十年里,采購時間周期已經增加。據美國空軍高級領導人目前的估計,從授予合同到投入使用一個系統的時間超過10年。美國的對手在采購周期上的運作速度至少是其兩倍。在過去的二十年里,一些主要的國防采購項目(MDAP)已經被取消。事實上,國防部(DOD)已經在那些永遠不會投入使用的項目上花費了超過460億美元。
為了解決這個問題,新的倡議,如第804條快速采購和破解國防部5000號文件正受到相當大的關注。雖然它們不能解決撥款問題,但它們試圖縮短采購時間周期。在幾十年來成本成為采購決策的主要因素之后,速度現在被強調為主要考慮因素。使用問題/解決方案框架,本文將研究美國武器系統是如何陷入陳舊和停滯的循環中的,以及可以實施哪些解決方案來有效維持美國武器系統。
本文將首先闡明這個問題,描述綜合維持活動組(CSAG)和空軍維持中心(AFSC)內的幾個低效的供應鏈政策。然后,它將討論系統過時和對商業技術的依賴,接著是國防部緩慢的采購過程。問題部分最后將詳細分析當前的撥款限制以及美國空軍的幾個文化問題。
解決方案部分將首先定義具體的評價標準。該文件將提出幾個潛在的解決方案,以及建議的行動。然后將根據規定的標準對每個解決方案進行詳細評估,包括實施中的任何潛在風險。還將討論其他被考慮但未被推薦的解決方案。最后,本文將對問題進行快速總結,提出最終建議,以及為什么這項研究與美國空軍有關。
美國米切爾研究所
米切爾研究所就航空航天力量對美國全球利益的貢獻進行教育,為政策和預算審議提供信息,并培養下一代思想領袖,以利用在空中、太空和網絡空間運作的優勢。
作者:Douglas A. Birkey
Douglas A. Birkey是米切爾航空航天研究所的執行主任。他是航空航天動力技術、歷史和國防資源方面的專家。作為一名經驗豐富的國會山工作人員和政府關系專家,Birkey撰寫了許多為國防立法提供信息的文件,并就航空航天和國防問題撰寫了大量的文章。在成為米切爾的執行主任之前,Birkey是空軍協會的政府關系主任。Birkey擁有喬治敦大學的文學碩士學位。
對相關指揮與控制的驅動力在于一個簡單的目標:賦予高度有效的航空航天戰斗力。
指揮與控制的設計必須在各種作戰環境中都能發揮作用。
創建一個成功的先進作戰管理系統(ABMS)和聯合全域指揮與控制(JADC2)的方法將需要空軍利用先進的技術,如第五代飛機融合和機器學習。
高速、高空載人指揮與控制、情報、監視和偵察(C2ISR)傳感器平臺可以提供補充性的 "觀察"和基于網絡的決策洞察力。
一個適當的分層指揮層必須確保所采取的行動將產生最佳的預期效果,以實現指揮官的意圖。
美國空軍正處于發展指揮與控制(C2)能力的重要關頭。在先進作戰管理系統(ABMS)和聯合全域指揮與控制(JADC2)計劃的支持下,空軍正在通過利用人工智能和機器學習等新興技術,努力推進其C2架構的現代化。面對對手造成的高度威脅環境,這些投資對空軍在未來沖突中的運作和獲勝至關重要。然而,這一進展要求采取整體的風險緩解方法,將創新、作戰上的成熟系統和備份冗余融合在一起。
在過去的二十年里,網絡連接、高保真傳感器、遙控飛機(RPA)持續監視等領域的技術進步以及計算能力的巨大提升,使戰斗邊緣的態勢感知和決策取得了地震般的進步。ABMS在這些成果的基礎上,利用機器學習和自動化,快速處理、過濾和引導來自分布式傳感器網絡的信息給射手,建立伙伴關系,以便在正確的時間和地點提供最佳效果。
在實現現代化的過程中,空軍不能冒險忽視空戰管理人員在C2架構中發揮的寶貴作用。雖然連接性、自動化和處理能力是至關重要的工具,但仍然需要人的判斷和參與,特別是在高度復雜、動態的任務中,準確的洞察力對管理風險至關重要。事實上,空軍應該研究如何在ABMS架構中提升人類C2操作員的地位。它可以通過延長現有C2ISR飛機(如JSTARS和AWACS)的壽命,或用商業部門目前正在開發的新型超音速飛機來取代這些老化的平臺來實現。它還應該研究替代性空中作戰地點(即機載空中加油機)為空戰管理人員提供的潛力,以確保它們在整個作戰空間中適當部署。這些方法將減輕過度依賴擴展通信網絡的風險。為了最大限度地發揮新技術帶來的優勢,空軍必須為其C2能力的現代化制定一個分層戰略,其中專業人員仍然是核心。
衡量空軍作戰潛力的優劣,往往與它的飛機庫存規模交織在一起。然而,盡管數量肯定很重要,但僅靠飛機并不能產生有效的空中力量。它需要健全的戰略、有效的作戰概念和指揮官意圖的準確執行相結合,才能將這些工具的潛力轉化為實際任務的完成。這正是為什么信息優勢、連接和指揮與控制(C2)是美國空軍現代化的首要任務之一。正如前空軍參謀長戴夫-戈德費恩將軍(退役)所解釋的那樣:"未來戰斗勝利將較少地取決于個人能力,而更多地取決于聯盟領導人所使用的互聯網絡的綜合實力。" 換句話說,成功的關鍵在于了解作戰環境,并在適當的時間和地點采用正確的資產組合,以達到最佳的預期效果,同時盡量減少自己的脆弱性。這就要求美國部隊比對手能更快、更準確地獲得戰區態勢感知,保持強大和可靠的連接,并有能力迅速將信息轉化為適當的行動。它還需要在行動的每個層面進行積極的領導,以確保指揮官的任務意圖在一個動態的戰斗環境中得到實現。
今天,空軍在實現這些能力方面正處于一個重要關頭:在推動創新、技術和指揮與控制的需要之間取得平衡。由于新技術和日益致命的威脅環境要求,以機器速度分配信息、連接性和C2對未來作戰的概念正在迅速演變。空軍領導人呼吁建立一個廣泛的新系統,以最大限度地利用新興信息技術提供的機會,使美國的作戰人員在未來的戰斗空間中獲得決策主導權。這一努力的技術手段被稱為先進作戰管理系統(ABMS),聯合全域指揮與控制(JADC2)是更廣泛的部隊管理結構。在急于使這一領域的活動現代化的過程中,空軍有可能過度關注其未來網絡的技術方面,而沒有對支撐戰爭中有效決策的基本要素--指揮與控制給予同樣的考慮。空軍領導層在討論這項工作時對網絡技術的壓倒性關注反映了這種不平衡。僅僅購買一種新的工具并期望獲得特定的結果而不考慮更廣泛的任務參數是不夠的。
本政策文件認為,現在是空軍擴大談話范圍的時候了,不要再談具體的技術,而是要決定C2重心在這個新系統中的位置,它們將是什么樣子,以及作戰人員將如何在整個沖突范圍內有效地使用它們。C2主要是人類的努力,它可以得到技術的幫助,但還不能被技術所取代。僅僅建立更好的網絡和利用新的能力,如人工智能(AI)、自動化和機器學習,不會產生有效的C2。它需要一個由作戰級別的指揮官、彌合作戰和戰術鴻溝的空戰管理人員以及獲得相關信息的機組人員組成的生態系統,以獲得任務結果。這些都是具體的職能,必須在整個戰斗空間中適當分層,以確保他們能夠有效地與任務伙伴聯系并執行各自的任務職能。目前空軍的C2計劃缺乏有關這一結構的明確作戰概念(CONOP)。
除此之外,在匆忙開發新系統的過程中,空軍決不能用一套漏洞換取另一套漏洞。進展需要一個整體的風險緩解方法,將創新、操作上成熟的系統和后備冗余結合起來。一個主要圍繞著太多技術而建立的戰略是一個危險的戰略,它依賴于近期的、雄心勃勃的、同時進行的創新。鑒于未來預算環境的不確定性,這種情況甚至更具挑戰性--支撐陷入意外問題的項目的資源可能無法獲得。解決方案還必須涉及所有可能的任務情景,而不僅僅是威脅范圍的一部分。
與作戰有關的信息、通信系統和有效的C2的重要性并不是一個新概念。這些要素長期以來一直是航空航天力量的基礎性要求。歷史強調,這是空軍必須做好的事情。
任何質疑這一點的人都應該反思1940年的夏天,當時德國剛剛占領了法國,準備入侵英國。空中攻勢是進攻的第一個組成部分。皇家空軍(RAF)處于一個極具挑戰性的位置,擁有446架作戰飛機,而德國在英吉利海峽對岸集結了3500架作戰飛機。當德國空軍空襲開始時,皇家空軍的相對實力被迅速削弱。在1940年8月8日至8月18日的10天里,皇家空軍損失了154名飛行員,只有63名來自訓練中隊的綠色飛行員可以用來填補傷亡人員。 盡管有這些壓倒性的困難,英國部隊還是取得了勝利。雖然影響這一結果的因素有很多,但有三個因素被證明是至關重要的,它們確保了皇家空軍令人難以置信的有限的戰斗機能夠以最具決定性的方式被使用:一個強大的雷達和觀察員形式的傳感器網絡;一個語音通信網絡;以及一個高度集成的C2事務,經過培訓的人員收集聯合的傳感器輸入,融合這些數據,并將可操作的信息傳達給戰斗機飛行員。直截了當地說,信息、連接和C2在關鍵時刻拯救了英格蘭。
令人鼓舞的是,空軍將ABMS和JADC2等計劃列為首要任務,因為它反映了對信息、連接和C2重要性的認可。然而,這種成功需要一種超越網絡的整體方法。
C2的動力在于一個簡單的目標:高度有效的航空航天戰斗力。美國空軍(USAF)發現自己的處境與1940年夏天的英國人相似--裝備的資源太少,面臨的威脅越來越大。正如前空軍部長芭芭拉-巴雷特所解釋的那樣,"目前組成的空軍太小,無法完成國家對它的期望。" 事實上,今天的美國空軍自1947年成立以來,從未派出過如此小而老的飛機部隊。無論是在 1962 年古巴導彈危機之前超過三分之二的轟炸機部隊,還是看主要在1989年萬維網發明之前獲得的戰斗機庫存,美國空軍都缺乏現代高端沖突中日益需要的能力和實力。具有足夠的隱身能力和挑戰同行競爭者所需的信息屬性的機體是非常短缺的--目前只有20架B-2、186架F-22和大約300架F-35。美國空軍的其他作戰部隊由幾千架非隱身的、具有過時的以信息為中心的工業機體組成。
這種能力上的不足非常嚴峻,因為全球威脅環境呈現出令人難以置信的廣泛危險,在這種情況下,最佳的部隊部署將是至關重要的。中國和俄羅斯在威脅譜的高端向美國施壓;像朝鮮和伊朗這樣的中等重量級地區大國由于其核計劃而構成了巨大的威脅;而像伊斯蘭國(ISIS)和基地組織這樣的非國家行為者正在繼續破壞全球關鍵地區的穩定。
由于缺乏足夠的工具,領導人可能沒有足夠的策略選擇來應對這些威脅。2018年,空軍承認長期以來向空軍人員征收的無經費任務,宣布需要增加到386個作戰中隊。總有一天,安全要求必須有足夠數量的飛機和空間系統,以便在面對眾多的、同時存在的全球威脅時提供核心數字能力。
這些兵力結構的不足使空軍更需要建立一個信息系統、連接和C2能力的事業,使其每個武器系統的戰斗潛力最大化。這將需要一種高度相互依存、相互補充的方法來最大限度地發揮任務效果。這就像一個三條腿的凳子,事業的每一條腿都是任務成功的必要條件。以一種更全面的方式來說明:
它還涉及建立實現預期效果的多種途徑,并為對手提供一個高度分解的殺傷鏈事務,在那里沒有中心的脆弱點。
認識到這一必要性,空軍積極尋求在ABMS和JADC2中利用傳感器技術、數據處理、機器輔助決策工具和連接的最新發展。這些工作是該部門的首要目標。前空軍參謀長大衛-戈德費恩(David Goldfein)將軍規劃了這個新的方向,他解釋說:
如果空軍要保持一個可行的、相關的和有能力的戰斗力,戈德費恩將軍所描述的以及他的繼任者查爾斯-"CQ "布朗將軍所繼續追求的事務是不可協商的。正如雷達和處理能力等技術重塑了作戰航空,這種高度網絡化的空中指揮與控制結構也將如此。正如第25任空軍部長巴雷特所解釋的那樣,"現代化的關鍵是連接,能夠即時獲得可用的信息"。
然而,為使這種新的載體取得成功,對話需要超越其對連通性的關注。網絡顯然是至關重要的工具,但它們本身并不是作戰目的,也不會神奇地體現出C2。為了滿足未來的威脅環境,空軍必須為其ABMS和JADC2的愿景考慮三個總體原則:
1.指揮與控制設計戰略必須將技術和人的智力結合起來,以確保指揮意圖轉化為預期行動。原始數據的快速流動或潛在可操作信息的存在并不能體現任務的完成;它需要一個適當的分層決策網絡--從戰略層面到戰役層面,再到戰術層面的行動,以確保指揮官的意圖得到滿足。連通性、自動化和處理能力是這方面的關鍵工具,但仍然需要人的判斷和參與。這在高度復雜的動態任務中尤其如此,準確的洞察力對管理風險至關重要。C2行為者必須在整個戰斗空間中有效地分層,以符合其分配的職責。這將加強與相關數據流和任務伙伴可靠連接的機會。
2.指揮與控制設計必須允許空軍在快速吸收高杠桿系統和流程的過程中,仔細管理過于激進的創作戰作風險。今天的空軍正在以幾十年來未見的規模進行創新。鑒于冷戰后的采購假期,9/11事件后對低端技術威脅的過度關注,以及2011年預算控制法案的有害影響,最近推動擁抱新技術和新概念的潛力,對于空軍有能力面對現在和未來幾十年不斷增長的威脅至關重要。然而,關鍵是不要把技術潛力與保證近期和中期的作戰可靠性混為一談。如果結果未能達到時間表或功能目標,必須存在可行的后備能力。新的解決方案還必須尋求提供替代行動方案,以實現任務目標,以防對手能夠擊敗修訂后的方法。一個漏洞不應該被用來交換另一個漏洞--目標必須集中在廣泛的改進上。這是一個常識性的風險管理策略,在另一個解決方案在最苛刻的壓力下被測試并證明其作戰能力之前,一個解決方案集不會被淘汰。
3.指揮與控制設計必須在各種作戰環境中同樣有效。雖然大國沖突的高峰需求必須推動投資的優先次序和相關的作戰概念,但由此產生的能力設計選擇也必須是靈活的,以便在所有的作戰環境中實現任務結果。大量的軍事行動仍然發生在威脅譜的中端和低端。解決方案必須能夠在不損失指揮與控制的速度和有效性的情況下跨越威脅譜進行擴展。人們不會開著F1賽車去雜貨店--必須存在各種選擇,以使任務要求與現有工具相匹配。
這樣的設計原則在目前的公共對話中并不突出,相反,人們的注意力集中在應用于狹窄作戰場景的純技術架構上。形式必須服從功能,如果不追求這種平衡的方法,可能會導致一個非常不理想的系統。
美國防部的戰區作戰管理核心系統(TBMCS)的經驗在這方面是一個警世故事。在20世紀90年代末和21世紀初,TBMCS項目被設計為使空中部分的規劃和控制自動化,但它違反了上述所有三個設計原則。正如空軍技術研究所的一份評估報告所宣稱的那樣,"政府沒有為承包商提供一個操作概念、關鍵操作性能參數或系統規范。" TBMCS項目試圖建立一個由聯合子程序組成的軟件工具,它將有效地對航空部門進行軟件編碼,進入一個新的自動化時代。人機交互是一個次要的問題。它很難理解,很難培訓新用戶,而且使用起來非常有挑戰性。它也是圍繞著一個高端操作的模式建立的,它將堅持一個僵硬的空中任務指令計劃周期。
這與在阿富汗和伊拉克發生的情況完全相反,這兩個國家涉及到高度動態的行動情況,信息的快速處理推動了時間敏感的目標選擇。 在這些行動中,許多TBMCS的子組件被證明是完全不足的。例如,位于卡塔爾支持聯合作戰的美國油輪計劃小組發現TBMCS的燃料計劃程序無法使用,于是退而求其次,通過艱苦的手工計算來確定油輪計劃。然后他們不得不將計算結果手動輸入系統,以使其出現在每日的空中任務指令中。這是一個技術驅動流程的惡劣的例子,而不是務實的任務要求。
MITRE對該計劃的評估研究報告說得好。"采購界有一個烏托邦式的愿景,那就是一個單一現代化的、集成的、聯合的C2系統,但沒有操作人員的要求來支持它,也沒有描述該系統如何作為單一集成能力工作的CONOPS。"
ABMS和JADC2決不能冒同樣的命運風險。美國政府問責局最近一份關于ABMS的報告提出了這種擔憂,特別是關于被充分理解的項目計劃要求的概念。"ABMS要求的唯一現有文件存在于2018年的ABMS初始能力文件中,該文件一般側重于取代AWACS所需的能力。該文件沒有涉及擴大的JADC2要求和ABMS最終有望實現的能力"。這表明在經過時間考驗的信息、連接和C2原則的基礎上還有增長空間。
創建一個成功的ABMS和JADC2方法將要求空軍利用先進的技術,如第五代飛機融合、機器學習和無縫系統。它還將要求該軍種的戰術C2專家--它的空戰管理者在整個戰斗空間內運作,包括在其前沿。目前的C2ISR飛機,如AWACS和JSTARS,已經不斷證明了空戰管理者在復雜、高度動態、大規模任務中的價值。
美國空軍的下一代空戰管理人員應該駐扎在特定任務的飛機上,這些飛機具有開放的任務系統架構,高度模塊化的傳感器可以根據需要進行更換,高水平的機載處理,有機的傳感器和先進的網絡連接。除此之外,這些飛機應尋求利用超音速飛行領域有希望的發展成果。多家公司正在設計超音速飛機,它將允許攜帶任務系統和空戰管理人員。這些飛機將具有明顯的速度、高度和生存能力的優勢,應該擴大它們可以飛行的任務類型,增加它們的傳感器的覆蓋范圍,并明顯減少它們被擊落的風險。除了減少在像太平洋這樣的大區域內的運輸時間外,以持續的超音速飛行將使ABMS的效果在一定數量的飛機上能以更靈敏的方式進行響應。
將超音速戰斗管理飛機作為空軍ABMS的一部分,將幫助空軍填補其在信息、連接和C2能力方面的不足。它將在ABMS結構中提供一定程度的冗余,確保指揮與控制從在戰斗空間關鍵區域運作的戰斗管理機中受益。一架具有擴大作戰范圍的戰斗管理飛機補充了像F-22、F-35和B-21這樣的第五代飛機給戰斗空間帶來的信息屬性--特別是只有它們可以安全運行的高度競爭地區。再加上下一代無人駕駛的傳感器-射手和天基傳感器,ABMS的未來愿景看起來非常強大,但仍然允許為較低層次的突發事件或突發的挑戰抽調人員。
最后,美國空軍的ABMS和JADC2愿景的成功將歸結于該系統收集信息、處理信息和管理團隊成員的能力,以便在一個高度動態的環境中最好地實現任務目標。這些都是自戰斗航空早期以來一直在發揮作用的目標。技術正在發展實現這些功能的方式,但基本原理保持不變。信息、連接和C2等要素必須被理解為獨立的、單獨的,盡管是高度相互關聯的任務資產,并以此進行管理--需要平衡。未來的成功將要求擁抱任務的成熟組成部分,同時利用先進技術將該功能的有效性、效率和復原力提升到一個新的水平。
注:美國防部對C2的定義
(來源: DOD Dictionary of Military and Associated Terms (as of 2021), p. 40.)
指揮:武裝部隊中的指揮官根據軍銜或任務對下屬合法行使的權力。
指揮和控制:指適當指定的指揮官在完成任務的過程中,對分配的和附屬的部隊行使權力和指導。
指揮與控制體系:指揮官根據所分配的任務規劃、指導和控制部隊行動所必需的設施、設備、通訊、程序和人員。
理解美國空軍前瞻性的ABMS和JADC2愿景的最好方式是認識到信息、連接和C2在整個航空航天力量的歷史中的演變方式。在這一歷程中,我們看到了一系列進化的方法,從戰斗航空先驅時期的飛機在天空中漫游,只有極少的決策質量信息,到來自戰斗空間最前沿和高級領導層的壓倒性態勢感知和互聯性。
通常情況下,C2和信息(以情報、監視和偵察為幌子,或ISR)這兩個不同的實體被不適當地混為一談,好像它們是一個C2ISR,而連接通常被認為是這個結構中的一個沉默部分。然而,這三個組成部分是現代軍事行動的獨特特征。它們不應該被視為鎖定在一個固定的、統一的模式中,因為創新的速度和現代作戰環境的需求將使它們的參數迅速演變。從根本上說,這一切都歸結為利用任何能夠最大限度地了解情況的方法,在正確的時間和地點安排任務資產,以最好地實現預期的指揮目標,同時不造成不必要的脆弱性。這需要洞察力、判斷力和決策力。隨著時間的推移,C2、ISR和鏈接之間的關系和交互的變化主要集中在決策的規模、范圍和速度上,因為技術的進步推動了其變化。如圖1所示,這可以通過七個主要時代進行最佳總結。
圖1:過去110年中C2、ISR和連接性之間關系和交互的變化時間表。
一戰(WWI) | Opening of WWII | Early WWII | Early Cold War | Mid-Cold War | Early 2000s to present day | ABMS and JADC2 |
---|---|---|---|---|---|---|
C2的基本措施 | 由地面的傳感器、控制器和無線電通信授權的早期網絡化操作 | 基于飛機的傳感器與地面的傳感器和相關的C2功能配對 | 越來越復雜的傳感器網絡,先進的控制站,以及越來越自動化的數據傳輸 | C2控制功能向天空的過渡 | 分布式傳感器、處理能力和連接性創造了傳感器射擊綜合體 | 代表這一演變的下一步 |
沒有什么比第一次世界大戰的戰斗航空更能說明信息、連接和有效C2不足的概念了。由于缺乏關于敵機位置的任何形式的實時情報,戰斗機飛行員不得不依靠他們在空中目視發現對手。"黎明巡邏(dawn patrol)"一詞成為了飛機在空中尋找對手的同義詞。即使飛行員發現了他們的對手,他們也缺乏諸如無線電等手段來呼叫友軍支援。指揮官不得不使用大量的空中力量來達到其預期效果方面的知識不足。早期的轟炸機行動也是如此。正如第一次世界大戰的戰斗飛行員和未來的皇家空軍(RAF)空軍指揮官約翰-斯萊索(John Slessor)所解釋的:"我們的方法和技術,即使在戰爭結束時,也是非常原始的。在早期,甚至沒有投彈瞄準器這樣的東西,轟炸是通過'夾擊和碰運氣'的方法進行的。" 一架飛機的價值總是會受到影響,除非它在正確的時間和正確的地點發揮了作用。這使得飛行員們在很大程度上依賴于巨大數量來增加他們發現所需任務目標的幾率。
創新:基本的信息網絡。空軍對更好的決策信息的需求并沒有消失。在一戰后的幾年里,他們開發了傳感器、數據融合中心和信息網絡,為天空帶來有效的態勢感知和C2。這種投資在二戰期間被證明是非常有價值的,最著名的是1940年不列顛戰役。由于戰時預算緊張,皇家空軍擁有的戰斗機和訓練有素的飛行員太少,無法通過單純的數量來防范德國的空襲。皇家空軍必須確保它能在適當的時間和地點明智地集中為數不多的防御性資產來對付德國的空中攻擊。沿著英國東南海岸線的雷達站在德國轟炸機編隊穿越英吉利海峽時探測到它們。信息融合中心將解釋這些數據,將其與地面觀察員提供的額外報告相結合,在繪圖板上繪制德國編隊的位置,然后命令特定的皇家空軍戰斗機部隊上天。由于有一種被稱為 "識別敵我"(IFF)的特殊轉發器,空中的英國飛機可以很容易地與敵機區分開來。由于能夠區分皇家空軍戰斗機和敵方飛機,控制人員將向防空資產提供實時位置,以攔截德國轟炸機。這項事業與第一次世界大戰中的大規模黎明巡邏具有天壤之別。
地面電子輔助工具被證明對沖突雙方的轟炸人員都是有益的,他們各自使用無線電定向方法來引導各自的機組人員到指定的目標,并示意何時在目標點上空釋放炸彈。在沒有這種系統的情況下,英國分析家證實,英國皇家空軍轟炸機司令部的絕大多數夜襲都是在巨大的半徑范圍內投彈,距離預定目標5英里以上。
創新:基于飛機的傳感器。當雷達被安裝在夜間戰斗機上時,空中信息收集和C2的第三次重大迭代發生了,因為需要更多的信息保真度,而不是僅僅從地面站提供的信息,這是武器系統的開始。C2中心將防衛的戰斗機引向他們的目標,然后安裝在飛機上的雷達為攻擊提供最后的指導措施。飛行員的注意力現在是由他自己的眼睛或地面傳感器以外的東西決定的。這也產生了一個新生的網絡系統,在這個系統中,地面能力、飛機傳感器和作為融合中心的飛行員合作,以產生預期的結果。最初的應用在戰爭期間被各方擴大,包括在夜間和陰天條件下用雷達引導轟炸機。
創新:地基傳感器網絡和早期自動化的出現。當美國發現自己在冷戰初期面對蘇聯時,防空系統產生了空中C2的第四次重大發展。在大范圍內快速移動的威脅需要快速探測和緊密協調的攔截。沿著蘇聯配備核武器轟炸機最有可能襲擊美國的路線,建立了大規模的地面雷達系統。這些雷達將數據流向麻省理工學院開發的半自動地面環境(SAGE)防空系統,該系統包括多個中央控制設施,將原始輸入的數據處理成可操作的信息。這些中心然后直接連接到防空戰斗機部隊,它們構成了一個比二戰時存在的更大、更快、更復雜的系統。由于對速度的需求和必須快速進行的復雜計算的數量,自動化越來越多地取代了以前由人類執行的功能,以爭取時間效率。
作為這種對速度和精度需求的一部分,控制人員通過自動數據鏈路發送信息。這些傳輸雷達圖、目標信息和基本導航輸入的電磁手段允許分布式資產之間自動傳輸數據,并在很大程度上取代了無線電語音通信。到20世紀50年代末,數據鏈十分先進,以至于地面控制單元可以連接到防空戰斗機的自動駕駛儀并將其引向目標。從原始數據到所需輸出的快速處理給防空部隊帶來了決策速度的好處--在正確的時間和地點迅速集中可用的資產來對付非常快速、動態的對手。二戰時期的手動系統,雖然在理論上與冷戰時期的后繼者相似,但在涉及噴氣機速度的跨洲情況下,無法快速運作。
圖2:1972年,一架美國空軍EC121D"警告之星"飛機在泰國上空執行空中預警和控制任務。
創新:過渡到機載C2。這種快速決策的價值產生了C2進化的第五個時代。像空軍的EC-121 "警告之星 "和海軍的WF-2 "追蹤者 "這樣的飛機整合了監視雷達、通信和訓練有素的機組人員,為防空資產提供靈活的傳感器覆蓋、機載信息融合能力以及指揮和控制指導,這些飛機現在被稱為指揮、控制、情報、監視和偵察(C2ISR)系統。這些飛機專注于擴大美國本土的防御網,將傳感器和C2置于偏遠地區,如海洋上空,或置于前沿作戰地點。這些系統也可以在戰爭時期部署。
這些C2ISR飛機在1965年至1972年期間在東南亞上空的炮火中確定了他們的新角色。空軍和海軍的EC121飛機由于其大雷達孔徑,能夠跟蹤友軍和敵軍飛機。機上的技術人員能夠盤查和跟蹤敵機識別敵我的轉發器,從而提供有價值的位置數據。飛機上的語言學家還能夠監聽敵方的無線電傳輸,并提供進一步的相關數據,以幫助美國戰斗機飛行員成功地與敵方的米格機交戰并摧毀它們。將這種融合的機載C2ISR技術與舊的探測方法相比較,一名空軍EC-121機組成員解釋說:"我們能夠探測到我們以前沒有看到的飛機。意識到過去有那么多的飛機我們沒有看到,這有點嚇人。"
在這個時代,在北部灣的飛機和海軍艦艇之間還發展了多域的C2工作,收集、融合和傳遞重要的威脅數據。在泰國的那空帕儂空軍基地,美國運行著一個被稱為 "茶球"的C2系統,它可以處理信號情報、電子排放數據和雷達截獲的大量數據流。然后,它可以將它們結合起來,提供一個實時情況,幫助在正在發生的空戰中作出指揮和控制決策。
也不是所有的決策進展都發生在C2ISR專用系統中。像F-4 "幻影"、A-6 "入侵者 "以及后來的F-111 "土豚"、F-15 "雄鷹 "和F-14 "雄貓 "這樣的作戰飛機都是通過增加使用復雜的機載傳感器和計算能力來實現的。這種技術,加上更廣泛的C2ISR,使機組人員能夠執行更復雜、要求更高的任務,而且成功率更高。
然而,信息在戰斗空間中的提升有一個缺點。傳感器和C2結構的威力明顯增加,但數據卻以一種高度無序的方式被扔給了空軍人員。在功能和傳輸方面彼此完全分離的聯合系統,實際上是將空勤人員淹沒在太多的數據中,這些數據通過不連貫的音頻和原始的視覺手段流向他們。一個人類機組成員能夠吸收、處理并同時采取行動的數據實在是太多了。空軍F-4 "幻影 "飛行員、在越南上空執行過151次戰斗任務的老兵理查德-博羅夫斯基上校解釋了他在一次任務中面臨的數據飽和挑戰,這次任務幾乎使他喪生:
博羅夫斯基并不是唯一在處理這種數據洪流的人。著名的二戰王牌飛行員和越南期間第8戰術戰斗機聯隊的指揮官羅賓-奧爾德準將描述了類似的挑戰和管理數據流的即興手段:
一個人在某一時刻能夠聽到、看到、處理和勝任的行動只有這么多。只有當數據能夠隨時轉化為可操作的知識時,它才是有用的。
認識到這個問題,空軍和海軍在越戰結束后的幾年里,一直在研制下一代C2ISR飛機,這些飛機可以更加專注于處理數據流,使機組人員只需要知道滿足指揮官意圖所需的數據。由此產生的飛機包括空軍的E-3預警機和海軍的E-2鷹眼。時任空軍戰術空軍司令部司令的羅伯特-狄克遜將軍解釋了像AWACS這樣的系統所帶來的價值:
這種知識的價值是至關重要的,因為正如狄克遜進一步闡述的那樣,"對潛在的敵對空中活動的完美預見將使指揮官能夠在適當的時候以經濟和大規模的方式部署其部隊,以進行威懾或戰斗。我們將有時間進行思考、推理和行動,而不僅僅是反應"。數據轉化為信息并作為可操作的知識,是最好地利用現有部隊以完成任務意圖的關鍵。
E-3和E-2并不是越戰后幾年內開發的唯一以信息為重點的新資產。這個網絡中以地面為重點的部分是在20世紀80年代末和90年代初由E-8聯合監視目標攻擊雷達系統(JSTARS)構建的--這架飛機攜帶一個強大的以地面為重點的雷達,能夠跟蹤車輛、船舶和其他感興趣的物品;分析機上的數據;并通過戰略、作戰和戰術結構將感興趣的關鍵點傳遞給個體。為了說明這些系統的威力,E-8的雷達在一次任務中可以查看19,000平方英里的范圍,其雷達能夠探測到超過120英里的目標。
空軍用地基控制系統對這兩個系統進行了補充,這些系統結合了傳感器和與機載C2ISR飛機的聯系,以擴大視野。這些資產在部隊將長期駐扎并允許進入的地區提供態勢感知和指導。它們作為C2的一個分層部分,在后方梯隊作戰地點特別有用。在許多方面,它們就像駐扎在地面的預警機。
在C2層次中的AWACS、JSTARS和地面控制站之外,還有一個高級作戰指揮級別的中心,現在被稱為空中作戰中心(AOC),它提前幾天執行任務規劃,并在必要時為現場活動提供實時投入。它是空軍戰區空中控制系統(TACS)的高級元素,也是空軍部隊指揮官(COMAFFOR)為聯合部隊空中組成部分指揮官(JFACC)提供規劃和執行戰區范圍內空天力量設施的地方。當COMAFFOR同時也是JFACC時,AOC也是聯合空中作戰中心(JAOC)。在盟軍或聯盟(多國)行動的情況下,AOC也是一個聯合航空作戰中心(CAOC)。
從越南發展起來的系統提供了重大的進步,但在1991年的 "沙漠風暴 "行動中仍然遇到了挑戰。指揮中心--當時被稱為戰術空中控制中心(TACC)--是 "沙漠風暴 "空襲行動的策劃地。多個地面C2系統與空中C2ISR節點(如AWACS和JSTARS,它們也在戰術和作戰指揮層面提供實時指導)相結合,向TACC提供信息。單個作戰飛機也利用其機載傳感器和處理能力來保持其態勢感知。
當時TACC的C2流程和程序已經過時,無法跟上沖突的快速步伐。這就需要臨時的程序和變通方法來優化空戰。信息仍然難以獲取,許多信息被封鎖在作戰和戰術用戶之外--例如,及時的空間圖像。由于官僚決策程序旨在支持冷戰時期可能發生的交戰,如華沙條約組織的部隊通過富爾達峽谷入侵西歐,這些作戰和戰術層面的行動者缺乏對相關情報衛星的任務授權。在這種結構中,基于不斷變化的任務要求和信息共享的動態調整沒有被優先考慮。大多數任務仍然是根據預先計劃的任務、指定的時間和交戰路線來執行。實時的、動態的任務分配是罕見的。
圖3:2012年,美國空軍第963空降兵控制中隊的一架E-3飛機。
創新:過渡到分布式傳感器-射手綜合體。認識到在像 "沙漠風暴 "這樣的快節奏行動中指揮和控制的極端重要性,空軍在 "沙漠風暴 "之后和整個90年代開始對其C2結構進行現代化改造。在21世紀初,空天作戰中心(AOC)被賦予了自己的名稱,AN/USQ-163 Falconer,作為一個武器系統。先進的天基傳感器和遙控飛機(RPA)上的傳感器也逐漸進入這個分層系統,這要歸功于將這些信息從情報界過渡到作戰領域的技術和相關作戰概念。對于后者的發展,引入由武裝的、配備傳感器的和高度連接的RPA提供的持續監視,導致了一個真正統一的、綜合的傳感器-射手結構。這是信息、連接和C2之間相互作用演變中一個根本性的游戲規則改變者。
在2001年9月11日的襲擊之后,一場針對恐怖分子和一系列非國家行為者的不同類型的戰爭推動了新的信息、連接和C2需求。這些反恐行動引入了兩個不同的趨勢:希望瞄準短暫的目標點,同時盡一切可能限制附帶損害。這不僅推動了資產的微觀管理,而且使空軍傳統的C2理論從集中式控制/分布式執行轉變為集中式控制/集中式執行的做法。不做錯誤的決策成為壓倒一切的目標。
這在很大程度上是由信息、連接和C2的第六次重大發展實現的。網絡連接領域的技術進步、高保真傳感器、RPA的持續監視以及計算能力的巨大提升,使戰斗邊緣的態勢感知和決策取得了革命性的進展。這些技術也有助于模糊不同級別的指揮,因為它們使高級領導人能夠 "進入 "駕駛艙或實時觀察戰斗空間發生的情況,并指導最高戰術級別的決策。這種集中化減緩了C2的速度,因為行動者試圖最大限度地利用信息來指導無懈可擊的、近乎完美的動態行動。事實證明,追求完美的目標與追求勝利的目標大相徑庭,而且更難實現。
另一個趨勢是由于AN/USQ-163 Falconer AOC中的組織程序不合時宜,導致部隊協調不力。例如,AOC系統對ISR飛機和攻擊飛機使用不同的規劃程序。在技術允許傳感器-射手飛機的概念和高度整合的團隊時,對這兩種能力的分離規劃導致了錯失機會和任務的不優化。換句話說,"ISR "飛機可以執行攻擊任務,而 "攻擊 "飛機可以執行ISR,但既定的規劃程序不允許這種任務分配,這就導致了錯過協調和部署機會。據一位空軍C2專業人員說,因未優化的C2而錯失機會是慣例:
導致這類障礙的原因--至今仍然存在--是目前獵鷹空天作業中心設計的結果。該設計是圍繞 ISR 的單獨任務程序構建的,該程序使用稱為資源集成、同步和管理規劃工具 (PRISM) 的系統,并強制使用 TBMCS 的應用程序。這反映了一種過時的任務執行模式,必須在ABMS和JADC2中加以修正。美國部隊不能在未來的戰場上這樣操作,因為在未來的戰場上,他們的能力和實力都將被限制在極限。部隊高度減員的風險使情況更加緊張。規劃和任務分配過程應該合并,以確保統一和優化,無論飛機的分類。這反映了一個綜合的、協作的傳感器射擊的現實。技術已經使傳統的AOC組織結構變得過時。它要求改變為所有飛機--在某些時候也包括航天器--的綜合規劃和任務分配過程。
在回顧這段變革和創新的歷史時,重要的是要通過發揮三個核心要素的視角來看待它們--信息、連接和C2。處理能力等要素的進步從根本上影響了事業的速度和規模,但核心要素卻沒有改變。這強烈地表明,建立明天的系統將繼續需要在這三個方面進行平等和綜合的發展。
部隊的成功部署在很大程度上依賴于C2在整個系統中的適當分層,以便在快速變化的情況下最好地實現預期目標。為了實現這一目標,分析、規劃和設計部隊的部署使用應該在戰役層面上進行,通過在空中作業中心建立總的空中攻擊計劃和其行政傳輸文件--空中任務指令。然后,空中作業中心應與戰區空中管制系統的執行要素一起實時指導資產,確保指揮官的意圖得到維持。最后,作戰部隊應充分利用他們的態勢感知,并盡可能地參與其中,了解該意圖。正如越南沖突的經驗所揭示的那樣,如果前線行動者被太多不同的信息輸入所沖擊,表現就會下降。關鍵是要過濾信息,以確保每個行動者收到所需的信息,而不是無關緊要和分散注意力的信息。然而,這其中的一部分涉及到劃線,否則系統就會因為太多的行為者阻礙進程而變得緩慢,阿富汗和伊拉克的情況就很明顯。如果所有行為體之間的連接不能以一種持續的、有保證的方式保持,它也可能變得過于脆弱--鑒于未來的高端威脅,這一點越來越令人擔憂。這不再是關于消除沖突的問題,現實要求協作性的、反應迅速的整合。這些經驗經受住了時間的考驗,因為聰明的團隊合作會產生更好的任務結果。
ABMS代表了這種演變的下一步。縱觀歷史,可用信息、連接和C2水平在形成軍事作戰概念和戰略方面發揮了關鍵作用。一支缺乏這些屬性的部隊需要使用多得多的體量來實現作戰目標。換句話說,這是一個涉及確定性水平的過程--指揮官知道的越多,他們就越能集中精力實現目標。
美國現在發現自己處于一種 "回到未來"式的情景中,因為同行競爭對手確定了戰斗空間的優先次序。空軍不再像在阿富汗和伊拉克的天空中經歷的那種放任自流的環境,他們必須準備好應對令人難以置信的復雜、快速、危險和動態的作戰,對抗更先進的對手。他們的成功將取決于他們以協調的方式在整個戰斗空間內同時開展行動的能力,并超越對手。對手將瞄準美國空中力量至關重要的每個要素--美國戰區作戰基地、任務飛機、后勤和信息網絡。對于后一點,頂級對手現在認為拒絕信息、連接和C2是他們的主要軍事目標。正如美國國防部2020年關于涉及中國的軍事和安全發展的報告所強調的,"實現信息主導地位和拒絕對手使用電磁波譜是在沖突中抓住和保持戰略主動權的必要條件。"
這使我們看到了目前的狀況。空軍認識到了這些挑戰,并且早就意識到了自己的不足之處。這也是它正在改變其目前的信息、連接和C2的方法的一個主要原因--ABMS和JADC2的模式。
今天的ABMS和JADC2愿景在很大程度上可以追溯到2000年,當時空軍領導人越來越意識到E-8 JSTARS的機體年齡。這引發了一系列更廣泛的考慮,審查了替換方案。雖然這些飛機是在20世紀80年代末和90年代初投入使用的,但JSTARS的機身最初是在60年代建造的。長期的可使用性是一個新的問題。空軍已經進行了一次努力,通過E-10計劃對飛機及其相關任務系統進行資本重組,但后來被取消。在同一時間范圍內,技術也在迅速變化。早在2008年,時任空軍ISR主管的Deptula中將就開始努力研究不同的地面移動目標指示器(GMTI)的托管方式,而不是簡單地將其放在更新的替換飛機上。后來,他將他的想法整合成一個概念的描述,將傳感器、射手和效應器連接成一個 "作戰云"的概念,這就是ABMS和JADC2的前身。
2010年,空軍啟動了一項替代方案分析(AOA),涉及如何以JSTARS GMTI最佳方式執行空中C2ISR任務。這最終演變成了對新的載人飛機的要求,C2機組和ISR GMTI傳感器以類似E-8的方式在同一機身上共處。增長的主要領域是更新的傳感器、處理能力、連接性和自動化,這將抵消一些空戰管理人員的工作。
2017年,空軍領導層發出信號,他們正在考慮用不同的載體來調整JSTARS系統的資本化。空軍作戰司令部司令邁克-霍姆斯將軍解釋說:"世界在變化;威脅在變化。我們將審視我們所面臨的所有威脅。"軍方領導人越來越擔心,像JSTARS這樣的大型傳感器發射飛機,或其擬議的替代品,在圍繞中國或俄羅斯等對手的預期高端威脅環境中無法生存。為此,空軍利用最初專注于AWACS資本化的AOA來研究更廣泛的C2和ISR任務集。
隨著空軍2019財年預算申請的提交,軍方領導人正式終止了計劃中的JSTARS資本重組工作,并提出了網絡化ABMS愿景作為首選解決方案:
ABMS的第一個階段旨在利用現有的記錄項目來獲得預期的效果。第二和第三階段應該使用越來越多的分類方法,主要依靠新技術--其中絕大部分仍然是高度機密。這不僅僅影響E-8;正如當時負責采購、技術和后勤的空軍助理部長威爾-羅珀博士在國會證詞中解釋的那樣,"ABMS將能夠執行與JSTARS和AWACS平臺相關的任務集,并可能承擔戰區空中控制系統的其他角色。
這使得ABMS網絡化方法成為當前的記錄項目,最終將取代E-3預警機和E-8 JSTARS等飛機。它是由傳感器、處理能力、融合、人工智能和數據傳輸網絡組成的生態系統,將賦予現代C2:美國防部現在稱之為聯合全域指揮與控制的概念。當涉及到軍事概念時,詞語很重要,而 "聯合全域 "這一短語是指任務系統以不分領域的方式實時協作的概念。ABMS和JADC2團隊的組成將基于在特定的時間和地點建立最佳的伙伴關系,以達到比任何單一資產可以單獨完成的更好的預期效果。由一個領域的系統收集的數據將被處理并驅動系統中其他地方行為者的行動,如果這些行為者處于一個更好的時間和地點來實現預期的目標。正如空軍的一份文件所解釋的,"聯合全域指揮與控制將來自所有領域的分布式傳感器、射手和數據連接到所有部隊,以便在規模、節奏和層次上實現分布式任務指揮,完成指揮官的意圖--與領域、平臺和功能通道無關。"ABMS是實現這種協作的技術手段。
這項工作的規模和范圍是整個空軍的事業,遠遠超出了對JSTARS或AWACS等特定飛機的資本化。正如威爾-羅珀博士所解釋的,"我們要做的是確保機器對機器的數據傳輸無處不在,因此,如果任何傳感器看到了什么,這些數據就可以毫無障礙地提供給任何地方的射擊者。"空軍ABMS首席架構師普雷斯頓-鄧拉普認為,這項努力真正歸結為 "通過整合使這些平臺比它們單獨存在時更好。"
一個簡短的場景可以幫助說明空軍的愿景。ABMS可以使一架F-35和一架B-21在使用其武器有效載荷后,有能力協同向位于近海的海軍或盟軍艦艇提供高保真的目標瞄準點信息。這些地理上分離的飛機通過ABMS網絡作為一個團隊聯合行動,可以使該艦向一個或多個目標發射武器。通過合作,這些不同的武器系統可以在戰斗空間中創造出超過它們中任何一個單獨實現的效果。這一切都歸結為收集不同的信息流,將它們融合成一個整體,揭示出比任何單獨來源所能提供的更多的戰斗空間知識,并為能夠滿足預期任務目標的效果器分配任務。當然,這只是ABMS實現的許多潛在組合中的一個小插曲。有的時候,來自不同平臺的多個效應器可能會結合起來產生一個單一的結果。在這一點上,F-35可以干擾位于目標周圍的敵方防御系統,而B-21則利用天基傳感器提供的信息發射彈藥,成功穿透被破壞的防御系統并非常精確地打擊目標。這是ABMS使先進的協調水平成為可能的一個例子,它將在同行的沖突中產生新的巨大優勢。正如前空軍參謀長戈德費恩將軍對ABMS構建使未來部隊成為可能所解釋的那樣,"如果我們把它們連接起來,我們就會有可用的選擇,我們可以把今天沒有的東西扔給對手。"
注:第五代飛機和現代戰斗的C2ISR
第五代作戰飛機是新作戰環境中的關鍵角色。F-22、F-35以及最終的B-21利用隱身技術和電子生存手段,將它們的傳感器套件、處理能力以及與其他作戰系統協作能力帶入了戰場。
與越南時代的戰斗機不同的是,機組人員被太多不同的信息“塞滿”,第五代處理技術將飛機上和機外收集的大量數據轉化為決策質量信息。他們可以觀察事物并進行作戰級別的評估--這曾經是大規模C2和ISR的唯一權限。
有些時候,第五代飛機實際上可以作為一個C2和ISR節點。這個等式中的限制因素是,在主要的任務責任中,一個戰斗飛行員能夠處理多少信息和C2職責,避免威脅,以及在高度動態環境中發生的快速決策。
雖然這項事業的技術是新的,但總體意圖和宏觀結構是經過時間考驗的。不列顛之戰有其傳感器和通信系統網絡。C2專家可以指揮戰斗機飛行員,作為他們指令的動力實現者。戰斗機可以通過無線電通信和練習戰術來進行團隊合作。ABMS和JADC2在規模、范圍和速度上擴大了這種模式。然而,其好處仍然是一樣的,就像充分利用現有資產以實現信息和決策優勢的基本方法一樣。由于技術的進步,機器自動分享數據而無需人類參與、無縫協作和共同實現目標的能力只是該結構的下一個增長階段。考慮到在不斷增長的威脅環境中,部隊的力量捉襟見肘的現實,空軍必須采用這種方法。
ABMS作為信息交流的技術手段--數據流動的電子基礎設施--以及JADC2作為更高層次的任務分配,使指揮官的意圖與作戰和戰術層面的行動相一致,一些關鍵問題出現了:
1.如何對這樣一個大型事業系統所收集的大量數據進行有效的過濾和融合以防止飽和;以及
2.誰或什么在行使C2?
回答這些問題將說明提供一套能力和作戰結構至關重要,它將以一種作戰上的響應、相關和彈性的方式運作。這就是使ABMS計劃成功的原因,而不是像TBMCS那樣的技術投資計劃的簡單更新。這些答案也將為那些尋求更好地了解ABMS的國會議員提供信息。正如眾議院軍事委員會的一位工作人員所解釋的那樣:"自它首次推出以來,在過去的兩年半到三年里,ABMS的概念應該是什么,已經發生了很大變化。委員會仍在尋找一些額外的信息,并更好地澄清所有這些錢的用途。
然而,有一件事是肯定的--如果主要關注點只在提高連接性,那么這個邁向ABMS和JADC2的旅程就不會成功。歷史已經說明,大量的信息流并不能產生更好的決策方案。正如1999年蘭德公司的一項C2研究強調的那樣,"在信息和通信能力豐富、幾乎無限的時代,決策者越來越多地面臨著信息過多而不是過少的問題"。蘭德公司的報告指出了明顯的解決辦法。"了解什么信息對決策最重要--以便被傳達、處理或顯示的信息可以被限定--是設計計算機輔助決策支持系統的一個主要問題。"信息過多的問題與越南沖突中飛行員面臨的問題相似。它也發生在2000年和2010年,當時RPA收集數據的速度在戰爭史上是前所未有的。他們收集信息的能力遠遠超過了有效利用所獲信息的既定手段。這導致了在處理、利用和傳播(PED)過程中的崩潰。有一次,PED領域的飛行員看到所產生的傳感器數據量增加了5000%。空軍ISR主管當時創造了一個短語,"我們在傳感器中游泳,所以我們需要確保我們不會被數據淹沒。"知道如何識別什么是重要的,通過知情分析使其有意義,將其與其他重要信息融合,并將可操作的知識及時傳遞給相關人員證明是非常困難的。國防部最初的反應是簡單地在這個問題上投入人力,但事實證明這種解決方案很麻煩,成本很高,而且相對于滿足實時任務需求來說太慢。此后,通過技術改進程序的努力有所幫助,但數據的增長仍然遠遠超過了將其轉化為可操作信息的可用手段。
這一經驗對ABMS和JADC2的設計師來說是一個警告。鑒于構成該系統的節點數量,處理、過濾和引導信息流與整個戰斗空間更廣泛的C2愿景相一致的挑戰將升級到以前無法想象的層次。在過去,數據流是有限的,僅僅是因為沒有那么多的收集者,而且管道限制了信息的有效覆蓋。現在,任何人都有可能看到任何東西,這就像同時觀看你所有的有線電視臺。理論上會有很多信息在發揮作用,但現實中會無法使用。ABMS和JADC2必須包括一種有效的自動化手段,了解戰斗空間中的哪個平臺、單位或個人需要什么信息,什么時候,以及多長時間。
第五代技術是解決方案的一部分。現代技術,特別是第五代處理、融合和顯示技術,已經在這方面取得了重大進展--特別是在將大量數據轉化為可操作信息方面。然而,這些系統仍在一個確定的區域范圍內運行。有著第五代飛機使用經驗的現代飛行員還擁有對他們周圍的戰斗空間的巨大優勢,而這種優勢以前只保留給AWACS或JSTARS飛機。他們的機載傳感器、將機外數據自動融合到他們的有機態勢顯示中的能力,以及他們不斷評估環境中的突發威脅的能力是令人難以置信的。
然而,這些飛行員也在有爭議的空域中快速飛行,兼顧無數的任務。他們的重點是在一個有限的地理空間內的特定任務。他們往往不能把行動作為一個整體來看待。飛行員也必須把注意力集中在控制他們的飛機上,而不僅僅是處理大量涌入的融合的、可操作的信息。在這一點上,第五代作戰部隊仍然需要空戰管理者,他們吸收戰區數據并發出類似于足球四分衛的指令。正如蘭德公司的C2報告所解釋的那樣,"指揮既是一種組織功能,也是一種認知功能,而技術本身并不是萬能的。"
AI、自動化和機器學習也是解決方案的一部分。ABMS和JADC2將極大地擴展信息網絡。機器學習、自動化和人工智能無疑將進一步協助這一進程,但必須有一個深思熟慮的計劃,以確保作戰概念能夠擴展到允許充分開發新技術所提供潛力的層次。這與C2和適當的分級決策者的概念有關。戰爭的成功取決于將指揮官的意圖轉化為整個戰斗空間的作戰和戰術行動。對一個同行對手的作戰行動,每天可能會發生數千次大的行動和數萬次小的行動。自冷戰結束以來,空軍還沒有在這種規模和同行沖突場景所需的內在決策并發性方面進行過思考。考慮到政治和行動上的限制,反叛亂行動的規模要小得多,速度要慢得多,強度要小得多,而在一場重大的戰爭中,每天都會有數以千計的行動被執行,后方指揮部的位置會受到攻擊。此外,在9-11事件后的反恐和反叛亂行動中,美國部隊幾乎總是可以依靠總的信息連接,這鼓勵了戰略上實時地深入到作戰和戰術情況。大規模的同行對手的情況是不可能允許這種做法的。事件將發展得太快,它們將太復雜,而且連接性將受到持續的攻擊。
人工智能、自動化和機器處理可以將某一層次的數據轉化為立即可操作的信息,在一線駕駛艙中具有相關性和增值性。考慮到威脅警告檢測到一個地對空導彈地點并建議一個替代的飛行路線。自動化系統還可以跟蹤任務的進展情況,并根據實時發展情況對任務目標進行優先排序。例如,如果瞄準一個指揮中心是當天活動的首要目標,而最初負責這項任務的打擊包在前往目標的途中被中止,那么這一行動可以被發現。攻擊的責任可以重新分配給另一組具有適當任務屬性、物理距離和燃料狀態的飛機來執行任務。
人工智能、自動化和機器學習將不會取代人類的戰斗管理者。根據指揮意圖和更廣泛的政治和軍事目標有效地投射空中力量,并不是與一套預先確定相聯系的機械行為。它涉及到處理許多因素--許多因素都不明確,并迅速行使最佳判斷力。當領導層的假設被證明是不正確的,而任務條件與預期相差甚遠時,事情就變得棘手了。盡管自動化將縮小配對過程并幫助決策,但在某些時候,一個適當的分級指揮層必須確保所采取的行動將產生最佳的預期效果,以實現指揮官的意圖。據一位空戰經理指揮官說:"可以說,我們已經開發了世界歷史上最強大的ISR能力。此外,第五代飛機以新的方式提出了它們自己的SA[態勢感知]來源。如果沒有C2這個統一的力量,這些驚人的技術進步可能只能實現個體的成功或局部的優勢,而不是更廣泛的作戰層面的進步。"
這種想法與空軍領導人采取的方向也并非完全不一致。威爾-羅珀博士最近解釋說:"我認為領先的[戰斗空間]邊緣系統將必須由站在后面準備打電話的人擔任四分衛。"這些C2行為者將需要在戰斗空間中相對靠前,因為連接往往隨著距離的增加而更加脆弱。這意味著在配備了傳感器、處理能力和連接能力的任務飛機上。基本的物理學原理決定了在某些時候,與戰斗空間的物理距離會產生通信優勢。這并不意味著C2和ISR的概念必須是不可分割的聯系。如果主動感應帶來的風險太大,空戰管理者可以依靠從更廣泛的網絡中收集的機外數據源。這就是ABMS的全部意義所在。由于過去時代的技術要求,C2和ISR以前是硬連接的。在某些情況下,C2和ISR共處一地是有優勢的,因為這種硬連接對敵人來說是極難打敗的,這就為更廣泛的任務提供了彈性,但它不再是系統必須運作的唯一方式。
對戰斗空間采取分層的方法所帶來的價值也說明了在依賴新形式的技術時采取積極的風險緩解策略的重要性。ABMS在這一領域面臨風險,因為該計劃需要大量的創新,并將被用于對抗試圖在無障礙的戰斗環境中擊敗它的對手。2020年美國政府問責局的一份評估該計劃的報告強調了這種風險。"由于空軍還沒有確定ABMS的技術需求是什么,它還不能確定這些技術是否成熟或在需要時是否會成熟。" 評估報告進一步指出:"我們以前發現,在沒有首先確定和評估技術成熟度的情況下開始開發,會增加這些技術在需要時不成熟的可能性,這往往會導致成本超支和進度延誤。"如果ABMS和更廣泛的JADC2計劃要取得成功,減輕風險將是至關重要的。太多積極的技術飛躍要求高水平的性能保證,會招致項目的最終失敗。中間道路是一種更可靠的方法,它能平衡創新和成熟的任務執行方法。
毫無疑問,收集、處理、融合和分發大量信息以支持網絡化的團隊行動,將需要人工智能、自動化和機器學習等形式的機器協助。我們的對手也在追求這些優勢,誰掌握了這些優勢,誰就會擁有極其重要的競爭優勢。在這方面,RPA的數據洪流是一個值得警惕的經驗。僅靠人工手段來應對那場信息海嘯是根本不可行的。ABMS數據流量將成倍增加。
然而,雖然技術必須是解決方案的一部分,但全身心投入人工智能、自動化和機器學習并不意味著放棄那些提供冗余和優勢互補的成熟方法。正如羅珀博士進一步闡述的那樣,"我們還沒有準備好把人從戰斗中拉出來,我們還沒有準備好AI的一切。R2D2在電影中很好,但現實世界中的R2D2在對手試圖搞亂他們正在攝取的數據以做出決定時,會變得非常混亂"。在這一點上,隨著COVID-19危機的發生,人工智能的易變性證據意外地出現了。人工智能算法是根據人類行為模式編寫的,幾乎所有人都認為這是不可改變的規范。封鎖令注入了很少有人能想象到的干擾,最終的結果是人工智能在一個不再符合其編程假設的世界中感到困惑。只要問問那些使用人工智能協助管理庫存的零售部門的人,銷售數字經常偏離預期的模式,差異很大。
如果美國過度依賴人工智能和機器學習而沒有審慎的監督和冗余,對手將被激勵去追求通過擁抱意外而破壞算法的作戰概念和戰術。與精通解決動態情況下的挑戰的專業人員一起參與C2有助于管理這種風險。在戰斗空間中適當定位的空戰管理人員將是這個冗余、互補事業的一個關鍵部分。原始技術并不等同于實現C2。正如一名空軍士兵所解釋的那樣:"[個體]被引導相信C2的意義是在網絡時代維護網絡。然而,就掌握C2而言,網絡并不能像導彈解釋空中優勢或炸彈定義全球打擊那樣解釋這一概念。"
最后,還有一個重要的現實需要平衡--目前沒有成為很多頭條新聞。雖然中國無疑是美國防部的主要威脅,俄羅斯也不甘落后,但美國無疑將在世界范圍內威脅較少的地區參與大量行動,這些地區的中低端威脅是主要的關注點。雖然美國專注于為最重要和最可能的威脅做準備,但現實情況是,超出其控制范圍的全球環境往往會帶來意想不到的挑戰,必須加以解決。這就要求選擇快速部署、可持續和可負擔的方案,但不降低與美國核心利益相關的高層次行動所必需的能力和實力。在許多方面,這正是AWACS和JSTARS等成熟形式的C2ISR的優勢所在。它們可以迅速地將特定的任務效果投射到某些地理區域。它們的存在可以持續很長一段時間,盟友和合作伙伴可以很容易地融入它們的C2結構,而且它們的操作模式不會使銀行破產。
ABMS要么需要滿足這些相同的標準,要么空軍需要追求一個補充性的C2ISR系統,該系統將在整個作戰范圍內增加價值--從高端作戰到較低層次的交戰。這涉及到信息收集傳感器、連接和C2的核心屬性。基于任務的可負擔性和實用性是真實的東西。在重大戰區沖突中依靠高度分解的高端傳感和處理節點網絡是一回事,但在應對較低層次的威脅時,這很可能是不謹慎的,因為這種資產通常供應有限,而且它們的準備狀態必須為重大沖突加以保障。考慮一支 "日常駕駛 "的計劃-B部隊是有用的。一架能夠在數小時內起飛并自行部署到世界任何地方的綜合任務飛機具有獨特的優勢。
最重要的是,所追求的解決方案必須是靈活和適應性強的。它們必須以解決快速、復雜的戰斗環境中的問題為導向。它是關于加速決策,為一系列復雜的事件帶來秩序,并產生預期效果。正如一位擁有豐富經驗的空軍軍官所強調的那樣:"一個整體的C2系統的最低限度的關鍵基礎設施不能籠統地確定,而是完全取決于指揮官的要求,在特定條件下完成特定的任務。" 這種靈活性的關鍵是需要一系列具有不同程度的能力、適應性和成本敏感性的工具。
空軍正在開發的ABMS和JADC2結構有很大的意義。信息一直是戰斗和勝利的關鍵,特別是在大規模沒有保障的情況下。技術的進步也有望幫助管理未經過濾的數據的沖擊,確保人工智能、自動化和機器學習幫助增加決策的清晰度的過程。也就是說,在新的結構中似乎有一個空白--人類執行C2的作戰地點,這是一項傳統上由空戰管理人員執行的工作。
圖4:各種超音速飛機的設計概念,如Boom的XB-1超音速驗證機,體現了對空軍C2ISR任務有用的技術。
從大規模C2ISR平臺轉移的整個前提是基于這樣一個事實,即它們在威脅明顯的地區不再具有生存能力。保護機組人員,同時尋求其他手段來確保所需的效果,既負責任又聰明。然而,鑒于在戰斗空間中需要適當分層的C2行為者,在靠近前線部隊的地方執行C2的連接優勢,在主要解決方案失敗時希望有后備選擇,以及部隊需要在世界其他地方移動,載人C2平臺仍然存在一個位置。正如一位空軍C2專家所解釋的那樣:"通過機動性,機載C2提供了范圍、覆蓋面和適應性,再加上獨特的通信和監視信號,這些都是太空中無法比擬的,以提供現場問題解決能力,使其對指揮官的意圖理解與實際沖突的混亂情況相一致。”
一方面,像澳大利亞和英國正在采購的經過驗證的E-7 "楔尾 "飛機這樣的技術是現成的,并且在與美國部隊的演習中被反復使用并取得了高度成功。這些飛機當然符合中、低端作戰的任務功能和可承受性標準。空軍也可以考慮延長其JSTARS和AWACS飛機的壽命。然而,對它們在對抗高端作戰者時的生存能力擔憂是合理的。
這指出了商業部門正在開發一類新飛機--大型超音速飛機所帶來的潛力。然而,從任務上講,它們也可以在C2ISR領域發揮一定的作用。事實上,2021財年國家發展法中的術語指示空軍調查這一應用。
這些優勢是直接的,并且涉及到空軍對其傳統C2ISR機隊長期生存能力的許多擔憂。從作戰的角度來看,超音速巡航在更遠的距離上,這個級別的所有擬議噴氣機都聲稱要憑借其民用任務目標來實現這一能力,使這個級別的C2ISR飛機能夠以最快的速度部署并迅速覆蓋廣闊的作戰范圍。這將減少往返于基地的時間,從而有更多的時間在崗。這也將允許使用遠離敵人進攻系統的基地,同時不對關鍵作戰重心的有限坡道提出進一步要求。像關島的安德森空軍基地這樣的地方空間有限。
這種風險的減少并不只是與基地有關。以超音速飛行的飛機增加了對手的地對空和空對空防御的復雜性。再加上這些飛機運行的高空--超過60,000英尺--有效的敵方防御威脅環的規模明顯減少。威脅并沒有消失,但與來自亞音速客機的機身所面對的威脅相比,它們要小得多。在高空作戰的傳感器也可以看得更遠,這是關于視線的基本物理學。
在這些任務概況的優勢之上,這些新飛機可以設計成開放式的任務系統和模塊化的任務有效載荷。為了使C2ISR飛機真正發揮作用,快速更新任務系統的能力是至關重要的。根據具體的作戰目標快速更換傳感器、處理器和其他任務系統的能力也將證明是非常有用的。如果一架噴氣機知道它將面臨某些威脅,并被要求在特定的飛行任務中收集特定類型的信息,那該怎么辦?模塊化可以看到任務系統專門為滿足這些目標而定制。一個完全不同的系統套件可以為下一個任務上傳。這種方法不是科幻小說;它已經被像U-28這樣的飛機所利用,它提供了巨大的任務模塊化。如果一個新的模塊化系統運行良好,那么它就可以被擴大規模。如果它沒有達到預期的效果,只需把它撤下來,回到經過驗證的選項中去,或者嘗試其他的東西。無論哪種方式,飛機的功能都不會被傳統模式中難以置信的復雜、昂貴的升級所束縛。
最后,C2ISR綜合模式仍有巨大的效用。這不僅為較低層次的作戰提供了一個可快速部署的任務包,而且將傳感器與C2專家集中在一起,可以減輕傳感器與C2完全分離的結構所帶來的風險。連接傳感器和C2工作站的硬線和光纖是很難被破壞的。這并不是說空軍提出的分布式系統的網狀網絡是一個糟糕的概念。事實上,在某些威脅情況下,飛機可能會關閉其機載傳感器,并使用來自更廣泛的ABMS網絡的信息來執行C2。實現任務目標的其他途徑是有用的。它提供了一種退路,減輕了對連接環節的高度依賴所帶來的脆弱性。它還使對手的計算變得復雜,因為美國部隊將追求一套具有廣泛技術方法的C2ISR解決方案。最終的效果是一個有彈性的、強大的系統。
至于機組人員的規模,以前的JSTARS改造工作,重點是商務噴氣機級別的飛機,表明技術進步能夠使許多以前由人類操作員執行的功能自動化。這種趨勢將繼續下去,這將為機載空戰管理人員的人員配置要求提供一個簡化的方法。某些功能也可以分解給戰斗空間的其他地方的空戰管理人員,空軍正在探索包括雙任務空中加油機作為C2節點的概念。雖然這是一個積極的想法,但必須認識到像KC-46這樣的飛機將有主要的任務職責,即加油。C2將需要飛行員在正確的時間和地點來獲得預期的效果。這就強調了專用C2ISR平臺的價值。補充性的裝備提供了價值,但是如果它們的主要任務功能降低了它們的C2功能,它們也不會被破壞。
這個擬議的C2ISR結構的凈效應將產生一個分層的愿景,在高威脅環境中的C2看到一個合作的、綜合的三階段方法:
1.穿透力強、生存能力強的傳感器節點,與天基系統配對,與提供實時決策輸入的C2操作員聯系。
2.高速、高海拔的載人C2ISR傳感器平臺,能夠提供補充性的 "觀察 "和來自網絡的決策見解,以及在中等風險地區的廣泛、可生存的C2ISR覆蓋。
3.獨立的C2和ISR系統能夠收集和處理數據,使之成為決策質量的輸出。
這種結構的優勢很簡單:以一種及時、全面的方式指導部隊的使用決策,并對冗余能力、足夠的能力和基于任務的可承受性進行高度優先排序。最重要的是,它依賴于對信息、連接和C2的平衡方法。這些方面都有相應的代表。
美國第18任國防部長萊斯-阿斯平在回顧冷戰后幾年的C2狀態時說:"我們知道如何以一種使總和大于所有部分的方式來協調[技術]。"這句話在今天比以往任何時候都更加正確。技術將被證明在確保戰斗資產將被有效和高效地運用以符合指揮官意圖方面是至關重要的。然而,在開發下一代結構時,追求一種平衡的方法是至關重要的。
網絡、人工智能、自動化和機器學習將被證明是產生一個增強的、強大的系統的關鍵,它能滿足未來作戰環境的需求。空軍在這方面已經走上正軌。然而,這些技術并不排除C2在整個戰斗空間中適當分層的重要性。專業人員仍然需要在整個C2決策結構中得到適當的定位。此外,選項必須提供冗余和靈活性,以加強高端作戰,并允許在需要時將資產用于威脅范圍的其他地方。
這需要一個新的模式,在整個戰斗空間中定位空戰管理人員,以便他們能夠在對手試圖擊敗通信鏈路的情況下準備好連接和支持部隊。對擴展網絡連接的過度依賴只會帶來新的脆弱性。分布在整個作戰空間的空中戰斗管理人員確保了更大的連接機會。像超音速C2ISR飛機這樣的創新概念應該是考慮的一個關鍵部分,就像備用的空中作戰位置一樣--比如在空中加油和其他任務類型的飛機上,它們將在戰斗空間中長時間占據相關位置。這樣的概念說明了將C2與ISR分開的力量,同時如果網絡化的解決方案由于敵人的干擾而無法動彈,仍然可以選擇綜合C2ISR。
這種解決方案的投資--將推動網絡技術、處理能力、自動化、人工智能、機器學習和新飛機設計方面的重大進展--將是相當大的。然而,考慮到利害關系,問題應該是反過來的:不追求這種方法的代價是什么?空軍實在是太小、太老、太脆弱了,無法通過純粹的數量優勢來完成任務。即使實現了對386個作戰中隊的要求,緊迫的任務需求將需要有效和高效地使用這支部隊。
不列顛之戰對今天的領導人來說是一個警世故事。1940年9月15日,英國面臨著整個沖突中德國最大的一次進攻,溫斯頓-丘吉爾首相訪問了一個負責指揮皇家空軍戰斗機對付進攻的德國軍隊的防空指揮和控制中心。看著中心的繪圖板上一波波襲來的德國攻擊者,丘吉爾問道:"我們還有什么儲備?" 空軍副元帥基思-帕克回答說:"沒有了。"幾十年后,這個故事常常被浪漫化,被認為是堅強空軍戰士在逆境中保衛國家的例子。實際上,它描繪的是一個在災難邊緣搖搖欲墜的國家。英國贏得了這場戰斗,在很大程度上要歸功于信息、連接和C2。在未來的戰爭中也是如此,我們國家的空軍必須為此做好準備。美國空軍對現代等同物的投資必須作為首要任務。
世界各地專注于對等或接近對等軍事競爭的空軍,越來越意識到采用分布式任務指揮和控制 (C2) 架構的必要性。然而,要實現這一目標,需要克服文化和政治阻力。分布式C2將需要重新引入傳統的任務指揮概念,將決策權力和許可逐步下放給戰術層面上相對較低層的戰斗領導人。盡管如此,大多數正在開發中的C2架構在一定程度上是去中心化的,以便使敵方更難發現、攻擊和削弱關鍵的機載和地基指揮節點。目前空軍強國正在探索分布式軌道衛星和無人機 (UAV) 的組合,以取代傳統的處理、開發和傳播 (PED) 平臺和 C2 平臺。
軌道域資產設施作為分布式 C2 和情報、監視、目標捕獲和偵察 (ISTAR)架構一部分,其未來形態仍然不確定,因為天基傳感器能力、通信帶寬和通信魯棒性的快速發展表明它的作用急劇增加,然而,未來對這些資產設施的使用也可能備受爭議,甚至被否認。無人機具有長續航的潛力,而而不像在軌衛星那樣具有可預測和潛在易受攻擊的軌跡。第五代平臺,如F-35和極低可觀測無人機,作為下一代分布式C2和ISTAR架構的構建模塊,不僅需要安全和難于探測的數據鏈和傳感器,而且要求動態邊緣處理能力以降低帶寬,并自動識別發送相關數據給其他設施資產。因此,在可預見的未來,空軍很可能仍然依賴集中式 C2(基于即將過時的寬體舊系統)。
未來空戰環境的特點是遠程地空導彈(SAM)系統(Bronk, 2020a)、遠程空對空導彈(VLRAAMs)和超低可觀測戰斗機和攔截機(Bronk, 2020b)的日益普遍發展。這種新一代威脅系統正在穩步提高傳統空戰的風險水平,傳統作戰嚴重依賴于 E-3 預警機等集中指揮和控制設施。遠程 SAM 系統、VLRAAM 和 VLO 戰斗機威脅將越來越多地迫使傳統指揮和控制 (C2) 以及情報、監視、目標捕獲和偵察 (ISTAR) 飛機在遠離敵方領土的地方運行,以至于其機載傳感器和通信中心能力將大大降低作戰效用。與此同時,遠程精確打擊系統和進攻性網絡工具的可用性繼續增加了現代國家對彼此的集中式地面指揮和控制設施產生威脅效應,如聯合空中作戰中心(CAOCs)(Kaushal, Macy和Stickings, 2019年)。因此,21世紀初西方空軍的兩大核心力量面臨著潛在的生存挑戰。
自1980年代后期以來,西方空軍嚴重依賴空中力量,為使聯合部隊的行動能夠用較少的陸軍與海軍進行。這種模式在 1990 年代和 2000 年代的多次沖突中取得了驚人的成功,導致陸軍和海軍的部隊設計都假設了空中支援和空中 C2 和 ISTAR 的可用性。因此,從空中提供按需 ISTAR 和火力支援的能力,是許多西方國家使用軍事力量的必要先決條件。
聯合作戰對空中力量的依賴,已經創造了一個以聯合空戰中心(CAOC)為焦點的極度集中式的C2模式。
在聯合空戰中心 CAOC 內,72 小時空中任務指令 (ATO) 是根據各種聯合部隊任務、ISTAR設施、多國特遣隊許可流程和加油機等因素生成的。這一過程需要數百名專業人士、大型固定設施和出色的通信鏈路——這使得 CAOCs 在任何重大戰爭中都成為敵對國家重點關注和明顯??的目標。 CAOC 離作戰區域越近,它就越容易受到敵對遠程精確打擊能力的攻擊。然而,距離越遠,對潛在易受攻擊的隱蔽、視距、超視距和軌道通信鏈路的作戰依賴就越大。
未來作戰概念將以較小的規模、較分散的空戰中心(AOCs)為特征,以避免聯合部隊對其C2的斬首式攻擊。然而,依賴較分散的 AOCs 而不是大型 COACs 可能會造成任務重復,從而增加已經不堪重負的情報和指揮人員負荷。 C2 分配還可能增加對可靠通信鏈路的依賴,因為即使必要流程的高度自動化,每個 AOC 也只能執行全規模 COAC 的某些功能。因此,如果動能或非動能武器切斷或嚴重影響這些聯系,那么集中式COACs 或較小的分布式 AOCs 都可能失去戰區內在戰術上協調 ISTAR、打擊和使能設施的能力。
此外,在幾十年基本上沒有競爭的空中行動中,高級指揮官對戰術行動施加直接控制和監督的習慣已被允許出現。這是由于實時全動態視頻傳輸技術成熟,使得 CAOC 指揮官能夠感知戰術態勢。面對經常被視為任意和不得人心的沖突,政治層面對風險的容忍度顯著降低,這也助長了這一趨勢。這將更加阻礙將控制權委托給戰術層面。這種現有的指揮形式進一步提高了集中化程度,降低了作戰節奏,并為空中作戰引入了一系列潛在的帶寬瓶頸和電磁漏洞。許多國家的高級政治家和軍事領導人可能會將同級沖突中涉及的更高地緣政治風險視為繼續集中管理戰術決策的理由。然而,這種方法在實踐中幾乎必失敗,因為它需要緩慢的作戰節奏,以及它需要超視距連接和帶寬。為了適應未來國與國沖突,戰術空中指揮官文化氛圍必須改變以避免行動癱瘓,因為對 CAOC 結構及其支持通信鏈路的動能、電磁和網絡攻擊會切斷了指揮官與前線設施的聯系。
許多空軍很清楚,源自 E-3預警機和 E-8 J-STARS 等寬體客機的傳統機載 C2 和 ISTAR 節點不再是未來沖突場景的最佳選擇。這些資產設施的自衛能力非常有限,必須發射大量易于檢測的電磁信號才能有效發揮作用,這使得它們容易被定位和跟蹤。此類平臺也是潛在傷亡的重要來源,因為它們攜帶大量訓練有素的任務系統工作人員來執行處理、開發和傳播 (PED) 的關鍵任務,以及空戰管理功能。今天,寬體 ISTAR 和 C2 飛機必須遠離敵方的地空導彈系統和遠程空對空導彈系統,使得在與技術先進的競爭對手發生沖突的早期階段,它們的主要傳感器圖像在很大程度上是無效的。
第五代 F-35 對此類 C2 和 ISTAR 使能器的依賴顯著減少,因為它自身有能力為其飛行員提供多光譜廣域態勢感知。這種在敵對空域內有機地建立態勢感知的能力,使得許多人計劃將 F-35 作為下一代分布式 C2 和 ISTAR 網絡的主要組成部分(Bronk,2020c)。然而,由于帶寬、軟件架構和排放控制限制,F-35 目前的形式無法把為飛行員創建的完整傳感器圖像傳輸到其他軍事設施。此外,作為戰術打擊戰斗機,與傳統的 ISTAR 和 C2 節點相比,F-35 的續航能力有限,而且數量有限的 F-35 也已經致力于打擊、SEAD/DEAD 和攔截任務。因此,諸如 F35 之類的平臺只能為傳統 C2 和 ISTAR 使能資產和網絡日益過時提供部分解決方案。
正在開發的分布式機載 C2 和 ISTAR 架構需要對設備進行更改,以使空軍能夠部署更多的小型平臺。除了 F-35 等支持網絡的戰斗資產設施外,一系列較小的載人 C2 和 ISTAR 平臺仍可能成為攜帶小型任務系統人員的選項,以實現機載 PED 和空戰管理。
然而,幾個主要的空軍強國已經在探索分布式軌道設施和無人機 (UAV) 的組合,這將取代 PED 和 C2到遠程地面站的功能。
由于存在一系列競爭趨勢,作為分布式 C2 和 ISTAR 架構一部分的軌道域的未來形態目前尚不清楚。一方面,飛速發展傳感器功能、對空間/重量/電力有要求的設備、通信帶寬和通信魯棒性,MIMO-type數組和軌道設施發射成本下降,都將大幅增加軌道資產在未來分布式ISTAR和C2網絡的角色。然而軟殺傷反衛星能力的激增,能夠進行交會的軌道設施,進攻性近距離作戰和越來越有爭議的電磁波譜,使得軌道資產和利用它們所需的上行/下行鏈路能力越來越有可能被拒絕,或至少在未來的任何戰爭中受到高度競爭。
提供按需的ISTAR和空中火力支援能力是一個必要的先決條件
與依賴人類飛行和任務系統工作人員的資產設施相比,無人機在空間站上提供了更長的續航時間,不像在軌衛星那樣具有可預測和潛在易受攻擊的軌跡。美國空軍 RQ-4 全球鷹和中國神鷹等大型無人機已經展示了一次在非常大的高度飛行超過 24 小時的能力——對于任何分布式的機載 C2 或 ISTAR 節點來說,這是一個非常理想的屬性。為了使它們在面對同行威脅時能夠更好地堅持下去,具有極低可觀測 (VLO) 形狀和材料的高空長航時 (HALE) 型無人機提供了新的潛力。 VLO UAV 在分散系統內執行 C2 和 ISTAR 任務的適用性將取決于尖端數據鏈、傳感器和 SATCOM 的發展,這些數據鏈、傳感器和 SATCOM 可以在不將機身暴露給敵方無源傳感器的情況下執行其任務功能。為了完成這些任務,出現了一些很有前途的技術,這些技術以不同程度的成熟度存在,但仍然很昂貴,并且部署這些技術的國家保持高機密性和安全敏感性。這意味著大規模部署將具有挑戰性,尤其是在靠近敵方領土的無人平臺上。
與當前這一代客機衍生解決方案相比,盡管無人 VLO、HALE 機身可以部署并更接近敵方部隊,但它們取代傳統機載 C2 和 ISTAR 節點的能力取決于自動化數據共享和邊緣處理技術。現代 ISTAR 資產設施,尤其是那些在 F-35 上配備多光譜傳感器套件的設施,在構建周圍戰場的廣域圖像時會產生大量數據。在此過程中,他們將收集可能對其他廣泛資產設施具有較高價值甚至關鍵價值的信息。然而,基于物理的帶寬限制了卸載或共享所有收集的數據,即使在非競爭性電磁環境中也是如此(Watling,2020 年)。在國與國之間的沖突場景中,ISTAR和 C2平臺將競爭有限頻譜資源,并可能在排放控制條件下運行以減少其對檢測和攻擊的脆弱性,應用邊緣處理技術來減少需要共享的數據量將至關重要。
任務工作人員(根據心智能力和工作量)可以對哪些信息可能值得或不值得傳遞給其他資產設施做出必要的主觀和視情況而定的優先級和相關性判斷。然而,至關重要的是,自動化系統目前無法做到這一點,除非在特定的、嚴格定義的情況下。
空戰管理經常是被動反應,依賴判斷的任務也是如此。如果沒有合適的解決方案,用安裝在 HALE 型無人機和作戰資產設施上的數據鏈和分散網絡節點架構,取代空中集中式 C2 和 ISTAR 節點是不可能的。
高度自動化、分布式去中心化的機載 C2 和數據共享網絡的組件(例如美國聯合全域指揮與控制 (JADC2) 計劃所追求的組件),都在機身設計人員的能力范圍內(美國會研究處,2021 年)。
然而,這一雄心超出了目前可行的人工智能和自主技術能力。對這樣一個系統的要求是明確的,因為至少在 2030 年代中期之前,世界各地空軍的大部分戰斗仍將依賴先進的第四代戰斗機和彈藥。
如果沒有來自整個戰場空間的實時態勢感知、目標和武器提示,這些武器系統將無法在高強度沖突中發揮它們所需的作用。然而,如果沒有主觀判斷和優先級排序能力,使得自動化邊緣處理真正取代空戰管理和ISTAR PED任務中的工作人員,空軍很可能仍然依賴于基于過時的寬體遺留系統的集中式機載架構。
Justin Bronk 是英國皇家國防安全聯合軍種研究所(RUSI)軍事科學團隊技術研究員。他還是 RUSI Defense Systems 在線期刊的編輯。他的專業領域包括現代作戰空中環境、無人作戰飛行器和新型武器技術。他為 RUSI 和各種外部出版物撰寫了大量文章。