亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

2020年初,美國海軍發布《人工智能技術安全性》。該報告重點關注對此項技術帶來的安全性問題。美國海軍乃至整個國防部系統,都在嚴肅認真地對待軍事人工智能的發展。2019 年的 2、6、9 月,美國先后公布《國防部人工智能戰略》、《國家人工智能戰略》《空軍人工智能戰略》三大戰略,表明其在國家、軍隊、軍種三個層面的“智能化戰略”全面啟動。可看出美國人工智能在軍事領域的發展態勢日趨激烈

一、推出多項政令戰略規劃,聚力發展人工智能

人工智能作為驅動第四次工業革命的重要引擎,深刻影響著經濟產業和各技術學科的發展,為此美國以國家戰略地位提升對人工智能在社會發展各領域( 特別是國防領域) 的動能,以推動人工智能技術的研發。2019年10月,世界經濟論壇發布制定國家人工智能戰略的框架白皮書,創建了最低限度可行的人工智能國家戰略制定框架,指出國家人工智能戰略的制定應考量具有戰略意義的優先事項人口需求資源限制和地緣政治等因素,旨在指導尚未或正在制定人工智能國家戰略的政府。美國多措并舉,繼續把發展人工智能技術作為提升國力維護國家安全的重大戰略,從國家戰略層面強化人工智能技術布局。2019年2月,美國政府科技政策辦公室發布由美國總統特朗普簽發的《維持美國在人工智能領域的領導地位》行政令,提出了美國發展人工智能的政策和原則戰略目標和重點領域,啟動旨在推進美國在人工智能領域領導地位的美國人工智能倡議,指示聯邦政府整合資源,聚力發展人工智能。

同年2月,美國國防部公布《2018年國防部人工智能戰略》的摘要部分( 題為《利用人工智能促進安全與繁榮》) 。該戰略是美國國防部首個人工智能戰略,旨在落實美國政府《國家安全戰略》和《國防戰略》提出的人工智能重要事項,為美國國防部謀求軍事人工智能優勢發展軍事人工智能實戰化能力提供戰略指導。2019年7月,美國空軍推出數字空軍計劃,旨在改進其在數據管理信息技術架構和業務運營方面的不足,使美國空軍保持競爭力。2019年9月,美國能源部成立人工智能與技術辦公室,旨在為美國人工智能研究人員提供聯邦數據模型和高性能計算資源。2019年9月,美國空軍以美國《國防部人工智能戰略》附錄形式發布《2019空軍人工智能戰略》,詳細闡釋在數字時代如何有效管理引導和引領所必須的基本原則職能和目標。2020年初,美國海軍分析中心發布專題報告《人工智能技術安全性———對海軍的行動方案建議》。該報告從當前美國海軍推動軍事領域人工智能技術運用過程中引發的公眾關注進行介紹入手,提出了海軍乃至整個國防部系統在軍事領域接收采用新興技術手段的總體態度與思路。

二、多家軍事機構開展研發項目,探索人工智能技術的軍用新場景

作為軍事大國,美國對于人工智能軍事作戰賦能的目標非常清晰,強力推動美國頂尖人工智能研究走向新的技術突破,促進科學新成果的發現、增強經濟競爭力、鞏固國家安全。2019年3月,美國參議院軍事委員會舉行主題為國防部人工智能計劃的聽證會,美國國防預先研究計劃局 DARPA、國防創新小組( DIU) 、國防部聯合人工智能中心( JAIC)等機構主管分別發言,闡述所在部門的人工智能項目及運行機制等情況,鞏固并強化了人工智能技術及應用與軍方之間的聯系,保障美國的人工智能軍用化步伐進一步加快。以DARPA為例,DARPA正將投資和研發重點轉向第三代人工智能技術,用于創建能在特定語境下進行推理的機器。資助的主要項目包括終身學習機器( L2M,2017年啟動),可解釋人工智能( XAI,2018年啟動)和機器常識( MCS,2018年啟動)等,探索提高人工智能技術水平的方法,實現語境推理能力。DARPA認為,將這些技術集成到與軍事作戰人員合作的軍事系統中,將有助于在對空間敏感的復雜戰場環境中做出及時決策,了解不完整或者相互矛盾的海量信息,并使用無人系統安全自主地執行關鍵任務。2019年1月,DARPA啟動知識導向型人工智能推理模式( KAIROS)項目,旨在提升面向復雜戰場環境挖掘和理解海量信息中的復雜事件及其相互關系的能力。2019年1月,美國陸軍研究實驗室( ARL)啟動異構戰術環境中的分布處理( DPHTE)計劃,基于霧計算平臺在對抗性軍事環境中為作戰人員提供更多的態勢感知。2019年2月,美國空軍研究實驗室發布多域戰和目標定位支持信息分析項目,旨在開發基于算法戰和人工智能等技術,針對時敏有價值的敵對移動目標進行快速預判和打擊。2019年5月,DARPA啟動旨在將人工智能應用于空戰演變( ACE) 項目,人工智能空戰應用成熟后可替代飛行員完成部分空戰任務。2019年5月,麻省理工學院發布為美國空軍打造人工智能加速器項目,該項目研究領域包括救災和醫療準備、數據管理、維護物流、車輛安全以及網絡還原能力。2019年9月,美國國防部聯合人工智能中心宣布美國軍方網絡安全數據制定新框架,重點為未來人工智能網絡防御體系奠定基礎。2020年初,美國特朗普政府向國會提交2021財年預算申請,加速發展人工智能等技術。提議政府預算從2020財年1560億美元削減至1422億美元,下降138億美元,但預算申請仍強調優先發展“未來產業”,必須加速發展人工智能等技術。其中,500萬美元用于能源部新立“人工智能與技術辦公室”,加強人工智能的項目研發。

三、夯實人工智能實踐應用的道德準繩和安全邊界

隨著人工智能技術的發展,人權倫理、隱私保障、歧視偏見、安全問題等困境日益突出。美國亦在探索中多措并舉,確保人工智能在充分的監督和控制之下發展。特別是在2019年發布的國家級人工智能戰略和2020年初發布人工智能技術安全性報告中,將道德、隱私、安全等問題擺在突出位置,認為應在尊重道德、重視安全的前提下最大限度地發揮其社會效益。

(一)明確戰爭中使用人工智能技術的道德原則和標準

美國推動多項研究,闡明美國合法道德地使用人工智能的愿景和指導原則,引導負責任的人工智能應用和開發。2019年1月,美國國防部要求國防創新委員會制定在戰爭中使用人工智能的道德原則,用以指導軍方在戰爭中使用人工智能技術和武器,并向硅谷科技公司確認其人工智能產品將如何被使用。美國國防部這一舉措被認為旨在形成全球軍用人工智能規范的指導方針,并吸引硅谷科技公司參與防御工作;10月,人工智能原則: 國防部人工智能應用倫理的若干建議推出,被認為是美國對軍事人工智能應用所導致倫理問題的首次回應。2019年1月,美國著名智庫布魯金斯學會發布《自動化和人工智能:機器對人及地區的影響》報告,著重分析了過去近30年間的資助系統與人工智能對行業、就業、地理和人口的影響,并對當前至2030年的趨勢進行了預測。最后針對國家、州和地方的政策制定者提出一個綜合響應框架,為人們理解并規范自動化和人工智能的作用提供參考。

(二)人工智能對軍事領域尚屬新興技術,安全性不容忽視

人類歷史上,充斥著軍隊利用技術取得軍事優勢的實例。比如戰車。戰車,是出現在戰場上的第一種車輛裝備,由民間通用馬車提高速度和機動性改進而來,在軍事運用方面取得了顯著的優勢。戰車被描述為當時的“超級武器”。又比如火藥。火藥源起于一個偶然發現,它的出現,使得軍隊能夠駕馭化學反應能量來提高速度與威力,由此徹底改變了戰爭的形態和樣式。再比如內燃機。這種發動機繼承并發展了蒸汽機的優勢,改變了戰爭活動的速度與范圍。對內燃機的應用方案,包括為后勤物流(補給運輸卡車)提供動力以及為潛艇、飛機與導彈賦予持久的遠程監視及打擊能力。對大多數技術手段的接收和運用,一度都曾起到了改變了戰爭樣式的作用。而其中有幾項,更是徹底顛覆了以往戰爭活動的樣式和范圍,其中便包括火藥與核武器。人工智能技術,亦被認為位居此類。此項技術能夠應用于整個戰爭事業的方方面面,大幅提高了戰爭活動的效能與效率。各類人工智能技術,也因其各自獨有的特性而有所區別。首先應注意到,現實世界中人工智能技術應用方案,是用以解決特定領域問題的狹義人工智能技術,而非具備普遍通用性的通用人工智能技術應用方案。人工智能技術在軍事領域的應用,可以與美國軍隊對核武器的運用方式進行類比:安全方面的關鍵性技術領域知識,必須在很大程度上由軍隊文職機構掌握,在很大程度上亦屬技術范疇。

(三)給予人工智能技術安全性 “恰到好處”的信任

人工智能技術安全性,也與對其信任程度有關。美國軍方運用人工智能技術方面的一個關鍵問題是,軍方人員和美國政府高層領導能否相信這些系統確實有效且不會引發意外問題。2016年國防科學委員會對自主控制技術的研究報告指出:“決定在特定任務中部署運用某系統的個人,必須信任該系統。”在伊拉克和阿富汗的行動表明,負責實施特定行動的指揮官和戰斗/操作人員在不完全了解后果的情況下,不一定會使用某些系統。當某些系統被部署至戰場以滿足緊急需求時(如反簡易爆炸裝置系統或用于提供關鍵性情報的監視系統),一些部隊還是選用了他們已經熟悉的武器系統和情報監視偵察平臺,即便是老系統的功能指標比不上那些已經可以選用的新系統。對人工智能系統的信任度過低是一種危險,會阻止部隊運用他們所需的功能。而另一種危險,則是對某項能力的過度信任。人類傾向于過度信任機器,即便在有證據表明不能夠給予這種程度的信任情況下,也是如此。戰爭活動中的過度信任,也有具體案例。如,2003年,陸軍“愛國者”防空導彈系統曾擊落1架海軍F/A-18飛機,該系統將飛機誤判定為戰術彈道導彈,并向操作人員提出了建議,要求其發射導彈實施攔截。操作人員在沒有獨立核實可用信息的情況下,批準實施了這項建議。這表明,在實際作戰行動中,軍方需要對人工智能給予程度“恰到好處”的信任,不能過熱也不可太冷,避免滑向兩個極端。需要達成的目標,是程度恰當的信任,并且應該讓人來參與決策過程。而這種決策過程,則需要以各種相關能力及對系統功能所具備的經驗與知識為依托。

(四)軍事人工智能安全問題將寫入政策方針

軍方和政府的高層領導,還應通過政策方針層面的決策對相關軍事行動的性質施加影響,包括確定戰爭活動中應該使用哪些特定的技術手段。這些方針政策,可能會對監管程度構成影響。例如,國防部第3000.09號指令,就要求對某些類型的自主控制系統進行高級別審核。明確戰爭活動中允許使用的技術手段(例如,對白磷(彈藥)運用的限制和使用集束彈藥時相關設定要求以及對其它此類武器具體性能參數的限制要求),并且對某些特定類型作戰行動中的策略原則進行限制。例如,《2013版總統政策指導(Presidential Policy Guidance,PPG)》及《2017版總統政策指導》中,對某些反恐行動的批準與監管流程的總體原則框架進行了明確。這些政策方針原則,有助于確保相關軍事活動符合美國的原則、價值觀及利益。這些政策方針層級的決定,都有反映出對此類系統或作戰行動可靠性所應持有的信任程度的意味。值得注意的是,以上這些實例內容都涉及到了安全性原則問題,而《國防部第3000.09號指令》的目的,就在于避免“意外交戰(inadvertent engagements)”事件的出現(例如致使平民傷亡)。限制白磷彈藥和集束彈藥的目的,還在于減少使用這些武器時給平民帶來的危險。《2013版總統政策指導》中,直接將致使平民傷亡明確列為作戰行動批準程序中的否決條件(no-gocriterion)。因此可以預見,安全性問題,勢必將成為未來高層領導人對于將人工智能技術手段運用于戰爭活動方面所明確的相關指導與指令內容中的一部分。

(五)軍方須與業界協助解決安全問題

人工智能技術的巨大進步,也使美國政府產生了對業界新的依賴性。自第二次世界大戰以來,美國政府一直在很大程度上依賴于自身投入的研發資金。然而,人工智能技術方面的研發投資,越來越多地由私營機構所主導。其特征,是過去十年來科技行業的研發支出急劇增加。在圖1中,我們將整個美國政府在網絡和信息技術研發方面的支出與美國排名前五位的高科技公司(亞馬遜、谷歌/阿爾法控股、英特爾、微軟、蘋果)的研發投資進行了對比。如圖1所示,科技行業企業在研發方面的投入明顯更多,而且兩者間的差距正在擴大。2010年,科技行業企業的研發支出,已經是美國政府整體科技研發投資規模的6倍。8年后,企業在這方面的投入規模將激增至美國政府的15倍。總體而言,美國政府在尖端技術方面研究工作的投資面臨著迅速擴大的缺口。這種現狀,為美國政府營造出了一種處于不斷變化中的環境。在這種環境中,與業界的協作,對于美國政府實現其戰略目標必須保持的技術優勢而言至關重要。在這個意義上,人工智能技術安全性應該是業界關注的問題——正如谷歌等公司放棄了對美國政府軍事領域應用方案的支持,并開始運用倫理性審查程序對其內部工作流程進行監測所證明的那樣,美國政府必須與業界協作,依托其幫助解決此類問題。

圖1 美國政府與科技行業企業研發投資差距對比圖

四、美國軍事人工智能面向未來的發展趨向人工智能技術一般可分為弱人工智能、強人工智能、超人工智能 3 個等級,預計強人工智能技術可能在 2050 年前問世。未來美軍智能化建設發展可能經歷三個階段:

2025 年前,美軍重點是搭起智能化軍隊框架,總體水平處于弱人工智能階段。美軍建設主要圍繞構建“全球監視打擊體系”,以升級水下、網電、空天、全球快速打擊和導彈防御作戰系統為重點,突出發展無人化、隱身化、遠程化作戰平臺,提升“全球公域”介入能力,確保可信的“拒止”和“懲罰”威懾。這一階段,美軍無人系統在數量上將逐步超過有人系統,自主無人系統將成為美軍前沿作戰的重要力量,無形、無人、隱形、靈巧等力量將成為美軍事干預的主要手段。2035 年前,美國初步建成智能化作戰體系,總體水平進入強人工智能階段。美軍建設主要通過發展智能化作戰平臺、信息系統和決策支持系統,以及定向能、高超聲速、仿生、基因、納米等新型武器,對主要對手形成新的軍事“代差”。在這一階段,美軍無人系統的投資將超過有人系統,無人系統建設規模及作戰運用皆居于主導地位。2050 年前,美軍智能化作戰體系將更先進、更完善,總體水平達到超強人工智能階段。美軍在強人工智能、通用量子計算、可控核聚變、納米機器人、再生、創生、腦聯網等技術方面可能取得突破。作戰平臺、信息系統、指揮控制可能全面實現智能化、無人化,更多樣的仿生、基因、納米等新型武器走上戰場,作戰空間進一步向生物空間、納米空間、智能空間拓展,人類進入“機器人戰爭時代”。


付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

在人工智能技術展現出洶涌澎湃發展趨勢的當下,建設以智能技術武裝的新型軍隊,打贏 以信息化智能化為特征的新型戰爭,成為當前世界主要軍事強國的優先發展目標。以“意志的屈 服”、“不戰而屈人之兵”為標志的“制智能權、制意識權”將成為未來軍事斗爭的最高級、最有效、最 具震懾力的軍事優勢。文中從軍事作戰特點和人工智能的優勢入手,分析軍事領域對人工智能的 需求。針對感知、指揮、打擊、互聯的作戰鏈條,提出人工智能技術在軍事領域的應用方向,探索如 何通過人工智能在軍事領域的應用“有效塑造態勢、管控危機、遏制戰爭、打贏戰爭”。

引言

隨著深度學習、機器視覺等核心技術的大發展 和大突破,人工智能迎來新一輪的發展熱潮,并邁入 “黃金時期”。如今,人工智能技術已經深入交通、 服務、醫療健康、教育、就業、公共安全與防護等民用 領域[1] ,代替“懶人”完成部分體力和腦力工作。當前,智能技術正不斷顛覆信息化時代下的軍 事理論、作戰規則和作戰方法,有力推進新軍事體制變革,逐漸改變未來戰爭的形態[2] 。美軍將人工智 能視為“改變游戲規則”的顛覆性技術,并已經在無 人作戰平臺、電子戰、輔助指揮決策等技術領域中對 人工智能技術進行嘗試和應用。 加快軍事智能化發展,提高基于網絡信息體系 的聯合作戰能力、全域作戰能力 [3] 。智能技術對我 們來說,既有挑戰也存在機遇。面臨新形勢下的威 脅態勢,面向新時期軍事作戰需求,我們要找準定 位、明確目標、奮勇攻關,有效應對內外環境變化帶 來的風險挑戰,努力抓住科技進步創造的發展機遇, 實現“彎道超車”。

軍事領域對人工智能的需求

2.1 軍事作戰特點

按照克勞塞維茨《戰爭論》的定義,戰爭無非是 擴大了的搏斗,是迫使敵人服從我們意志的暴力行 為[26] 。千百年來戰爭形態和手段及樣式雖歷經變 遷,但戰爭本質核心卻始終如一,這就是消滅敵人, 保存自己。軍事作戰特點主要包括以下三點。 1)非友好、非合作、不可控。戰爭的成敗可能 決定了對抗雙方的生死存亡,使得對抗雙方盡其所 能地欺騙對方、盡可能地隱瞞自己的真實意圖、盡可 能地利用對方所有可能漏洞,從而使得對抗雙方都 無法全面有效地掌握戰爭的真實狀態,導致戰場局 勢不可控。正如丘吉爾所說:“一旦開了第一槍或 引爆第一顆炸彈,政治領導人就失去了對戰爭的掌 控權,戰爭本身成為了主導者。” 2)不確定性大。作戰是敵我雙方持續對抗的 過程,然而,復雜戰場環境、指揮決策、對抗手段等多 種不確定性因素必然會產生作戰空間、作戰力量、作 戰規則、作戰流程等要素的不確定性。由此,要求指 揮員要善于未雨綢繆,周密制定計劃,創造有利于我 而不利于敵的戰機,能夠基于瞬息萬變的戰場情報 數據及時調整作戰行動。 3)作戰規律難以掌握。一方面,由于“戰爭迷 霧”的存在,在戰場環境下對作戰數據的獲取往往 是不完整的、不完備的、甚至是虛假的,使得軍事裝 備自身難以自己學習訓練,從而無法掌握作戰客觀 規律繼而變成軍隊可用裝備。另一方面,隨著各種 偵察探測手段引入現代戰爭中,各種信息充斥戰場, 數據的過剩、超載、盈余、膨脹使得很多有價值的信 息淹沒在數據海洋中,導致不可靠、不相關、模棱兩 可和互相矛盾的信息呈指數級的增加,進而增加判 斷的復雜性。伴隨一批新興技術理論的不斷突破和技術應用 范圍的持續擴大,多種新質武器的相繼問世,未來戰 爭將會是在陸、海、空、天、電、網上進行的全維戰爭, 是戰場信息處理能力、輔助決策能力、快速打擊能力 的比拼。未來戰爭空間多維、力量多元、樣式多樣、 節奏加快等突出趨勢,對戰場信息的接收與認知、對 戰場態勢的評估與預測、對作戰行動的快速應變等 能力要求將遠遠超出作戰人員的思維能力,必然需 要依靠具有超強計算、學習和理解能力的機器進行 威脅研判和作戰輔助決策。

2.2 人工智能的優勢

人工智能自誕生之日起即被賦予了一項崇高使 命,即代替人類完成繁重、危險和重復性工作。面對 這些工作,人工智能具有速度更快、精度更高以及抗 疲勞性更強等顯著優勢。隨著人工智能的發展,其 對軍事調度、戰場行動認知與決策的能力將逐漸超 越人類。 1)人工智能善于解決復雜信息認知問題。人 工智能技術能夠打破現有作戰規則,使得機器像人一樣對復雜問題進行認知,積累經驗,解決問題。通 過對戰場大數據的有效開發,提高指揮員對多個戰 場空間情報的發現和深度認知能力,利用數據挖掘 分析方法從海量多源異構信息中得到高價值軍事情 報信息,大幅度提高情報分析處理能力,從而能夠把 握戰場發展動向,預估敵我態勢變化,破除“戰場迷 霧”。 2)人工智能善于解決復雜狀態空間問題。人 工智能技術在繼承機器優勢的同時,具備針對復雜 任務進行高效率的信息搜索和優化處理能力,是解 決不確定性和復雜性的有力武器。圍棋在走法上有 10 170 種可能,比全宇宙的原子數 10 80 都要多,然而 相比于圍棋,戰爭要更加的復雜多變。戰爭具有更 強的戰場開放性、攻防隱蔽性、作戰多維化等特點。如今,人工智能已經攻破圍棋的堡壘,正在向復雜度 更高的“星際爭霸”游戲發起挑戰。 3)人工智能善于自我學習實現能力升級。人 工智能技術可以通過系統后臺進行無監督學習和機 器博弈,從而達到系統性能的自我提升和優化的目 的。以圍棋為例,AlphaGo 只花了幾個月的時間,學 習人類對弈的三千萬棋局,在通過海量的歷史棋譜 學習參悟人類棋藝的基礎之上,進行自我訓練,擊敗 了人類頂尖棋手。而 AlphaGo Zero 與 AlphaGo 有著 本質的不同,它不需要通過學習歷史棋譜從而掌握 人類的先驗知識,而僅靠了解圍棋對弈的基本規則, 通過自我博弈和自我進化,迅速提升棋藝,實現對 AlphaGo 的百戰百勝[27] 。可以預見,應用人工智能技術,能夠在很大程度 上提升作戰指揮活動的觀察、判斷、決策、行動等關 鍵過程的作戰能力。人工智能技術將成為軍事變革 的重要推手,必將催生新的戰爭樣式,推動戰爭形態 的加速轉變。

3 人工智能軍事應用方向

3.1 軍事智能技術體系框架

未來戰爭,從能力上我們希望具備更加透徹的 感知、更加高效的指揮、更加精確的打擊和更加自由 的互聯。由此帶來的眾多跨作戰空間裝備之間數據 互聯、任務協同及海量戰場異構數據實時處理等問 題必須由更加深入的智能才能得到有效的解決,繼 而對感知、指揮、打擊、互聯等作戰能力產生催化劑 的作用,形成一體化智能作戰鏈條,顛覆性提升體系 作戰效能。軍事智能技術體系框架如圖 1 所示,包括賦能 體系、軍事智能系統、作戰體系等三個方面。

圖 1 軍事智能技術體系框架 賦能體系:以機器學習、人機交互、計算機視覺 等人工智能算法為依托,形成面向軍事應用的人工 智能優化算法引擎,實現人工智能技術在軍事領域 的賦能。軍事智能系統:應用賦能技術,面向軍事作戰需 求,依托作為人工智能算法“倍增器” 的基礎支撐, 實現感知、指揮、打擊、互聯形成的 OODA 作戰鏈路 的智能化。作戰體系:在空中作戰、反導反臨作戰、太空對 抗、陸海作戰等行動中,作戰部隊利用軍事智能系 統,與人協同,提升作戰效能,形成對敵方的非對稱 優勢。

3.2 更加透徹的感知,實現信息優勢

在探測感知領域,主要可在目標信息獲取、戰場 數據分析等方面應用自然語言處理、元學習、隨機森 林等職能技術,實現信息優勢,如圖 2 所示。

1)應用于目標信息獲取。 綜合利用微波輻射、 可見光、多光譜、紅外、聲學、磁力等多種探測手段, 實現對戰場目標信息的高效準確采集和獲取;應用 多譜段-多體制協同探測、多源數據智能融合等技 術,提高對目標的多維特征提取,精確解算目標位 置,實現對目標屬性、類型、國別、身份、敵我等快速 準確識別,實現目標信息的所見即所得[28] 。美國防 部高級研究計劃局(DARPA) 2010 年啟動了“心靈 之眼”項目[29] ,旨在研發視覺智能系統,通過無人作 戰平臺觀察目標作戰信息,并為作戰人員及時提供 應對手段。該項目主要通過運用智能圖像處理和機 器視覺等技術,對視頻信息中物體的動作和行為進行辨別和分析,通過對物體動態行為信息的準確感 知,以實現復雜作戰環境中對潛在威脅進行識別和 認知。無獨有偶,美國防部于 2017 年成立了“算法 戰跨職能小組” [30] ,旨在解決美軍在中東地區對 I? SIS 進行反恐作戰過程中遇到的海量情報分析困難 問題。該項目通過運用深度學習、計算機視覺等技 術,利用數臺計算機代替數以千計的情報分析人員, 提高情報提取的效率和精度,以支撐更及時有效的 決策[31] 。

2)應用于戰場數據分析。 綜合利用大數據、機 器學習、數據挖掘等技術,尋找在復雜作戰過程中產 生的海量數據之間的內在關聯關系,快速高效分析 戰場作戰行動和態勢變化,將偵測到的戰斗力量分 布與活動和作戰環境、敵作戰意圖及機動性有機聯 系起來,分析并推理事件發生的原因,得到敵方兵力 結構和使用特點的估計,通過已知事件推測將來可 能發生的事件[32] 。DARPA 于 2011 年設立“洞悉” 項目[33] ,旨在研發一套情報分析系統,將操作員的 知識和推理能力融入到系統當中,從而提高快速應 對網絡威脅和非常規戰爭的能力。該項目主要運用 異構信息關聯、多源智能融合等技術,通過分析和綜 合多源傳感器探測信息和不同資源情報數據,輔助 增強情報分析人員的信息處理與共享能力。DAR? PA 于 2019 年設立了“以知識為導向的人工智能推 理模式”項目[34] ,旨在研發一套半自動化的人工智 能推理系統,將通過語言和常識推理得到的知識庫 應用于復雜現實事件的理解中,解決多源信息阻礙事 件理解的問題。該項目運用知識圖譜等技術,通過對 復雜事件內部組成元素和時間線進行推理和預測,快 速識別不同事件之間的關聯性,提升事件理解能力。

3. 3 更加高效的指揮,實現決策優勢

在指揮控制領域,主要可在作戰方案推演、遠程 指揮控制等方面應用平行仿真推演、腦機融合等智 能技術,實現決策優勢,如圖 3 所示。 1)應用于作戰方案推演。通過深度學習技術, 訓練智能體對戰場交戰規則、作戰指揮決策、事件認 知推理等知識進行學習和模擬,提升智能體認知的 智能性、實時性與科學性。在戰場態勢實時共享的 基礎上,對戰場數據進行智能化處理,通過平行仿真 推演作戰方案,形成對對手下一步可能的軍事行動 和戰場演進趨勢的智能預測,自動匹配最佳行動策 略[35] 。2007 年,DARPA 安排了名為“深綠”的系統 研發項目[36] ,旨在建造一套人工智能作戰輔助決策 系統。該系統利用平行仿真、動態博弈等技術,基于 戰場實時數據,可動態模擬戰場敵我雙方作戰行動, 并預測戰場態勢走向,幫助指揮官提前思考,縮短決 策時間。DARPA 于 2018 年啟動了 “ 指南針” 項 目[37] ,該項目主要通過利用大數據分析、博弈對抗 等方法對戰場數據進行分析,構建敵方作戰行動與 路徑模型,幫助作戰人員確定敵方真實作戰意圖,制 定并選取我方最有效的行動方案。

2)應用于智能化遠程指揮控制。應用“元宇 宙”概念,利用人工智能技術構建與真實戰場平行 的虛擬作戰空間,采用語音識別、手勢識別、腦機接 口等智能人機交互技術,使指揮員、作戰人員有沉浸 式的體驗,實現人與機器之間,指揮單元、精確打擊 武器與信息應用系統之間的無障礙溝通[38] 。2021 年 8 月,在美國海軍年度最大規模活動“海-空-天 博覽會”上[39] ,海軍信息戰系統司令部首次驗證了 “周邊環境智能談話接口”項目開發的能力,展示了 智能化、自然交互技術如何實現未來信息戰。該項 目旨在為海軍指揮控制引入下一代數字助手,通過 使用人工智能和機器學習來理解說話的人是誰、談 話的內容是什么,談話可被決策者當作一種獲取所 需信息的直接途徑,幫助決策者獲得及時的、合成后 的資訊。

3. 4 更加精確的打擊,實現力量優勢

在武器打擊領域,主要可在單武器平臺自主作 戰、作戰編組分布式殺傷等方面應用計算機視覺、多 智能體協同等智能技術, 實現力量優勢, 如圖 4 所示。

1)應用于單武器平臺自主作戰。 以人工智能 技術為核心,綜合多種嵌入人工智能算法的武器裝 備平臺為手段,在多重維度實時精確打擊,實現武器 的單體智能[40] 。美國戰斧導彈在攻擊目標過程中, 如果目標或任務發生變化,便根據指令在戰區上空 盤旋,然后自主搜索和重新選擇、確定合適的攻擊目 標。美國研制的“黃蜂” 導彈,裝有一套先進的探 測、控制設備,可實現目標偽裝設施的識別以及多任 務目標的智能化自主分配,從而達到最大的效費比 和命中精度。

2)應用于作戰編組分布式殺傷。 借鑒自然界 生物群體行為的智能集群與協同技術,通過去中心 化提高了系統抗毀傷性以及任務成功率;通過簡單 作戰單元間的信息高效交互提升系統的整體效應和 群體智能水平,從而最終實現復雜戰場條件下任務 的自主分解、作戰單元的自主協同、作戰方案的自主 規劃和作戰對象的自主打擊[41] 。DARPA 于 2014 年設立了“拒止環境中的協同作戰” 項目[42] ,旨在 研發一套自主協同作戰系統,實現一名操作人員對 多架無人機進行指揮。該項目通過先進算法和模塊 化軟件架構,解決無人機集群在復雜干擾條件下無 法完成作戰任務的問題,提升無人機集群完成任務 的能力。DARPA 于 2015 年設立了 “ 小精靈” 項 目[43] ,旨在建立一套可回收重復使用的無人機作戰 集群,實現一種穩定可靠、經濟實惠的作戰方式。該 項目通過運用一體化設計、自主協同規劃等技術,完 成戰前對戰場區域的大規模快速偵查和欺騙干擾等 作戰任務。

3. 5 更加自由的互聯,實現網絡優勢

在戰場互聯領域,主要可在戰場網絡韌性通聯、 網絡攻防等方面應用認知計算、博弈對抗等智能技 術,實現網絡優勢,如圖 5 所示。1)應用于戰場網絡韌性通聯。利用人工智能 技術敏捷感知網絡環境、靈活加載通信波形、自主管 控網絡資源,提升戰場通信網絡體系韌性。近年來, 為了不斷適應新的軍事戰略和作戰形勢,美軍一直 在探索如何在反介入/ 區域拒止作戰環境中確保靈 活、敏捷、彈性的有保障通信系統。美國空軍實驗室 與加拿大國防研發中心通信研發中心開展了“挑戰 與對抗性環境中有保障通信”項目研究[44] ,主要針 對未來作戰人員可能面臨的惡劣通信條件,特別是 在偏遠與服務欠缺條件下以及動態與對抗環境中, 通過開發新的概念與技術,實現靈活與自適應頻譜 接入,保證魯棒而可靠的通信能力。2017 年,DAR? PA 啟動了“無線電頻譜機器學習系統”項目[45] ,通 過人工智能理解無線電信號,改善推廣頻譜共享技 術,增強無線通信能力。2)應用于網絡攻防。以人工智能為武器,使惡 意攻擊行為可以自我學習,并根據目標防御體系的 差異自適應地“隨機應變”,通過群招潛在的漏洞達 到攻擊的目的。同時,采用人工智能技術可以改善 網絡安全現狀,能更快地識別已知或未知威脅并及 時響應。美國斯坦福大學和 Infinite 初創公司于 2017 年聯合推出了一型自主網絡攻擊系統,該系統 圖 5 網絡互聯+AI 技術的應用 的核心處理單元是一種定制的人工智能處理芯 片[46] 。該新型網絡攻擊系統能夠在特定的網絡中 運行,完成信息的自主采集、學習和攻擊程序的自主 編寫,并且可以對攻擊程序進行自適應動態調整,具 備較強的隱蔽性和破壞性。2018 年 DARPA 啟動了 “利用自主系統對抗網絡對手計劃” 項目[47] ,旨在 建立安全可靠的網絡代理,實現對僵尸網絡的有效

遏制。該項目通過開發定量框架和算法,完成對僵 尸網絡的精確識別、推斷存在的漏洞以及生成軟件 補丁,減少對系統的不良影響。

3. 6 更加堅實的支撐,實現賦能優勢

1)具有智慧的人工智能系統為軍事智能化提 供“新動能”。傳統機器學習方法需要在系統部署 前,利用數據集對系統進行訓練。一旦完成訓練智 能體所應對的場景和問題將被固化從而無法應對新 場景,而再次訓練效率低下且工作量大。在執行軍 事作戰行動時,需要人工智能系統能夠在任務中自 我學習和改進,將先前的技能和知識應用于新的情 況,以應對各類作戰場景[42] 。2017 年,DARPA 安 排了名為“終身學習機器” 的項目[48] ,通過利用目 標驅動感知進行持續學習,形成對新情景的自主適 應,改變當前智能體無法應對未訓練場景的情況。2)低功耗、強算力、易擴展的智能芯片為軍事 智能化提供“新基建”。作為人工智能技術的重要 物理基礎,當前主流人工智能芯片存在功耗大、內存 帶寬不足、框架固化等瓶頸。為更好支撐人工智能 的軍事領域應用,下一代人工智能芯片應具備低功 耗、強算力、易擴展等特點。2020 年,英偉達公布了 其用于超級計算任務的人工智能芯片[49] ,算力提升 20 倍以上。2020 年 10 月,英特爾宣布獲批一項與 美國軍方合作項目的第二階段合同[49] ,旨在幫助美 國軍方在國內生產更先進的人工智能芯片原型,這 種封裝技術能夠將來自不同供應商的“小芯片” 集 成到一個封裝中,從而實現把更多功能整合進一個 更小的成品中,同時降低其功耗.

付費5元查看完整內容

毫無疑問,今天圍繞人工智能(AI)的最復雜的治理挑戰涉及國防和安全。CIGI正在促進戰略制定:人工智能對軍事防御和安全的影響項目將這一領域的主要專家與來自國防部的40多名公務員和加拿大武裝部隊的人員聚集在一起,討論人工智能對國家安全和軍事領域的力量倍增效應。

這一努力依賴于一系列的四次研討會,以產生關于數據驅動技術如何引發巨大的技術重組的前瞻性思考,這將對加拿大的國防規劃產生深遠影響。具體來說,這些研討會集中在數據治理和政策(道德、云計算、數據準備和互操作性);決策(可信賴性、人機一體化、生物技術和問責制);模擬工具(培訓、兵棋推演、人機合作、機器人、自主和可信的人工智能);以及信息時代的加拿大情報(將人工智能用于情報)。CIGI還主辦了一個研究生研討會,以激勵整個加拿大在全球公共政策、計算機科學和安全等領域學習的新興學者。

報告總結

本文探討了在人工智能(AI)和機器學習背景下的軍事特定能力的發展。在加拿大國防政策的基礎上,本文概述了人工智能的軍事應用和管理下一代軍事行動所需的資源,包括多邊參與和技術治理。

維持先進軍事能力的前景現在與人工智能的武器化直接聯系在一起。作為一項通用技術,人工智能代表著一種力量的倍增器,有能力重塑戰爭規則。事實上,在核彈頭仍然是一種單一的技術應用的情況下,人工智能有能力支持許多不同類型的武器和系統。正如北大西洋公約組織(NATO)的指導意見所指出的,人工智能和其他 "智能 "技術現在對加拿大及其盟國的未來安全至關重要。

新技術在改變戰爭的性質方面有著悠久的歷史。從馬匹和盔甲的使用到航空母艦和戰斗機的引進,人工智能和機器人只是代表了軍事技術發展的最新階段。常規武器與人工智能和機器學習的融合,必將重塑決策的性質和軍事戰略轉型中的武力應用。

即使當代人工智能系統的能力被限制在機器學習算法的狹窄范圍內,這種限制可能不會持續太久。與神經科學、量子計算和生物技術相重疊的發現領域正在迅速發展,代表了 "智能機器 "進化的未知領域。在這些新的研究領域中的科學和技術發現給加拿大的國防帶來了巨大的風險,但同時也代表著巨大的機遇。

顯而易見的是,新興技術已經成為高度緊張的地緣政治競爭的基礎,它與一系列商業產業和技術平臺相重疊。中國、俄羅斯、美國和其他國家和非國家行為者正在積極追求人工智能和其他前沿技術的軍事應用。競爭的領域包括云技術、高超音速和新導彈技術、空間應用、量子和生物技術以及人類增強。

盡管技術創新一直塑造著國家間沖突的性質,但新興和顛覆性技術(EDT)的規模和速度是前所未有的。加拿大的國防政策反映了這種擔憂,它呼吁使加拿大武裝部隊(CAF)適應不斷變化的地緣政治環境。加拿大國防規劃已著手擴大和發展加拿大武裝部隊,在新的軍事平臺整合中納入下一代偵察機、遙控系統和天基設施。

基于對不斷變化的技術環境的廣泛評估,加拿大國防部(DND)認識到,這個新時代的特點是全球力量平衡的變化。這包括在快速發展的創新經濟中大國競爭性質的變化。就像石油和鋼鐵為工業時代設定條件一樣,人工智能和機器學習現在也可能為數字時代設定條件。

這種規模的破壞是由技術和制度變化的融合所驅動的,這些變化可以以新的和不可預測的方式觸發復雜的反饋回路。在這個新的環境中,人工智能技術將迫使世界各國軍隊投射力量的能力倍增。確定軍事人工智能發展中的護欄對于避免未來危機至關重要。應用減少風險的措施來識別和減輕軍事人工智能可能帶來的一系列風險將是關鍵。事實上,在這些能力完全嵌入世界上目前和未來的軍隊之前,治理人工智能可能會更容易。

從整體上看,這種轉變預示著從初級機器到數據驅動技術和精密電子的巨大轉變。這種物理、數字和生物技術的加速融合代表了一場巨大技術革命的早期階段。在全球范圍內管理這些新興和顛覆性的技術,對于減少未來沖突的風險至關重要。

1 引言

從人工智能和機器人到電池存儲、分布式賬本技術(DLT)和物聯網(IoT),新興和顛覆性技術(EDT)現在正在激起一個商業創新的新時代。這一巨大的技術變革景觀正在醞釀一場社會和經濟變革,對中央銀行的發展具有巨大影響。正如北約最近的一份報告所指出的(北約新興和顛覆性技術咨詢小組2020),這些技術包括:

→ 人工智能和機器學習。人工智能/機器學習的發展及其對創新的潛在影響。這包括神經形態計算、生成式對抗網絡,以及人工智能從已經收集或尚未收集的數據中揭示出意想不到的見解的能力。

→ 量子技術。正在進行的從量子過程研究中獲得的知識轉化為量子技術的應用,包括量子計算、量子傳感、量子密碼系統,以及在量子尺度上對材料的操縱和開發。

→ 數據安全。用于保障和損害通信、數據交易和數據存儲安全的算法和系統的設計,包括量子證明加密方法、區塊鏈和分布式賬本架構,以及更廣泛的網絡安全領域。

→ 計算功能的硬件。微型化、電力采集和能源儲存方面的進展,包括在全球范圍內提供數字化關鍵基礎設施所需的物理系統(物聯網)和機器人的廣泛使用及其對全球系統和流程的持續影響。

→ 生物和合成材料。從原子/分子層面的材料設計、合成和操作到中觀和宏觀尺度的創新,支持生物工程、化學工程、基因層面的操作、增材制造和AI介導的生成設計。

正如蒸汽機和印刷術激發了工業革命一樣,人工智能和機器人技術現在也在軍事技術的性質和全球力量平衡方面引發了巨大變革。人工智能的興起并非沒有歷史先例,但伴隨著人工智能的變化表明,需要對國防規劃進行更精確的調整,以適應一個數據驅動的時代。

在大國競爭和多極體系的背景下,人工智能已經成為競爭的一個特別焦點。中國、俄羅斯、美國和其他許多國家都在積極追求人工智能能力,并把重點放在國防和安全方面。例如,中國希望到2030年在人工智能方面領先世界,并期望通過利用大量的豐富數據,擴大其在人工智能產業化方面的領先優勢(Lucas和Feng,2017年)。

事實上,數據和數據驅動的技術現在占據了全球經濟的制高點。整個全球數據經濟的競爭已經與大國競爭密不可分(Mearsheimer 2021)。盡管美國和中國的經濟深深地相互依存,但中國在整個歐亞大陸不斷擴大的投資將很快使其成為世界貿易的中心。

技術優勢仍然是北約國家的關鍵支柱,但中國正在迅速趕超。即使美國在人工智能發現方面建立了強大的領先優勢,中國也越來越有可能在人工智能驅動的應用產業化方面占據主導地位。中國不僅有先進的商業能力,而且還有一個連貫的國家戰略。中國的技術部門正在達到專業知識、人才和資本的臨界質量,正在重新調整全球經濟的指揮高度(Lucas and Waters 2018)(見圖1)。

中國產業部署的大部分技術創新都是 "漸進式 "的,而不是 "顛覆式 "的,但現在這種情況正在改變。將新興市場聚集在其軌道上,中國前所未有的經濟擴張現在對世界經濟產生了引力(The Economist 2018)。標志性項目,價值數萬億美元的 "一帶一路 "倡議(世界銀行2018年)為圍繞電動汽車、電信、機器人、半導體、鐵路基礎設施、海洋工程以及最終的人工智能的廣泛戰略轉變提供了一個全球平臺(McBride和Chatzky 2019年)。

毫不奇怪,中國已經是國際專利申請的世界領導者(世界知識產權組織2020)。隨著自主機器(Etzioni和Etzioni 2017)、可再生能源基礎設施、量子通信(?iljak 2020)、增強型腦機接口(Putze等人2020)和天基武器(Etherington 2020)的出現,重新思考加拿大國家安全,特別是加拿大國防的性質的壓力正在增加。鑒于技術創新的步伐不斷加快,以及亞洲作為世界貿易中心的崛起(Huiyao 2019),來自國外的技術的影響可能是巨大的。

圖1:按購買力平價計算的國內生產總值預測(以萬億美元計)

2 AI與軍事防御

2.1 AI定義

人工智能的概念已被廣泛討論,但該術語的精確定義仍然是一個移動的目標。與其說人工智能是一項具體的技術或特定的創新,不如說它是一個材料的集合。事實上,即使人工智能技術已經成為廣泛的主流商業應用的基礎,包括網絡搜索、醫療診斷、算法交易、工廠自動化、共享汽車和自動駕駛汽車,人工智能仍然是一個理想的目標。

盡管人工智能領域的研究始于20世紀40年代,但隨著機器學習和計算機處理能力的改進,過去十年對人工智能興趣的爆炸性增長已經加速。人工智能的持續進步被比喻為在人腦中發現的多尺度學習和推理能力。當與大數據和云計算相結合時,預計人工智能將通過將 "智能 "人工智能和機器學習系統與第五代(5G)電信網絡(即物聯網)上的大量聯網設備連接起來,使數字技術 "認知化"。

作為人工智能的一個子集,機器學習代表了人工智能的最突出的應用(見圖2)。機器學習使用統計技術,使機器能夠在沒有明確指令的情況下 "學習",推動許多應用和服務,改善一系列分析和物理任務的自動化。通過使用數據自動提高性能,這個過程被稱為 "訓練 "一個 "模型"。使用一種算法來提高特定任務的性能,機器學習系統分析大量的訓練數據集,以便做人類自然而然的事情:通過實例學習。

今天,機器學習的最常見應用是深度學習。作為更廣泛的機器學習家族的一部分,深度學習利用人工神經網絡層來復制人類智能。深度學習架構,如深度神經網絡、遞歸神經網絡和卷積神經網絡,支持一系列廣泛的研究領域,包括計算機視覺、語音識別、機器翻譯、自然語言處理和藥物設計。

圖2:人工智能的層級

2.2 加拿大國防部:將人工智能應用于國家安全

安全人工智能位于新興和顛覆性技術(EDT)星座的中心,包括機器人學、基因組學、電池存儲、區塊鏈、3D打印、量子計算和5G電信。在研究層面,美國仍然是人工智能的全球領導者。目前,國家科學基金會每年在人工智能研究方面的投資超過1億美元(國家科學基金會2018年)。國防高級研究計劃局(DARPA)最近宣布投資20億美元用于一項名為AI Next的計劃,其目標是推進上下文和適應性推理(DARPA 2018)。

與過去的原子武器或隱形飛機的技術發展不同,沒有國家會壟斷軍事人工智能。研究人員和領先的商業企業之間廣泛的全球合作意味著人工智能和機器學習的進步可能會在全球范圍內擴散。事實上,人工智能發展的大多數技術進步是由工業界而不是政府推動的。除了市場主導的技術公司,世界各地廣泛的網絡集群正在孵化新一代的商業創新(Li and Pauwels 2018)。因此,許多未來的軍事應用將可能是為商業產業開發的技術的改編。

幸運的是,加拿大一直是人工智能研究前沿的領導者,并繼續通過2017年推出的泛加拿大人工智能戰略下的幾個項目培育一個強大的人工智能生態系統。加拿大政府積極參與人工智能咨詢委員會和各種國際伙伴關系,包括2020年啟動的全球人工智能伙伴關系;人工智能國防伙伴關系,其第二次對話在2021年舉行;以及重疊人工智能驅動的安全和規劃的多邊協議(五眼,北約)。事實上,加拿大的國防政策,"強大、安全、參與"(SSE),反映了加拿大政府對增加年度國防開支的承諾,重點是技術。

目前的聯邦預算包括對人工智能發展的實質性承諾,承諾在10年內投入4.438億美元(Silcoff 2021)。在政府2021年的預算中,1.85億美元將支持人工智能研究的商業化;1.622億美元將用于在全國范圍內招聘頂尖的學術人才;4800萬美元將用于加拿大高級研究所;五年內4000萬美元將旨在加強埃德蒙頓、多倫多和蒙特利爾的國家人工智能研究所的研究人員的計算能力;五年內860萬美元將幫助推進人工智能相關標準的發展和采用(加拿大政府2021年,148)。

2.3 增強加拿大的情報能力

人工智能是一個影響廣泛的商業和軍事技術的模糊領域。像電力或化石燃料一樣,人工智能的廣泛應用意味著人工智能和其他通用技術有能力重新配置現代軍隊的步伐和組織(Bresnahan和Trajtenberg 1995)。從整體上看,人工智能代表了國家安全性質的結構性轉變。出于這個原因,SSE設想了一個未來的軍事態勢,更加注重開發、獲取和整合先進的變革性技術,包括網絡和自主系統。

即使加拿大在傳統聯盟(北美防空司令部、北約和五眼聯盟)中的持續作用仍然是國家安全的基礎,EDT正在從根本上改變沖突的性質。正如格雷格-菲夫(2021年)所觀察到的,人工智能作為戰爭工具的崛起與升級加拿大國家安全架構,特別是加拿大情報部門的日益增長的需求相重疊。技術變革和信息爆炸的復合周期,新的技能組合和新的數據分析戰略對國防規劃的演變變得至關重要。

在數字時代,戰爭正日益成為基于知識的戰爭。隨著沖突進入信息領域,軍事規劃開始重新聚焦于信息/虛假信息行動、網絡行動、情報行動和政治或經濟影響行動。事實上,這種混合戰爭作為一種戰爭工具由來已久,其目的是利用宣傳、破壞、欺騙和其他非動能軍事行動,從內部破壞對手(Bilal 2021)。

網絡仍然是潛在對手、國家代理人、犯罪組織和非國家行為者的一個關鍵目標。這包括對通信、情報和敏感信息的嵌入式監視和偵察。正如Amy Zegart(2021年)所解釋的那樣,技術正在通過極大地擴展數據和信息的獲取,使情報的性質民主化。事實上,今天驅動戰略情報的大部分信息實際上是開放源碼情報(OSINT)或在公共領域。

現代軍隊正變得嚴重依賴安全、及時和準確的數據。隨著數據的急劇膨脹,消化它變得不可能。這種數據爆炸正在推動對新的分析模式和新型網絡工具的需求。在數字時代,安全和情報人員需要新的平臺、新的工具和跨領域工作的新OSINT機構。在這方面,人工智能可能特別有幫助。

隨著數據的重要性增加,在廣闊的數字領域的對抗性競爭也在增加。人工智能和機器學習可以通過篩選巨大的數據庫來極大地提高加拿大的國家情報能力。人工智能不是銀彈。人工智能系統不能產生意義或提供因果分析。然而,人工智能和機器學習可以極大地增強人類在管理數據和數據驅動的分析方面的情報能力。

2.4 增強加拿大軍力

隨著決策者為數據驅動的世界調整其安全態勢,人工智能有望改變軍事沖突的既定模式。DND/CAF面臨的關鍵挑戰之一是數據驅動的網絡重塑指揮和控制系統的速度(Thatcher 2020)。集中式系統的優勢在于其協調人類活動的效率。在指揮系統中,人員和傳感器推動威脅檢測,將信息向決策堆棧上移,以便決策者可以做出適當的反應。數字技術深刻地加速了這個過程。

人工智能在軍事領域的應用可能被證明對傳統的指揮和控制系統具有挑戰性。例如,在美國,五角大樓的第一位首席軟件官最近辭職,以抗議技術轉型的緩慢步伐。在離開國防部職位后的一次采訪中,尼古拉-沙伊蘭告訴《金融時報》,美國未能對技術變革和其他威脅作出反應,使國家的未來面臨風險(Manson 2021)。

除了變化的速度緩慢,軍事指揮和控制系統的集中性意味著單點故障提供了脆弱的攻擊點。指揮機關和自動或人類控制者往往容易受到利用不良或欺騙性信息的對抗性技術的影響,甚至自上而下的決策在適應復雜的突發挑戰方面也會很緩慢。

神經形態計算、生成式對抗網絡(GANs)、人工智能決策支持、數據分析和情報分析方面的新創新在增強軍事行動的結構和進程方面可能會產生巨大影響。機器學習算法的快速發展已經在商業和軍事領域引發了一波投資熱潮。

超越對損耗和動能攻擊的傳統關注,轉向基于加速和適應的新方法,數據驅動的技術可能是促成國家安全性質徹底轉變的關鍵。人工智能不是一種單一的技術。相反,它是一類可以在一系列軍事和商業應用中整合的技術。這些技術不斷演變的基礎是數據。

數字技術現在由數據推動,并將繼續推動創造越來越多的數據驅動的技術--特別是人工智能。數據是訓練人工智能和先進機器學習算法的基礎。數據既是大規模運行的數字系統產生的 "操作廢氣",也是機器對數據輸入作出反應的過程,它現在推動了機器的 "自主性"。

數據驅動的技術支撐著現代社會的核心社會和經濟功能,涵蓋了基礎設施、能源、醫療保健、金融、貿易、運輸和國防。隨著5G網絡的全球推廣,預計在高度健全的全球信息網絡中創建、收集、處理和存儲的數據將出現爆炸性增長。根據市場研究公司IDC的數據,目前全球數據正以每年61%的速度增長(Patrizio 2018)。預計到2025年,數據將達到175 zettabytes(一萬億吉字節),改變數字經濟的性質和規模(同上)。

出于這個原因,DND/CAF將數據提升到國家資產的水平是明智的。這對經濟增長和加拿大國防都至關重要。將數據作為國家資產加以保護和利用,將意味著重新思考目前構成當代數據架構的大型集中式數字基礎設施。可以肯定的是,網絡時代的數據安全應該是分散的和聯合的,以避免集中式系統的脆弱性。

3 武器化AI:致命的自治系統

關于技術破壞的傳統預測往往會犯一個錯誤,即假設這種規模的系統變化只是以一對一的方式取代舊技術。在現實中,這種規模的顛覆往往會不成比例地取代舊的系統,使其具有巨大的新的架構、界限和能力(Arbib和Seba 2020)。

正在進行的人工智能武器化正在助長一場全球軍備競賽,有望重塑加拿大國防戰略的輪廓。事實上,世界上許多國家在人員系統自動化、設備維護、監視系統以及無人機和機器人的部署方面已經遠遠領先(斯坦利和平與安全中心、聯合國裁軍事務廳和史汀生中心2019)。從美國到俄羅斯到以色列再到中國,軍事研究人員正在將人工智能嵌入網絡安全舉措和支持遠程手術、戰斗模擬和數據處理的機器人系統。

以先進的物流、半自動車隊、智能供應鏈管理和預測性維護系統的形式將人工智能應用于軍事行動代表了人工智能的近期應用(Perry 2021)。然而,能夠在陸地、海洋、空中、太空和網絡領域針對個人(無論是否需要人類干預)的自主武器的演變代表了軍事沖突的可能未來(見圖3)。事實上,近100個國家的軍隊目前擁有某種程度的武裝或非武裝無人機能力(Gettinger 2019)。

圖3:全球無人機激增

商業無人機技術在采礦、農業和能源領域的縱橫捭闔,正在助長無人機技術的廣泛擴散。正如最近亞美尼亞和阿塞拜疆之間的沖突所表明的那樣,一群相對便宜的自主和半自主無人機可以被利用來壓倒傳統的軍事系統,使一系列當代平臺變得過時(Shaikh和Rumbaugh 2020)。輕型、可重復使用的武裝無人機,如土耳其的Songar(Uyan?k 2021)可以配備一系列有效載荷,包括迫擊炮、手榴彈和輕機槍。最近對沙特阿拉伯的Abqaiq石油加工設施(Rapier 2019)和俄羅斯的Khmeimim空軍基地(Hambling 2018)的攻擊反映了軍事無人機在不同戰場環境中的應用越來越多。

致命自主武器系統(LAWS)被定義為可以在沒有人類授權的情況下選擇和攻擊目標的武器,它被設計為在獨立識別目標之前在指定的行動區域內長期徘徊。多個無人機或機器人可以并行運作,以克服對手的防御或摧毀一個特定目標。開發人員傾向于將致命性武器系統分為三大類,即觀察、定位、決定和行動(OODA)循環(見圖4)。這些類別包括。"循環中的人"、"循環中的人 "和 "循環外的人"。這種區分也被框定為 "半自主"、"受監督的自主 "和 "完全自主 "的技術系統。不幸的是,受監督的致命性自主武器系統和完全自主的致命性自主武器系統之間的區別,可能只是一個軟件補丁或一個監管程序。

圖4:OODA環

隨著致命性自主武器系統和其他數據驅動的技術變得更便宜和更廣泛,它們可能會給廣泛的國家和非國家行為者提供平臺和工具,以新的和破壞性的方式利用人工智能和機器學習。除了收緊OODA循環外,軍事人員將需要了解人工智能在加速OODA循環方面的影響,以確定在特定情況下哪種模式最合適。

3.1 網絡平臺

鑒于EDT的范圍和規模,認為我們可以簡單地保持從上個世紀繼承的系統和做法是錯誤的。正如英國查塔姆研究所2018年的一份報告所警告的那樣,美國、英國和其他核武器系統正變得越來越容易受到網絡攻擊(Unal and Lewis 2018)。這些擔憂是有根據的。人工智能和EDT的擴散一起,幾乎肯定會通過利用人工智能和自主系統的規模效應,為小國和非國家行為者帶來好處。

對于許多北約國家來說,網絡平臺已經成為多領域行動的關鍵--海、空、陸、網絡和空間。大規模的網絡使得在復雜環境中可視化和協調大量資源成為可能。在5G電信和云計算的基礎上,信息系統現在可以有效地收集、傳輸和處理大量的戰場數據,提供實時數據分析。

連接設備正在成為協調空襲、駕駛無人機、消化戰斗空間的實時視頻和管理高度復雜的供應鏈的關鍵。在英國,國防數據框架提供了一個結構,以解決軍事組織與數據驅動的企業需求相一致的挑戰(Ministry of Defence 2021)。從戰略到通信到后勤到情報,數字平臺現在是協調復雜軍事行動的基礎。數據現在是所有作戰領域的命脈。

在一個數字化的戰斗空間中,每個士兵、平臺和資源現在都是一個復雜軍事網絡中的節點。從20世紀90年代以網絡為中心的美國軍事行動開始,數字技術已經成為先進武器、戰術和戰略的基礎。從戰場態勢感知和自主無人機到精確制導彈藥和機器驅動的心理行動,網絡正在使戰爭進入網絡時代。

在集中式機構對工業時代至關重要的地方,平臺和網絡正在成為數字時代的關鍵。人工智能本質上是一種 "自下而上 "的技術,依靠不斷 "喂養 "大量的數據來支持機器學習作為 "學習引擎"。隨著數字生態系統的激增,網絡平臺和它們所依賴的數據管理系統成為管理不斷擴大的資源和人員的關鍵。

與金融部門一樣,DND應該尋求區塊鏈等DLT,以加速加拿大軍隊的數字化轉型。通過在分散的網絡中橫向分配數據,CAF區塊鏈可以幫助減少官僚化系統固有的限制和脆弱性。DLT提供了一個高度分散的驗證系統,可以確保所有的通信和數據傳輸免受對手的攻擊,同時消除集中式節點的潛在故障。

3.2 無人機群和機器人技術

人工智能在軍事規劃中的應用正在迅速推進,許多國家在部署無人機和機器人方面已經取得了很大進展。事實上,無人機技術的全球擴散正在順利進行中。

世界各地的軍隊正在加速開發或采購攻擊型無人機(見圖5)。俄羅斯的 "閃電"(BulgarianMilitary.com 2021)、西班牙的Rapaz8以及英國、9美國10和以色列11的各種無人機項目共同代表了軍事技術新時代的早期階段。與工業時代的軍事技術不同,無人機可以以低成本獲得,并需要相對較少的技術技能。

無人機群技術涉及微型/迷你無人機/無人駕駛飛行器或無人機群,利用基于共享信息的自主決策。事實上,當代軍用無人機已經可以被設計成在沒有人參與的情況下定位、識別和攻擊目標。利用蜂群技術,數以百計的非武裝無人機可以從現場收集信息,同時用各種武器(即火器、火炮和/或彈藥)引導數以千計的無人機。

正如簡短的視頻 "Slaugherbots "所展示的那樣,完全自主的武器將使瞄準和殺死獨特的個人變得非常容易和便宜。在面部識別和決策算法的基礎上,國家和非國家行為者都可以廣泛使用致命性武器。數以千計的相對便宜的無人機配備了爆炸性的彈頭,有可能壓倒防空系統,攻擊基礎設施、城市、軍事基地等等。

圖5:無人機對比

3.3 馬賽克戰爭

無人機群壓倒加拿大軍事設施的威脅,以及對關鍵基礎設施的網絡攻擊或在衛星傳感器檢測到威脅時自動發射的高超音速導彈,代表了一個令人不安但越來越可能的未來。從復雜性科學和對昆蟲的研究中產生的,使用無人機來支持 "集群情報 "代表了一個加速戰爭節奏的新工具集。

為了應對這種不斷變化的環境,DARPA提出了 "馬賽克戰爭"的概念。馬賽克戰爭的中心思想是,模塊化系統可以成為應對高度網絡化環境的廉價、靈活和高度可擴展的工具。就像馬賽克中的瓷片一樣,單個作戰平臺可以被設計成高度可配置的。編隊利用分散的代理在 "殺戮網 "上進行重新配置。殺戮網的目標是避免 "單體系統 "的結構僵化。

與傳統戰爭中需要的復雜棋局不同,馬賽克戰爭利用數字網絡,利用模塊的靈活性和增強的決策(時間壓縮)加快動態響應時間。像自然界中的復雜系統一樣,殺傷性網絡使用算法來消除單點故障,通過模塊化設計加速反應時間。

從主導地位(預測)轉向加速反應(適應),"馬賽克戰爭 "旨在支持混合軍事單位,利用 "決策棧 "上下的橫向網絡。人工智能、無人機、傳感器、數據和人員結合在一起,為地面上的作戰指揮官提供支持,使小型編隊能以更快的速度獲得情報、資源和后勤資產。

像 "馬賽克戰爭 "這樣的模塊化系統表明,未來的戰爭將越來越多地利用現在驅動戰爭游戲和模擬的計算、數據分析和算法。推動高度流動、游戲化和不可預測的環境,未來的人工智能系統可以將戰爭加速到一個隨著結果范圍的擴大而變得極其密集的計算速度和節奏。

DARPA最近的AlphaDogfight(2019-2020年)為這一新現實提供了一個窗口。使用復雜的F-16飛行模擬器讓計算機與有經驗的人類飛行員對決,試驗的目的是為DARPA的空戰進化計劃推進人工智能開發者。毫不奇怪,F-16人工智能代理通過積極和精確的機動性擊敗了人類飛行員,而人類飛行員根本無法與之相提并論,五局為零。

4 對抗性攻擊

人工智能的武器化也在激起對抗人工智能系統的新戰略和方法。正如網絡行動(無論是間諜活動還是攻擊)可以指示計算機網絡或機器以它們不打算的方式運行,對手也可以對人工智能系統使用同樣的策略。這個過程被稱為對抗性機器學習,旨在找出機器學習模型的弱點并加以利用。攻擊可能發生在開發或部署階段,包括通過提供欺騙性輸入(例如,"毒化"數據)或針對模型本身來誤導模型。

這些方法在國家安全環境中特別危險,因為在許多情況下,它們是微妙的,人類無法察覺。此外,具有挑戰性的是,對手不一定需要對目標模型的具體知識或直接訪問其訓練數據來影響它。隨著人工智能系統變得更加普遍,更多的人可以接觸到,對手的吸引力和攻擊機會將增加。

4.1 攻擊數據

攻擊者可能試圖修改訓練數據或測試數據。這是通過創造對抗性樣本來實現的,這些樣本被故意 "擾亂 "或改變并提供給模型,從而導致錯誤。例如,通過改變洗衣機圖像的分辨率,研究人員能夠欺騙一個模型,將機器分類為 "安全 "或 "擴音器"(Kurakin, Goodfellow and Bengio 2017)。對人的眼睛來說,對抗性圖像看起來幾乎是一樣的。

在國家安全方面,對手可能會試圖使用同樣的技術來暗示武器系統實際上是一個社區中心。如果這是在孤立的情況下發生的,那么這個問題很可能被識別和解決。如果對手的樣本被長期大規模使用,這可能成為一個重大的挑戰,并影響對情報收集系統的信任。

此外,一些對手可能并不精確--或有技能--并可能試圖迫使一個模型對整個類別而不是特定類別進行錯誤分類。由于我們在國家安全環境中越來越依賴計算機圖像,并不總是能夠實時或在有爭議的空間進行驗證,因此在這種攻擊中出現誤判的風險是很大的。

高后果的人工智能系統并不是對抗性攻擊的唯一目標。受對抗性樣本影響的人工智能系統可以包括生物識別,其中假的生物特征可以被利用來冒充合法用戶,語音識別中攻擊者添加低量級的噪音來混淆系統(Zelasko等人,2021)和計算機安全(包括在網絡數據包中混淆惡意軟件代碼)。

由于DND/CAF尋求通過部署人工智能系統來提高效率--如軍艦上的語音助手(McLeod 2019)--必須在部署前評估對抗性使用的風險并制定對策。

4.2 攻擊模型

除了改變輸入,另一種攻擊方法可用于逆向工程模型以獲取訓練數據(Heaven 2021)。由于機器學習模型對訓練數據的表現比新的輸入更好,對手可以識別目標模型預測的差異,并與包括個人身份信息在內的已知數據相匹配(Shokri等人,2017)。隨著機器學習即服務變得越來越多--而且在許多情況下,被用作開發更復雜的能力的基礎--DND將需要仔細審查國家安全系統的數據泄漏風險。這甚至適用于看似無害的系統,如語音助手。

人工智能系統的弱點的例子很多(Hadfield-Menell等人,2017)。這些例子包括吸塵器將收集到的灰塵彈回它剛打掃過的地方,以便它能收集更多的灰塵,或者數字游戲中的賽艇在原地循環以收集分數,而不是追求贏得比賽的主要目的。雖然這些例子沒有生命危險,但同樣的技術--被稱為獎勵黑客(當一個模型被指示使其目標函數最大化,但卻以非故意的方式進行)--可以被用于更嚴重的效果。

從旨在用固定的訓練數據解決 "單步決策問題 "的機器學習過渡到解決 "順序決策問題 "和更廣泛的數據集的深度機器學習,將使對抗性攻擊更難發現。這種威脅是如此之大,以至于美國情報高級研究項目活動正在資助一個項目,以檢測木馬人工智能對已完成系統的攻擊。令人擔憂的是,政府可能會在不知情的情況下操作一個產生 "正確 "行為的人工智能系統,直到出現 "觸發 "的情況。例如,在部署過程中,對手可能會攻擊一個系統,并在更晚的時候才導致災難性的故障發生。這些類型的攻擊可能會影響到圖像、文本、音頻和游戲的人工智能系統。

4.3 防御和反制措施

正如對抗性樣本可以用來愚弄人工智能系統一樣,它們可以被納入訓練過程中,以使它們對攻擊更加強大。通過對最重要的國家安全人工智能系統進行清潔和對抗性數據的訓練--要么給它們貼上這樣的標簽,要么指示一個模型將它們分離出來--更大的防御是可能的。但是,復雜的對手很可能會自行躲避這種防御方法,而使用額外的戰術進行深度防御將是必要的。

GANs有各種各樣的用例,從創建深度假說到癌癥預后(Kim, Oh and Ahn 2018)。它們也可用于防御對抗性攻擊(Short, Le Pay and Ghandi 2019),使用一個生成器來創建對抗性樣本,并使用一個判別器來確定它是真的還是假的。一個額外的好處是,使用GANs作為防御,實際上也可能通過規范數據和防止 "過度擬合 "來提高原始模型的性能(IBM云教育2021)。

對抗性攻擊和防御模型進行基準測試--如使用GANs--是一種全面的對策,可以對AI系統進行比較。這種方法為制定和滿足安全標準提供了一個量化的衡量標準,并允許評估人工智能系統的能力和限制。

作為這個測試和評估過程的一部分,博弈論可能有助于建立對手的行為模型,以確定可能的防御策略。由于人工智能系統無法在傳統的信息安全意義上進行 "修補",因此在部署前應仔細分析針對國家安全人工智能系統的對抗性攻擊的風險,并定期進行審查。此外,訓練有素的模型--特別是那些關于機密數據和最敏感應用的模型--應該得到仔細保護。

5 關于人工智能的全球治理

數據驅動的戰爭的速度和范圍表明,我們正在進入一個新的時代,其中致命性武器系統的潛力--無論是否有人類參與--都可能極大地改變全球力量平衡。從殺手級無人機和人機合作到增強的軍事決策(殺手2020),人工智能技術將使世界各國軍隊投射力量的能力大大增加。正在進行的人工智能武器化也與空間武器化相重疊(《經濟學人》2019年),因為低地球軌道(LEO)日益成為軍事監視、遙感、通信、數據處理(Turner 2021)和彈道武器(Sevastopulo和Hille 2021)的操作環境。

人工智能與低地軌道和致命性自主武器系統的興起,代表了全球安全性質的一個關鍵轉折點。為此,世界各地的學術研究人員、技術企業家和公民都對人工智能的軍事化所帶來的危險表示擔憂。正如他們正確地指出的那樣,在規范負責任地開發和使用人工智能的規范和法律方面缺乏國際共識,有可能造成未來的危機。

5.1 戰爭法則

除了我們在科幻小說中經常看到的對人工智能的夸張描述,重要的是建立適當的制衡機制,以限制人工智能技術可能提供的權力集中。關于管理人工智能和其他數字技術的共同國際規則和條例將塑造未來幾十年的戰爭和沖突的輪廓。在軍事人工智能的發展中制定護欄,對于減少未來沖突的可能性至關重要。

加拿大和其他北約國家積極參與這一討論可能是未來全球和平與安全的關鍵。在發動戰爭的條件(jus ad bellum)和戰爭中的人工智能行為(jus in bello)方面,規范人工智能使用的戰爭法仍有待確定。鑒于美國和中國之間不斷擴大的競爭,需要制定關于致命性自主武器系統的使用及其擴散的條約是再及時不過了。

正如北約所觀察到的,加拿大及其盟國應尋求促進、參與和建立合作機會,以支持開發和應用人工智能和其他EDT的廣泛、全面的架構(北約新興和顛覆性技術咨詢小組2020)。盡管面臨著艱巨的挑戰,全球治理在規范軍事人工智能方面可以發揮重要作用。盡管對人工智能及其武器化有不同的看法,但過去的談判可以作為未來條約的基礎,特別是在定義戰爭規則方面。這包括關于常規武器、核軍備控制、生物和化學武器、地雷、外層空間和平民保護的條約(見圖6)。

到目前為止,《聯合國特定常規武器公約》(CCW)已經監督了一個討論應對自主武器帶來的人道主義和國際安全挑戰的進程。已經提出了一系列監管致命性自主武器系統的潛在方案,包括《特定常規武器公約》下的一項國際條約,一個不具約束力的行為準則,宣布各國承諾負責任地開發和使用致命性自主武器系統。在聯合國之外,2013年發起了 "停止殺手機器人 "運動,目標是完全禁止致命性自主武器系統。

聯合國秘書長安東尼奧-古特雷斯強調了人工智能和其他數字技術的風險和機遇(聯合國2020),并呼吁禁止致命性自主武器系統(古特雷斯2021)。不幸的是,聯合國成員國,特別是聯合國安理會的觀點存在分歧,一些國家認為監管是民族國家的專屬權限,而另一些國家則側重于更多部門的做法。除了人工智能的武器化,在圍繞人權、算法偏見、監控(公共和私人)以及國家支持的或國家支持的網絡攻擊等問題上也存在廣泛的分歧。

對于世界上的主要軍事大國來說,缺乏互信仍然是追求人工智能集體軍備控制協議的一個重大障礙。即使相當多的國家支持提供新的具有法律約束力的條約,禁止開發和使用致命性自主武器,但世界上大多數主要軍事大國都認為人工智能的武器化具有重大價值。鑒于這些分歧,致命性自主武器系統的多邊管理將需要建立信任措施,作為打開政治僵局的軍控進程的手段。

走向平凡的監管 也許制定管理人工智能的政策和監管制度的最具挑戰性的方面是難以準確地確定這些制度應該監管什么。與生物和化學武器不同,人工智能大多是軟件。事實上,人工智能是一個移動的目標:40年前被定義為人工智能的東西,今天只是傳統的軟件。

人工智能是一個模糊的技術領域,影響著廣泛的商業和軍事應用。例如,機器學習算法是搜索引擎(算法排名)、軍用無人機(機器人技術和決策)和網絡安全軟件(算法優化)的成分。但它們也支撐著平凡的行業,甚至兒童玩具(語義分析、視覺分析和機器人技術)、金融軟件和社交媒體網絡(趨勢分析和預測分析)。

與屬于這些平凡的監管領域的產品和流程一樣,人工智能技術不是被設計成最終實體,而是被設計成在廣泛的產品、服務和系統中使用的成分或組件。例如,一個 "殺手機器人 "不是一種特定技術的結果。相反,它是人工智能 "成分 "重新組合的結果,其中許多成分也被用來檢測癌癥或增加駕駛者的安全。

雖然人們傾向于使用一個專門的不擴散鏡頭來監管人工智能,但雙重用途的挑戰仍然存在。與核擴散或轉基因病原體不同,人工智能不是一種特定的技術。相反,它更類似于一個材料或軟件成分的集合。與大多數二元的核不擴散鏡頭相比,可以在食品監管中找到更相關(盡管不那么令人興奮)的監管模式的靈感,特別是食品安全和材料標準(Araya和Nieto-Gómez 2020)。

5.2 治理人工智能

鑒于對人工智能進行全面監管存在重大的概念和政治障礙,治理仍然是一項艱巨的挑戰。一方面,如果我們把人工智能理解為一系列復制人類活動的技術實踐,那么就根本沒有一個單一的領域可以監管。相反,人工智能的治理幾乎重疊了每一種使用計算來執行任務的產品或服務。另一方面,如果我們將人工智能理解為大幅改變人民和國家之間權力平衡的基礎,那么我們就會面臨重大挑戰。

幸運的是,這并不是民族國家第一次面臨影響全球安全的新技術。在第二次世界大戰之后,世界上最強大的國家--美國、英國、蘇聯、中國、法國、德國和日本--對核武器、化學制劑和生物戰的全球治理進行監督。當時和現在一樣,世界必須采取集體行動來治理人工智能。

與冷戰時期一樣,包括定期對話、科學合作和分享學術成果在內的建立信任措施可以幫助減少地緣政治的緊張。為管理軍事人工智能帶來的風險制定一個共同的詞匯,可以為隨著時間的推移制定更有力的人工智能多邊條約提供基礎。

在這方面,經濟合作與發展組織(OECD)已經公布了其關于人工智能的建議,作為一套政府間標準,于2020年2月啟動了人工智能政策觀察站。加拿大和法國政府還與經合組織一起領導了一個全球人工智能伙伴關系(GPAI),旨在成為一個人工智能政策的國際論壇。GPAI的成員專注于以 "人權、包容、多樣性、創新和經濟增長原則 "為基礎的負責任的人工智能發展。

除了GPAI,一些歐洲國家已經呼吁歐盟成員開始一個關于負責任地使用新技術的戰略進程--特別是人工智能。美國已經邀請盟國討論人工智能的道德使用問題(JAIC公共事務2020)。北約已經啟動了一個進程,鼓勵成員國就一系列道德原則和具有軍事用途的電子技術關鍵領域的國際軍備控制議程達成一致(Christie 2020;NATO 2020)。認識到EDT對全球安全的深遠影響,北約于2019年12月推出了EDT路線圖(北約科技組織2020)。

從整體上看,二十一世紀需要進行正式監管。從長遠來看,這很可能包括尋求與禁止生物武器、化學武器和殺傷人員地雷一樣的人工智能條約。然而,鑒于人工智能的創新速度和世界超級大國之間日益擴大的分歧,就人工智能的全球治理進行談判的機會之窗可能正在關閉。

圖6:人工智能的全球治理

6 結論:走向國家創新體系

即使在工業時代即將結束的時候,技術創新也在加速進行(Araya 2020)。自從大約80年前誕生以來,人工智能已經從一個神秘的學術領域發展成為社會和經濟轉型的強大驅動力。人工智能在戰爭中的整合被一些軍事分析家描述為一個不斷發展的 "戰場奇點"(Kania 2017)。在 "技術奇點"(Schulze-Makuch 2020)的概念基礎上,人們越來越多地猜測,人工智能和機器人將超越人類的能力,有效地應對算法驅動的戰爭。

人工智能和其他EDT的演變正在將先進的數據、算法和計算能力匯集起來,以 "認知 "軍事技術。在這種新環境下,現代軍隊正變得嚴重依賴提供安全、及時和準確數據的網絡。數據已經成為數字系統的 "作戰用氣 "和驅動 "智能機器 "的原料。隨著數據重要性的增加,在廣闊的數字領域的對抗性競爭也在增加。事實上,數據的真正價值在于其推動創新的數量和質量。

正如北約關于EDT的年度報告(北約新興和顛覆性技術咨詢小組2020)明確指出,要想跟上技術變革的步伐,就必須在技術的開發、實驗和應用方面保持靈活性和快速迭代。整個CAF的創新能力必須是一個更廣泛的創新生態系統的一部分,該系統有效地整合了公共和私人生態系統的研究和實施。這包括與加拿大工業界合作利用雙重用途的GPT的明確目標,以便利用已經存在的技術。

這種多領域的合作在歷史上被定義為國家創新體系(NSI)(OECD 1997)。事實上,NSI政策和規劃可以采取多種形式,從松散的協調到高度整合的伙伴關系。在美國(Atkinson 2020)、中國(Song 2013)和歐洲(Wirkierman, Ciarli and Savona 2018)應用的各種NSI規劃模式表明,在最大化政府-產業-研究伙伴關系方面可以找到大量的經濟和社會回報。政府應通過稅收優惠、采購和研究資金以及戰略規劃,努力建設加拿大的技術能力。但它不能單獨行動。

國家創新必然取決于機構參與者在一個共享的生態系統中進行合作。出于這個原因,一個協調的加拿大國家統計局將需要在推動長期創新的過程中,人們和機構之間的技術和信息的相互流動。鑒于EDT的許多創新是由工業界主導的,推進公私伙伴關系對加拿大軍隊的發展至關重要。對于國防部/加拿大空軍來說,要推進適合數字時代的軍隊,政府、工業界和學術界將需要以更綜合的方式進行合作。

建立一個強大的加拿大創新生態系統將意味著更廣泛的公私合作和持續的知識和資源的再培訓、培訓和孵化。盡管開發尖端人工智能需要人力資本投資,但大多數人工智能應用現在可以通過開源許可獲得,即使核心學習算法可以在公共平臺和整個學術生態系統中獲得。這種 "開放一切 "環境的影響是對封閉的等級制度和深思熟慮的官方機構的實質性挑戰。

政府程序和規劃將需要適應加速的創新生命周期,以配合EDT積極的淘汰周期。除了與網絡技術相關的巨大的不對稱安全風險外,向數據驅動型軍隊的轉變將需要大量關注數據安全和數據治理。與進行傳統的國家間沖突所需的大量成本和規劃不同,網絡攻擊的破壞性影響可以由僅有一臺個人電腦的小團體對關鍵基礎設施發動。鑒于未來不斷增加的挑戰,大型官僚機構(公司、政府、學術和軍事)的設計變化是不可避免的。

除了對新的和不同的知識、資源和專長的需求,加拿大政府和加拿大軍方將需要平衡硬實力和不斷變化的地緣政治格局的需求。在美國占主導地位的時代之外,二十一世紀正被一個以技術民族主義和后布雷頓森林體系為特征的多極體系所塑造。面對一個快速發展的數字時代,國際合作將是確保和平與安全的關鍵。信息共享、專家會議和多邊對話可以幫助世界各民族國家及其軍隊更好地了解彼此的能力和意圖。作為一個全球中等國家,加拿大可以成為推動這一努力的主要伙伴。

國際治理創新中心(CIGI)

國際治理創新中心(CIGI)是一個獨立的、無黨派的智囊團,其經同行評議的研究和可信的分析影響著政策制定者的創新。其全球多學科研究人員網絡和戰略伙伴關系為數字時代提供政策解決方案,目標只有一個:改善各地人民的生活。CIGI總部設在加拿大滑鐵盧,得到了加拿大政府、安大略省政府和創始人吉姆-巴爾西利的支持。

付費5元查看完整內容

報告總結

近四十年來,美國國防部(DoD)首次制定了旨在對抗先進軍事對手--特別是中國和俄羅斯--的聯合作戰概念。上一次這樣的努力發生在20世紀70年代末和80年代初的冷戰高峰期,以應對蘇聯在歐洲中央戰線的常規優勢所帶來的戰略和行動挑戰。現在,正如2018年國防戰略(NDS)所強調的,聯合部隊必須 "優先考慮備戰",這包括為軍事優勢制定 "創新作戰概念"。由于作戰概念從根本上說是指導未來部隊設計和未來戰爭的愿景,聯合部隊首先必須回答它打算如何打未來戰爭的問題,然后再試圖回答它需要用什么打仗的問題。

然而,如果國防部要轉向 "聯合概念驅動的、洞察威脅的能力發展",它面臨著相當大的挑戰,因為它的聯合概念發展和實驗過程從根本上說是破裂的。 雖然后冷戰時代見證了發展聯合作戰概念的反復努力,但該過程未能產生創新的作戰方法來指導未來的部隊和能力發展。相反,這個過程產生的概念似乎是故意不推動重大變革的。這些概念并不是真正的 "聯合",而是由現有的服務概念組成的最低標準的組合,以服務的優先權為前提。任何能夠通過發展過程的創新的聯合概念都是如此的淡化和模糊,以至于它們不能引起變化(從而威脅到關鍵利益相關者的利益)。在這種環境下,單個服務概念勝過聯合概念,并驅動投資優先權。

然而,作戰概念和關鍵投資必須是聯合的,因為各軍種在作戰層面已經變得越來越相互依賴。此外,目前的戰爭演習和分析表明,這種作戰上的相互依賴將是未來與中國或俄羅斯等能力強大的同行對手發生沖突的一個關鍵方面--是作為一種優勢還是一種弱點,還有待觀察。我們可以預期,一個先進的、適應性強的對手會尋找美軍的任何差距和縫隙,并利用這些差距和縫隙來發揮其優勢。在這方面,目前的聯合部隊還不夠 "聯合",無法與一個已經發展出對抗美國關鍵的、長期的作戰優勢(如空中、海上和信息優勢)的對手進行高端戰爭。正如本文所討論的,在與同行對手的沖突中成功發動戰爭的規模和強度將需要全新的作戰方式,這反過來又需要一種強制功能,將單個服務能力整合到實際的 "聯合 "戰斗力中。最近發展以威脅為重點的聯合作戰概念--如果成功的話--代表了這種結果實際發生的最佳機會。

本文簡要討論了國防部過去在發展聯合概念方面的三種嘗試,包括空地戰、空海戰和最近的努力--先進能力和威懾小組(ACDP)。本報告利用這些例子來展示克服孤立和狹隘的軍種主導的努力所面臨的挑戰,并說明建立以軍種為中心的概念并給它們披上聯合的外衣的弊端。這些案例強調了聯合概念發展過程中持續存在的病癥是如何使冷戰后的聯合概念在鼓勵作戰創新或推動服務投資優先事項的變化方面毫無用處。

正在進行的開發新的聯合作戰概念工作為國防部提供了一個早該提供的機會,將其概念開發集中在具體的威脅和相應的作戰目標上。目前的努力是幾十年來國防部第一次圍繞應對具體的威脅來組織概念開發,而不是支持聯合部隊對模糊或未定義的對手群體進行作戰的理想化概念。然而,如果不對被廣泛認為是沒有促進思想競爭的共識過程做出重大改變,國防部就有可能重復它過去所犯的概念發展錯誤。此外,新的聯合概念必須通過實驗活動進行嚴格的測試和完善,以驗證其對未來部隊設計的可行性。目前還缺少實驗這一塊。

聯合參謀部正在努力重建其聯合概念開發能力,因為多年來它既沒有優先考慮這項工作,也沒有為其提供足夠的資源。產生真正的新的作戰方式,并有可能改變未來的部隊設計,將需要國防部長辦公室(OSD)、參謀長聯席會議主席和副主席(CJCS和VCJCS)的持續關注,以通過該系統推動新的聯合概念。國防部的高級領導層必須克服每個軍種推動共識產品的傾向,這些產品更多的是為了保護現有的優先事項和長期的特權,而不是產生創造性的想法。

該文件提出了以下建議,以改進聯合概念開發過程:

  • 將聯合概念開發的重點放在未來作戰環境中的優先挑戰上。
  • 賦予作戰指揮部推動聯合概念發展的權力。
  • 探討未來戰爭的其他設想,并通過廣泛的戰爭演習和實驗來驗證聯合概念,而不是通過共識。
  • 擴大實地和艦隊演習中的實驗。
  • 通過培養一種 "紅色思維 "的部門文化來加大思想碰撞。
  • 促進概念開發者和技術專家之間更緊密的結合。
  • 建立一個集中的、高水平的概念和能力發展組織。

修正流程是開發有用的聯合作戰概念的關鍵的第一步,但國防部還必須確保聯合概念開發從正確的角度出發,專注于正確的問題集,同時保持前瞻性。迄今為止,國防部對中國和俄羅斯的思考集中在保持或恢復聯合部隊在冷戰后 "單極時刻 "所擁有的作戰優勢水平上。然后,聯合參謀部提出的概念,如 "聯合愿景:2010",是以 "信息優勢 "的假設為前提的,這將有助于實現 "全譜系主導地位 "的既定目標。國防部的概念和能力發展應該側重于為中國和俄羅斯創造作戰困境,而不是追逐其現有業務方式的微不足道的邊際回報。

很明顯,國防部仍然被其傳統的作戰方式所束縛。參謀長聯席會議副主席約翰-海滕將軍說,在2020年底一系列兵棋推演的測試中,根據美軍過去30年的運作方式制定新的聯合作戰概念的初步努力證明是完全失敗的。

制定新的聯合作戰概念的最初嚴重地依賴傳統的作戰方式,盡管它打算對抗新的對手和新的作戰挑戰,這暴露了一個倉促的“產品”。一個成功的、以威脅為重點的作戰概念需要全面深入的分析--既要分析對手的能力和概念,也要分析聯合部隊在所設想的時間段內的能力和概念,并在深入研究概念的形成和完善之前需要時間來綜合各種投入。以前的聯合概念開發的趨勢是優先形成“產品”和達成共識,而不是更平凡但必要的深度分析工作,這對目前的努力來說不是好兆頭。

自《國家發展戰略》要求提出新的作戰概念以來,已經過去了三年多。國防部需要全新的作戰方式。如果美國軍隊繼續按照今天的方式運作,就不可能保持對同行對手的競爭力。如果這個過程陷入官方機構的爭論,或者在努力達成軍種共識的過程中只產生微小的變化,那將是一個不折不扣的悲劇。

最后,對作戰挑戰提出的概念性解決方案,無論多么合理,只有得到最高級別的文職和軍警領導人的認可和授權,才能推動計劃的改變。雖然該部門在冷戰后的記錄并不完全令人放心,但發展新的聯合作戰概念背后的政治和官方動力是相當大的,而且中國和俄羅斯構成的戰略和行動挑戰比來自伊朗、朝鮮或恐怖組織的挑戰要緊迫和嚴重得多。如果國防部能夠正確對待這一進程,并專注于為中國和俄羅斯創造困境,那么在聯合部隊的轉型方面的積極影響可能是深遠的。

新美國安全中心:

新美國安全中心(CNAS)的使命是制定強有力的、務實的和有原則的國家安全和國防政策。在其工作人員和顧問的專業知識和經驗的基礎上,CNAS通過創新的、基于事實的研究、想法和分析來吸引政策制定者、專家和公眾,以塑造和提升國家安全辯論。我們任務的一個關鍵部分是為今天和明天的國家安全領導人提供信息和準備。

CNAS位于華盛頓特區,由共同創始人Kurt M. Campbell和Michèle A. Flournoy于2007年2月成立。CNAS是一個501(c)3免稅的非營利組織。它的研究是獨立和無黨派的。

作為一個致力于組織、知識和個人誠信的最高標準的研究和政策機構,CNAS對其想法、項目、出版物、活動和其他研究活動保持嚴格的知識獨立性和唯一的編輯指導和控制。CNAS在政策問題上不采取機構立場,CNAS出版物的內容僅反映其作者的觀點。根據其使命和價值觀,CNAS不參與游說活動,并完全遵守所有適用的聯邦、州和地方法律。CNAS不會代表任何實體或利益從事任何代表活動或宣傳活動,如果中心接受來自非美國來源的資金,其活動將限于符合適用的聯邦法律的善意的學術、學術和研究相關活動。該中心每年在其網站上公開承認所有捐款的捐助者。

付費5元查看完整內容

2022年3月,美國蘭德公司發布《開發嵌入人工智能應用的聯合全域指揮控制作戰概念》報告,論述了嵌入人工智能/機器學習(AI/ML)的聯合全域指揮控制(JADC2)的需求,說明了如何在JADC2中利用商業AI/ML系統和需要克服的障礙,并指出了發展路徑。報告認為,為實現嵌入人工智能應用的JADC2,需要投入人力和資源來超越如今的人力密集型指揮控制模式,用自動化和AI/ML技術改進當前的規劃過程。

報告核心觀點包括

  • 將AI/ML納入JADC2之前需要建立“信息基礎”;
  • 實現JADC2目標的關鍵是確定核心軍事任務的指揮控制需求并建立可行的軟件開發計劃;
  • 將商業AI/ML系統用于軍事任務,必須確定技術支持的作戰需求、隨后確定實現作戰任務所需的指揮控制過程,同時了解AI/ML技術的局限性;
  • 在JADC2中應用AI/ML需要克服四個障礙:軍事文化與商業文化的差異、數據不可訪問、重組軍事行動中心并培訓人員、軍事亞文化;
  • 在JADC2中應用AI/ML的目標是實現指揮控制的高效人機組隊,而不是指揮控制的完全自動化。

將人工智能(AI)和機器學習(ML)納入JADC2進行多域作戰(MDO)之前要完成一項艱巨的任務,即建立“信息基礎”。信息基礎中的數據帶有標記,能夠安全地存儲和傳輸,且易于訪問。建立信息基礎需要持續整理和保護軍方為開展指揮控制所需的跨領域、跨軍種和跨梯隊的所有信息。這些信息是AI和ML算法所需的輸入。如果沒有這樣一個信息基礎,將AI融入JADC2的工作就無法取得進展。 盡管最近AI/ML在游戲領域取得了令人鼓舞的成功,但考慮到信息不完整、數據質量差和對手行動等現實障礙,在某些指揮控制功能中使用類似的技術仍具有挑戰性。其他AI/ML技術,例如用于預測戰區內飛機狀態的應用,其成熟度更高。實現JADC2目標取決于確定核心軍事任務集的指揮控制需求,以及建立在近期和遠期都可以實現的軟件開發計劃。

1 JADC2對支撐多域作戰的必要性

現代戰爭已經超越了傳統的陸、空、海領域,軍事指揮官及其參謀人員計劃、指揮和控制部隊不能局限于這些傳統領域,還要擴展到太空、網絡和電磁頻譜領域。更復雜的是,跨領域的活動已經超出了傳統戰爭的范疇,**在還未采取公開敵對行動之前,大多數國家早已身處競爭環境。**軍隊必須能夠在戰爭和競爭中整合這些領域。今天的軍事行動已經需要靈活和安全的手段來跨梯隊、領域、組織和地理區域進行通信和共享數據。未來的全域戰爭和競爭將對獲取信息的規模和速度、對信息的理解和快速決策提出更高的要求,這些都是JADC2能力的關鍵要素。

但是,今天用于規劃、調度和執行監視軍事任務的既存系統和基礎設施不適用于現代全域作戰。鑒于多域作戰規劃日益復雜,期限縮短,而且數據要求增加,軍事規劃人員需要新的工具,包括AI/ML工具。 要想確定對AI/ML工具投入的優先級,就需要了解這些工具的能力、面臨的障礙以及它們滿足多域作戰下新興指揮控制需求的潛力。

圖1 機器學習的類型

2 如何利用商業AI/ML系統

近來,AI/ML系統在日益復雜的游戲中展現出人類所不能及的能力,再加上人們對未來高端沖突作戰需求日益加深的理解,使AI/ML變得極具吸引力。作為一種AL/ML系統,AlphaStar在即時戰略游戲《星際爭霸》中的成功**預示著監督學習和強化學習未來有可能應用于戰術級和戰役級指揮控制。**但是,將這些技術從游戲過渡到戰爭仍需要大量的研究。

隨著人工智能算法被開發用于現實、動態、多領域、大規模和快節奏的作戰,需要選擇、評估和監控重要的度量標準來衡量算法的性能、有效性和適用性。關鍵的算法度量標準包括:效率(計算所需的時間和內存)、可靠性(算法是否產生有效的結果)、最優性(算法是否為給定目標提供最佳結果)、穩健性(算法是否能夠在意外情況下平緩降級)、可解釋性(人是否能理解所產生結果的原因)和確定性(算法是否按預期運行)。

由于商業和學術AI/ML系統沒有直接應用于軍事任務,這些技術需要過渡到軍事環境才能帶來作戰優勢。為了決定采用哪些AI/ML技術,軍方**必須首先了解需要這些技術支持哪些作戰需求,如空中優勢、防空、加油機支持等。隨后作戰需求將決定****實現作戰任務所需的指揮控制過程,**如態勢感知、空域去沖突等。**了解AI/ML技術的局限性,**尤其是它們在不確定條件下進行推理時遇到的困難,也同樣重要。否則,這些技術可能會達不到預期。

圖2 AI/ML關系

3 實現AI/ML的軍事應用需要克服的障礙

實現AI/ML的軍事應用存在以下四個主要障礙。

(1)軍事文化與商業文化的差異

由于在戰爭中生命始終處于危險之中,軍事文化通常是規避風險的。但是在商業世界中,承擔大的風險可能獲得豐厚的經濟回報。這種文化差異在共享數據方面表現最為突出。軍方傾向于保護信息(只有那些“需要了解”的人才能獲取信息),而商業世界重視開放數據訪問(“廣泛共享”),以促進應用開發并獲得經濟利益。因此,將安全考慮納入軍事軟件開發和信息技術(IT)行動(稱為DevSecOps)非常重要,由此能夠挫敗試圖通過網絡手段削弱指揮控制的對手和危險份子。最大的挑戰可能是如何確保AI/ML算法適用于真實戰場。在戰場中,“戰爭迷霧”、不完整的信息和對手的行動與游戲環境截然不同。

(2)軍方內部數據不可訪問

軍方需要統一的數據管理政策和足夠先進的信息技術使指揮控制人員可以訪問大量數據,由此支持他們的人工智能輔助決策。換句話說,**必須有一個支持收集、標記、存儲、保護和共享數據的AI生態系統。**這個生態系統將依賴于通用數據標準、明確指定的權限、完整性檢查和入侵防護。**云計算和數據湖將是關鍵組成部分。**云數據湖可以用于分布式計算、冗余存儲和整個企業內的連接。考慮到現有的軍事政策、文化、權限、預算和獲取途徑,構建這樣一個環境以跨領域和跨安全級別的安全方式提供大量數據將對JADC2提出挑戰。

(3)需要重組軍事行動中心并培訓中心的人員

機器之間通信的增加和指揮控制過程的自動化,可能會帶來作戰中心硬件和人員的變化,這使人類作戰人員能夠聚焦認知任務,如評估和完善潛在的行動方案。采用AI/ML技術將創造出新的角色和職責。作戰人員需要接受培訓以便管理和運營AI生態系統,同時充當數據管理員,確保在該生態系統中捕獲和存儲的數據的質量和完整性。此外,雖然現在規劃人員和決策人員受到的培訓是要在一個領域內思考,但新的職責可能會出現,需要人們同時在多個領域內思考。

**(4)存在軍事亞文化 **

由于作戰人員之間亞文化的差異、規劃時間線的不同,以及為實現不同的作戰效果而采用的不同的權限分配方案,即使在一個軍種內,也很難跨越空中、太空和網絡領域集成AI能力。 盡管如此,對全域指揮控制的需求是急迫的,而且這種需求越來越普遍。為此,在JADC2中嵌入AI應用必須面對和克服以上所有障礙——軍事文化、網絡安全問題、用于知識質量較差的問題的算法、數據不可訪問、作戰中心重組和培訓以及軍事亞文化。

4 實現高效發展的路徑

以上障礙讓現狀看起來很嚴峻,必須立即做出改變來響應快速向前推進的迫切需求。但是,如果將實現目標的步驟分解成一個個容易解決的問題,如果軍方清楚技術的可能性和局限性,就可以取得進展。**我們的目標不應該是指揮控制的完全自動化,而是指揮控制的高效人機組隊。**實現這一目標的步驟應該包括:第一,繼續開發JADC2作戰概念并確定其優先次序;第二,在指揮控制過程中確定采用AI/ML來增強能力的需求和機會

與此同時,有必要為數據驅動的AI生態系統設置環境,這意味著要將武器系統和相關數據遷移至多域數據湖中,供有權限的人使用,同時應用“零信任”和其他安全原則來靈活且安全地管理這些數據。隨著AI軟件應用程序的開發,有必要在作戰測試環境中對這些應用程序進行實驗,將它們與指揮控制系統集成,然后將有限的能力部署到作戰中心,接著根據用戶反饋快速更新軟件應用程序。分析師和技術專家希望探索作戰概念來促進人機組隊,建立人們對AI智能算法的信任,并提高算法的可解釋性。商業需求較少的領域可能需要有針對性的軍事投資,例如用于數據稀缺領域的AI算法學習,或者用于防御針對這些算法的攻擊的AI算法。

當前的AI/ML技術需要學習用的數據。由于缺乏真實世界的數據(缺乏這類數據也是一件幸事)來為改進這些戰爭技術提供信息,軍方可以利用建模、模擬和演習來為AI/ML算法生成訓練數據。這類算法有助于武器-目標配對等。監督或強化學習算法可以支持這種指揮控制功能,類似于最近應用于商業游戲的學習算法。但是軍事算法也必須考慮到現實世界中的不確定性,這對人類和算法來說都是一個主要困難。

正如美國空軍參謀長查爾斯?布朗(Charles Brown)2020年8月所說:“要么加速變革,要么失敗。”對現代戰爭來說,及時向JADC2邁進是必要的,而且有必要“在競爭對手的防守期限內”完成。這一需求真實存在,但對AI/ML設定現實的預期很重要。現有的指揮控制流程在自動化方面還有改進的空間,在某些情況下,在AL/ML方面也有改進的空間。美國眾議院軍事委員會主席、華盛頓州民主黨眾議員亞當?史密斯(Adam Smith)于2021年9月談到JADC2時說:“目標是正確的,但不要低估實現這個目標的難度。”

來源:防務快訊

付費5元查看完整內容

新興軍事技術

國會議員和五角大樓官員越來越關注發展新興軍事技術,以加強美國的國家安全,并與美國的競爭對手保持同步。美國軍方長期以來一直依賴技術優勢來確保其在沖突中的主導地位,并保障美國的國家安全。然而,近年來,技術的迅速發展和迅速擴散,很大程度上是由于商業領域的進步。正如前國防部長查克·哈格爾(Chuck Hagel)所觀察到的,這種發展已經威脅到美國傳統的軍事優勢來源。美國國防部(DOD)已經采取了一系列措施來遏制這一趨勢。例如,2014年,國防部宣布了第三次抵消戰略,這是一項為軍事和安全目的以及相關戰略、戰術和作戰概念開發新興技術的努力。為了支持這一戰略,國防部建立了許多專注于國防創新的組織,包括國防創新單位和國防戰爭聯盟小組。

最近,2018年的國防戰略呼應了第三次抵消戰略的基礎,指出美國的國家安全可能會受到影響: 受到快速技術進步和戰爭性質變化的影響....新技術包括先進的計算、“大數據”分析、人工智能、自主、機器人、定向能源、超音速和生物技術——這些技術確保我們能夠在未來的戰爭中戰斗并贏得勝利。 美國是開發這些技術的領導者。然而,中國和俄羅斯這兩個關鍵的戰略競爭對手,在發展先進軍事技術方面正在穩步取得進展。隨著這些技術被整合到國外和國內的軍事力量中并部署,它們可能會對國際安全的未來產生重大影響,并將成為國會在資金和項目監督方面的一個重要焦點。

本報告概述了美國、中國和俄羅斯的一些新興軍事技術:

  • 人工智能,
  • 致命的自主武器,
  • 超音速武器,
  • 定向能武器,
  • 生物技術,
  • 量子技術。

它還討論了國際機構內監測或規范這些技術的相關倡議,考慮了新興軍事技術對戰爭的潛在影響,并為國會概述了相關問題。這些問題包括新興技術的資金水平和穩定性、新興技術的管理結構、與征聘和留住技術工作者有關的挑戰、迅速發展和兩用技術的采購過程、保護新興技術免受盜竊和征用,以及對新興技術的治理和監管。這些問題可能會影響到國會的授權、撥款、監督和條約的制定。

付費5元查看完整內容

「美國人仍未認真思考 AI 革命將對社會、經濟和國家安全產生多大影響」,3 月 1 日,美國國家人工智能安全委員會(the National Security Commission on Artificial Intelligence,NSCAI)發布的一份報告,提出了對于總統拜登、國會及企業和機構的數十項建議。

該組織稱,中國是對于美國技術主導地位的首要挑戰,在第二次世界大戰后第一次有國家對美國的經濟和軍事力量產生了如此程度的威脅。該報告的一個結論是,在未來十年內,美國可能會失去對中國的軍事技術優勢。

這個由 15 名成員組成的委員會主張以 400 億美元的投資擴展和民主化 AI 研究的進程,并為「未來技術突破進行投資」,鼓勵決策者們對創新投資持類似態度。該組織最終希望能推動聯邦政府在未來幾年里對于人工智能投資數千億美元。

付費5元查看完整內容

近日,美國人工智能國家安全委員會發布最終報告(草案)。本報告共分為兩大部分:第一部分,“在人工智能時代保衛美國”(第1-8章)概述了美國必須做些什么來抵御來自國家和無政府組織的人工智能相關威脅,并建議美國政府如何負責任地使用人工智能技術來保護美國人民和利益。第二部分,“贏得技術競爭”(第9-16章)概述了人工智能在更廣泛的技術競爭中的作用,并建議政府必須采取行動促進人工智能創新,從多個方面提高國家競爭,保護美國的關鍵優勢。

這兩個部分共同代表了白宮領導下的戰略綱要,該戰略旨在調整國家的方向,以應對新興時代的機遇和挑戰。

美國人工智能國家安全委員會于2019年由國會特許成立,旨在探討人工智能對美國國家安全的影響。該報告中包括對白宮、聯邦機構、國會和其他實體的詳盡建議,涉及從勞動力、知識產權到倫理的各個主題,最終報告預計將影響未來幾年拜登政府和國會議員所采取的人工智能政策。

這兩個部分共同代表了白宮領導下的戰略綱要,該戰略旨在調整國家的方向,以應對新興時代的機遇和挑戰。

付費5元查看完整內容
北京阿比特科技有限公司