這項工作得到了美國陸軍行為與社會科學研究所 (W911NF19-2-0173) 的支持。
團隊流程:
以下定義摘自美國陸軍訓練與條令司令部:
多域作戰(MDO)描述了美國陸軍作為聯合部隊[陸軍、海軍、空軍、海軍陸戰隊和太空部隊]的一部分,如何在競爭和武裝沖突中對抗和擊敗能夠在所有領域[空中、陸地、海上、太空和網絡空間]與美國抗衡的近鄰對手。該概念描述了美國地面部隊作為聯合和多國團隊的一部分,如何在2025-2050年的時間框架內威懾對手并擊敗能力強大的近鄰對手。
MDO為指揮官提供了許多選擇,以執行同時和連續的行動,利用出其不意以及快速和持續地整合所有領域的能力,給對手帶來多種困境,以獲得物質和心理上的優勢以及對作戰環境的影響和控制。
滲透敵方的反介入和區域拒止(A2/AD)系統(分層和綜合遠程精確打擊系統、沿岸反艦能力、防空系統、遠程火炮和火箭系統),使美軍能夠進行戰略和作戰機動。
破壞--擾亂、降低或摧毀A2/AD系統,使美軍能夠進行作戰和戰術機動。
利用由此產生的機動自由,通過擊敗所有領域的敵軍來實現作戰和戰略目標。
重新競爭--鞏固各領域的成果,迫使其以對美國和盟國有利的條件恢復競爭。
戰爭的速度和決策的速度可以說從來沒有像今天這樣快過,而且明天可能也會這樣。
在陸、海、空、天,甚至網絡領域運作的資產的密切協調,以促進ISR活動和對敵對目標的殺傷鏈,需要精確性,以及在各種平臺上 "蓄勢殺傷 "的能力。
系統的通用性可以減少后勤的負擔,簡化培訓和維護,并有助于確保各平臺的性能一致、可靠。
基于成熟技術的解決方案能夠迅速投入使用,并為作戰人員增加更多的靈活性和選擇,是一種力量的倍增劑。
內聚力是團隊的一個重要屬性,它可以影響個人隊友和團隊成果。然而,在包括自主系統作為隊友的團隊中,內聚力是一個未被充分探索的話題。我們研究了關于人類團隊內聚力的現有文獻,然后在此基礎上推進對人類-自主系統團隊的內聚力的理解,包括相似性和差異性。我們描述了團隊的內聚力,各種定義、因素、維度以及相關的好處和壞處。我們討論了當團隊包括一個自主性的隊友時,該元素可能會受到怎樣的影響,并進行了逐一描述。最后,我們確定了可能與內聚力有關的人類-自主性互動的具體因素,然后闡述了對推進有效的人類-自主性團隊的科學至關重要的未來研究問題。
2022 年 10 月 11 日,美國陸軍發布了一份綜合數據計劃(ADP),這是一種全軍范圍內改進數據管理以確保陸軍成為以數據為中心的組織的方法。
該計劃是一項為期三年的工作,將改善整個陸軍的數據管理、數據治理和數據分析。作戰任務是陸軍數據計劃的當前重點。ADP 在該任務領域的成果是通過進行必要的更改來確保作戰人員的數據得到正確管理和使用,從而為作戰人員提供優勢。陸軍已經開始對數據管理能力、工具和模型進行原型設計,以實現這一目標。
陸軍首席信息官 Raj Iyer 博士說:“數據以及如何在所有梯隊中整合這些數據以實現真正快速、敏捷的決策,才是真正為陸軍提供其在未來戰爭中所需的競爭優勢的關鍵。”
數據和數據分析將為 2030 年的陸軍提供動力。士兵將需要在正確的時間和正確的地點獲得正確的數據,以便在每個梯隊做出更快、更好的決策——以超越任何對手的思維和步伐。
與早期的軍事行動相比,現在的戰爭范圍更大且范圍不斷擴大。作為聯合全域作戰的一部分,多域作戰是陸軍必須準備并贏得下一場戰斗的地方。這是一個數據豐富的環境。
每個領域都有自己的信息和數據流,一些信息來自開源情報,一些來自天基傳感器,還有一些來自網絡空間。今天的士兵和指揮官需要跨領域的綜合來主宰戰場。
ADP 概述了工作的組織并提供了總體戰略目標。它側重于中期努力,未來將被另一個更新所取代。
通過陸軍數據計劃實現這一決策優勢是陸軍的關鍵目標。
由于傳感器數量和人工智能(AI)應用快速增多,未來的作戰環境將以豐富的信息和機器速度的決策為特征。因此,美國陸軍指揮官和他們參謀人員將需要有能力篩選大量的信息,更快地做出決策。商業人工智能系統有可能提供這種能力,但美國陸軍不能指望"開箱即用"的商業人工智能系統具有通用能力,因為這種系統需要針對美國陸軍的情況進行充分的訓練。此外,還需要進行研究,以了解軍隊中的人工智能目前可以做到什么和不可以做到什么。總的來說,人工智能往往擅長于主要通過模式識別來解決的任務,以及可以從任務數據中進行預測的任務,如圖像識別、醫療診斷和文本轉錄。然而,目前還不知道人工智能是否可以用于提高美國陸軍信息收集效率。因此,在目前的研究中,探討了以下問題:人工智能能否用于提高美國陸軍任務指揮過程中的信息收集效率?
為了回答研究問題,本文使用了一個商業人工智能應用系統,它反映了軍隊任務指揮部人工智能應用原型的首次開發工作。在這項研究工作中,比較了這個為軍隊量身定做的人工智能系統和其他兩種信息收集方法的參與者在信息收集任務中的表現:傳統的信息收集方法(在計算機文件夾中搜索PDF文件)和非軍隊量身定做的人工智能系統版本。軍隊定制的系統使用軍隊相關的知識來幫助搜索(例如,它知道 "MDMP "等同于 "軍事決策過程"),而非軍隊定制的系統則沒有。我們在以下方面比較了這三種搜索方法:1)參與者找到準確的搜索結果所需的時間,2)參與者搜索結果的準確性,3)參與者對其搜索結果的信任程度,4)參與者對使用該系統工作負荷的看法,5)參與者對該系統可用性的看法。
參與者在使用人工智能系統時比使用傳統搜索方法時既不快也不準確。當使用人工智能系統而不是傳統方法時,參與者對他們的搜索結果也沒有更多信任。然而,在使用軍隊定制的人工智能系統而不是非軍隊定制的系統時,參與者的搜索速度更快,但準確性也更低。最后,在不同的搜索方法之間,參與者對工作負荷和可用性的感知沒有明顯的差異。
這項研究是確定人工智能系統對信息收集效率影響的第一步。總的來說,我們的研究結果表明,人工智能系統可能不會大幅提高美國陸軍任務指揮過程中的信息收集效率,至少不會立即提高。雖然這項研究的重點是在受控實驗室中的無關要害任務(即尋找戰術情況下的理論解決方案),但未來計劃的使用將不會那么無害,這表明需要未來研究來測試假設。對人工智能的投資應該伴隨著對培訓和研究的投資,以獲得人工智能的全部優勢并減少風險。假設人工智能系統是銀彈是不審慎的,事實上,這項研究表明人工智能系統需要被充分審查。
戰爭正變得越來越復雜。陸軍指揮官需要考慮在地面、空中和海上的戰斗,以及在信息和網絡環境中的戰斗(美陸軍部,2017)。隨著社交媒體的出現和計算機的日益強大,在這些環境中的行動可能會導致地緣政治損失,而在過去,只有通過更傳統的行動,如地面攻擊、空中打擊和海上轟炸才能實現。此外,美陸軍指揮官不僅應該期待來自其他民族國家部隊的復雜和有影響的打擊,而且還應該期待看起來不復雜的對手,因為網上零售商使人們很容易購買到過去難以獲得的產品(包括合法的和非法的),如無人機、夜視鏡和槍支。在這一切之上,陸軍指揮官需要在一個前所未有的水平上做出準確和及時的決策,因為人工智能(AI)正在許多軍事職能和領域中實施,如網絡戰、航空和信息收集。這些因素加在一起,為陸軍指揮官創造了復雜的作戰環境。
為了在復雜的環境中有效運作,陸軍指揮官及其參謀人員需要有能力從不同的來源收集大量的數據,并迅速處理收集到的信息,以便及時對信息采取行動。例如,如果對手正在準備一次大規模的作戰行動,信息環境、網絡環境和物理環境中新的但微妙的多變量模式可能會出賣對手的意圖。然而,為了及時發現這些模式,陸軍指揮官和他們的參謀人員將需要有能力快速匯總和分析從各個環境傳來的數據。此外,為了根據這些數據迅速采取行動,陸軍指揮官及其參謀人員需要有能力迅速找到相關的陸軍和聯合理論,以實施戰術和戰略,并吸取經驗教訓,以利用曾面臨類似情況的指揮官經驗。對于這兩項任務--檢測模式和根據模式采取行動--人工智能可能被證明是一個非常有用的工具。
正如其名稱所暗示的那樣,人工智能是由機器而非人類或動物等非人工實體所展示的智能。在這種情況下,智能包括通常與人類相關的認知功能,如推理、計劃、學習和感知。因此,人工智能的主要目的是取代或增強人類的某些任務,如駕駛、飛行和圖像識別(例如,自動檢測和識別人群中的面孔)。例如,谷歌和優步等公司目前正在自動駕駛汽車中使用人工智能,人工智能充當了車輛的駕駛員,因此是使自動駕駛汽車自動化的實體。此外,美國陸軍目前正在探索將人工智能用于自動車輛識別。
人工智能主要通過兩種方式實現 "智能化"。一種方式是通過編程使人工智能的軟件接受某些輸入并根據輸入做出某些輸出。例如,視頻游戲中的人工智能競爭者可能被編程為在玩家向右移動(輸入)時向左移動(輸出),或者在玩家攻擊時進行阻擋。這種方法使用簡單的算法--人工智能要遵循的規則--除了最基本的任務外,其他都是低效的,因為人工智能的軟件程序員必須思考并手動編程每個規則。這樣做很快就會變得不方便,因為許多任務需要許多規則和嵌套的規則--其他規則中的規則(例如,如果接近一個讓行標志,如果有另一輛車出現,則要讓行,但只有當另一輛車在附近時)。此外,思考一項任務的每一個可能的規則很快就會變得困難,即使是人類認為很容易的任務(如駕駛)。
使人工智能智能化的更好方法是使用機器學習,這是一個從數據中創建統計模型的過程,以提高預測和決策的準確性。機器學習不是明確地告訴人工智能系統如何應對其環境中的某些事件,而是允許人工智能系統從其環境中的行動中學習。更簡單地說,機器學習允許人工智能系統從經驗中學習。例如,谷歌通過向人工智能系統提供組成游戲顯示屏的像素,并允許人工智能系統通過游戲控制器對這些像素進行操作,從而訓練人工智能系統成功地玩視頻游戲Atari Breakout(Leo Benedictus,2016)。人工智能系統的程序很簡單,就是通過游戲控制器的動作來最大化其游戲分數,并使用游戲分數來確定一個動作是否有益。起初,人工智能系統在游戲中做出看似隨機的行動,但一段時間后,它開始獲得得分點,并最終學會了一種人類玩家從未使用過的有用技巧。
機器學習讓人工智能在日常生活中變得非常普遍,以至于人工智能被一些人認為是 "新電"(Lynch, 2017)。人工智能傾向于擅長那些主要通過模式識別就能解決的任務。因此,人工智能擅長于圖像識別、醫療診斷和轉錄等任務。像駕駛這樣的任務給人工智能帶來了更大的難度,因為目前自動駕駛汽車上的傳感器無法檢測到標記模糊的道路上的模式(例如,被雪覆蓋的道路)。人工智能對于從數據中進行預測是異常有用的。例如,醫生可以使用人工智能來幫助醫療診斷,因為人工智能能夠處理病人的所有數據,將這些數據與已知的醫療條件進行比較,并從比較中產生醫療診斷。人工智能在視覺搜索方面也很有用。一家公司使用人工智能系統搜索航拍圖像,以尋找住宅區內水浪費的證據(Griggs, 2016)。該人工智能系統能夠通過使用游泳池的存在、灌木的數量和大小以及房屋周圍草地的綠色程度等因素,準確判斷一個家庭是否在浪費水。該人工智能系統能夠以每秒208張航空圖像的速度完成這項任務。
信息收集是人工智能具有潛力的另一項任務。信息收集是指從一個來源,如文件庫或互聯網上提取所需信息的過程。通過使用自然語言處理--人工智能的一個分支,用于處理自然語言數據--人工智能可以從非結構化數據中提取信息,而非結構化數據占世界數據的80%(High, 2012)。與結構化數據不同,結構化數據是以預先定義的方式組織的,包括電子表格和日志,非結構化數據不是以預先定義的方式組織的。非結構化數據包括文本文件、照片、視頻和音頻記錄。人工智能可以用來從非結構化數據中提取相關信息和意義,并以各種方式利用這些信息和意義。例如,美國陸軍和美國空軍正在探索使用人工智能,從車輛維護和車載系統日志中預測車輛故障(Osborn,2017;Vincent,2018)。此外,未來的人工智能任務指揮系統可能會不斷挖掘從眾多來源流入的數據,包括社交媒體、新聞頻道和衛星數據,并使用這些數據來預測戰略競爭對手的行動。這種方法將通過利用過去的非結構化數據(維護日志、社交媒體帖子等),并確定這些數據的哪些特征可以預測車輛故障和競爭者的行動。例如,人工智能系統可能會發現車輛運行溫度和車輛故障之間的關系,并利用這種關系來預測未來的故障。像這樣的關系將形成一個數學模型,當新的數據出現時,人工智能系統將持續更新。
通過使用自然語言處理,人工智能也可能有助于從陸軍條令和經驗教訓中提取所需信息。陸軍有許多條令出版物,指揮官和他們的工作人員經常需要在一個以上的出版物中尋找信息。例如,如果計劃進行一次接觸行動,指揮官可能不僅需要參考作戰條令,還需要參考與指揮官所在梯隊相關的條令;如果指揮官的部隊要通過一個人口中心,還需要參考民政條令;如果指揮官要使用網絡能力,還需要參考網絡戰條令。此外,指揮官可能還需要快速找到相關條令,特別是在面臨對手的意外行動時。在計劃一項行動時,指揮官也可能會查閱陸軍的經驗教訓集,以利用過去進行過類似行動的指揮官的經驗。
也許有可能使用人工智能來幫助指揮官及其參謀人員在條令和經驗教訓中找到所需的信息。要做到這一點,必須采取一些步驟。首先,必須為人工智能系統建立一個語料庫,將條令和經驗教訓的出版物加載到人工智能系統中。從這個語料庫中,人工智能系統可以學習相關的語言,包括術語,并使用自然語言處理建立一個詞庫。然后,人工智能系統可以通過建立索引和元數據對數據進行預處理,使其更有效地處理數據。最后,人類主題專家必須訓練人工智能系統,以使人工智能系統提供更精確的答案和識別模式。訓練可以通過向人工智能系統上傳問題和答案對形式的訓練數據來完成。這種訓練數據不會為人工智能系統提供每個可能問題的答案,但這些數據將幫助人工智能系統學習相關領域的語言模式。一旦人工智能系統被部署,該系統可以通過與用戶的持續互動進一步學習。
通過使用上述方法創建人工智能系統,指揮官及其參謀人員可能會比沒有人工智能系統可供使用時更快、更準確地從條令和經驗教訓中收集所需信息。如果沒有人工智能系統,指揮官將不得不通過手動搜索每個可能與所需信息有關的條令或經驗教訓出版物來尋找所需信息。這種手工搜索是一個耗時的過程,可能不會產生最佳的信息產品,特別是當進行搜索的人有時間壓力的時候。事實上,人類經常會搜索信息,直到達到一個可接受的閾值(例如,做出決定所需的最小信息量),以避免花費太多的認知資源和精力去尋找一個完美的結果(Simon, 1955; 1956; 1957)。然而,通過使用這種方法,人類可能會產生不那么充分的結果。此外,Simon還觀察到,這種方法不太可能產生一個最佳的結果,因為人類通常不會搜索足夠長的時間來找到這樣一個結果。然而,試圖找到最佳結果可能并不理想,因為這樣做需要時間,而當找到最佳結果時,結果可能已經不再有用。因此,如果指揮官試圖找到一個最佳的結果,指揮官可能無法進入對手的決策周期;指揮官需要平衡尋找結果的時間和結果的質量。另一方面,人工智能信息收集系統可能更有可能找到最佳結果,而且人工智能系統可能更有可能在比人類花費更少的時間內找到最佳結果。
盡管在人類信息處理能力有限的情況下,人工智能系統在尋找條令和經驗教訓中的所需信息方面可能比人類更有效率(Baddeley,1992),但這一結果是以人工智能系統經過充分訓練以識別條令和經驗教訓出版物中的語言模式為前提。如果人工智能系統沒有經過充分的訓練,那么人工智能系統的使用者可能會發現次優的結果,并因此對人工智能系統感到失望,最終使人工智能系統被廢棄。此外,人工智能系統只有在人工智能系統的人類用戶適當地校準他們對系統的信任時才會有用(Hancock等人,2011;de Visser, Pak, & Shaw, 2018)。許多人工智能系統由于各種原因,包括環境背景、用戶錯誤和不同背景下的訓練不一致,導致其性能不一致(Rovira, McGarry, Parasuraman, 2007)。例如,一個人工智能系統產生與火力作戰功能相關的準確結果,與機動作戰功能相比,可能產生不太準確的結果。如果人工智能系統的人類用戶完全信任該系統的結果,可能會出現性能下降(Hancock等人,2011)。訓練人類用戶了解人工智能系統何時可能準確,何時不可能準確是至關重要的(de Visser, Pak, & Shaw, 2018)。相反,如果人工智能系統的人類用戶對人工智能系統缺乏信任,那么該系統很可能會被廢棄。因此,人工智能系統不會提高指揮官尋找信息的效率,即使該系統本身在這方面表現出色(Hancock等人,2011)。
盡管人工智能往往擅長于主要用模式識別來解決的任務,以及可以從任務數據中進行預測的任務,如圖像識別、醫療診斷和轉錄,但目前還不知道人工智能是否可以用于提高美國陸軍背景下的信息收集效率,特別是在陸軍指揮官及其參謀人員需要在陸軍條令中尋找信息的背景下。因此,在目前的研究中,我們探討了以下問題:人工智能能否用于提高美國陸軍任務指揮過程中的信息收集效率?為了回答這個問題,我們使用了一個商業人工智能應用系統,這反映了陸軍任務指揮部人工智能應用原型的首次開發工作。在這項研究工作中,我們比較了這個為陸軍量身定做的人工智能系統和其他兩種信息收集方法的參與者在信息收集任務上的表現:一種傳統的信息收集方法(在計算機文件夾中搜索PDF文件),以及一種非陸軍量身定做的人工智能系統。
信任是團隊有效性的基礎,它影響著各種團隊過程,包括信息共享、決策和團隊的整體成功。在那些在惡劣的、不確定的、高壓力的環境中工作的高績效團隊中,如軍事、急救、醫療、搜救和救災,在關鍵時刻不適當的信任水平(無論是過高還是過低)會導致隊友之間的次優互動,從而導致不安全的行為(De Jong和Elfring 2010;Costa等人2018)。例如,太過信任,或 "過度信任",會使操作人員陷入自滿狀態,導致代價高昂的錯誤,并有可能失去人命和昂貴的設備;相反,信任太少,或 "信任不足",會使團隊成員感到需要不斷監督對方,造成不平衡和不適當的工作負荷(de Visser等人,2020)。信任是通過作為一個聯系緊密的團體訓練,以及隨著時間推移的共同經驗而建立的(Fulmer和Gelfand 2012;Costa和Anderson 2017)。
隨著自主技術的不斷發展,未來的團隊結構很可能包括自主成員,他們的功能不僅是提供支持的工具,而且是成熟的隊友(Phillips等人,2011)。雖然人類表現文獻中有豐富的方法來評估個體(或對)的信任,但在理解如何衡量大型團隊的信任方面還存在差距(Feitosa等人,2020),以及哪些措施可能最適合由多個人類和多個自主系統組成的團隊的復雜性。使信任度量更加復雜的是,團隊信任是一種動態狀態,在團隊的生命周期中不斷波動,并進一步受到社會、任務和環境背景的影響(Schaefer等人,2018a;Schaefer等人,2019a)。然而,信任在這些更大的、異質的團隊中發展和傳播的過程仍然不清楚。因此,為了使這些技術能夠充分支持團隊運作,關鍵是要了解在人類自主團隊的背景下,信任是如何發展、維持和衡量的。因為信任是復雜的,所以需要一種多模式的測量方法。因此,在本報告中,我們描述了一個概念性的工具包,它的開發是為了更準確、更有力地理解人類自主性團隊中的信任。
鑒于我們的未來社會將看到由多個人類和多個自主系統組成的異質團隊的興起,量化團隊不同成員之間的信任關系,以及了解信任對全球團隊動態的一系列影響非常重要。從這個方法來看,人與人之間的信任與人機合作關系,甚至機器與機器合作關系內部的信任是不一樣的。這些不同類型的互動有不同的優先因素和特點,以及這些互動如何影響整個團隊的信任傳播。考慮到所有這些因素,關鍵是要首先了解現有信任措施的能力和局限性,以便對其進行調整以滿足這些需求,或者在必要時,開發新的措施來支持團隊信任評估。為此,本報告探討了信任評估技術的現狀,包括那些新穎的、超出主觀評估范圍的技術。
第2節我們首先定義了人類自主性團隊,并概述了人類自主性團隊特有的團隊信任。
第3節確定并描述了不同類型的信任,這些信任在其發展過程中是不同的,特別是它們如何影響人類自主性團隊合作。
第4節分解了文獻中已被充分記錄的不同的信任度量方法,其中包括團隊信任的主觀、溝通、行為和生理指標,以及這些如何為在動態環境中運作的人類自主性團隊的有效信任校準提供多模式度量方法。在下文中,我們利用一個說明性的案例研究,詳細介紹了度量團隊信任的多步驟方法,并對模式和后續指標的選擇提出了建議,還指出了團隊信任度量中涉及的一些限制和注意事項。
全球信息網絡架構(GINA)是一個語義建模框架,旨在促進特設傳感器資產和指揮與控制系統的整合,因為它們可以通過被稱為矢量關系數據建模的實施方式提供給戰斗空間中的操作人員。為了評估GINA的互操作性和推理能力,開發了一個概念驗證評估,并在真實世界的傳感器數據上進行測試。
正如美國陸軍的多域作戰(MDO)概念所指出的,美國的對手試圖通過在政治、軍事和經濟領域的分層對峙來實現他們的戰略目標,而不是通過沖突來對抗美國軍隊和聯盟伙伴。此外,MDO概念指出,對手可能采用多層跨域對峙--跨越陸地、海洋、空中、太空和網絡空間,在時間、空間和功能上威脅美國和聯盟部隊。反擊這些戰略的中心思想是快速和持續地整合所有領域的戰爭(即融合),跨越時間、空間和能力,以戰勝敵人。
為了實現MDO的執行,聯合軍種、政府機構和多國伙伴之間的互操作性是一個關鍵要求。戰術行動已經越來越依賴于信息網絡的傳感、通信、協調、情報和指揮與控制(C2)。因此,美國陸軍不斷尋求提高其整合網絡系統的能力,并在不同的作戰節奏水平上實現同步效果。從歷史上看,由于沒有足夠的能力來支持現有的和新興的技術和進程,這種整合在以無處不在的物聯網(IoT)和軍事C2系統為特征的不斷發展的網絡化戰斗空間中帶來了技術挑戰。這種限制因不同系統的孤島而進一步加劇,限制了戰術、技術和程序的跨系統使用,以及支持硬件和軟件組件。這些限制使作戰人員面臨不一致和缺失的關鍵任務數據,促使作戰功能在孤立中運作。例如,行動和情報之間的數據交換是有限的,范圍也受到限制,增加了指揮官決策過程中的風險和延誤。
為了實現陸軍網絡現代化,陸軍未來司令部網絡跨職能小組(N-CFT)正在調查通過創新、整體和適應性的信息技術解決方案來實現網絡互操作性的顛覆性方法,以滿足既定的C2互操作性挑戰。根據NCFT的指示,美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的研究人員評估了一項名為全球信息網絡架構(GINA)的技術,作為多源傳感器數據融合的系統解決方案,以支持決策。 根據其軟件規格,GINA的目的是減少在互操作和集成方面存在的技術挑戰,并支持及時的共同情報/作戰圖景和決策的情報分析。
目前,語義互操作是一個活躍的研究領域;近十年來,已經開發了一些軍事技術解決方案。語義互操作提供了促進快速整合來自臨時傳感器資產和異質C2系統的信息的手段,因為它們為戰斗空間中的操作人員所了解。這項初步評估表明,GINA能夠整合不同的傳感器系統,并對數據進行同質化和協調,以便在本次評估的實驗場景下提供解釋、分析和推理。在這一評估的基礎上,在與MDO的規模和復雜性相匹配的實地演習或實驗中進行進一步的評估可能是有意義的。具體來說,進一步評估的能力是:1)來自多個部門的傳感器和通信設備之間及時的互操作性;2)連接來自不同結構和標準的盟國、合作伙伴或商業數據流系統;3)豐富、數據分析、推理或增強其他決策支持C2系統;以及4)與其他技術解決方案的比較。
這項評估的綜合分析已經在DEVCOM ARL技術報告ARL-TR-9100中記錄和公布。
該項目支持美國陸軍戰爭學院保持一個公認的領導者,并在與美國陸軍和全球陸軍應用有關的戰略問題上創造寶貴的思想。該項目于2018年由美國陸軍訓練與理論司令部總部要求,描述一個新的或修改過的作戰框架,以使陸軍部隊和聯合部隊在多域作戰(MDO)中對同行競爭者成功實現可視化和任務指揮。
由此主要形成一個在2019學年進行的學生綜合研究項目,該項目涉及4名美國陸軍戰爭學院學生和4名教員,由John A. Bonin博士領導。該項目研究了MDO的概念,即它如何影響任務指揮的理念和指揮與控制職能的執行。向MDO的過渡改變了陸軍指揮官和參謀人員在競爭連續體中進行物理環境作戰和信息環境作戰的傳統觀點。
該項目以第一次世界大戰期間美國陸軍引進飛機為案例,研究將新領域納入軍隊的挑戰。該項目還提供了對MDO的概述和分析,以及它正在改變我們的戰斗方式以及軍隊的角色和責任。這些變化將使聯合部隊能夠更有效地進行連續作戰,特別是在武裝沖突之下的競爭中。
向MDO的過渡將需要新的流程,該項目調查了多領域同步周期如何能帶來好處。物質系統、聯合專業軍事教育、聯合和陸軍理論以及總部人員結構將需要改變,因為領導人及其工作人員將需要不同的技能來在這個新環境中運作。
陸軍新興的多域作戰(MDO)概念對最近修訂的陸軍任務指揮理論提出了新的挑戰。美國已經有75年沒有與同行競爭者作戰了;因此,個別軍種在概念上側重于打自己的對稱領域戰爭,而較少注意在其他領域支持其他軍種。隨著技術的變化和國防預算的縮減,各軍種正在迅速失去通過純粹的存在和數量來控制其領域的能力和實力。因此,各軍種需要從不同領域獲得不對稱的優勢,以便在其領域作戰中取得成功。
陸軍的指揮和控制方法是任務指揮。這種方法要求指揮官有能力理解、可視化、溝通和評估關鍵決策、風險以及關鍵情報和信息要求。多域作戰的任務指揮將要求指揮官在多個領域以及指揮梯隊之間和內部保持單領域的卓越和知識。同樣重要的是,指揮官必須創造、確保并維持對其自身決策過程的共同認識。風險分析和關鍵的情報和信息需求過程是必要的,以確保指揮官能夠設定條件,賦予下屬領導權力,并在多個領域的范圍內影響分布式行動。因此,為了滿足這些新的要求,需要有新的框架來理解和調整多領域的指揮關系和人員結構。
這些新的框架將需要一個多領域的同步化進程,為指揮官提供一個確定新需求并為其提供資源的方法。與使用軍事決策程序或聯合規劃程序的傳統作戰程序不同,這兩種程序都側重于單一領域的規劃,而多領域同步程序則是在整個規劃和執行周期中,從指揮官和參謀部之間的持續合作中演變而來,跨越所有領域和環境。這種演變創造了對關鍵決策、相關風險以及指揮官認為至關重要的關鍵情報和信息要求的共同理解。
這項研究支持美國陸軍戰爭學院繼續保持在創造與陸軍和全球陸軍應用相關戰略問題寶貴思想方面的公認領導地位。該研究考察了MDO概念的應用,即它如何影響任務指揮的理念以及指揮和控制功能的執行。第一次世界大戰期間飛機的引入提供了一個與當前情況相似的背景,因為1918年的陸軍在如何為大規模的地面行動提供最佳的指揮和控制,以對抗同行的對手,以及如何整合空中對陸地的支持。當陸軍試圖了解如何在多個領域進行整合時,從約翰-J-潘興將軍對飛機的整合中得到的啟示可以說明問題。威廉-米切爾在戰時和戰后的角色說明了我們在試圖執行MDO時可能面臨的一些挑戰,例如在未來大規模地面作戰行動中保衛網絡和空間領域。
對MDO的概述和分析將提供陸軍對該概念的定義,并描述陸軍在競爭連續體中的作用。MDO概念將需要新的組織和人員框架來在沖突連續體的所有方面實施MDO。陸軍不能保持一個靜態的組織;陸軍必須既能在陸地領域贏得武裝戰斗,又能幫助塑造競爭以防止未來的沖突。
武裝沖突以下的行動歷來都是聯合部隊和陸軍的斗爭。陸軍在戰斗中指揮和控制的任務指揮方法將不足以組織在武裝沖突以下對對手的日常競爭。陸軍在競爭期間為聯合部隊執行重要的任務,特別是在信息環境中,這些任務在MDO下將會擴大。
目前的作戰流程專注于單一領域,對于支持特定領域以外的功能適用性有限。我們必須有新的流程,允許所有領域的資產同步,以優化我們的效率,同時將這些資產的風險降到最低。盡管適用于所有級別的指揮部,但擬議的流程主要集中在高級行動和戰略層面所需的規劃和數據收集。
從單一領域到多領域的重點變化,使得聯合部隊和陸軍的理論必須進行修訂和更新。聯合專業軍事教育課程和聯合學說將需要進行調整,以教導下一代領導人如何跨域整合。僅僅了解其他部門是不夠的;指揮官和參謀人員需要了解其他領域的能力如何支持他們的工作,以及他們在支持其他領域方面的要求是什么。長期以來,聯合部隊只是名義上的聯合,每個領域都在為贏得自己的戰斗而戰斗。MDO概念使聯合部隊能夠優化其有限的資源,既能應對危機,又能在最好的情況下防止競爭中的危機發生。
表3-1. 陸戰、空戰、海戰和信息戰的特點
圖3-3. 陸軍的指揮與控制方法。ADP 6-0
圖3-4. 多域作戰框架
圖3-5. 信息環境框架下的多域作戰
雖然有許多信息/知識來源可以確定作戰能力的差距并提供建議,以消除差距或向艦隊提供新的/改進的能力,但沒有一個全面的系統和負責任的實體能捕獲所有這些信息,正在取得或沒有取得進展,以提供一個清晰和簡潔的圖景,消除確定的差距或提供能力。為了解決這個問題,我們開發了一種基于多標準決策分析(MCDA)方法的方法,以計算和可視化任何特定時間點的能力差距得分,以描述基于證實的實時信息的能力差距解決進展。在這項工作中,我們通過在框架中增加新的元素和子元素來擴展用于評估能力的框架,并通過納入不同的模型來計算能力差距分數來擴展MCDA方法。這些模型包括加權總和模型(WSM)、加權產品模型(WPM)、加權總和產品評估(WASPA)、與理想方案相似度排序偏好技術(TOPSIS)和層次分析過程(AHP)。目標是開發一種全面的方法,以1)支持基于硬數據的能力優先排序,2)提供一個清晰和簡明的進展情況,以消除確定的差距或提供一種能力,以及3)支持創建一個中央存儲庫,供各組織分發相關信息。
海軍水面作戰發展中心(SMWDC)指揮官的任務是為水面類型指揮官所管轄的任務領域提供監督、調整、同步和端到端的戰爭改進規劃(WIP)評估。WIP過程是一個正式的框架,用于捕獲、審查和優先考慮艦隊的能力需求,以提高戰備狀態并優化海軍部隊在執行作戰司令官(CCDR)任務中的資源(美國太平洋艦隊司令,2013)。對于每個任務領域,SMWDC總部負責確保WIP艦隊協作小組(FCT)的組成,以參與為年度產出產品的發展提供信息的活動。每個WIP在第一季度和第二季度進行執行工作組(EWG),并在當前財政年度的計劃目標備忘錄(POM)周期的第三季度初進行研討會。在整個WIP周期中,利用SMWDC總部N8/9認可的排名工具來幫助客觀地確定能力差距的優先次序。年度能力領域評估(CAA)是一項協作努力,由EWG主席領導,并得到FCT工作組領導和戰爭發展中心的支持。在第一和第二工作組期間收到的英特爾簡報和FCT更新有助于為CAA的創建提供信息,并最終提供 "家庭作業 "或支持文件,以確定能力差距的優先次序。每個能力領域所有者(CAO)向SMWDC N00通報他們的CAA和IPCL。通過在WIP研討會上提出的努力,CAA報告成為當前WIP周期IPCL發展的基礎(海軍水面和地雷作戰發展中心指揮官,2018)。
在以前的研究工作中,我們開發了一種基于多標準決策分析(MCDA)的方法,以計算和可視化任何特定時間點的能力差距得分,以描述基于證實的實時信息的能力差距解決進展。在這項工作中,我們通過擴大用于評估不同能力的框架和納入計算能力差距分數的不同模型來擴展MCDA方法。這些模型包括加權產品模型(WPM)、加權總和產品評估(WASPA)、與理想方案相似度排序偏好技術(TOPSIS),以及。這種方法的應用將為決策者提供客觀的信息,以1)支持基于硬數據的能力優先排序,2)提供一個清晰和簡明的進展情況,以消除確定的差距和/或提供能力,以及3)支持創建一個中央存儲庫,供各組織分發相關信息。
在以前的工作中,我們建議使用多標準決策分析(MCDA)來計算在特定時間點上的特定優先級的能力差距得分。多標準決策分析既是一種方法,也是一套技術,其目的是提供備選方案的總體排序,從最優先到最不優先。替代方案可能在滿足若干標準的程度上有所不同,而且沒有一個替代方案能最好地滿足所有標準。此外,這些標準之間通常會有一些沖突或權衡。MCDA是一種看待受許多決策標準影響的復雜問題的方法,它將問題分解成更容易管理的部分,以便將數據和判斷帶到這些部分,然后將這些部分重新組合,向決策者展示一個連貫的整體情況。這種方法是對思考和決策的一種幫助,但不是對決策的一種幫助(Department for Communities and Local Government, 2009)。
在能力差距分析的情況下,標準代表影響差距的因素(如理論、組織、物資、資金等),而備選方案是優先能力清單所規定的優先事項。每個因素都有特定的權重,以反映其相對重要性,并由主題專家單獨或集體分配。每個優先事項都會根據每個因素進行定期評估(例如,每季度一次),并根據適當的尺度進行打分。然后使用適當的MCDA模型計算每個優先事項的總分,并將其可視化,以產生一個能力差距分數。
為了實施擬議的方法,需要完成以下任務:
1.使用一個合適的能力管理框架,確定能力差距的因素和子因素的綜合清單。這些因素是對能力進行評估的性能衡量標準。這些因素可能包括:理論、組織、訓練、物資、資金、政策等。這些因素可以按照高層次因素和低層次子因素的層次結構進行分組,以此類推。
2.使用一個適當的尺度對每個因素的能力進行評級。例如,對資金因素可以使用1到5的量表,其中1表示相當大的資金削減,5表示在某一特定時間點對優先事項有充分的資金供應。對于其他因素,如理論、組織、訓練、物資等,也可以制定類似的評分標準。
3.為已確定的因素分配權重以反映其重要性。這可以基于從個人評估到在主題專家小組之間達成共識的模型等各種方法。
4.通過使用合適的MCDA模型將每個備選方案的權重和評級結合起來,計算出總體的優先級差距分數。這些模型包括加權總和模型(WSM)、加權產品模型(WPM)、加權總和產品評估(WASPA)、通過與理想方案相似度排序偏好技術(TOPSIS)和分析層次過程(AHP)(Parlos,2000)。
5.進行敏感性分析,揭示不同的權重或偏好如何影響能力差距得分。敏感性分析提供了一種手段,以檢查權重和偏好的模糊性或評價者之間的分歧對最終總體結果的影響程度。
6.將不同時期的能力差距得分可視化,以提供一個清晰和簡明的畫面,說明在消除已確定因素的差距方面正在取得或尚未取得的進展。