該項目的目標是大幅推進人工智能(AI)的現狀。作為實現這一目標的主要方法,我們增加對生物智能基礎機制的理解。我們避免那些可能看起來很聰明,但實際上是硬編碼的、不聰明的方法和系統。目前的許多系統給人以智能的感覺;然而,這些系統不能適應不斷變化的環境,也不能真正解釋和根據輸入做出決定。能夠實現靈活適應和決策的系統代表了計算機技術的未來,是這個高級人工智能項目的目標。
這項工作建立了能源意識神經計算機,以解決今天的人工智能技術無法解決的問題。成功完成這項工作可以超越最先進的人工智能,其代表是深度學習(DL)。在DL的整體問題設置中,資源限制往往被忽略,或者說是次要的。深度學習通常需要大量的數據/時間/參數/能源/計算能力,而這些在各種場景下都不是現成的。目標應用包括根據不完整和不同的信息對緊急情況作出快速反應,在物理損壞或資源限制的情況下支持優雅的退化,以及在嘈雜和混亂的背景下進行實時語音識別。
盡管項目經理從第二年開始大幅削減項目預算,并要求取消一些任務,重組其他任務,并完全刪除這個四年期項目的最后一年,但在第一年至第三年期間,已經按計劃完成了一些突破性的成果。下面我們總結一下這些具有突破性成果的領域。
開發了一種能源意識的計算模式,它是基于大腦結構和運作的耦合CAN(毛細血管收縮細胞-神經元)陣列。CAN陣列可作為新型動態記憶設備的基本構件。
建立了一個CAN單元的耦合陣列。產生集體行為,如同步活動和特定窄帶振蕩頻率下的協調發射。根據振蕩器之間的連接強度來調節集體振蕩的頻率,并實施了一個相關的學習規則。開發了評估計算能源效率的指標。在努力構建人工智能設備,使其能夠在與人類性能相匹配的水平上完成感知、運動和認知任務的過程中,衡量效率的一個重要標準是與大腦相比的耗電量。CAN陣列的這一特性是緩解當今計算機計算需求成倍增長的一個關鍵因素,因為在實現類似人類性能的目標時,計算機面臨著摩爾定律的限制。
創建了BindsNET軟件平臺,利用PyTorch框架,提供了一個統一的環境,利用能源意識的計算和動態記憶原理,構建分層計算解決方案。
BindsNet基于尖峰神經計算單元,這些單元按照復雜度不斷增加的層次結構連接,并使用無監督、強化和監督學習進行訓練。BindsNET資源庫已在GitHub上作為一個開放源碼發布。除了源代碼之外,我們還讓它很容易使用pip包管理器進行安裝,以滿足一系列的實際應用。BindsNET已經被擴展到使用卷積網絡、模式匹配、強化學習、Q學習和多層架構的深度學習來解決高級AI機器學習任務。除了標準的圖像識別任務,BindsNET還開發了管道,以解決動態變化環境中的挑戰。
使用BindsNET平臺實現了尖峰網絡的局部和全局學習。表明我們的結果與現有的方法處于同一水平,或在某些情況下優于現有的方法。
在軟件平臺上整合了各種局部(無監督)和全局(有監督)的學習規則,并將它們結合起來,以實現更好的性能。將傳統的深度學習(DL)網絡轉換為尖峰神經網絡(SNN),并證明SNN可用于強化學習范式。在幾個人工智能問題中實施了所開發的學習方法,如分類和計算機游戲。結果表明,盡管在網絡組件的模擬上做了重大的簡化,但我們的實現還是達到了與現有技術水平類似的性能。重要的是,與頂級的深度學習解決方案相比,我們基于SNN的方法產生了更好的穩健性。
(圖:作家兼戰略家彼得辛格(左)于 2018 年 11 月 1 日在一個未命名的空軍設施與一名軍官和一名國防部文職人員討論新技術。人工智能和腦機接口等進步將改變陸軍作戰的方式。)
長期以來,決策一直是戰爭的核心。最近,戰爭的節奏、規模、不透明性、非線性和連通性的增加對當代決策過程提出了越來越多的挑戰。在未來,這種變化將同時增加及時和有效決策的重要性,同時進一步加劇許多指揮官的認知和決策挑戰。指揮官將尋找結構不良、高度復雜的問題的解決方案,這些問題延伸到空中、陸地、海上、信息、網絡和空間這六個領域。隨著新技術和新應用的實現,未來的事態對復雜性構成了潛在的增長,并將以指數級的速度增加。人類的學習,甚至是最老練的指揮官的直覺能力都無法跟上不斷變化的戰爭特征。要想把贏得戰斗的洞察力帶到未來,必須對人類的認知、決策過程進行改進,或對其進行增強。
決策能力和現有支持的割裂造成了分析性決策過程、指揮官的直覺和有效決策之間日益擴大的能力差距。當前和未來的環境表明,有必要開發更加靈活的決策支持工具,以阻止這種差距,并為指揮官重新獲得決策優勢。在一個不透明和復雜的環境中有效地預測未來幾場戰斗的能力將是成功的關鍵。同時,在一個能夠迅速使以前的計劃失效的動態環境中,理解并首先做出反應的能力對于奪取和保持主動權至關重要。
復雜性科學和混沌研究已經與類似的問題進行了斗爭,并為軍事指揮官的突發挑戰提供了相關的見解。計算機建模和人工智能(AI)方面的工作已經取得了巨大的進展。在許多游戲中,計算機已經超越了人類的決策能力。
從人工智能的主導地位中適應和發展,國際象棋中的人機團隊已經達到了決策的新巔峰,將提前數個回合評估未來動作的算法的卓越戰術與人類的戰略能力相結合。目前美國與人工智能和決策有關的國防努力似乎集中在大數據和數據分析上。然而,如果沒有一個改進的軍事決策框架,就不能利用預測性分析。否則,增加的數據和分析只會加劇理解日益復雜和動態的作戰環境的挑戰。
軍事決策過程(MDMP)雖然在分析上是合理的,但其結構并沒有跟上未來環境的步伐。沖突的速度將超過工作人員處理分析貢獻的能力。
用人工智能對MDMP進行修改和增強,將創造一個過程,以更快的速度產生對環境的理解,并以物理信息的框架為基礎。行動方案的制定將不會像現在這樣,從一個理想的最終狀態向后發展,在理論上運用方法和手段來創造一個想象的未來。由人工智能支持的MDMP將從當前狀態向前工作。它將通過友軍和敵軍決策樹的可能分支向前探索,走向各種環境和敵軍的行動路線,通過最小化風格的決策樹,將其作為適應性代理來實現。替代行動的未來將通過可行性的出現來建立,并通過優化作戰功能的貢獻來完成,固有的區別,然后由人機團隊的人類部分來判斷是否合適和可接受。重新設想的人-機MDMP將與未來的操作環境保持同步,通過以接近機器的速度操作來保持相關性,使人能夠在日益濃厚的戰爭迷霧中獲得卓越的視野。
指揮官雖然得到參謀部的支持,但最終還是利用自己的能力進行決策。當指揮官在進行問題解決以制定對其工作人員或下屬的指導時,他們基本上是在進行 "手段-目的分析,這是一個尋找手段或步驟的過程,以減少當前情況與預期目標之間的差異"。即使是直覺,即對一個事件或數據的突然有洞察力的解釋,也以類似的方法發揮作用。"盡管表面上突然閃現的洞察力似乎產生了問題的解決方案,但研究表明,人們在解決洞察力問題時使用的思維過程最好被描述為一種漸進的、手段-目的的分析。" 領導者認識到相似性,并將其與個人和所研究的歷史聯系起來,從而獲得洞察力。心理學家、經濟學家和諾貝爾獎獲得者丹尼爾-卡尼曼(Daniel Kahneman)用這樣的描述來解釋內部的、經常是半意識的過程:"產生印象、直覺和許多決定的心理工作在我們的頭腦中默默地進行"。數學物理學家、科學哲學家和諾貝爾獎獲得者羅杰-彭羅斯描述了一種無意識的思想發展和對這些思想的有意識判斷。
MDMP有一個類似的、不亞于人類的動態。參謀部通過行動方案(COA)的制定產生備選方案,并由指揮官決定。然而,在行動方案的制定過程中,正如在手段-目的推理中一樣,用于簡化計算的啟發式方法以及一些神經心理學上的缺陷,限制了選擇并注入主觀性。歸根結底,目前MDMP內部的COA開發過程仍然需要大量的頭腦風暴來解決。
與主觀開發選項形成對比的是基于衡量和計算的選項開發,而這一過程將由人工智能支持的程序執行。通過一些基于現有信息和過去沖突的數據的計算,可以對比出AI賦能的MDMP會提供的建議。
對2008年俄格戰爭期間的決策和計劃進行評估,在與歷史上的決策、行動和結果進行對比時,可以深入了解人工智能驅動的MDMP的好處。以下是人工智能驅動的MDMP背后的邏輯和過程。
俗話說,如果情報是用來推動機動的,那么對戰場的情報準備的產出必須作為COA發展的起點,使友軍COA的創建能夠實現對對手的不對稱,并執行對對手行動最有利的行動。
從對敵方力量的評估中,可以根據具體的任務變量來確定所需的友軍力量。要做到這一點,需要一種衡量對手戰斗力的方法。有許多復雜程度不同的方法來確定一個代表戰斗力的數值。
人工智能程序可以使最繁瑣的系統變得可行,所以它不像參謀部那樣受到復雜性的限制,特別是在時間有限的時候。雖然這個例子使用了戰區分析模型(TAM),但TAM并不是重點。指揮官、參謀部或學說推薦的任何東西都可以使用。
在2008年俄格戰爭爆發前,俄羅斯部隊在北奧塞梯駐扎。這些部隊可以按地點轉化為戰斗力值。例如,在馬米森山口附近的俄羅斯部隊可以按其組成部件進行統計,如人員、T-72主戰坦克、2S3自行火炮和BM-21多管火箭炮系統。
圖 1. 俄羅斯軍隊戰斗力計算
圖1中顯示的戰斗力范圍可以告知所需的戰斗力,這些戰斗力來自于格魯吉亞部隊的位置,用藍色矩形標注,以便在各種可能的情況下擊敗這支俄羅斯部隊。圖1中描述的兩種情況是俄羅斯使用西面的馬米森山口或東面的羅基隧道(帶箭頭的紅線)。
與戰斗力計算一樣,從計算機建模中得出的計算結果可以用來預測基于部隊和手段的相應相關性的傷亡。在這里使用的算法中,戰斗力是根據地形和任務類型對每種能力或系統進行調整。一旦對戰斗力進行了調整,該模型描述了在部隊比例為1:1時的傷亡分布情況,有一條非線性曲線,在戰斗力比例大約為4.4:1時趨于平緩,顯示了一個粗略的收益遞減點。這種計算方法不能提供 "任務成功 "的百分比機會,但可以提供預期戰損和傷亡的迭代,顯示雙方的戰斗力如何隨著時間的推移而受到影響。必須對將導致失敗或撤退的戰斗力損失做出假設,但這是一個很好的例子,說明人類的洞察力可以被迫提供具體的情況。從這些計算中出現的洞察力的開端是,1:1的比例仍然是消耗性的,而2:1的比例有可能在兩次反復中增長到2.4:1然后是4.5:1。這就形成了一種機制,在時間上尋求有利的戰斗比例,可以決定性地改變平衡。這不是一個水晶球,而是現有的最佳估計,能夠由工作人員有條不紊地進行,或由程序以機器速度進行。由于戰爭是一種明顯的人類努力,因此可以將士氣或本例中未包括的其他因素納入到額外的修改因素中。這種對戰斗力隨時間推移的理解提供了一個關鍵的洞察力,并可以為部隊分配的決策提供參考。在這一點上,可以產生一個對應于特定地點的友軍的有利戰斗力要求。圖2強調了格魯吉亞部隊如果在俄羅斯入侵路線上的起伏地形中進行防守時的理想戰斗力。
隨著南奧塞梯局勢的升級,格魯吉亞總統米哈伊爾-薩卡什維利于2008年8月7日為軍隊確定了三個目標。他指示他們 "第一,阻止所有軍車從俄羅斯通過羅基隧道進入格魯吉亞;第二,鎮壓所有攻擊格魯吉亞維和人員和內政部崗位或格魯吉亞村莊的陣地;第三,在執行這些命令的同時保護平民的利益和安全"。正如格魯吉亞國家安全委員會秘書亞歷山大-洛馬亞后來所證實的,"我們行動的邏輯是解除茨欣瓦利郊區的射擊陣地,并試圖通過繞過茨欣瓦利,盡快向羅基隧道靠近"。這一指令和支撐格魯吉亞軍事反應的邏輯為本文中繼續發展人工智能的COA提供了一個有益的對比。
圖2. 兵力比的正反饋循環
前面分析的圖1中的俄羅斯部隊是后來試圖通過羅基隧道進入格魯吉亞的第一梯隊部隊。被描述為向格魯吉亞部隊和村莊開火的部隊在茨欣瓦利附近活動,由奧塞梯人組成,由俄羅斯和奧塞梯 "維和 "營協助,人數增加到830人,大約300名雇傭兵,以及更多的大炮。由于他們有相當多的步兵,不同的任務,以及從茨欣瓦利城市中心倉促防守的地形,通過以前使用的相同方法,他們的戰斗潛力被計算為60。
談到格魯吉亞部隊和繼續發展他們最有利的行動路線,格魯吉亞第二、第三、第四和第五步兵旅以及戈里的一個單獨的坦克營的戰斗力和位置,作為計算的起點。他們與俄軍的距離和旅行時間,或關鍵地形,都可以計算出來。將這些信息與之前概述的俄羅斯部隊和之前討論的兵力比例知識結合起來,就可以利用目標編程,從數學上優化從每個格魯吉亞地點到羅基隧道或茨欣瓦利的戰斗力,以滿足有利的兵力比例,同時最大限度地減少總的旅行距離,從而最大限度地減少時間和后勤要求。
圖3. 戰斗潛力優化Python計劃的結果和建議的第4旅的分步任務組織結果
圖3左上角的優化程序結果顯示,格魯吉亞的戰斗力分配足以達到2:1的兵力比,以對抗進攻的俄羅斯部隊。對于第4步兵旅,建議在各目標之間分配戰斗力,后續的優化程序是按作戰功能確定各目標的不同作戰系統的數量,如圖3右上方所示。其結果是以理論為基礎的理性選擇解決方案,并通過在后期MDMP的COA分析步驟中為裁決戰爭游戲而保留的計算類型形成。人工智能支持的MDMP所實現的是使用詳細的分析來告知行動方案的最初發展,防止未來對次優COA的路徑依賴。
這種輸出就像分析數據以創造信息。合并這些信息的組成部分可以創造出知識,指揮官或參謀部可以對其運用智慧。這種方法不是像直覺所注入的那樣擁有不可解釋的因素,而是可以解釋的,并且可以在指揮官的具體規劃指導下進行修改。在這種情況下,裝甲、步兵和炮兵在進攻和防守中的有效性,以及丘陵和城市地形,都被納入優化的考慮范圍,輸出結果將炮兵優先送到羅基隧道。這一建議,雖然源于算法,但遵守人類的軍事判斷,認識到在城市中使用火炮的相對困難,以及步兵的相對優勢。毫不奇怪,行動后的審查指出,格魯吉亞的炮兵在丘陵地帶對付前進中的俄羅斯縱隊是有效的。
同樣,在這種修改中,通常為COA分析的后期步驟保留的計算類型被應用于COA的最初發展。正如加里-卡斯帕羅夫所描述的與計算機合作的好處一樣,人類也可以將作戰藝術應用于已經納入科學的概念。
許多計算可以被整合到程序中,以減少認知負擔,讓工作人員進步到更高層次的人工分析,其中一個例子就是時間。對于建議的每條路線,可以進行計算,根據車輛數量和其他變量確定更準確的時間。
將上述初級人機開發的COA的輸出與格魯吉亞國家安全委員會對其一般行動方案的闡述相比較,突出了人工智能支持的MDMP可以提供的優勢。人工智能的建議將一支更強大的格魯吉亞部隊引向羅基隧道,同時向茨欣瓦利投入部隊。很可能更早和更多地將部隊投入到羅基隧道附近的防御中,會極大地擾亂已經被渠化的入侵俄羅斯部隊,并阻止他們將火箭系統移到茨欣瓦利的射程內,并通過隧道將彈道導彈炮組進一步嵌入格魯吉亞,這對俄羅斯人來說是決定性的。
到目前為止,修改后的方法已經建立了一種發展 "下一步行動 "的方法,其基礎是對友軍和敵軍戰斗力的理解,這種戰斗力如何受到任務類型和地形的影響,以及部隊在移動和機動接觸中的時間關系。地面部隊的這些例子必須自然延伸到所有領域的戰斗力和效果的應用。這種技術能夠同時分析各個領域,并為跨領域效果的整合提供一個機制。近距離空中支援的架次可以被整合到地面領域,以便在地面戰斗的關鍵地點和時間提供更好的戰斗力比率。此外,在進行空對空作戰計算時,可以將地面防空資產納入空對空計算的因素。圖4顯示了通過羅基隧道進攻的俄羅斯地面部隊和推薦的格魯吉亞地面部隊的戰斗力,另外還強調了如何將俄羅斯的蘇-25戰斗機或格魯吉亞的SA-11系統納入其中。這為在領域內和跨領域進行的作戰行動創建了一個多維框架,并提供了一種同步匯合的方法。當一個領域的條件發生變化時,對其他領域和行動的影響可以在開始大大超過工作人員計算的復雜程度上進行。
隨著核心COA的制定,每個作戰功能的最佳整合可以通過算法來確定。例如,有了通往目標的路線和距離,以及燃燒率和其他規劃因素,可以計算出支持概念的要素。
這個例子表明,有能力在多個領域整合所有作戰功能的規劃。有了充分的細節說明COA的完成和廣度,現在可以把解釋轉向深度。為了在作戰層面創建一個在時間和空間上都有深度的COA,它必須提前預測幾個交戰,以實現相對優勢的位置,并尋求實現轉化為成功的失敗機制。而之前的過程主要是將現有的軍事理論或學術研究進行算法連接的創造,它們很難實現超越即時決策的飛躍,并創造出作戰藝術。對于這一點,現有的人工智能提供了適用的例子。
國際象棋人工智能中使用的基本微分法對所有棋盤上的處置方式提前兩步進行打分,包括行動和反應,然后根據程序對分數進行比較,分數最差的那個選項被修剪掉。在排除了未來兩步棋中最差的選項后,剩下的最佳選項被選中。修剪和消除的過程可以防止出現這樣的情況:人們可以在最近的一步棋中拿下一個低價值的棋子,但在下一步棋中又會失去一個高價值的棋子。該算法基于每一步后續棋重復這一過程。在許多程序中,該算法會分析更多的未來棋步,以指數形式增加棋盤的處置,以評估和排列潛在的棋步。為了簡化計算機的計算,一個被稱為阿爾法-貝塔修剪的過程可以在明確它們不會是最佳選擇時刪除分支,并停止評估它們。根據已經證明的根據力量和手段的相關性來評估軍事編隊的能力,可以看到即使是簡單的國際象棋人工智能方法也可以成為發展作戰藝術的基礎。
圖4. 多域COFM框架
當使用決策樹和國際象棋人工智能的最小算法時,程序會對棋盤上的大多數或所有的替代性未來進行評估,并產生一個可比較的值。俄羅斯軍隊最初從西邊的馬米森山口進攻,而不是從東邊的羅基隧道進攻,就是一個選項的例子。這將產生一個不同的動作,格魯吉亞部隊需要對此作出反應。除了國際象棋人工智能中棋子的總價值外,還經常使用位置的修改器。對每一方的剩余棋子進行估值的方法在概念上類似于之前用于分析俄羅斯和格魯吉亞部隊的戰斗力的TAM計算方法。而不是單個棋子的價值,將考慮軍事編隊的戰斗力。這種機制設計起初似乎是以消耗為重點,保留友軍的戰斗力,消除對手的戰斗力,并根據價值來確定優先次序。從一開始看起來非常機械的東西中出現的顯著特征是在時間和空間上創造和連接有利的力量比例,實現不對稱性,以大量消耗對手并保存友軍的戰斗力。簡而言之,它創造了作戰藝術。
當以這種方式對格魯吉亞的多個行動方案進行比較時,就會出現與圖3中描述的不同的行動方案。由于通往羅基隧道的旅行時間的變化,以及對交戰的預測是如何沿著各自的決策樹展開的,因此確定了對通往羅基隧道的部隊的改變,如圖5所示。
當人工智能支持的COA開發過程繼續向前搜索時,在Troitskye的俄羅斯第503摩托步槍團(MRR)和在Khankala的第42摩托步槍師和第50自行火炮團被確定為需要考慮的俄羅斯作戰力量。以最小的方式,在最初決定在羅基隧道和茨欣瓦利之間分配部隊之前,沿著決策樹進一步考慮這一事件。一旦理解了時間上的力量以及二階和三階效應,就會發現一個非直覺性的決定,即與戈里的坦克營和第比利斯的第4旅一起向羅基隧道進攻,這是由于預測到俄羅斯第二梯隊部隊在未來的行動。
圖 5. 俄羅斯-格魯吉亞聯合決策樹和進化
如圖3所示,如果俄軍同時開始行動,格魯吉亞部隊的原始部署無法及時趕到羅基隧道進行防御。然而,當動用哥里的坦克營或第4步兵旅時,一支有利的部隊能夠在迪迪古普塔或爪哇附近進行防御,使俄軍在山丘上保持渠化,有足夠的戰斗力來預測俄軍的進攻會被擊敗。這種防御可以抵御俄軍第二梯隊的第503摩托化步兵師,但不能抵御緊隨其后的第42摩托化步兵師,圖5右上方描繪的是第503步兵師。正因為如此,格魯吉亞的防御部隊如果要完成他們的任務,就需要在503摩托化步兵師到來之前向隧道進行反擊,以在嚴重的渠化隧道處進行防御。有了這些從復雜中出現的聯系,格魯吉亞的領導層可以及時思考并產生贏得戰斗的洞察力。
建立可用COA的算法過程在很大程度上緩解了因時間不足而產生的差距,同時為MDMP引入了一定程度的學術嚴謹性,否則可能只是主觀評估,而這種評估中隱含著所有未知的危險。
在目前的作戰環境中,往往沒有時間來制定多個作戰行動方案,對所有制定的作戰行動方案進行戰爭演習,應用作戰行動方案評估標準,然后確定一個推薦的作戰行動方案。有了人工智能支持的MDMP,COA分析和比較就被烘托出來,并最大限度地利用現有的技術,所有這些都是在傳統的工作人員可以收集到的工具。
通過COA分析和COA比較步驟合并和修改COA開發步驟,以利用當前人工智能能力的速度、力量和洞察力,將提高預測多種替代性未來和選擇的能力,使指揮官不僅能夠在三維空間中思考,而且能夠在時間中思考。鑒于時間越來越稀少,了解時間,并擁有在多個領域與之合作并通過它的工具,可能是人工智能提供的最大優勢。
其他領域的人工智能工具已經展示了它們在提供快速、一致和準確計算的任務方面的能力。為了具有價值,人工智能不需要自主運作或復制有生命的人。人工智能只需要彌合當前規劃和決策工具的適用性與人類認知在復雜適應性系統中的有效性之間不斷擴大的差距。處理復雜性的適度改進,即使只是減少導致錯誤的認知負擔,也會確保比無助的指揮官有決策優勢。
在人工智能支持的MDMP的意義上更進一步,人工智能可以在第一次迭代后半自動地完成MDMP,幾乎連續地進行完整的MDMP過程,沒有疲勞感,納入每一個新發展。一個持續的人工智能運行的MDMP將提供關于部隊當前位置和行動的反饋。近乎實時的反饋將使我們能夠跟蹤下屬單位的當前行動、控制措施的遵守情況和進展。
其次,近乎連續的MDMP可以通過評估根據當前條件應該執行什么COA來預測分支,甚至預測隨著條件的變化,未來決定性交戰的設置。持續的人工智能支持的MDMP將與敵人而不是計劃作戰。一個人工智能支持的過程將有額外的好處,即為任何新出現的COA整合資源,同步和優化所有領域的效果,并使過渡到一個新的分支計劃更加可行。這種能力將在使部隊迅速適應在未來動蕩環境中的混亂邊緣茁壯成長方面取得不可思議的進展。
人工智能(AI)是一項具有廣泛用途的新興技術。《美國防戰略》強調了人工智能對軍事行動的重要性,以使美國保持對其近似競爭對手的優勢。為了充分實現這一優勢,不僅要在戰術層面,而且要在戰爭的作戰層面整合人工智能。人工智能可以最有效地融入作戰計劃的復雜任務,方法是將其細分為其組成部分的作戰功能,這些功能可以由狹義的人工智能來處理。這種組織方式將問題減少到可以由人工智能解析的規模,并保持人類對機器支持的決策的監督。
人工智能是一套新興的、變革性的工具,有可能幫助軍事決策者。美國國家戰略將人工智能(AI)納入戰爭。《2020年國防授權法》11次提到了人工智能。國防戰略強調了利用人工智能和機器學習方面的商業突破的重要性。人工智能的軍事用途是保留國家安全的一個引人注目的方式。創造工具來支持戰術行動,如摧毀敵軍和從一個點導航到另一個點,具有顯著和可見的效果,使他們在資源有限的環境中在政治上可以接受。它們在訓練和測試方面的可重復性,使它們在采購過程中成為人工智能系統的快速贏家。然而,戰術行動的范圍和時間是有限的。僅在戰術層面上整合人工智能,忽視了在作戰層面上發生的決定性影響。
作戰,也就是實踐者將戰術行動轉化為戰略效果的層面,取決于領導者做出正確決策的能力。聯合部隊海事部分指揮官(JFMCC)的艱巨任務是制定計劃,將戰區戰略和聯合部隊指揮官(JFC)的目標結合起來,通過決定性的海軍交戰來塑造環境。在人工智能的快速認知能力的幫助下,JFMCC將能夠制定并更徹底地分析行動方案(COA)。這些品質對于未來的沖突是必要的。
人工智能必須在戰爭的各個層面進行整體集成,以充分實現其優勢。除了局部的、短期的戰斗,它還需要應用于主要的行動和戰役,涉及整個戰區的數月或數年。在戰爭的戰役(作戰)層面上的實施,放大了為實現戰略目標而進行的有序交戰和同步行動之間的協同作用。除了技術發展之外,行動上的整合將刺激政策和理論的建立,以使作戰人員有意愿使用人工智能。隨著使用人工智能的經驗的增加,其采用率也會增加。為協助海軍作戰計劃而實施的特定人工智能技術可能與那些用于計算射擊方案或在被拒絕的淺灘水域規劃路線的技術不同。然而,在作戰層面的接受度將推動戰術上的使用。
在JFMCC層面,人工智能系統網絡將為決策者提供決定性的優勢,將專注于作戰功能的獨立的人工狹義智能(ANI)單位統一起來將實現最顯著的好處。首先,人工智能解決方案比它們的通用人工智能(AGI)同行更適合于軍事問題的解決。其次,戰爭的性質促使有必要在作戰層面上整合人工智能。最后,雖然有許多方法可以整合,但沿著功能線這樣做會帶來最顯著的好處。不僅在技術意義上吸收人工智能,而且描述其在政策、理論和培訓中的使用,將使海軍能夠充分使用它,并在與我們的戰略競爭對手的競爭中獲得優勢。
目前人工智能在海上行動中的最佳應用是將復雜的海上行動問題分解成子問題,由人工智能來解決,并組合成COA建議。解決小問題的人工智能需要更少的訓練數據,有更直接的邏輯,并且可以連鎖起來解決更重要的問題。麻省理工學院人工智能實驗室前主任羅德尼-布魯克斯(Rodney Brooks)認為,創建動態環境的符號表示是困難的或不可能的。然而,特定任務的智能體可以利用足夠的傳感器數據智能地行動,更重要的是,可以連貫地互動。通過將簡單的活動連鎖起來,失敗的風險很低,更復雜的問題就可以得到解決。多個簡單的行動可以在低認知層平行運行,并將其輸出結合起來,為更高層次的復雜活動提供支持。這種結構的優點是允許軍事工程師開發和訓練人工智能,以首先解決可操作的問題。對人工智能開發者來說更具挑戰性的功能可以保留只由人類決定的方法,直到他們產生解決這些問題的專業知識。與其等待一個完整的系統,部分系統將提供一個臨時的邊際優勢。
鑒于人工智能可以通過將問題分解成更小的決策來最好地解決問題,問題仍然是如何劃分這些問題。重述作戰任務的一個模式是將它們分成作戰功能:指揮和控制(C2)、通信、情報、火力、運動和機動、保護和維持。這些作戰功能為開展有效行動提供了基礎。它們為一個行動提供了采用手段實現其目的的方法。因此,與決定如何實施這些功能以實現目標的決策者一起使用人工智能是很自然的。
如同應用于海上作戰戰爭,最低層的決策支持系統將由感知環境的活動組成:探測艦艇、飛機和潛艇;燃料水平;天氣;以及其他客觀的戰斗空間數據。通過將外部輸入限制在特定的、低層次的任務上,該系統將最大限度地減少對抗性例子或旨在消極操縱自動系統的數據的風險。中間層將把下層的輸出與作戰目標和因素結合起來,如時間、空間和力量的限制,以提供解決問題的方法和作戰功能。由于上層的對抗性數據注入的威脅較小,這些系統可以使用深度學習。深度學習是機器學習的一個子集,它不像其他形式那樣需要高度格式化的數據,但計算成本會更高,而且容易受到欺騙。深度學習將增加這一層的人類互動,并暴露出更復雜的關系。最高層將把C2流程應用于其他六個業務功能,以產生業務建議。中間層的每個功能人工智能將向其他功能人工智能和最高C2層提供建議。中間層的人工智能對復雜的數據和相鄰單位及C2功能的建議進行理解。
如果將中間層人工智能納入規劃和指導、收集、處理、分析和傳播的情報周期,將促進收集資產的更好分配。判斷對有限的收集資產的請求以滿足行動和戰術信息需求是JFMCC關注的一個問題。在收集計劃期間,人工智能可以使用已知的對手軌跡、地點、個人和組織來定義和優先考慮指定的利益區域(NAI)。在執行過程中,人工智能可以根據優先級驅動收集路線,就像企業用它來規劃送貨路線以減少勞動力、燃料和維護成本一樣。采集計劃者可以通過增加對手監視點的位置和范圍來減少反偵查的風險。在C2層面,指揮官和情報官員可以利用收集成果來證明更多的JFMCC收集資產和COA的修改。這種方法適用于其他功能。
人工智能可以在部隊部署不斷變化和對手存在不確定的環境中改善維持能力。相互沖突的要求使如何使用有限的后勤資產來滿足作戰人員的需求的決策變得復雜。后勤單位較低的生存能力促使人們決定是將它們帶入被對手防御系統拒絕的區域,還是將戰斗飛船引離目標。人工智能可以利用軍事和民用運輸的可用性、預先部署的庫存和供應商的響應能力來制定船舶和飛機需求的解決方案。企業利用人工智能準確預測需求,并分辨出影響運輸和倉儲的采購模式。維持型人工智能可以使用這個過程的一個變種,來計劃在高級后勤支持站點(ALSS)或前方后勤站點(FLS)的材料堆放。它可以決定如何以及何時使用穿梭船和站立船來運送到攻擊組。機器學習將使用燃料、食品和武器庫存、威脅環、戰備水平和維修時間來訓練維持人工智能。維持型人工智能可以提供比人類單獨完成的更有效的量化解決方案,并將其反饋給其他功能區和C2高層。
C2層將對來自下層的決定進行仲裁,并提供一個統一的建議。就像一個軍事組織的指揮官一樣,它將把其副手AI的建議合并起來。人工智能過程的早期階段使用傳感器數據和其他客觀信息來確定指揮官的方向;決定行動方案需要建立對戰斗空間的理解,這是一種更高層次的欣賞。戰斗空間的可變性和模糊性將使這一層的人工智能元素最難開發。最終,該系統將作為一個可信的智能體,壓縮指揮官負責的信息量。壓縮的信息減輕了時間有限的決策者工作時的疑慮負擔,使她能夠向下屬單位發出更及時的命令。
圖1說明了基于這些原則的系統的擬議架構。以對手預測為例,許多單一用途的ANI將在最低層結合原始傳感器和單位報告數據。它將評估敵方單位的最可能位置。公司分析評論、社交媒體和論壇發帖的情緒,以確定產品的滿意度。同樣地,這個系統將通過公開的言論和秘密的報告來確定對手的意圖。它將評估當前和歷史天氣模式,以評估氣候對敵人行動的影響。這三個輸入和其他信息將被功能情報ANI用來形成對敵方COA的評估。同樣,火力節點將使用敵人的組成、JFC的優先級和預測的彈藥可用性來產生目標指導。中間層節點將橫向傳遞他們的評估,以完善鄰近的建議,如部隊保護水平。獨立的功能建議也將直接反饋給C2層,以創建整體行動方案。
圖1. 海上人工智能系統的擬議架構
首先,利用聯合人工智能資源的優勢,針對海軍的具體問題修改標準組件。擅長開發軍事人工智能系統的工程師的稀缺性將限制新系統的開發。美國防部的人工智能戰略具體規定了建立通用的工具、框架和標準,以便進行分散的開發和實驗。使用這些現成的組件,為人工智能決策網的所有子系統創建低級別的系統和標準接口。將海軍的資源集中于采購和實施用于海事具體決策的中層和高層系統。避免技術上令人著迷但無效的解決方案,并通過將職能領域的專家與設計團隊相結合來保持解決海事問題的目標。
第二,創建并維護可通過機器學習攝入的作戰數據數據庫,以訓練海軍人工智能。實施能夠在海上作戰中心(MOC)讀取和集中匯總基本作戰數據報告的技術和工藝,如燃料狀態、導彈裝載量。開發記錄和定性評分作戰決策結果的方法,如對手態勢的變化、傷亡修復率和公眾對行動的反應。將輸入與作戰決策和結果聯系起來的數據庫將加速開發符合現實世界標準的系統。
第三,將人工智能的使用納入政策和條令。條令應該編纂人工智能可以被整合到戰爭戰役層面決策中的領域。明確地說,關于情報、行動、火力、后勤、規劃和通信的海軍作戰出版物應說明人工智能在決策過程中產生優勢的地方和方式。描述海上聯合行動的聯合出版物應明確說明如何將JFC的要求解析為JFMCC的AI系統。如果國防部和海軍的政策對指揮官因整合人工智能的決策建議而產生的責任量進行了定性,那么他們在使用人工智能時就可以采取經過計算的風險。讓指揮官和作戰人員掌握使用人工智能的戰術、技術和程序將加速其在艦隊中的應用。
人工智能的主要目標之一是構建智能Agent,如計算機游戲中的對手或將包裹送到客戶手中的無人駕駛飛行器。這些智能Agent在各種環境中感知和行動以實現其目標。例如,在電腦游戲的情況下,目標是擊敗玩家。在包裹運送無人機的情況下,目標是將包裹及時送到客戶手中。
Agent感知環境的狀態,并需要決定下一步該做什么。一種可能的方法是強化學習[36],即Agent從與環境的互動中學習。這種方法在一些領域是成功的,在圍棋[60]、《星際爭霸》[66]或Atari游戲[41]中取得了超人的表現。Agent如何在環境中行動的另一種方法是事先創建一個行動計劃。對于一個給定的目標,Agent計算出導致它的行動序列。自動計劃在許多領域都是成功的,如深空1號[4]或火星探測器任務[1]。自動規劃的一個缺點是,當環境意外改變時,Agent通常不能再向目標前進。這種情況要么是隨機發生的,要么是由其他對手Agent的行動引起的。為了明確地推理其他Agent并找到一個穩健的計劃,必須使用博弈論方法[59],如 double-oracle(DO,見圖1)。博弈論算法在實踐中有幾個成功的應用,例如,在物理安全[64]或保護野生動物[19]領域。我們關注的更多案例是戰斗情況,如用無人機保衛核電站,抵御侵略者。
這項工作的主要目標是通過加強幾何推理來推進自動對抗性規劃的算法。盡管規劃域定義語言(PDDL)[39]是一個富有表現力的建模工具,但對行動的結構有一個重要的限制:行動的參數被限制在有限(實際上是明確列舉的)域的值上。這種限制的動機是,它確保了有基礎的行動集合是有限的,而且,忽略持續時間,在一個狀態下的行動選擇的分支因素也是有限的。盡管持續時間參數可以使這種選擇無限大,但很少有規劃者支持這種可能性,而是將自己限制在固定的持續時間上。像吉普車穿越未知寬度的沙漠這樣的問題是無法解決的[32]。
圖 1:對抗性規劃、資源分配、雙預言機算法、幾何導航(從左到右)。
我們提議對PDDL進行擴展,以豐富具有幾何特征的行動。我們實現了能夠將推理提升到空間領域的規劃器,并將其應用于對抗性環境。我們說明這些方法可以解決有趣的問題,并將這項工作應用于任務和運動規劃場景(圖2),以表明我們的工作有很大的潛力,可以重新發明機器人技術中使用任務規劃器的方式。即使沒有對手,幾何學也是有效的,但在DO算法中,規劃器被多次調用以獲得最佳響應,所以作為一個乘數,我們有,如果對手的規劃域是幾何學的,可溶性和擴展性會變得更好。
圖 2:幾何任務-運動規劃:循環、線性近似、檢查運動規劃(從左到右)。
在美國國防部,人工智能(AI)/機器學習(ML)的整合目前是以現有項目的升級或新項目的收購形式進行的。怎么知道這些AI/ML支持的系統會按照預期的方式運行?為了做出這個判斷,與其他傳統的軟件開發/采購項目相比,AI/ML產品開發/采購需要一個獨特的評估過程。作為回應,美海軍軍械安全和保障活動(NOSSA)資助了以下研究,以調查獨特的政策、指導方針、工具和技術,以評估AI/ML關鍵功能中的安全問題。在這項工作中,開發了14項關鍵的嚴謹度(LOR)任務,并在五個階段中應用:(1)需求,(2)架構,(3)算法設計,(4)算法代碼,以及(5)測試和評估(T&E)。14項LOR任務涉及最佳實踐討論、定義、測量、論證文件和AI/ML系統特有的危險分析格式。這14項LOR任務還明確了為什么AI/ML軟件開發需要采購界的特別考慮。此外,這項研究有可能影響采購界如何定義需求、創建架構、產生AI/ML算法設計、開發AI/ML算法代碼以及執行T&E。在開發 "采購沙盒"的過程中,跨越五個發展階段的14項LOR任務的需求變得很明顯,該沙盒研究了部署AI/ML自主系統的路線規劃者,以及讓這些系統交付軟件包,重點是評估關鍵功能行為的安全性。該沙盒是使用國防部架構框架(DoDAF)和統一建模語言(UML)圖設計的,其中包含了各種AI/ML技術。當面臨這種程度的復雜性和/或不確定性時,14項LOR任務代表了一組有凝聚力的問題/考慮因素,為應對當前海軍AI/ML的采購問題提供了重點。這些指南還為涉及安全的組織,如NOSSA和適航性,以及包括項目經理和系統工程師在內的采購專業人員提供了一個分步驟的 "如何 "評估方法,以確保創造高質量的人工智能嵌入式產品。
該報告為包含人工智能功能的系統的采購和開發提供了詳細的指導方針。該準則允許用戶在作戰部署的挑戰中對人工智能功能的行為建立不同程度的信心。信心的程度決定了14個LOR任務中的哪一個在五個階段中被應用。每個LOR任務提供了問題和/或考慮因素,使開發人員能夠客觀地評估人工智能/ML功能的安全性和可靠性。當審查每個LOR任務時,LOR任務編號(和相關階段)后面的 "參考編號 "是指用于開發問題和/或考慮因素的文件中的相應標識(ID)。這四份文件的標題分別是:(1)操作視圖(OV),(2)系統視圖(SV),(3)數據集設計,和(4)算法設計。LOR任務 "參考ID "命名法的例子是Ops1、Sys1、Alg1和Dat1。在這些例子中,每個ID與四個文件中的一個有關,其中數字 "1 "表示文件中描述的第一個LOR任務。在每個文件中使用 "Ref ID "支持對研究的可追溯性,包括數學。
美國國防部(DOD)報告稱,人工智能(AI)是一項革命性的技術,有望改變未來的戰場和美國面臨的威脅的速度。人工智能能力將使機器能夠執行通常需要人類智能的任務,如得出結論和做出預測此外,人工智能機器可以以人類操作員無法企及的速度操縱和改變戰術。由于AI具有廣泛用途的潛力,國防部將其指定為頂級現代化領域,并投入大量精力和資金開發和獲取AI工具和能力,以支持作戰人員。在2022財年,國防部為科學和技術項目申請了147億美元,以及8.74億美元用于直接支持其人工智能努力。根據國防部2018年的人工智能戰略,未能將人工智能能力納入武器系統可能會阻礙戰士保護我們的國家抵御近同行對手的能力其他國家正在這一領域進行大量投資,這可能會削弱美國的軍事技術和作戰優勢。
美國國防部(DOD)正在積極追求人工智能(AI)能力。人工智能指的是旨在復制一系列人類功能,并不斷在分配的任務上做得更好的計算機系統。GAO之前確定了三種AI類型,如下圖所示。
國防部認識到開發和使用人工智能不同于傳統軟件。傳統軟件的編程是根據靜態指令執行任務,而人工智能的編程則是學習如何改進給定的任務。這需要大量的數據集、計算能力和持續監控,以確保功能按預期執行。支持國防部作戰任務的大部分人工智能能力仍在開發中。這些能力主要集中在分析情報,增強武器系統平臺,如不需要人工操作的飛機和艦船,并在戰場上提供建議(如將部隊轉移到哪里)。
當獲取依賴于復雜軟件的新能力時,國防部一直面臨著挑戰,例如長時間的獲取過程和熟練工人的短缺。GAO發現,它繼續面臨這些挑戰,同時還面臨人工智能特有的其他挑戰,包括有可用的數據來訓練人工智能。例如,人工智能探測對手的潛艇需要收集各種潛艇的圖像,并標記它們,這樣人工智能就可以學會自己識別。國防部還面臨著將訓練有素的人工智能集成到非為其設計的現有武器系統中的困難,以及在其人員中建立對人工智能的信任。國防部發起了一系列努力,如為人工智能和人工智能特定培訓建立一個跨服務的數字平臺,以應對這些挑戰,并支持其對人工智能的追求,但現在評估有效性還為時過早