亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

這個頂點項目評估了使用區塊鏈技術來解決一些挑戰,即越來越多的不同的傳感器數據和一個信息豐富的環境,可以迅速壓倒有效的決策過程。該團隊探討了區塊鏈如何用于各種國防應用,以驗證用戶,驗證輸入人工智能模型的傳感器數據,限制對數據的訪問,并在數據生命周期內提供審計跟蹤。該團隊為實施區塊鏈的戰術數據、人工智能和機器學習應用開發了一個概念設計;確定了在戰術領域實施區塊鏈所涉及的挑戰和限制;描述了區塊鏈對這些不同應用的好處;并評估了這個項目的發現,以提出未來對更廣泛的區塊鏈應用的研究。該團隊通過開發三個用例來實現這一目標。一個用例展示了區塊鏈在 "輕數據"信息環境中的戰術邊緣使用。第二個用例探索了區塊鏈在電子健康記錄中對醫療信息的保護。第三個用例研究了區塊鏈在使用多個傳感器收集化學武器防御數據方面的應用,以支持使用人工智能和機器學習的測量和簽名智能分析。

未來針對同級或近級對手的大規模作戰行動,除了更傳統的空中、陸地、海上和空間等物理領域外,還將涉及網絡空間領域。數據和信息在這個連續體中的每一個點上所發揮的作用都不能被低估。此外,同時在多個領域進行有效溝通和協調的能力--擁有必要的指揮和控制--取決于可獲得的和可靠的信息。美國陸軍正在起草一份新的陸軍學說出版物3-13,標題為 "信息","將信息的軍事應用與所有作戰功能、部門和戰爭形式聯系起來"(美國陸軍聯合武器中心2022,2)。陸軍如何在戰場上保持優勢的這些轉變,強調了數據和信息作為戰爭工具的關鍵作用。

這個頂點項目的主要目標是探索區塊鏈在與國防部相關的各種情況下的使用。首先,該團隊研究了目前關于區塊鏈和相鄰主題的工作,如物聯網(IoT)、大數據、人工智能(AI)和機器學習(ML)。研究揭示了一個名為 "戰場物聯網"(IoBT)的新興概念。Tosh等人(2018)寫道,IoBT可以滿足 "對分散框架的強烈需求......以服務于戰場環境的目的"(2)。Kott、Ananthram和West(2016)強調了與IoBT可用性、保密性和完整性相關的幾個網絡安全挑戰,而Tosh等人(2018)討論了區塊鏈技術如何有利于IoBT架構。

除了網絡上的無數設備(如IoBT),數據存儲是管理數據的另一個關鍵方面,無論是現在還是未來以去中心化信息為標志的環境。區塊鏈,當與數據存儲機制的使用相結合時,可以幫助IoBT設備及其數據的可用性、保密性和完整性。該團隊研究了使用戰術數據結構作為 "鏈外 "數據存儲機制的潛力。數據結構使數據的發現、治理和消費自動化,使用戶能夠在他們需要的時候和地點訪問數據,而不需要對數據的存放地點有任何了解。數據結構是一種機制,可以將眾多的數據管理源連接在一起,以促進數據的可訪問性--無論其位于何處。這些數據管理源可以是傳統的數據庫、數據湖(IBM 2018),或數據倉庫(IBM 2021)。因此,戰術數據結構可能是一個可行的解決方案,以促進跨作戰人員功能和任務指揮系統的數據訪問(Patel等人,2021)。

這項研究的洞察力與現有的概念重疊,如數據生命周期和國防部的共同決策框架:觀察-定向-決定-行動(OODA)循環。數據生命周期一般有四個階段:數據創建(或生成)、數據閱讀(或消費)、數據更新(或修改)和數據刪除(或歸檔)。這些階段幾乎適用于任何類型系統中的每一種數據。了解在生命周期的每個階段與數據的互動如何影響數據的固有可靠性是很重要的。追蹤數據在這個數據生命周期中的運動提供了數據來源,這使得潛在的數據消費者能夠確定數據的可靠性和有效性。隨著決策者在實施OODA循環框架中使用數據(以及對該數據的下游分析,例如在人工智能的協助下),數據出處的關鍵性變得很明顯。區塊鏈的使用可以提供數據可靠性的內在保證,這反過來又減少了OODA循環的時間,改善了決策。

接下來,該團隊開發了一些通用的系統工程架構,以說明區塊鏈如何解決數據出處并確保這些數據的信任。這個過程確定了從各種用戶(例如,如數據所有者和消費者)到需要的軟件系統,以及數據結構,和Hyperledger Fabric(HLF)網絡(即區塊鏈組件)的各種行為者。此外,可能需要幾個應用編程接口(API):一個訪問API,一個數據出處API,和一個企業API。利用區塊鏈提供可靠的數據出處的總體重點是提供一種新的方法,運營商可以跟蹤設備和數據的編輯者。

然后通過開發三個用例來擴展這個架構,每個用例都有其特定的架構,這進一步說明了區塊鏈的實施可以如何運作,并評估其效用和局限性。這些用例使團隊能夠探索區塊鏈在驗證用戶、驗證輸入人工智能模型的傳感器數據、限制對數據的訪問以及提供整個數據生命周期的審計跟蹤方面的潛力。

在第一個用例中,我們探討了區塊鏈如何在戰術邊緣促進安全和可信的數據傳輸,以利用遠程火力。第二個用例在更多的操作背景下提供了一個例子,區塊鏈提供了一個審計跟蹤,以實現一個強大的電子健康記錄(EHR),可以在醫療服務的連續過程中的任何點進行訪問。最后,該團隊的第三個用例是管理來自現場傳感器的數據流,并進入人工智能模型,以支持特定類型的情報(例如,用于化學防御工作的測量和簽名情報(MASINT))。這個用例既有業務背景,也有戰略背景,并展示了區塊鏈如何確保輸入人工智能模型的數據是有效和可靠的。

雖然這些用例利用了一個簡化的架構來促進區塊鏈的名義應用,但它還是展示了這項技術在解決或至少緩解當前和未來管理和保護大量數據的挑戰方面的真正潛力。該團隊能夠探索在區塊鏈上和區塊鏈外存儲數據的選項。這些選擇表明,區塊鏈技術如何能夠適應具體情況--不僅是在戰略、作戰和戰術背景下,而且是在各軍種之間,以滿足其獨特的任務需求。未來的聯合部隊在生成和消費數據方面需要精明,這些數據對于確保戰場上的優勢是必不可少的,但在武裝沖突之間的和平時期也是至關重要的,但競爭激烈。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

多域作戰(MDO)會給訓練帶來許多挑戰。各種不同的組織和部門的參與會加劇這些挑戰,并需要平衡集中協調和分散訓練的目標。此外,盡管MDO的基本概念并不新鮮,但實際的術語最近才被美國陸軍作為一個理論概念引入。因此,訓練技術的發展有可能是被動的,導致孤立的效果。新興的訓練技術可以幫助支持MDO的獨特復雜性,但這些技術和相關系統的發展可能需要與理論發展相配合,與追蹤過程相一致,并盡早納入最終用戶的投入。如果MDO要提供新的好處,訓練界可能需要解決老問題。它可能需要更有效地溝通。

多域作戰背景

新興技術可以緩解因多域作戰(MDO)而放大的復雜訓練挑戰。為了發揮效益,技術研究和開發(R&D)可能需要與理論發展同步進行。然而,協調和有效的采購一直是軍隊的一個長期問題(Wong等人,2022),如果MDO要提供新的好處,訓練界可能需要解決老問題。它可能需要更有效的溝通。

盡管它在軍事文獻中被普遍使用,但MDO的定義可能有細微差別,并可能有所不同。盡管MDO的基本概念并不新鮮,但美國陸軍訓練和理論司令部最近在其2018年的小冊子(TP)525-3-1《2028年多域作戰中的美國陸軍》(美國陸軍,2018)中引入了這個術語。它納入了戰場戰略,但從根本上說,MDO是一種作戰戰略。它從線性作戰、非線性作戰和戰略癱瘓理論演變而來,它描述了陸軍將如何在所有領域作戰,包括電磁波譜和信息環境。

具體來說,MDO可以定義如下(Kasubaski,2019)。"一場由多場戰斗和行動組成的戰役,跨越領域、時間和有爭議的空間進行,最終使友軍(聯合/聯盟)的能力趨于一致,增加對對手(或敵人)的限制因素,減少對友軍的限制因素,打開多個機會窗口,對對手(或敵人)的關鍵漏洞和COG[重心]實現決定性的打擊。"

MDO最初描述了美國陸軍作為聯合部隊[陸軍、海軍、空軍、海軍陸戰隊和太空部隊]的一部分,如何對抗和擊敗能夠在所有領域[空中、陸地、海上、太空和網絡空間]與美國抗衡的近鄰對手(CRS,2021)。這個基本概念與所有領域的聯合指揮和控制密切相關(Marler等人,2022)。然而,無論具體定義如何,MDO的一個普遍主題是通過使用技術來解決復雜戰爭的挑戰(de Leon, 2021)。這個主題適用于訓練(de Leon, 2021),這是支持任何總體戰略的必要條件。

聯合全域作戰訓練的復雜性

大規模的訓練可能需要在集中協調和分散目標之間取得平衡,即使只是在一個軍種內。這種平衡在MDO中可能變得特別困難。這種挑戰涉及到組織管理和技術研發,而且隨著更多組織的整合,這種挑戰會增加。

支持訓練的能力應該來自于基本的訓練目標(Marler, 2022)。也就是說,有效的技術與預期的用途相一致。然而,通常情況下,技術的出現不是為了滿足市場需求,而是由于行業的推動。開發者可能會完善或加強一種能力,然后才會追求市場。然而,一般來說,當產品源于最終用戶的需求并與之保持一致時,它們會更加有效。訓練技術尤其如此;當它們從一開始就針對特定的訓練目標和特定的用戶群而設計時,它們是最有效的。

  • 隨著用戶群的擴大和變得更加復雜,訓練目標也是如此。通常情況下,單一的訓練能力無法應對 "完全不同的目標"。

隨著用戶群的擴大和變得更加復雜,訓練目標也是如此。通常情況下,單一的訓練能力無法應對大量不同的目標。這反過來又造成了集中協調和分散需求之間的矛盾。在一個大型組織內,不同的訓練需求可能會促進潛在的分散的訓練目標。這種獨立的目標可能是合法的,如果被忽視或混為一談,訓練就會變得無效。然而,如果不加以控制,這種情況可能會導致孤島式的發展--不同的小組獨立進行研發,只為解決他們獨特的目標。這反過來可能會有重復工作的風險,從而浪費了資金。此外,它可能會失去在不同組織之間分享訓練目標、研發和流程方面的最佳做法的機會。因此,某種程度的集中協調可能是有益的。

為了促進協調,由一個組織來跟蹤和分享有關技術發展的信息可能是有益的。然而,在大型組織可能有機發展的情況下,這種意圖可能與人性相悖。例如,盡管每個軍種都可能有一個專門負責訓練的組織,但整個軍種的研發和訓練能力的使用可能并不明確和廣泛透明(Marler等人,2020)。確保整個軍種的適當協調可能需要持續關注。

調和獨特的訓練目標和協調工作的挑戰可能會隨著應用于更多的梯隊和組織而擴大。事實上,在這方面考慮一個連續體可能是合適的,即隨著訓練從單個人延伸到個人、團體、軍種、作戰指揮部以及最終國家(盟國和伙伴國)之間的互動,復雜性也會增加。這種復雜性在聯合社區中得到了充分的認可,各部門被要求進行整合,以便在戰斗中進行訓練(Marler等人,2020)。

引入不同的作戰環境--不同的領域--可能會進一步加劇這些復雜性。不同的環境,涉及不同的領域,可以呈現復雜的場景,需要大量的訓練協調。因此,MDO可能會提出對復制和準備特別具有挑戰性的場景。事實上,當訓練不僅跨越上述組織復雜性的連續體,而且跨越戰爭領域時,它可能是最復雜的,從而形成了一個復雜性矩陣,其兩軸代表了越來越多的作戰領域,以及相互作用的組織的復雜性,如下圖10.1所示。

圖 10.1:復雜性矩陣

為MDO進行有效的訓練可能需要在聯合背景下進行訓練,并解決這個復雜的完整矩陣。學習跨領域的思考、計劃和無縫操作可能是一個巨大的訓練挑戰。對此,與其簡單地從單一服務的角度來看待訓練,不如更全面地看待訓練,可能會有好處。為了利用新興技術的好處,盡早而不是晚些時候考慮復雜的全部矩陣可能是謹慎的。

技術可以如何幫助訓練

各種訓練技術可能對MDO特別有利,并可能有助于平衡集中協調與分散目標。特別是,軍隊正在越來越多地利用虛擬環境,包括虛擬現實(VR)和增強現實(AR)(Lye,2019)。VR涉及用戶完全沉浸在虛擬環境中,而AR涉及將虛擬實體疊加到真實物品上。這種環境可以提供各種好處,從允許安全地練習危險的活動,到鍛煉機密的操作和能力,到增加訓練的重復性。它們還可以為MDO提供專門的好處,主要是連接的形式;通過數據交換將各種聯網的虛擬環境連接起來可能相對容易。

此外,虛擬游戲在軍事訓練中提供了超過十年的價值,讓我們看到了軟件系統的好處,它允許離散的團體和個人整合并基本上一起訓練(Shaban, 2021)。現場、虛擬和建設性(LVC)能力也可以幫助支持MDO(Marler等人,2022)。這涉及到將使用真實武器系統的真實作戰人員與操作虛擬系統(例如,模擬器)的真實作戰人員與控制虛擬系統(建設性)的計算機聯系起來。混合能力涉及將實戰與虛擬和/或建設性相結合,而合成能力包括虛擬和建設性。此外,所有這些能力都可以促進基于性能的評估,即虛擬環境在使用期間和之后提供反饋。在虛擬環境中幾乎所有的操作都可以被存儲、分析和審查,這可能是新興訓練技術的另一個好處。

如圖10.2所示,虛擬訓練能力的兩個好處與MDO特別相關:1)容易開發各種環境的能力;2)連接各種能力的能力。通過游戲、VR、AR、LVC和一般的虛擬環境,可以相對容易地在不同的領域進行練習。可以肯定的是,這些技術并不是集體的萬能藥,某些訓練目標只能通過真實世界的練習來解決。此外,當需要高fi delity模擬時--根據訓練目標,它們并不總是必要的(Straus等人,2018)--適當的基礎模擬模型的可用性可能會帶來瓶頸。盡管如此,虛擬環境提供了開發、改變和使用無數種情況的能力,這可能包括所有的戰爭領域。因此,虛擬環境可能自然有利于MDO。

圖 10.2:訓練環境

除了代表多個領域外,虛擬環境可能有助于促進連接,使大規模的訓練演習與現實世界的演習相比相對容易。當然,整合不同組織開發的軟件系統不一定是小事;它可能需要組織協作和遵守數據標準。盡管如此,將許多不同的模擬器和模擬系統聯網可能比整合現實世界的系統更容易,因為這些系統可能有幾十年的歷史。因此,對于各軍種、作戰指揮部、甚至盟國和伙伴國來說,在聯合MDO訓練的背景下進行虛擬連接可能相對容易。

最終,正是這種連接的潛力可能有助于在集中的協調和分散的訓練目標之間建立一種平衡。如果發展得到適當的管理和激勵,虛擬訓練技術可以讓不同的用戶尊重他們獨特的訓練目標并開發專門的內容,同時允許軟件和模擬器連接到同一個聯盟中(維基百科)。這種聯盟的例子已經以JLVC(聯合實戰、虛擬和建設性)(美國聯合部隊司令部,2010)和JLCCTC(聯合陸地部分建設性訓練能力)(美國陸軍,n.d)的形式出現。然而,這些系統已經有機地成熟起來,從一開始就對復雜的聯合MDO環境進行了最少的整體考慮。盡管如此,連接軟件和模擬器的聯盟可以加強協調。

  • 如果對開發進行適當的管理和激勵,虛擬訓練技術可以讓不同的用戶尊重他們獨特的訓練目標,開發專門的內容,同時允許軟件和模擬器連接到同一個聯盟中。

與現實世界的系統一樣,連接的潛在好處可能伴隨著挑戰,包括技術和組織方面。然而,可能有一些基本原則,如果在開發周期的早期考慮,可以釋放出MDO訓練的潛力。這些原則總是與基于模擬的訓練有關,但它們對于產生MDO訓練的好處可能特別關鍵。

技術的高效協調開發和部署

首先,讓訓練內容與訓練目標相一致可能會有幫助。盡管源于20世紀80年代陸軍 "空地一體戰 "理論的發展,但MDO這個詞相對較新。因此,訓練技術,更不用說一般的訓練,可能會對新的作戰理論產生反應,特別是隨著時間的推移,理論的發展。各種新興的訓練技術可能有助于解決MDO的獨特復雜性,但盡早與理論和終端用戶的投入一起開發這些技術可能會產生額外的好處。否則,可能會失去效率,訓練效果也會受到影響。從組織的角度來看,這可能需要理論發展組織與訓練發展組織緊密結合。

第二,訓練能力的部署過程可能與訓練能力的開發過程同樣重要(Marler, 2022)。即使有了針對適當目標的能力,如果沒有與訓練過程適當結合,它們也可能是無效的。因此,在開發訓練能力的過程中,考慮將其插入的課程可能是有益的。例如,僅僅購買VR系統和開發高質量的內容可能是不夠的;開發人員和用戶可能有必要事先了解VR在當前訓練管道中的使用情況,包括從基礎訓練到繼續訓練以及高級訓練。

第三,系統的互操作性可能需要在開發過程的早期成為訓練能力整合的基石。如果把它作為采購的事后考慮,可能會被扼殺。新的訓練軟件和模擬器可以從盡早加強互操作性的努力中受益(SPPS, 2022)。

這些原則可能需要被激勵。國防部可能有責任設計和實施促進協調的激勵措施。另一種選擇是在新的復雜問題面前重溫舊的挑戰和錯誤。可以肯定的是,以政策的形式進行積極的約束,要求各組織以某種方式進行協調,肯定是有先例的。還有一個先例是更多的被動激勵,比如資金,它吸引了一個預期的行為。也許不太常見的是,在廣泛的透明度和溝通新出現的能力和意圖方面的內在激勵。如果不同的組織,無論是國家還是軍事部門,適當地公布他們的訓練目標、能力和過程,這將有助于促進協調。這后一種形式的激勵可能是平衡集中協調和分散目標的關鍵。也許,如果MDO要提供新的好處,解決老問題的方法之一可能只是更頻繁的溝通。

付費5元查看完整內容

本論文探討了區塊鏈與互聯網協議第六版(IPv6)數據包信息的使用,以支持與無人駕駛飛行器(UAVs)智能蜂群的安全、高性能和可擴展的通信。在這篇論文中,我們研究了三種情況下的加密數據包的交換,即點對點、點對多和多對點。我們模擬了每個場景下的蜂群行為,并在模擬運行中改變了蜂群中無人機的數量。基于仿真的結果顯示,對于點對點場景和多對多場景,即使在多對多場景中,交互節點的數量增加,延遲也沒有明顯增加。相反,在點對多的情況下,延遲會增加。需要進行更多的研究來評估本論文中提出的區塊鏈-IPv6方法的安全性和可擴展性。

圖. 使用區塊鏈技術的無人機群智能中的塊生成概念

引言

越來越多的無人機被用于軍事目的,再加上自動化方面的進步,如為無人駕駛飛行器(UAV)配備不同程度的自主權和群集智能,使得這些飛行器成為敵對勢力的誘人目標。為了獲得競爭優勢,對手將試圖找到無人機的飛行控制器、接收器或發射器的可利用的物理和網絡漏洞,然后應用動能、網絡或某種動能和網絡攻擊機制的組合來操縱無人機的行為,例如使無人機墜毀或泄露敏感數據。

攻擊軍用無人機的一個途徑是操縱無人機使用的通信機制,無論是無人機與無人機之間的通信還是無人機與人類操作員之間的通信。例如,對手可以修改或阻止無人機群之間的數據交換,以降低無人機群的行動效率。重要的是,為軍事單位提供的無人機已經過動能和網絡脆弱性評估,與這些脆弱性相關的風險在無人機的操作使用之前就已經得到緩解,并且在無人機的使用壽命內對無人機系統進行修改時,也要進行風險評估和緩解。

安全風險管理也要在一個框架中進行規范,美國國家標準與技術研究所(NIST)就是這樣做的,它發布了一個風險管理框架。多種技術可用于實施降低安全風險的措施。例如,Vikas Hassija和Vinay Chamola[1]斷言。"當務之急是保持無人機和其他用戶之間交易的安全性、成本效益和隱私保護。區塊鏈技術是一個非常有前途的解決方案,可用于部署實時無人機應用"。

A. 問題陳述

科學技術的創新和進步之間存在著一種共生關系。諸如自動駕駛汽車、自主無人駕駛飛行器(UAV)和智能家用電器等能力,一度被認為是科幻小說的范疇,或者在技術上太難實現,現在已經很普遍了。

無人機的概念最早出現在1783年,當時約瑟夫-米歇爾和他的伙伴雅克-艾蒂安-蒙戈爾費埃公開展示了一種當時可以說是無人機或無人駕駛飛機的交通工具[2],其形式是1849年在法國一個叫安諾奈的地方的熱氣球,在那次戰爭中,由奧地利中尉弗朗茨-馮-烏沙提斯創造的氣球炸彈被用來攻擊威尼斯市。雖然這次攻擊只造成了輕微的損失,但它可以被稱為成功,因為兩天后威尼斯就投降了[3]。尼古拉斯-特斯拉在1898年獲得了遙控(RC)的專利,大約20年后,一家名為拉斯頓-普羅克特空中目標的公司在特斯拉之前獲得專利的遙控技術基礎上發明了第一架無翼飛機[4]。

從那時起,無人機技術和它的應用已經穩步增長。它們已被用于科學研究,如收集有關火山活動的數據,在這些地方使用駕駛飛機會太危險或太昂貴。在20世紀90年代,亞伯拉罕-卡雷姆推出了 "捕食者",這是一種配備了攝像頭和其他傳感器的無人機,用于監視。國防界為 "捕食者 "配備了武器裝備,包括導彈[5]。掠奪者本身已被用于一些沖突,如在阿富汗、巴基斯坦、波斯尼亞、前南斯拉夫、伊拉克、也門、利比亞、敘利亞和索馬里的沖突[6]。在2022年,它們也被烏克蘭和俄羅斯武裝部隊廣泛用于戰斗。

無人機技術的一個重大進步是應用了蜂群智能,一群無人機模仿大量同質動物的智能行為,如蟻群、鳥群和蜜蜂群。蜂群通過蜂群成員之間的協調表現出集體行為。蜂群的行為可以被編碼為算法,而這些算法又可以通過軟件實現,在計算機上執行,比如無人機中使用的嵌入式計算機[7]。蜂群行為甚至被用來進行基于無人機的燈光表演,例如在2020年東京奧運會的開幕式上。

在蜂群中,蜂后是控制器,同樣地,在蜂群智能無人機中,系統中有一個控制中心,典型的控制器名為地面控制站(GCS)。無人機的工作方式很直接,這涉及到無人機和GCS之間的數據交換,然后GCS可以連接到衛星,或者衛星可以直接連接到無人機,一切都在實時發生。圖1說明了無人機和其基礎設施的一種通信方式。至少,通信需要是低延遲和安全的[8]。

有兩種技術可以在GCS和無人機之間進行通信。第一種技術是基于蜂群基礎設施的GCS,第二種是飛行Ad-Hoc網絡(FANET)。基于蜂群基礎設施的GCS本身有一個GCS,用于集中式通信。所有的無人機群都將與GCS進行通信,以便群組能夠運作。然而,這種技術的一個缺點是,它依賴于GCS的可用性和正確運作。如果GCS受到干擾,整個無人機群也會受到干擾。相比之下,FANET使用一個發射器向某個無人機發送命令,然后該無人機將這些命令轉發給第二個無人機。然后這些命令將以串行或并發的方式分發給其他無人機。所有的無人機將進行通信,并擁有發射器給出的命令列表,這樣,如果這個發射器發生故障,所有的無人機仍然可以執行命令,因為每個無人機都有一個有效的命令列表。最后,通過使用這種FANET技術,每個無人機將具有冗余性,而不完全依賴通信基礎設施。然而,這種技術也有缺點。例如,一個入侵者或一個未知的無人機可以進入并破壞無人機群。再比如,無人機群的授權成員無法檢測到,所以入侵者(即未經授權的參與者)的無人機,從而可以獲得將由授權無人機執行的命令列表[9]。

為了克服入侵者無人機的問題,也許可以應用區塊鏈來防止未經授權的無人機使用無人機群命令來獲取列表。區塊鏈本身已被廣泛用于金融領域,目的是在每筆交易的驗證過程中消除第三方。

在區塊鏈中,當數據被分發時,將很難被黑客攻擊并獲得完整的數據,因為它是由一個使用加密手段的網絡驗證的。每個區塊由前一個區塊的哈希值,驗證哈希值的隨機數,或稱nonce,以及時間戳組成。完整性的保證是由區塊鏈為第一個區塊的形成提供的,這個區塊是由一個經過驗證的交易形成的結果,稱為創世區塊。由于哈希值是不可預測的或唯一的,欺詐或復制行為將被發現。每個經過驗證的區塊都有其哈希值,對該區塊的任何改變都會對其他區塊產生影響。如果所有或大多數節點給予許可或同意,該區塊就會被添加到鏈上,因為共識機制安排交易的有效性在某個區塊的有效性。

區塊鏈上的這種共識機制可以通過三種方式進行,那就是工作證明、股權證明和投票,實用拜占庭容錯。在加密貨幣的世界里,工作證明被用于采礦。它的工作原理是在每個節點上進行數學方程的計算,然后每個首先完成計算的節點將有權將最新的區塊輸入區塊鏈。使用權益證明,只有合法的節點可以進行計算以達成共識。另一方面,實用拜占庭容錯是基于投票的,要求至少有三分之一的授權節點是拜占庭的。

認證過程是通過生成具有偽隨機函數的一次性密碼(OTP)來進行的。無人機在區塊鏈中注冊,每架無人機根據存儲在區塊鏈節點中的關系,確定它能夠認證的最近的無人機。認證請求從無人機發送至相關的無人機,后者在區塊鏈中觀察并檢查該無人機是否有關系,并能對其進行認證。這個方案能夠挫敗外部惡意無人機的攻擊或第三方攻擊,即使對手知道第一個令牌。

B. 方法

在本論文中,我們研究了使用IPv6(互聯網協議版本6)在無人機之間進行通信的方式。與IPv4(互聯網協議版本4)相比,IPv6有很多優點,即速度更快,更有效,因為它的路由表比IPv4少,所以路由過程將更有組織和有效,而且更安全,因為它配備了交換數據的加密功能。帶寬更有效,因為IPv6支持組播。配置更容易,因為它自動運行。總的來說,IPv6更適合無人機等移動設備,因為不需要通過網絡地址表(NAT),因此延遲低。IPv6將使用區塊鏈與權益證明共識相結合。

與加密貨幣一樣,區塊鏈上的每個節點都必須進行支付。在這項研究中,支付被替換成OTP。每個節點產生相同或同步的OTP。區塊鏈和OTP在這里的使用是為了檢測未經授權的無人機,并防止他們讀取或更新無人機群使用的命令列表。此外,我們探索了區塊鏈、智能合約共識(SCC)和分布式賬本技術在蜂群通信方面的能力。此外,還根據提出的無人機群智能通信架構的概念進行了模擬。

C. 范圍

本論文的范圍僅限于探索區塊鏈技術和OTP的聯合使用,這兩種技術在IPv6數據包中都有填充。

D. 研究結果總結

在進行了模擬物理無人機在點對點、點對多、多對點場景下的運行,并使用1-10000次迭代或交易的實驗后,得到了各場景的延遲比較結果。從這些結果可以得出結論,對于點對點方案和多對多方案,即使在多對多方案中,交互節點的數量增加,延遲也沒有顯著增加。而在點對多的情況下,一個節點以廣播信息的形式同時向幾個節點進行交易,這導致了延遲的增加。第四章和第五章解釋了仿真結果和這些結論的總結。此外,第五章還討論了與本論文中的事項有關的未來工作的可能性和建議。

E. 論文組織

第二章介紹了無人機群智能通信區塊鏈功能的背景,并利用它作為無人機群智能的通信手段。它還對IPv6結構格式進行了概述。第三章討論了基于IPv6區塊鏈的通信數據傳輸的分析。具體而言,分析了IPv6區塊鏈數據包的場景、保密性、完整性和可用性。第四章闡述了IPv6區塊鏈在無人機蜂群智能中實現的可能性和挑戰的研究成果。第五章提供了結論和對未來研究的建議。

付費5元查看完整內容

美海軍部依靠目前海軍的方式,如簡報、聊天和語音報告來提供艦隊的整體作戰評估。這包括網絡領域,或戰斗空間,描繪了艦船的網絡設備和服務狀態的單一快照。然而,這些信息可能是過時的和不準確的,在決策者了解網絡領域的設備服務和可用性方面造成了混亂。我們研究了持久性增強環境(PAE)和三維可視化的能力,以支持通信和網絡操作、報告和資源管理決策。我們設計和開發了一個PAE原型,并測試了其界面的可用性。我們的研究考察了用戶對多艘艦艇上的海軍網絡戰斗空間的三維可視化理解,并評估了PAE在戰術層面上協助有效任務規劃的能力。結果是非常令人鼓舞的:參與者能夠成功地完成他們的任務。他們發現界面很容易理解和操作,原型被認為是他們目前做法的一個有價值的選擇。我們的研究提供了對新型數據表示形式的可行性和有效性的密切洞察,以及它在不同社區之間復雜的操作技術(OT)環境中支持更快和更好的態勢感知和決策能力。

引言

A.研究領域

持久性增強環境(PAE)是一個系統,它使用共享(多用戶)環境、增強現實(AR)技術和一系列傳感器的概念來創建過程和數據集的可視化表示,這些數據集被持久地(在很長一段時間內)添加、操作、可視化和分析,以支持人類操作員所做的一系列任務[1]。PAE被認為有可能給許多領域和人類任務帶來好處,包括網絡系統的可視化、網絡態勢感知和決策工作領域。

PAE的重要概念包括將實時信息傳遞給人類操作者,并以一種比傳統的信息記錄和傳遞形式更容易理解的格式。后者提高了解決整個海軍領域不同社區的許多用戶的需求的潛力,減少了錯誤的數量,并將大部分時間用于決策過程。

由于用戶數量眾多,社區各異,必須準確及時地解決收集、處理和操作大量數據的需求。此外,網絡領域的復雜性促使人們需要簡化、準確和及時的信息。與AR系統非常相似,PAE允許用戶在現實世界中處理和操縱虛擬物體,并同時看到眾多用戶之間的系統實時自動同步變化。這種虛擬和現實信息的實時無縫整合解決了網絡領域的復雜性,最終在大量用戶和不同社區之間提供了行動的準確性和及時性。

我們設計和開發了一個PAE系統原型,并分析了它如何支持海軍領域的網絡系統可視化和任務規劃操作。我們努力的主要目標是提高單用戶對水面資產上復雜網絡的理解和態勢感知,以及對設備當前網絡狀態的實時表示,從而使海軍部(DON)的任務規劃更加有效。在戰術層面上,這項研究將使我們進一步了解為支持有效的任務規劃而需要建立的技術基礎設施和流程。該系統有可能為美國防部所有部門帶來明顯的好處。

B.研究問題和動機

在美國海軍中,為了完成不同的任務,多個作戰群體依靠網絡群體來顯示網絡和通信狀態,以維持作戰畫面并提供通信。美國水面艦艇上的網絡和作戰系統的整合,在將信息和網絡狀態顯示為二維(2D)物體時,會在作戰人員中造成混亂。特別是當網絡設備發生意外變化時(即失去電力、拒絕服務、失去衛星覆蓋等),情況更是如此。設備的變化不僅影響到船上的通信,而且還影響到領導人的整體態勢感知。利用PAE系統整合三維(3D)數據和立體顯示,有可能通過實時自動顯示系統變化,大大幫助決策者了解復雜的網絡。

1. 網絡對通信至關重要(我們為什么關心)

網絡對于海軍資產之間在作戰層面的通信是至關重要的。如果沒有網絡設備,一艘水面艦艇就失去了與指揮系統(CoC)進行快速和準確溝通的能力。同樣,CoC也不能有效地將他們的信息傳達給各個水面艦艇。現在,我們可以把單艦沒有能力接收任務或發送狀態更新的想法,然后把可用的水面資產數量增加到一個多資產的航母打擊群(CSG)。這導致整個CSG中的五到六艘艦艇沒有能力與CSG指揮官就當前的任務甚至是日常行動進行溝通。即使海軍可以使用傳統的通信方式,如摩爾斯電碼和旗語信號來傳遞簡單的信息,但更復雜的信息必須以容易消化的格式來表示,以便決策者能夠了解當前的行動并迅速作出最佳決策。

通過在地面資產之間利用PAE系統,PAE系統有可能改善對復雜信息的理解,它將從紙質手冊或電子圖書館中獲取的二維信息轉化為三維可視化系統,并不斷更新三維可視化,以反映用戶的互動和該系統接收和生成的數據集的不斷更新。PAE系統也有可能訪問歷史數據,這在分析歷史趨勢或行動后報告(AAR)中可能是至關重要的。歸根結底,網絡領域值得采用新技術并尋找更好的解決方案。

2. 網絡設備狀態

為了了解單位層面的網絡設備狀態,戰略層面的決策者依賴于目前海軍傳統上使用簡報、聊天和語音報告的做法。然而,這些信息可能是過時的和不準確的,最終在需要了解網絡領域的服務和設備可用性的決策者中造成了混亂。網絡領域是一個復雜的領域,需要有效的管理和理解網絡操作,包括海軍艦隊之間的共享態勢感知(SA)。網絡設備在不斷變化,這取決于設備的狀態和水面艦艇的地理位置,這些都會影響連接性。

海軍操作員和領導傳統上使用各種格式的二維網絡拓撲圖和微軟文件來描述網絡系統的運行狀態并維護資源管理。這些二維模型最初是為了協助領導和操作員對網絡進行清晰的可視化;然而,隨著時間的推移,網絡資產的增加,從而增加了二維模型的復雜性,使得理解這些綜合系統變得更加困難。正因為如此,二維網絡圖和拓撲結構的顯示更成為理解新系統集成或系統變化的障礙。理解傳統的、印刷的二維信息(圖1)所花費的時間已經不能滿足操作人員和作戰人員的需要,也不能及時為決策者提供簡明清晰的信息。

3. 從PowerPoint幻燈片(2D信息)到增強現實(3D信息)

當代支持人類操作和決策的技術已經從過去適度的形式上有了飛速的發展。數據的表現形式現在可以采取三維信息的形式,不再是靜態的,而是動態變化的,支持用戶與相同數據集的實時互動。然而,今天大多數水面資產的重要通信包括不同級別的互聯網連接,便于分享PowerPoint簡報和接收在二維空間表示的語音或書面報告。這些傳統的通信途徑是艦艇當前作戰狀態的快照或對即將到來的任務的一系列預期;它們推動了美國海軍 "維持、訓練和裝備能夠贏得戰爭、阻止侵略和維護海洋自由的戰斗準備的海軍部隊 "的能力[3]。正如Timmerman的論文研究[4]中所認識到的,目前的二維可視化將復雜的操作技術(OT)系統顯示為網絡社區所習慣的平面信息技術(IT)圖,從而過度簡化了這些系統。另一種更優越的表示方法是在三維空間中顯示邏輯網絡元素,反映這些網絡的物理和邏輯的復雜性。通過研究數據的三維表示法,海軍可以加快關鍵的時間敏感數據的流動,這些數據原本是在二維空間,變成更容易理解的三維信息。

研究的總體目標是對PAE系統原型進行定量評估,通過可用性研究分析其如何支持海軍領域的網絡系統可視化和任務規劃操作。對復雜網絡及其相應拓撲結構的傳統理解是基于技術手冊中的藍圖的二維圖紙。這種信息的翻譯再由非主題專家(SME)通過PPT簡報(或口頭簡報)進一步稀釋,以告知高層決策者的指揮系統當前在水面資產上的通信狀態。最終,在二維信息、口頭或PowerPoint簡報和向高層決策者提供綜合信息之間會有時間損失。向決策者展示復雜系統的解決方案是通過PAE將二維信息表現為三維信息。

C. 研究問題?

本論文探討了以下問題。

  • 什么是有可能為任務規劃提供更有效支持的技術框架?

  • 網絡通信能力的三維可視化和PAE系統能否為網絡領域特定的任務規劃要素提供有效支持?

  • PAE系統能否有效地協助戰術層面的任務規劃任務,具體到網絡通信的管理?

D. 范圍?

本論文將限于開發一個PAE系統原型,以幫助可視化用戶研究所需的網絡基礎設施。可用性研究有兩個不同的目的:檢查用戶對海軍網絡戰斗空間的三維可視化的理解,跨越多個艦艇的通信和網絡基礎設施,并評估PAE在戰術層面上有效協助任務規劃的能力。雖然海軍領域的PAE的大概念被設想為支持許多作戰任務和訓練情況[1],并包括與作戰系統的互連性,但為本論文開發的原型系統將有足夠的功能來支持用戶研究。

E. 研究方法

本研究的研究方法包括以下步驟:

1. 進行文獻回顧。在AR、虛擬現實(VR)、SA、潛在多用戶環境、網絡可視化實踐以及應用于AR的持久性系統等領域進行文獻回顧。

2. 執行任務分析。進行任務分析,分析當前網絡操作、決策以及整個艦隊的設備和服務可用性的資源管理的做法。這包括但不限于詳細分析航母上的戰斗值班長(BWC)與巡洋艦或驅逐艦上的作戰指揮官(CRUDES)之間的報告和互動,當前的網絡可視化做法,以及PAE的有效性。我們還將對目前的報告標準和現有的SA任務和實踐進行詳細的任務分析。

3. 確定三維模型。確定一套支持虛擬環境和可用性研究所需的用戶任務的三維模型。

4. 設計和開發一個PAE原型。設計和開發一個支持可用性研究的PAE系統原型。

5. 設計和執行可用性研究。設計一個可用性研究,制定機構審查委員會(IRB)文件,對人類參與者進行研究,并檢查用戶執行所需任務的經驗。可用性研究的設計將針對網絡領域的可視化,側重于用戶更好地理解網絡設備如何與其他系統相互連接的能力,并實時描述網絡戰斗空間。此外,該設計將被定制為展示多艦情況下的決策,并衡量界面在支持任務規劃和資源管理方面的有效性。

6. 分析數據。分析研究中收集的人類性能數據,并檢查PAE原型系統的技術性能。

7. 確定建議和未來工作。收集并確定對未來可能的工作的建議。

F. 論文結構

第一章:導言。本章介紹了研究空間的最關鍵要素:領域、問題、研究問題、范圍和用于解決所有研究問題的方法。

第二章:背景和文獻回顧。本章強調了VR、AR、混合現實(MR)、持久性系統和SA的定義。文中回顧了關注AR和VR技術的研究經驗,并討論了多用戶環境、現有網絡可視化實踐和持久性系統與AR技術結合應用時帶來的潛力。

第三章:任務分析。本章分析了目前整個艦隊的網絡操作、決策以及設備和服務可用性的資源管理的做法。

第四章:系統原型。本章闡述了PAE系統的設計和開發、系統結構和模擬環境。本章還描述了訓練場景和一套支持建立可用性研究所需的虛擬環境的三維模型。

第五章。可用性研究。本章介紹了可用性研究的要素,文中還討論了從可用性研究中收集的數據集中得出的結果。

第六章:結論和未來工作。本章概述了本研究的主要內容,并對未來的工作提出了建議。

付費5元查看完整內容

NRP20財年廣泛領域研究[1]設計的數據戰略的目的是 "描述美海軍在未來分布式艦隊中如何分析和傳輸數據"[2]。[1]的作者還規定:"由于信息和知識的質量在很大程度上取決于數據管理,后者被美國防部的創新者視為聯合部隊戰斗空間中未來數字任務數據架構的基石,因為信息和知識的質量在很大程度上取決于它。" 在[1]中的最后一個分章 "未來研究領域 "中,作者總結道:"......執行這一戰略將使海軍能夠加入為支持JADC2和其他當前概念而制定的任何聯合數據。"

這項研究是一個機會,可以進一步推進一個想法,即早期提出的海軍數據戰略確實適合 "可加入"的要求。然而,關于JS J6為JADC2提供的 "數據管理 "戰略,團隊認為現在是時候從戰略角度來看待 "數據 "了。其認為JS J6將與最好的思想家合作,發展 "數據管理 "戰略,以支持過去和早期的數據戰略工作所規定的要求。其堅信,"數據管理 "戰略應該是重要的,但仍然是次要的,它為知識戰略提供了一個舞臺。其認為,后者并不是一成不變的,而是一個充滿活力的機制,為處于戰術邊緣的作戰人員和支持其行動的決策提供知識理解能力,從而在聯合戰斗空間中戰勝對手,在過于復雜和不確定的決策空間中戰勝對手。

作戰想在當前廣泛領域研究的 "導言 "部分分享的最后一個想法是,認識到任何數據戰略必須包括成為 "聯合 "戰略的規定。在JADC2發明之前,每個部門和機構都已經并仍在繼續作為一個 "聯合 "力量運作。海軍數據戰略是 "聯合 "的,因為海軍和海軍陸戰隊,除了少數可能的例外,都是以聯合的方式運作。然而,海軍一直在執行與陸軍和空軍等所有其他軍種共享的聯合任務。這同樣適用于海豹突擊隊,他們與特種作戰部隊(SOF)的其他部門協調努力。不言而喻,海軍與太空部隊以及諸如NSA、NRO和NGA等情報機構緊密結合。

付費5元查看完整內容

數字孿生有可能支持設計、建造、運營和維護美海軍部(DON)賴以開展海軍行動的平臺的決策者。然而,由于數字孿生的應用范圍和與之相關的風險仍不清楚,因此關于數字孿生的知識體系很薄弱,這給美海軍部帶來了挑戰。本論文進行了定性的技術評估,以確定采用數字孿生對DON的企業架構的影響。對企業范圍內采用的分析確定了數字孿生在DON的戰略、流程、人員、技術、網絡安全和風險管理方面的機會和風險。數字孿生提供的商業價值主要取決于物理平臺的總風險值和數字孿生同步的度和頻率。

海軍服務是基于平臺的(美海軍部,2020c)。在戰術層面上,海軍行動是由艦艇、飛機和潛艇等平臺進行的(海軍部,2020c)。這些海軍行動是為了履行海軍的持久職能。

海軍對復雜系統的依賴,如艦艇和潛艇,來進行海軍行動,這就要求有效地管理和開發這些產品及其相關的信息。這些產品的開發采用了設計、開發、運行和處置四個階段的過程。這個過程被稱為產品生命周期管理(PLM)。DON開發和維持有效的PLM是至關重要的。沒有足夠的PLM,國防部不可能開發、部署和維持滿足不斷變化的海洋環境需求的平臺。海軍作戰部長(CNO)2021年的NAVPLAN進一步強調了PLM對海軍的重要性。在他對美國海軍的指導中,CNO解釋說,"專業地照顧我們的平臺是我們的DNA","維持我們的船舶和飛機對滿足未來的需求絕對是至關重要的"(海軍作戰部長[CNO],2021,第7頁)。

為了維持所需的PLM,DON必須發現和利用減少不確定性的手段。不確定性限制了決策者在他們管理的產品中避免風險和利用機會的能力。不確定性表現為知識不足的結果(Kramer,1999)。因此,不確定性可以通過決策支持工具來減少,這些工具可以為決策者提供及時和相關的信息,以做出更明智的決策(Kramer, 1999)。數字孿生是一種新興技術,能夠在PLM過程中支持DON決策者。數字孿生是現實世界系統的數字表示(Gartner,n.d.-a)與數字建模等類似概念不同,數字孿生是完全集成的,數據在物理產品和虛擬產品之間雙向常規流動(Grieves & Vickers,2017)。對產品數據的常規捕獲和分析可以支持對物理產品的決策。然而,在DON背景下,采用的好處和風險并沒有明確界定。本論文旨在探討數字孿生如何以及為什么可以在產品生命周期管理(PLM)的背景下被DON采用。

A. 問題陳述

美國防部的運作需要協作、復雜和昂貴的系統。國防部產品生命周期管理(PLM)中的挑戰導致操作能力下降以及財政需求增加。數字孿生有可能幫助國防部克服這些挑戰,保持國防部系統狀態的最新數據,并進行自動數據分析以幫助決策。然而,關于數字孿生的知識體系對國防部來說是一個挑戰,因為整個應用范圍和與數字孿生相關的風險仍不清楚。隨著國防部繼續尋找能夠延長其系統使用壽命的方法,由計算機支持的收集和響應通過數字孿生提供的數據變得越來越可取。因此,需要研究如何在DON企業內采用數字孿生,以及與這種潛在采用相關的商業價值。

B. 目的聲明

本研究的目的是探索如何在國防部內采用數字孿生。這項研究的重點是確定(a)數字孿生對國防部企業架構的影響,(b)采用數字孿生對美國防部PLM的好處和風險,以及(c)數字孿生能夠為國防部提供的商業價值。這項研究的目標很重要,因為美國防部PLM的不足對國防部的運營能力有直接的負面影響。這項研究的結果可以幫助國防部更好地了解如何采用數字孿生,最終目的是改善PLM,從而提供商業價值。

C. 研究問題

  • 1.采用數字孿生如何影響海軍部的企業架構?

    • 1.1.業務流程是如何改變的?

    • 1.2.對海軍部的網絡安全有什么積極和消極影響?

  • 2.如何采用數字孿生來支持海軍部的產品生命周期管理?

    • 2.1.數字孿生給組織帶來什么好處?

    • 2.2.數字孿生給組織帶來什么風險?

  • 3.數字孿生能給海軍部帶來什么商業價值?

    • 3.1.所提供的價值是否值得采用?

D. 論文的組織

本論文又分為四章。第2章是文獻回顧,調查了數字孿生的背景、組成部分和應用。第3章解釋了分析的方法。第4章是基于研究問題的數字孿生的分析。第5章是結論,提供關鍵的見解、建議和未來研究的機會。

付費5元查看完整內容

現代戰術戰爭需要迅速而有效的決策和行動,以便在經常是高度動態和復雜的戰區保持競爭優勢。需要考慮的因素的數量因不確定性、事件的快速發展和人為錯誤的風險而放大。自動化、人工智能和博弈論方法的潛在應用可以為作戰人員提供認知支持。這項研究以自動兵棋推演輔助決策的形式探索了這些應用。該團隊為這個未來的系統開發了一個概念設計,并將其稱為兵棋推演實時人工智能輔助決策(WRAID)能力。

頂點項目的目標是探索自動化、人工智能和博弈論的應用,作為支持未來WRAID能力的方法。該團隊為WRAID能力開發了需求、概念設計和操作概念。該小組確定并探索了可能對未來實施WRAID能力構成障礙的挑戰性領域。該小組調查了與使用人工智能來支持戰爭決策有關的倫理挑戰和影響。

本報告首先對與WRAID能力相關的主題進行文獻回顧。文獻回顧從人工智能的回顧開始,提供了一個關于人工智能如何工作以及它能夠完成什么類型任務的概述。文獻綜述探討了人機協作的方法,以支持未來指揮官和人類用戶與WRAID系統之間的互動。需要翻譯指揮官的意圖,并讓WRAID將有意義的輸出傳達給指揮官,這需要一個強大的界面。審查包括傳統的兵棋推演,以研究目前的模擬兵棋推演是如何進行的,以便深入了解,未來的WRAID能力如何能夠實時復制兵棋推演的各個方面,并認為以前的兵棋推演可以為人工智能和機器學習(ML)算法的發展提供訓練數據。ML算法的訓練需要大量的代表性數據。文獻回顧研究了人類的認知負荷,以深入了解人類大腦的認知技能和上限;并確定人類思維的極限,以顯示人工智能可能提供的支持。文獻綜述中涉及的最后一個主題是,傳統的計劃和決策,以了解目前在軍事上如何制定戰術行動方案。

該小組進行了需求分析和利益相關者分析,探索WRAID能力如何支持作戰人員。該小組在需求分析的基礎上為WRAID系統開發了一套需求。這些要求被歸類為:硬件/軟件,人機界面,和道德規范。第一階段的分析結果包括 (1)戰爭的復雜性需要發展一種未來的WRAID能力,這種能力利用自動化方法,包括人工智能、ML和博弈論,(2)WRAID能力需要大量的計算能力和復雜的軟件算法,(3)實現未來WRAID系統的挑戰將是技術和道德的。

未來WRAID系統的概念設計是基于需求分析的。概念設計被記錄在一套系統模型中,包括背景圖、系統視圖、功能工作流程圖和操作視圖。該團隊開發了一個作戰場景,以支持對WRAID能力如何在作戰中使用。

在開發WRAID的過程中,預計會有一些路障。開發WRAID系統的技術是存在的,然而,研究小組發現數據挑戰、人工智能訓練、程序限制和當前系統工程的局限性將是需要解決的障礙。數據挑戰指的是獲得足夠的數據集的能力,這些數據集代表了訓練ML算法所需的真實世界的戰術行動和兵棋推演分析。程序性挑戰包括國防部實施網絡安全、機密數據、數據庫訪問和信息分配協議的能力。系統工程方面的障礙是需要新的方法來設計安全和可靠的人工智能系統,如WRAID能力。將需要SE方法來處理不可預見的故障模式,并在系統生命周期的早期確定根本原因。

對像WRAID能力這樣的人工智能系統的倫理考慮是系統發展的一個重要因素。開發系統以取代倫理學,將使系統更有可能被部署。有幾個有道德問題的自主武器系統被拉出來作為WRAID能力的道德對話的基礎。通過一個示例場景,對道德狀況進行定性分析,以了解在部署WRAID能力時可能出現的道德問題。倫理學在未來的技術中發揮著巨大的作用;從一開始就考慮到倫理學,建立技術是很重要的。

未來的重點需要放在繼續對想象中的WRAID系統采取正規的系統工程方法。WRAID系統需要一個強大的數據集,需要收集和注釋;收集的定性兵棋推演數據越多,WRAID系統的可行性和準確性就越高。與軍事部門的合作對于最大化WRAID的利益至關重要,例如情報和偵察組織。WRAID的模擬將是完善系統要求和創建現實模型的關鍵。關于如何使用WRAID的培訓和文檔應該同時開發,所以利益相關者,特別是指揮官已經準備好,知道如何使用這個新工具。未來的研究領域包括認知工程、基于正式模型的系統工程和人機協作。

隨著目前技術進步的速度和外國的目標,人工智能將在未來的沖突和戰爭中發揮作用。自上而下的指令將需要設計和實施WRAID能力:提供大量的資源,解決操作和文化變化,重組系統工程,并確保網絡安全和收購變化。實現未來的WRAID能力并不是一個微不足道的任務。然而,它對確保現在和未來的戰斗空間優勢至關重要。

付費5元查看完整內容

摘要

將多個領域的軍事能力融合以提高效能的學說預示著國防的新時代,其特點是能夠承受更高的作戰規模和節奏,這得益于戰場自動化和協作水平的提高。然而,要獲得這些技術進步的潛在好處,前提是要找到應對無數挑戰的成功解決方案,以便在競爭環境中實現智能、異構、交互資源的更高效和可擴展的操作。換句話說,提高防御能力的自動化和協作需要更智能的“戰場操作系統”——一個在排除人類參與時間尺度上管理復雜自動化任務的系統,同時賦予作戰人員足夠的控制權。我們將此操作系統稱為戰場物聯網 (IoBT)

在本文中,我們將重點關注維護 IoBT 所依據的三個優勢原則(在現代沖突中)所面臨的挑戰。即,

  • (i) 時間是武器;贏家是那些將傳感器和行動者之間的延遲最小化的人

  • (ii) IoBT 是一個戰斗網絡;所有功能都必須經受住主動、堅定和技術成熟的對手

  • (iii) 需要機器智能;需要一種新型的 AI 解決方案,可以快速預測到需要的點,在那里它們可以在嚴酷的現場操作環境中生存,而不是將 AI 限制運行在更高級別數據中心的解決方案中。

戰場物聯網協作研究聯盟(由政府和學術界研究機構組成的聯盟,由美國陸軍作戰能力發展司令部資助,稱為 DEVCOM,陸軍研究實驗室 (ARL))針對上述挑戰制定的解決方案是討論了:

  • (i) 映射能力范圍(即,幫助理解設想的 IoBT 能力的基本可行性限制)
  • (ii) 優化性能(即,通過以更低的成本提供智能能力來改進 IoBT 成本/價值權衡)
  • (iii) 確保彈性(即,提高已開發的 IoBT 能力,以在具有挑戰性的戰場環境中抵御廣泛的威脅)。

我們特別關注涉及機器自動化和危害人工智能本身的威脅。雖然國防科學在研究保護有形資源的解決方案方面有著悠久的歷史,但一旦自動化進入循環并被依賴作為手動操作的優越替代方案,自動化或人工智能 (AI) 就需要同樣強調保護,因為它對作戰優勢至關重要。因此,戰場物聯網解決的一個關鍵挑戰是保護 IoBT 本身的效率、功效和完整性。

圖1:多域作戰(MDO)效應循環圖

圖2:分布式虛擬試驗場(DVPG)的概念架構

付費5元查看完整內容

摘要

當代和新出現的安全威脅以及從最近的軍事行動中吸取的教訓已經證明,為了在傳統的物理領域(陸地、空中、海上、太空)實現作戰目標,確保在非物理領域的主導地位至關重要,即網絡空間、電磁環境(EME)和信息環境。因此,除了物理作戰領域之外,在非物理領域取得優勢的能力對于實現戰役的軍事和非軍事目標具有決定性意義。

作戰人員將面臨消除沖突,協作,同步和整合行動的挑戰,以實現并發揮協同效應以應對多種威脅,其中可能還包括來自每個作戰領域對手的武裝沖突閾值以下的行動,包括非物質的。

本文探討了作戰環境聯合情報準備 (JIPOE) 作為支持聯合作戰規劃、執行和評估的主要工具的作用和意義,從而有助于多域作戰 (MDO) 的同步和協調。在這方面,基于政治、軍事、經濟、信息、基礎設施-物理、時間(PMESII-PT)方法,不可能將對當代作戰環境(OE)的分析局限于物理領域及其與非物理領域的關系。相反,作者們相信,確定一種合適的方法來關注在非物理領域單獨或聯合進行的活動影響,它們在PMESII-PT所有領域的相互融合和實際操作領域的相關性,將大大有助于友軍識別和評估對手的重心(COG)、關鍵弱點、意圖和行動路線(COAs)的能力,包括各自的指標。JIPOE將為聯合部隊指揮官(JFC)提供OE的整體視圖,將與戰術層面密切合作、共享和開發,通過結合不同領域的能力,應該能夠壓倒對手的部隊。這種集中控制和分散執行的方法將有助于在作戰和戰術層面之間產生協同效應。

引言

未來的軍事行動將以物理和非物理層面的融合為特征,眾多不同的行為者將在其中運作。任何部隊都需要適應極其復雜的作戰環境和大量的作戰變量,需要適應性地使用一系列武器系統來產生致命和非致命的效果。因此,除了物理作戰領域(即陸地、空中、海上和太空),在非物理領域(網絡空間、EME、信息環境)取得優勢的能力將對實現戰役的軍事和非軍事目標具有決定性意義[1, p.280]。

OE是影響能力運用和影響指揮官決策的條件、環境和影響因素的綜合體[2, p.3]。了解OE的因素和條件不僅是所有計劃活動,特別是行動設計的關鍵前提,也是友軍保護和許多其他相關任務的關鍵前提[3, p.41]。

JIPOE代表了一種系統的方法,用于分析有關OE和對手的信息。它可以應用于全部的軍事行動。指揮官和參謀部在危機背景、根本原因和具體動態方面,對戰區形成共同的理解和整體的看法。它使指揮官能夠直觀地看到問題的程度,以及他們如何塑造和改變OE,使之成為他們的優勢,這將為他們的決策提供信息[2, p.3-5]。

JIPOE產品極大地促進了聯合(即作戰)層面的軍事行動的規劃和執行。現代軍隊,特別是北大西洋公約組織(NATO)內的軍隊,幾十年來在討論跨領域(陸、海、空)的協調行動時一直使用聯合這一術語。如今,由于全球安全環境的巨大變化以及俄羅斯和中國日益增長的野心,為了挑戰潛在的同行對手,需要采取多領域的方法。在傳統的戰爭門檻下,盟國及其合作伙伴已經受到了跨越物理和非物理領域的持續攻擊[4, p.2]。MDO一詞不同于聯合行動,因為它旨在關注跨越多個領域的行動,而不考慮服務的歸屬,不一定是由多個部門進行的行動[5,p.49]。

圖1:支持聯合行動的當前JIPOE流程的可視化。

圖2:提出支持MDO的JIPOE過程方案。

付費5元查看完整內容
北京阿比特科技有限公司