現代戰術戰爭需要迅速而有效的決策和行動,以便在經常是高度動態和復雜的戰區保持競爭優勢。需要考慮的因素的數量因不確定性、事件的快速發展和人為錯誤的風險而放大。自動化、人工智能和博弈論方法的潛在應用可以為作戰人員提供認知支持。這項研究以自動兵棋推演輔助決策的形式探索了這些應用。該團隊為這個未來的系統開發了一個概念設計,并將其稱為兵棋推演實時人工智能輔助決策(WRAID)能力。
頂點項目的目標是探索自動化、人工智能和博弈論的應用,作為支持未來WRAID能力的方法。該團隊為WRAID能力開發了需求、概念設計和操作概念。該小組確定并探索了可能對未來實施WRAID能力構成障礙的挑戰性領域。該小組調查了與使用人工智能來支持戰爭決策有關的倫理挑戰和影響。
本報告首先對與WRAID能力相關的主題進行文獻回顧。文獻回顧從人工智能的回顧開始,提供了一個關于人工智能如何工作以及它能夠完成什么類型任務的概述。文獻綜述探討了人機協作的方法,以支持未來指揮官和人類用戶與WRAID系統之間的互動。需要翻譯指揮官的意圖,并讓WRAID將有意義的輸出傳達給指揮官,這需要一個強大的界面。審查包括傳統的兵棋推演,以研究目前的模擬兵棋推演是如何進行的,以便深入了解,未來的WRAID能力如何能夠實時復制兵棋推演的各個方面,并認為以前的兵棋推演可以為人工智能和機器學習(ML)算法的發展提供訓練數據。ML算法的訓練需要大量的代表性數據。文獻回顧研究了人類的認知負荷,以深入了解人類大腦的認知技能和上限;并確定人類思維的極限,以顯示人工智能可能提供的支持。文獻綜述中涉及的最后一個主題是,傳統的計劃和決策,以了解目前在軍事上如何制定戰術行動方案。
該小組進行了需求分析和利益相關者分析,探索WRAID能力如何支持作戰人員。該小組在需求分析的基礎上為WRAID系統開發了一套需求。這些要求被歸類為:硬件/軟件,人機界面,和道德規范。第一階段的分析結果包括 (1)戰爭的復雜性需要發展一種未來的WRAID能力,這種能力利用自動化方法,包括人工智能、ML和博弈論,(2)WRAID能力需要大量的計算能力和復雜的軟件算法,(3)實現未來WRAID系統的挑戰將是技術和道德的。
未來WRAID系統的概念設計是基于需求分析的。概念設計被記錄在一套系統模型中,包括背景圖、系統視圖、功能工作流程圖和操作視圖。該團隊開發了一個作戰場景,以支持對WRAID能力如何在作戰中使用。
在開發WRAID的過程中,預計會有一些路障。開發WRAID系統的技術是存在的,然而,研究小組發現數據挑戰、人工智能訓練、程序限制和當前系統工程的局限性將是需要解決的障礙。數據挑戰指的是獲得足夠的數據集的能力,這些數據集代表了訓練ML算法所需的真實世界的戰術行動和兵棋推演分析。程序性挑戰包括國防部實施網絡安全、機密數據、數據庫訪問和信息分配協議的能力。系統工程方面的障礙是需要新的方法來設計安全和可靠的人工智能系統,如WRAID能力。將需要SE方法來處理不可預見的故障模式,并在系統生命周期的早期確定根本原因。
對像WRAID能力這樣的人工智能系統的倫理考慮是系統發展的一個重要因素。開發系統以取代倫理學,將使系統更有可能被部署。有幾個有道德問題的自主武器系統被拉出來作為WRAID能力的道德對話的基礎。通過一個示例場景,對道德狀況進行定性分析,以了解在部署WRAID能力時可能出現的道德問題。倫理學在未來的技術中發揮著巨大的作用;從一開始就考慮到倫理學,建立技術是很重要的。
未來的重點需要放在繼續對想象中的WRAID系統采取正規的系統工程方法。WRAID系統需要一個強大的數據集,需要收集和注釋;收集的定性兵棋推演數據越多,WRAID系統的可行性和準確性就越高。與軍事部門的合作對于最大化WRAID的利益至關重要,例如情報和偵察組織。WRAID的模擬將是完善系統要求和創建現實模型的關鍵。關于如何使用WRAID的培訓和文檔應該同時開發,所以利益相關者,特別是指揮官已經準備好,知道如何使用這個新工具。未來的研究領域包括認知工程、基于正式模型的系統工程和人機協作。
隨著目前技術進步的速度和外國的目標,人工智能將在未來的沖突和戰爭中發揮作用。自上而下的指令將需要設計和實施WRAID能力:提供大量的資源,解決操作和文化變化,重組系統工程,并確保網絡安全和收購變化。實現未來的WRAID能力并不是一個微不足道的任務。然而,它對確保現在和未來的戰斗空間優勢至關重要。
本報告著重于2025年混合部隊的任務工程過程。來自OPNAV N9I的最新任務強調了關注使用成本保守的無人系統的必要性。具體來說,重點放在近鄰的競爭對手大國以及在南海的反介入/區域拒止(A2/AD)情況下可能出現的問題。海軍水面作戰中心的任務工程方法被用來確定擬議的替代艦隊架構的具體事件,然后使用作戰模擬和優化模型進行分析。對目前的無人系統,特別是那些正在開發的高技術準備水平無人系統的性能特征和成本的研究進行了匯編。提議的無人系統架構是作為A2/AD問題的解決方案而開發的。然后,無人系統架構通過優化模型運行,以最大限度地提高系統性能,同時最小化成本。然后,架構優化的結果被輸入到建模和仿真中。然后比較每個架構的整體有效性,以找到最有效的解決方案。對結果進行了分析,以顯示預期的任務有效性和利用擬議解決方案的無人架構的擬議成本。最有效的架構包括搜索、反蜂群、運送和攻擊系統。
系統工程分析31組由美海軍作戰司令部戰爭整合處(OPNAV N9I)負責確定一個解決方案,以彌補與大國在2025年的預期能力差距(Boensel 2021)。該解決方案系統必須具有成本效益并能在2025年之前交付。SEA團隊利用任務工程過程來確定候選的未來艦隊架構來解決問題(工程副主任辦公室2020)。
到2025年,如何才能有效地對抗近鄰對手的反介入和區域拒止能力?
以具有成本效益的方式調整目前的能力,并創建一個未來的架構,以加強美國海軍的作戰能力,包括存在、欺騙、ISR以及在反介入和區域拒止環境中的防御和進攻能力。
利用任務工程流程,總體情景被設定在2025年的南海。大國已執行了其九段線的領土要求,并建立了一個反介入/區域拒止(A2/AD)區。大國不斷擴大的艦隊、對人造島嶼的使用、遠距離ASCMs以及對無人系統的擴大使用使美國的水面作戰艦艇處于高風險之中。總體任務是美國海軍DDG通過提高其殺傷力和生存能力,在A2/AD區域內進行FONOPS。在整個方案中,有三個小場景被開發出來。OTH ISR、目標選擇和交戰,威脅無人機蜂群,以及提供目標選擇的威脅無人機ISR資產。
衡量任務成功與否的總體標準是美國海軍部隊在近乎同行的反介入區域拒止環境中的作戰能力。有助于衡量成功的有效性的措施是DDG的生存能力和殺傷力的提高程度與解決方案系統的成本相結合。
為了分析擬議的系統解決方案(SoS)是否能達到既定的成功標準,設計了一個價值體系。利用通用的海軍任務列表,項目組確定了擬議的系統解決方案需要完成的三個二級任務,以完成任務(海軍部,2008)。
對三個選定任務下的后續任務進行了評估,以確定擬議系統需要完成的具體功能。通過這次審查,確定了候選無人系統需要完成的四項高級功能。這些功能是交付、搜索、通信中繼和打擊。為每項功能選擇了性能措施,以用于多屬性價值分析。
多屬性價值分析被用來比較完成四個功能中一個或多個功能的候選系統。一個系統的價值是根據每個性能指標對完成一個特定功能的重要性,給每個性能指標分配一個權重而得出的。權重從1到5不等,其中5表示最重要的MOP。計算MOP和權重的乘積,并將每個乘積相加,以獲得系統的價值。
為了確定可行的候選系統,項目組成員各自研究了一個不同的無人系統,并收集了每個候選系統的性能衡量標準。如果一個特定的無人系統的MOP值不知道,則推斷其值與一個類似的系統相同。如果不存在這樣的類似系統,則使用啟發式方法估計該值。對于每項功能,至少有一個系統符合技術成熟度,可考慮用于2025年的混合部隊。
為了實現所有四個功能,候選系統的組合被排列組合成16個系統簇。每個備選方案的系統價值和成本都被計算出來。系統價值的計算方法是將每個備選方案中的每個系統的價值相加。
為了產生用于比較的替代方案,該團隊使用整數線性規劃生成了架構。這是用Pyomo的優化功能完成的。線性規劃被創建、約束以更好地表示現實,并被解決以生成分別針對性能、預算和替代合約選項進行優化的替代架構。
現代導彈戰可以使用炮擊作戰模型進行評估。這個模型被用來計算每個小場景中的每個SoS備選方案的有效性。結果顯示了超視距ISR平臺的重要性,一個獨立的武器系統來對付敵人的無人機,目前IAMD作戰系統的有限防御能力,以及超視距搜索和瞄準能力。
“大國”和美國都擁有深入的綜合空中和導彈防御。為了證明這種互動,在微軟Excel中使用反二項式函數對不同的交戰進行了建模。每一個擬議的艦隊架構都被輸入到三個小插曲的戰斗模擬中。為了獲得隨機的結果,試驗的數量被設定為300次,每個概率都有一個可能的值范圍。該模型中的自變量可分為防御性或進攻性變量。防御性變量是每個單位的綜合防空和導彈防御武器的殺傷數量和殺傷概率。PLAN的進攻性變量是YJ-18 ASCM和Harpy無人機的命中數。美國海軍的進攻性變量是海上攻擊戰斧、ASCM和特定攻擊無人機的進攻性命中數量。
模擬的結果顯示了擊中敵方水面平臺或美國海軍水面部隊的數量。通過比較建議的系統與基線的命中率,可以得出變化的百分比。在我們的分析中,進攻和防御的有效性被平均加權,允許將進攻和防御百分比變化的高值相加,以計算出高低變化的總百分比。
基于智能體的建模和仿真(ABMS)被用來驗證每個設想的系統架構與所需的MOE。ABMS旨在通過對智能體之間的相互作用進行建模,來捕捉戰爭交戰的隨機性,但又很復雜。進行了蒙特卡洛分析,以收集每個系統性能的個體層面的數據。隨后的統計分析提供了一個途徑,以確定和量化每個擬議的系統架構所實現的改進。為此目的,指揮部:現代行動(CMO),是一個跨領域的現代兵棋推演計算機軟件,旨在模擬戰術到作戰水平的行動,被用作仿真引擎。CMO模擬的是基于規則的智能體,它們相互之間以及與環境之間的互動,包括感興趣的場景中的武器系統(Coyote, YJ-18, Chaff)和平臺(例如PLAN DDG, Luyang)。與多屬性價值分析方法相比,CMO允許對定量的系統MOP進行建模,并在模擬結果中觀察其相對差異。
電子表格戰斗模型模擬的第一個結果是解放軍DDG在三個不同的迭代中對美國海軍DDG的命中率,即只用YJ-18攻擊,只用哈比攻擊,以及YJ-18和哈比同時攻擊。同時使用YJ-18和Harpy的命中率被作為防御性MOE的基線值。接下來,兩種不同的防御性無人機系統被分別加入到作戰模型中。對只有哈比的攻擊和YJ-18與哈比的同時攻擊進行了重復模擬。每個系統的防御性百分比變化是用前面描述的公式計算的。
接下來的結果是美國海軍DDG在三次不同的迭代中擊中PLAN DDG的次數。模擬了僅用MST攻擊、僅用ASUW無人機攻擊以及MST和ASUW同時攻擊的結果。只用MST攻擊的命中率作為進攻性MOE的基線值。接下來,七個不同的運載系統被分別加入到作戰模型中。對僅有ASUW無人機攻擊和同時進行的MST和ASUW無人機攻擊進行了重復模擬。每個投送系統的進攻百分比變化被計算出來。
將同等權重的進攻和防守百分比變化相加,計算出高和低的總變化百分比。根據該模型,期望值是這樣的:在0.95的置信度下,增加SoS將使水面部隊的有效性增加一個介于高值和低值之間的百分比。
總的來說,從ABMS觀察到的性能與從電子表格模型觀察到的性能MOE相關。在所有提議的架構中,都觀察到了防御和進攻MOE的明顯改善。這是預料之中的,因為在DDG上增加任何防御性武器系統應該減少艦隊DDG的直接命中數量。同樣,增加一個具有增強OTH感知能力的進攻性武器系統會增加對目標直接作用的武器數量。
對防御性和進攻性MOE與每一方所消耗的平均武器數量的比率的進一步分析顯示,由于美國海軍DDG上增加了反群武器系統,防御性MOE得到了改善。這種增加被證明是對所有架構的一種有效的廣泛改進。三種提議的架構之間最明顯的差異來自于進攻性MOE(%),其中性能系統優于其他架構。與發射的武器總數相比,預計一個性能更好的系統會向目標發射更少的武器,同時造成更多的命中。
這項工作證明了低成本的無人駕駛威脅系統給傳統水面戰艦帶來的危險,這些系統可以在幾乎沒有警告的情況下進行協調和攻擊,并為船員提供很少的反應時間。為了避免強制增加對峙距離以提高生存能力,有必要使用增程傳感器系統和反無人機系統來彌補預期的能力差距并提供進入被拒絕區域的機會。為了使這些系統可行和安全,高帶寬的通信系統將是必需的。
為了滿足這些需求,建議的解決方案系統利用Dive-LD來運送Coyote無人機平臺。搜索和通信中繼將由兩個VBAT無人機平臺提供。這種平臺組合為每一美元的系統成本提供了最高的進攻和防御能力的提高。叢林狼 "無人機也將作為一個蜂群來防御威脅性無人機群和威脅性無人機ISR資產。增加解決方案系統的采購將提高艦隊的生存能力和殺傷力,并允許在其他艦隊優先領域進行額外投資。
建議通過為無人機平臺配備額外的無源傳感器來改進該系統,以利用電磁頻譜的所有部分,從而提高在所有天氣和戰斗條件下探測敵方威脅的能力。此外,擬議的解決方案系統可以擴展到許多其他領域和任務區,如港口防御和反對出口。
人工智能(AI)應用于武器系統是過去10年研究的一個主要趨勢。這些舉措旨在提高武器的準確性,執行非主動的瞄準手段,幫助導航和制導與控制(例如,在全球定位系統被拒絕的情況下),并減少與傳統的基于物理學的方法相比的整體計算資源,以便在更小、更實惠的武器系統上實現智能瞄準。這項研究還包括將作戰人員的戰斗空間擴展到無人駕駛飛行器,并使用蜂群方法與有人和無人平臺進行合作。
我們首先概述了人工智能的描述和歷史,并概述了人工智能在武器系統中的原理、技術和應用。這包括對監督自主系統;制導、導航和控制;行為和路徑規劃;傳感器和信息融合;智能戰略和規劃;兵棋推演建模;以及認知電子戰的研究和計劃的回顧。
然后,對將人工智能應用于武器系統的系統和項目進行了調查。雖然重點是基于美國的系統和項目,但也包括一個關于俄羅斯和中國相關系統的小節。最后,我們對將人工智能用于武器系統的倫理考慮進行了簡要評論。
機器學習(ML)和人工智能研究的最新進展揭示了人工智能在實現創新、增加機器的效用以及增強人類能力和經驗方面的力量和潛力。人工智能技術的顛覆性和其影響的深度還沒有被廣大公眾完全掌握。考慮到新時代的新興技術威脅,展示關鍵和相關的人工智能研究和最先進的技術是很重要的,這些技術不僅為武器系統提供了比傳統武器系統更多的自主權,而且大大增加了它們的殺傷力和戰斗生存能力。最終,人工智能在開發改變游戲規則的技術方面帶來了巨大的戰略機遇,這將確保國家安全、繁榮和技術領先地位。
美國軍方在創造先進的常規武器技術方面取得了巨大的進步,這些技術支持了士兵在戰場上的任務并增強了他們的能力。這些常規武器技術大多是自動化系統,在計劃、執行和完成一項任務或使命時依靠一套預先編程的規則。然而,在中國和俄羅斯等國家新開發的武器的前沿陣地上,人工智能支持的戰爭和高超音速武器給美國武裝部隊帶來了新一代的質量挑戰。下一代戰斗的步伐要求為戰略決策進行時間緊迫和大量的戰斗信息處理,這使得美國的許多常規武器系統只能執行低風險的任務,并在核領域之外處于威懾力減弱的態勢。
必須承認,人是昂貴的訓練資產。在戰場上增加更多的人員并不是推進最先進的戰爭的優雅或廉價的解決方案。相反,用支持人工智能的智能硬件來增強人在回路中的系統,可以在戰區提供更多的眼睛和耳朵,并通過使人工智能系統執行一些簡單和常規的任務來釋放人類的決策。
此外,無人駕駛作戰飛機系統(UCAS)是一種成熟的具有成本效益的系統解決方案,用于執行情報、監視和偵察(ISR)任務和遠程空襲。然而,自動化能力仍然受到人類在環形操作、評估和接觸的限制。雖然在任何可預見的未來都沒有打算消除武器化人工智能系統中的人類元素,但人類的能力仍然構成這些系統協同潛力的上限。但是,一個由人工智能驅動的智能武器系統的新生態系統將迎來新的戰爭形式和戰略。
人工智能國家安全委員會在其2021年的報告中提出,美國國防部(DoD)的軍事企業在整合人工智能技術方面落后于商業部門,并敦促在2025年前為整個國防部廣泛整合人工智能奠定基礎[1]。
幾個世紀以來,哲學家們一直在考慮以某種形式人工復制人類智能的某個方面的概念。1869年,威廉-杰農創造了第一臺基于布爾邏輯實現邏輯計算的機器。該機器能夠比人類更快地計算布爾代數和維恩圖。隨著這種邏輯計算機器的發展,人們很自然地質疑機器是否可以通過邏輯推理來為人類解決問題并做出決定。圖1-1中的時間軸顯示了人工智能的歷史和演變,并在本節中進行了詳細說明[2]。
在理論計算機科學的一些最早的工作中,英國數學家阿蘭-圖靈(Alan Turing)思考了機器是否能像人類一樣智能地行為和解決問題的問題。他在他的圖靈測試中提出,如果一臺機器能模糊地模仿人類這樣的智能生物,那么這臺機器就是智能的。這一理論測試成為一種指導性的形式主義,在這種形式主義中,當前的機器被測試其模仿人類智能概念的能力或潛力。作為測試的見證,Loebner獎是一個圖靈測試競賽,其任務是根據圖靈提出的基本問題來評估機器智能研究的現狀。
1928年,約翰-馮-諾伊曼證明了Minimax算法的基本定理,該算法旨在提供一種在零和博弈過程中使最大可能損失最小的策略。
圖1-1. AI歷史年表
在第二次世界大戰的高峰期,阿蘭-圖靈和他的團隊開發了一種機器算法,可以破譯德國的英格瑪信息密碼。他的算法的成功,推動了將復雜任務委托給機器的進一步努力,是機器計算的基礎,也是ML發展的先導。
1943年,McCulloch和Pitts開創了神經網絡(NN)的最早概念--McCulloch-Pitts的形式網絡理論--這在1949年馮-紐曼在伊利諾伊大學的四次演講中得到了體現[3]。
大約在同一時間,約翰-麥卡錫,一位計算機科學家,在1955年創造了 "人工智能 "來指代機器智能;計算機科學家艾倫-紐維爾;以及赫伯特-A-西蒙,一位經濟學家和政治學家,開創了第一個旨在自動推理的真正程序(稱為邏輯理論家)。隨著這一突破性的努力,對智能機器的探索開始了,為人工智能作為計算機科學的一個新的學術研究領域鋪平了道路。
1957年,一位名叫弗蘭克-羅森布拉特博士的心理學家開發了一個名為 "感知器 "的簡化數學模型,描述了我們大腦中的神經元如何運作。這一成就被強調為 "Perceptron收斂定理"。
同年,理查德-貝爾曼開發了動態編程,用于解決一類最佳控制問題。他還介紹了離散隨機最優控制問題的馬爾科夫決策過程表述,這為現在所稱的 "強化學習 "奠定了重要基礎。
在這些發展之后,另一位名叫阿瑟-塞繆爾的人工智能先驅利用他早先在ML方面的開創性工作,成功地開發了第一個檢查者算法。他實現了現在被稱為 "Alpha-Beta修剪 "的早期版本,這是一種搜索樹方法,通過Minimax算法減少評估節點的數量。1959年,一位名叫威廉-貝爾森(William Belson)的統計學家開發了一種名為決策樹的非參數、監督學習方法的早期版本。
在20世紀60年代,人工智能研究的重點是解決數學和優化問題。1960年,羅納德-霍華德提出了馬爾科夫決策過程的策略迭代方法,建立了一些與強化學習有關的最早的工作。
到1968年,著名的路徑搜索算法A-star是由計算機科學家尼爾斯-尼爾森提出的。60年代末,機器人建模、控制和機器視覺方面取得了進展,導致在1972年開發了第一個名為WABOT-1的 "智能 "擬人機器人,并整合了肢體操縱、視覺和語音系統。
Harry Klopf的 "適應性系統的異質理論 "的復興對適應性系統的試錯范式的發展有很大影響。1977年,Ian Witten提出了最早的強化學習系統之一,使用了時間差法。理查德-薩頓和安德魯-巴托設計了一種強化學習算法,稱為演員批評法。
由于70年代中期到80年代末計算機的計算能力限制,人工智能研究在有大量數據處理要求的應用中發現了困難,如視覺學習或優化問題。同時,數學研究 "證明 "了(單層)感知器不能學習某些模式。此外,1973年發表的一份Lighthill報告對人工智能的潛力非常悲觀,這導致人工智能研究的資金被削減。結果,資金短缺導致人工智能的研究經歷了一個被稱為 "人工智能冬天 "的時期。
到了80年代中后期,繼1986年多層感知器的發展之后,在NNs方面也做出了重要的理論貢獻。這些貢獻是David Rumelhart在1986年開發的遞歸神經網絡(RNNs),John Denker等人在1987年開發的貝葉斯網絡,以及Yann LeCun在1989年開發的卷積神經網絡(CNNs)。
此外,Chris Watkins在1989年開發了另一種重要的強化學習方法,稱為 "Q-Learning"。1992年,在IBM的Thomas J. Watson研究中心,Gerald Tesauro通過自我強化學習為雙陸棋游戲訓練了TD Gammon程序。1997年,IBM的 "深藍 "計算機使用粗暴的、基于搜索的算法擊敗了國際象棋世界冠軍加里-卡斯帕羅夫,使其成為第一個在國際象棋中戰勝頂級職業選手的程序。
在90年代末和21世紀初,在ML中看到的大部分進展是由計算機處理、存儲和分布式計算方面的指數級進展所推動的。2007年,需要大量計算資源的保證最優玩法在跳棋中得到了解決。在過去的20年里,圖形處理單元用于通用計算的激增導致了今天人工智能應用的進一步進展,特別是在2012年和2014年,不同的NN拓撲結構,如殘差網絡和生成式對抗網絡的發展。
2015年,ImageNet競賽,一個為約400萬張圖像的ImageNet圖像集開發分類器的公開競賽,有一個冠軍,其錯誤率被認為低于一個人。2016年,DeepMind的AlphaGo程序在擊敗當時被認為是最優秀的圍棋選手李世石后,成為最佳AlphaGo選手。繼AlphaGo的學習能力之后,AlphaZero在2017年擴展了AlphaGo,成為國際象棋和Shogi的最佳棋手。
2019年,美國國防部高級研究計劃局(DARPA)推出了AlphaDogfight,這是基于人工智能的空戰算法在模擬的F-16狗斗中與經過頂級訓練的飛行員進行的一系列三輪競賽。第一輪和第二輪比賽中,人工智能程序相互競爭。第三輪將人工智能勝利者的飛行員提煉出來,與美國空軍武器學校的優秀畢業生進行競爭。蒼鷺系統的人工智能飛行員不僅在競爭激烈的人工智能空中戰斗人員中獲勝,而且在與訓練有素的人類F-16飛行員的較量中取得了令人難以置信的五次勝利。
OpenAI在2020年5月推出了一個名為GP3的 "自然語言處理 "模型,它生成的寫作內容與人類無異。其最新版本可以從簡單的描述性語言生成編程語言代碼[4]。人工智能的歷史繼續向前發展,特別是對國防部的武器系統應用。本報告的其余部分將調查與武器系統有關的當代人工智能技術和系統。
根據Barr和Feigenbaum的說法,人工智能被定義為 "計算機科學中與設計智能計算機系統有關的部分,即表現出我們與人類行為中的智能有關的特征的系統--理解語言、學習、推理、解決問題等等"[5]。
Stuart Russel和Peter Norvig在他們的《人工智能:一種現代方法》一書中對人工智能的最新定義是:"設計和建造能夠從環境中接收感知并采取影響環境的行動的智能體" [6]。
Pei Wang優雅地將智能定義為 "在知識和資源不足的情況下的適應"[7]。雖然該定義沒有說明適應的目的(如目標),但它揭示了為達到這種智能需要完成的工作。
如果要以人類為中心定義人工智能,即執行人類智能水平的任務,那么人工智能需要感知、推理、知識構建、推理、決策和計劃、學習、交流,以及有效移動和操縱環境的能力。
人工智能的科學目標是回答哪些關于知識表示、學習、規則系統、搜索等的想法可以解釋各種類型和水平的真實智能。工程目標是為不同的應用領域開發人工智能技術,以解決現實世界的問題。
在人工智能的科學基礎上,我們發現來自不同科學領域的可識別概念--哲學、邏輯/數學、計算、心理學和認知科學、生物學和神經科學以及進化。在尋求發現和更好地理解人工智能是什么或將是什么的過程中,來自這些不同知識領域的貢獻已經被證明是不可避免和不可或缺的了。許多研究人工智能的領域都在同時構建人類認知如何運作的模型,并在它們之間采用有用的概念。例如,NN,一個源于生物學的概念,試圖在簡化的人工神經元的基礎上建立人工系統,這個概念導致了一個簡單的抽象知識結構的表示,足以解決大型計算問題集。
人工智能大致分為三個主要層級--人工狹義智能(ANI)、人工通用智能(AGI)和人工超級智能(ASI)。圖1-2說明了這三個層級中的各種分組,本節將更多地討論這些分組。
ANI是對一個執行狹窄或單一任務的人工智能系統的描述。它可以包括各種方法來獲得結果,如傳統的ML(以圖像分類為例)或目標檢測(包括ML和基于規則的系統)。給定一組規則或約束,它的目標是提供一組代表狹義任務的輸出。ANI不會擴展或學習新的認知,也不會自我學習新的操作模式。數據挖掘、大多數專家系統和針對某一應用的預測功能(例如,垃圾郵件檢測和面部識別)都被認為是ANI的形式。ANI還包括 "有限記憶人工智能"--用于自動駕駛汽車的系統類型,使用過去的經驗(訓練),并學習做決定,隨著時間的推移而改進。
AGI是一種更強大的智能形式,因為它被更多類似人類智能的特征所增強,例如自主學習的能力和解釋情緒和語音語調的能力。這使得與AGI相關的智能與人類的智能水平相當。AGI的一些關鍵核心能力如下:
ASI是一種超越最聰明的人類頭腦的智能模型。實現ASI的方法仍在概念化中,但將是那些超越AGI并需要某種自我意識的系統。這些系統最好能代表所有人類的認知能力,甚至更多。
ML是機器從數據中學習的能力,目的是做出準確的預測。它大致分為四類學習,提供了豐富的專用和通用的技術家族。
在這種形式的學習中,訓練數據使用包含的輸入和標記的或預定的輸出數據。如果有缺失的輸入或輸出條目,它們會被預處理,以便將一個輸入正確地映射到其真正的對應輸出。通過從正確生成的訓練數據集中學習,系統學會了將不在原始數據集中的輸入與預測的輸出(標簽或值)聯系起來。這種類型的訓練解決的典型問題是回歸和分類[8]。
這種形式的學習中,系統直接從未標記的數據中發現有趣的或隱藏的結構[9]。無監督學習被用于聚類分析、降維或估計可能產生輸入數據的密度[8]。
當數據集包含有標記的和無標記的數據時,這種學習形式的系統利用無標記的數據來更好地捕捉潛在的數據分布,并獲得一個更好的預測,如果它只從標記的數據中訓練的話。這種學習形式適用于訓練數據集中的標注數據遠遠少于未標注數據的情況[8]。
在這種學習模式中,系統使用獎勵/懲罰機制進行訓練,這樣它所選擇和執行的行動,當行動可取時,會使系統得到獎勵,當行動不可取時,會受到懲罰。強化學習問題涉及學習如何做(如何將情況映射到行動上)以最大化數字獎勵信號[9]。
人工智能有可能應用于武器系統生態系統的許多方面。它被用來控制系統,從而實現自主性和提高性能,以在具有挑戰性的環境中選擇指導、導航和控制方面的問題。同樣,人工智能可用于解決任務和路徑規劃中的挑戰性問題,從而實現更高水平的復雜任務目標和操作要求。人工智能也被用于電子戰領域的支持、反制,甚至是反制措施。它還可能被用于來自不同系統層次和領域的信息融合,以泄露抽象的高價值戰場情報,并提供關鍵線索和快節奏的決策,從而在現代戰爭中創造寶貴的戰術優勢。
報告的這一部分將強調最先進的人工智能方法在適用于自主和武器系統的各種人工智能問題領域的使用。它是根據以下問題領域來組織的。
自主性
感知中的人工智能
制導、導航和控制中的人工智能
任務和路徑規劃
智能戰略
對手建模
認知型電子戰
第一章 引言
1.1問題陳述
1.2常規武器系統
1.3 AI簡史
1.4什么是AI?
1.4.1 ANI
1.4.2 AGI
1.4.3 ASI
1.5 ML
1.5.1監督學習
1.5.2無監督學習
1.5.3半監督學習
1.5.4強化學習
第二章 最先進的方法
2.1學習人工智能范例
2.1.1深度學習
2.1.2強化學習
2.2隨機優化和搜索算法
2.2.1隨機優化
2.2.2圖形搜索算法
2.3新興人工智能范例
2.3.1神經符號AI
2.3.2 NE
第三章 人工智能在武器系統中的應用
3.1自主性
3.1.1定義、級別和框架
3.1.2自主系統的功能組件
3.2感知中的人工智能
3.2.1圖像分割
3.2.2目標檢測、分類和場景理解
3.2.3傳感器融合
3.3制導、導航和控制中的人工智能
3.3.1 GN&C系統
3.3.2常規控制理論方法
3.3.3智能控制
3.3.4本地化和導航
3.3.5系統識別
3.4任務和路徑規劃
3.4.1GAs
3.4.2群體智能
3.5智能策略
3.6對手建模和兵棋推演
3.7認知電子戰
3.7.1電子支持措施
3.7.2 ECMs
3 .7.3 ECCMs
第四章 將人工智能應用于武器系統的系統和程序
4.1天線系統
4.1.1下一代空中優勢計劃
4.1.2 Shield AI Hivemind
4.1.3 Shield AI V-Bat
4.1.4 Kratos XQ-58 Valkyrie
4.1.5 MQ-20 Avenger UCAS
4.1.6自主彈藥
4.1.7 Dynetics X-61小精靈
4.2 海軍系統
4.3 陸軍系統
4.3.1 QinetiQ/Pratt Miller的遠征自主模塊化飛行器
4.3.2Textron系統公司的Ripsaw M5
4.3.3 Rheinmetall公司的Lynx KF41
4.4 群系統
4.4.1 DARPA的攻擊性蜂群戰術
4.4.2自主協同小直徑炸彈群
4.4.3 Perdix群
4.4.4 Mako UTAP22
4.4.5 Coyote UAS Block 3
4.4.6機器人代理命令和傳感群的控制架構
4.4.7激流勇進微型無人潛水器
4.5戰斗管理和智能指揮與控制
4.6 ISR和目標系統
4.6.1 SRC的HPEC Pod
4.6.2復仇女神
4.7導航
第五章 未來作戰中的AI
第六章 人工智能和外來威脅
6.1俄羅斯
6.2中國
第七章 倫理考量
第八章 總結
參考文獻
美國海軍陸戰隊正在探索使用人機協作來控制前線部署環境中的無人駕駛航空系統(UAS),其任務范圍廣泛,包括情報、監視和偵察(ISR)、電子戰(EW)、通信中繼和動能殺傷。美國海軍陸戰隊設想使用未來的垂直起降平臺(VTOL)來支持混合戰爭任務并實現軍事優勢。對于美國海軍陸戰隊的混合戰爭應用,以實現任務優勢和戰爭主導權,美國海軍陸戰隊需要了解VTOL機組和無人機系統之間錯綜復雜的人機互動和關系,以獲得戰斗空間態勢感知,并有效地計劃和執行針對常規和不對稱威脅的旋轉翼行動。這項研究的重點是美國海軍陸戰隊在海洋環境中的打擊協調和偵察(SCAR)任務,以促進遠征基地先進作戰(EABO)在沿岸地區。有多種復雜的功能必須加以考慮和評估,以支持人機協作互動,提高任務的有效性:任務規劃、移動和滲透、區域偵察、偵察戰斗交接和過渡。
這份頂點報告探討了SCAR任務期間三個系統之間的人機協作:UAS、VTOL和地面控制站(GCS)。該研究從VTOL項目的文獻回顧開始,研究了美國海軍陸戰隊SCAR任務戰術和用于促進EABO的理論概念。此外,它還包括對自主性和自動化、人工智能和機器學習的研究。通過使用合作設計模型來探索這三個系統的人機協作互動和過程,文獻回顧探討了如何使用基于三個因素的相互依賴性分析(IA)框架來確定人類執行者和機器團隊成員之間的相互依賴性:可觀察性、可預測性和可指導性。
通過基于模型的系統工程(MBSE)工具,將SCAR任務的高級功能分解為分層次的任務和子任務,系統分析被用來支持聯合設計方法。根據Johnson(2014)的說法,合作設計方法研究了相互依賴的概念,并使用IA框架作為設計工具。IA框架捕捉了主要執行者和支持團隊成員之間的互動,以發展支持每個主要任務和分層子任務的所需能力,從而產生HMT要求。這份頂點報告分析了兩種選擇。第一個方案認為UAS是主要執行者,VTOL和GCS是輔助團隊成員。第二種方案認為VTOL是主要執行者,UAS和GCS是輔助團隊成員。基于這兩種選擇,IA框架評估了17個主要任務、33個分層子任務和85個執行SCAR任務的所需能力。
此外,研究發現需要一個強大的數字任務規劃系統,如升級后的海軍陸戰隊規劃和行動后系統(MPAAS),通過存儲以前的任務和經驗教訓的數據來促進機器學習。美國海軍陸戰隊將面臨無人機系統的處理能力和信息存儲方面的挑戰。應盡一切努力增加UAS的處理能力。必須實施一個有效的主要、備用、應急和緊急(PACE)通信計劃,以確保UAS、VTOL和GCS之間所有通信平臺的冗余。美國海軍陸戰隊必須實施支持信任、提供快速反饋和簡單操作的接口。
最后,為了準確評估VTOL、UAS和GCS之間的HMT要求,頂點報告促成了一個探索性實驗的發展,該實驗將在海軍研究生院(NPS)建模虛擬環境和模擬(MOVES)實驗室使用,以促進未來的研究。制定了操作要求和測量方法,以確定HMT要求的有效性。
這項頂點研究為在SCAR任務中執行VTOL/UAS混合行動的人機互動復雜性提供了明確的證據。該頂點研究確定了使用系統分析和協同設計作為一種有效的方法,通過IA框架促進人機協作需求的發展。此外,該研究確定了對復雜的自主性和技術準備程度的需求,這可能是目前還沒有的。頂點建議美國海軍陸戰隊繼續研究人機協作,并利用SCAR任務探索性實驗來進一步完善和研究VTOL/UAS的高級系統要求,以支持具有前沿部署的UAS的混合行動,重點是實現4級自主權。
本項目的目的是深入了解影響飛行員認知負荷的因素,以幫助了解未來垂直升降機(FVL)的任務自動化要求。研究人員利用學術文獻來開發對影響飛行員認知負荷因素的理解。接下來,研究人員對陸軍旋轉翼飛機飛行員進行了半結構性訪談,以獲得認知負荷數據。之后,研究人員對所獲得的數據進行了定量和定性分析,開發了一個影響圖,對飛行員的認知負荷及其影響因素進行建模。最后,研究人員利用該模型和飛行員數據,為FVL任務自動化要求和未來研究需求提出建議。
美國陸軍正在開發新一代的飛機,作為FVL計劃的一部分。陸軍的意圖是通過開發新的平臺和作戰概念,在航空技術和能力方面實現一代人的飛躍,以便在競爭日益激烈和充滿挑戰的戰斗空間中取得成功。FVL計劃的核心是整合革命性和顛覆性的新技術,以推動陸軍航空的機械、方法和機組人員領域的變化。如果不增加自動化,由于FVL平臺上新技術、數據流和態勢感知工具的注入,飛行員達到認知過載的可能性增加。因此,FVL項目正在重新評估哪些任務應該被自動化,以避免飛行員的認知過載。
這個項目表明,影響圖是一個有效的工具,用來模擬影響飛行員認知負荷的因素和因素關系。研究人員希望本項目的影響圖和數據能夠為未來關于飛行員認知工作負荷和FVL任務自動化需求的研究提供參考。
本項目最重要的成果是簡單和復雜的醫療救援任務情景下的認知負荷數值的顯著差異,如表ES-1所示。數據表明,飛行員的負荷根據任務的操作條件有很大的不同,在復雜的任務中飛行員的認知負荷特別大。這清楚地表明,在復雜情況下需要自動化來協助飛行員。
表ES-1. 簡單和復雜MEDEVAC情況下的參與者認知負荷值。
對主要因素影響的高層次分析,如表ES-2所示,表明隨著任務需求的增加和情景變得更加復雜,任務需求成為認知負荷的最大影響因素。此外,當從一個不太可能出現認知過載的場景(即簡單場景)過渡到一個可能出現認知過載的場景(即復雜場景)時,環境因素占認知負荷的最大增幅。因此,應該發展自動化,以減少任務要求和環境條件對認知負荷的影響。
表ES-2. 簡單和復雜MEDEVAC情景的主要因素權重中位數。
與主要因素分析相比,表ES-3中顯示的影響性子因素的排序列表提供了對自動化有意義的任務的更集中的洞察力。為了幫助避免認知過載,飛行員在復雜情況下最需要自動化,因為那是他們認知負荷最大的地方。拋開目前不適合自動化的子因素(如飛行員經驗),數據表明,受光照因素、飛行內協調要求和任務復雜性影響的任務應該被自動化。這將導致在高峰需求情況下最大的潛在認知負荷減少。
表ES-3. 在復雜的MEDEVAC情況下對認知負荷影響最大的8個子因素。
最后,參與者在后續訪談中表示,他們期望自動化能減少他們的認知負荷。雖然預期減少的幅度不同,但參與者普遍認為,在最有可能出現認知過載的復雜情況下,自動化將有助于減少飛行員的認知負荷。
總的來說,本研究的數據顯示,沒有一個子因素是如此的主導和有影響力,以至于它的自動化就可以大大減少飛行員的認知負荷。相反,研究人員評估說,可能需要在許多子因素領域實現自動化,以有意義地減少飛行員的認知負荷。
雖然這種方法的定性產出提供了有用的見解,但主要的收獲是確定了未來研究應該更深入地探索的領域,以告知有限的任務自動化要求。基于通過訪談和數據分析得到的信息,研究小組對未來的研究有三個建議。
首先,研究人員建議完成一項任務分析,以確定哪些有限任務會影響本研究中確定的影響因素和子因素。這些結果可用于評估任務自動化對飛行員認知負荷的潛在影響,使用離散事件建模和模擬工具,如改進性能研究集成工具(IMPRINT)。
第二,研究人員建議測量飛行員認知過載的經驗閾值,并用于補充本項目中確定的飛行員認知負荷的自我評估。這將允許開發更準確的認知工作負荷模型,并對任務自動化帶來的認知工作負荷減少的幅度提供更多的洞察力。
最后,研究人員建議評估低能力飛行員(即飛行經驗最少的飛行員)的認知工作負荷能力。這方面的知識將有助于告知哪些任務應該自動化,以避免最有可能出現認知過載的用戶群的飛行員認知過載。
保持技術優勢是美軍作戰方式的一個關鍵組成部分。向大國競爭(GPC)的轉變重新強調了保持技術領先。然而,絕大多數所謂的幫助美國保持領先優勢的技術戰略都將這一概念作為一份文件,簡單地回答 "軍隊應該開發或采用什么技術 "的問題。這種狹隘的技術戰略觀幾乎沒有將手段(技術獲取決策)與戰略目的聯系起來,而且往往將技術的發展本身視為目的--這種錯誤的概念可能導致不適應或停滯的戰略和資源的浪費。本論文試圖通過定義一個技術戰略的概念和框架來幫助提高技術決策的效率和重點,將技術的強調和獲取作為手段,將戰略效果作為目的。
這種方法對技術戰略是描述性的,而不是規定性的。其產出可作為認識、分析和構建技術戰略的基礎。
第一個關鍵發現是,當軍事技術決策導致從戰爭方式范式到作戰概念,然后到所需能力組合,最后到技術獲取(技術戰略)、組織結構和理論創新("DOT三要素")的選擇時,它們就是戰略性的。至少,技術戰略的內容通過確定作戰概念中所需要的技術能力、獲取方法和主要的技術重點來指導關于獲取、開發和/或改進武器、運載和信息技術的決策。
第二個關鍵發現是形成兵力開發戰略的分類法。了解每個層次是技術戰略制定和分析的關鍵。該分類法在圖1中顯示,并在后面進一步解釋。
圖1. 擬議的技術戰略分類法
實現層對技術和DOT三要素的追求按其設計的時間范圍進行分類,以滿足其戰略最終狀態。將技術戰略(和其他DOT組件)的實現時間與作戰概念的預期實現時間同步是這一層次的主要目的。
交戰概念層顯示了范式和概念之間的聯系,并按照大戰略中的戰略目的來組織技術追求(即技術如何在戰略環境中創造效果)。作戰概念是軍方對在特定情況下如何進行戰爭的設想,以及軍方將如何進行戰爭(例如,馬賽克戰爭或空地戰)。
能力組合是所有DOT三要素及其DOTMLPF-P對應物的組合,以實現作戰概念中的能力(例如,自主飛機或蜂群無人機以支持馬賽克戰爭概念中的JADC2能力)。以這種方式看待技術及其伴隨的DOT戰略的主要好處是,它使DOT決策與特定的概念相聯系,從而與它的預期戰略效果相聯系。
戰略形式層面(圖2)描述了戰略家滿足能力的技術要求方式。技術戰略形式作為一種模式或模板,描述了戰略家用來實現所需能力的方法。這些是技術戰略的模板,與人們可能認為的戰略類型(如費邊延遲戰略)的方式有相似之處。下面顯示的三種原型,對技術戰略的形式進行了分類。風險與效率,平價驅動,以及基于進攻和防守的形式。
圖2. 觀察到的和推導出的技術戰略形式
購置方式層面確定了該戰略將指導用于滿足能力組合要求的技術購置方式。這些選擇對戰略形式有很大影響。有四種類型的方法被確認。模仿性獲取方式側重于復制其他國家已經在使用的技術。發展性獲取方法側重于新技術的發明,對新興技術的利用,和/或對已有的(但不強調的)技術進行重新構想。創新性方法涉及到購買技術,并將其與軍隊自己的或其他購買的技術相結合,以創造新的東西。監測方式假定軍隊至少有一些手段和理由來追求技術變革,但選擇繼續沿著目前的路線進行典型升級。戰略形式和方法層面是技術戰略家的主要關注領域。
最后的關鍵發現是,對技術戰略的明確描述和結構化突出了一系列的陷阱:比較陷阱(鏡像);冰山(暗示高度的隱蔽能力);交叉點(挪用技術發展);機會成本(每一個是也是對其他東西的否定);戰爭和技術關系(技術發展可以改變戰爭和沖突的特征);重點發展(試圖為所有任務建立一種技術),以及果斷的投資者行為(戰略上錯位的技術追求)。這一小部分的經驗教訓可能只是從不斷研究和完善技術戰略概念中獲得的豐富知識的開始。在一個競爭激烈的時代,我們必須在技術追求上集中精力,深思熟慮,并具有戰略性。本研究提供的意見和建議可能有助于這種努力。
兵棋模擬是一種決策工具,可以為利益相關者分析的場景提供定量數據。它們被廣泛用于制定軍事方面的戰術和理論。最近,無人駕駛飛行器(UAVs)已經成為這些模擬中的一個相關元素,因為它們在當代沖突、監視任務以及搜索和救援任務中發揮了突出的作用。例如,容許戰術編隊中的飛機損失,有利于一個中隊在特定戰斗場景中勝利。考慮到無人機的分布可能是這種情況下的決定性因素,無人機在超視距(BVR)作戰中的位置優化在文獻中引起了關注。這項工作旨在考慮敵人的不確定性,如射擊距離和位置,使用六種元啟發法和高保真模擬器來優化無人機的戰術編隊。為紅軍蜂群選擇了一種空軍經常采用的戰術編隊,稱為line abreast,作為案例研究。優化的目的是獲得一個藍軍蜂群戰術編隊,以贏得對紅軍蜂群的BVR戰斗。采用了一個確認優化的穩健性程序,將紅軍蜂群的每個無人機的位置從其初始配置上改變到8公里,并使用兵棋方法。進行了戰術分析以確認優化中發現的編隊是否適用。
索引詞:優化方法,計算機模擬,無人駕駛飛行器(UAV),自主智能體,決策支持系統,計算智能。
兵棋是在戰術、作戰或戰略層面上模擬戰爭的分析性游戲,用于分析作戰概念,訓練和準備指揮官和下屬,探索情景,并評估規劃如何影響結果。這些模擬對于制定戰術、戰略和理論解決方案非常有用,為參與者提供了對決策過程和壓力管理的洞察力[1]。
最近,無人駕駛飛行器(UAVs)作為一種新的高科技力量出現了。利用它們來實現空中優勢可能會導致深刻的軍事變革[2]。因此,它們的有效性經常在兵棋中被測試和評估。
由于具有一些性能上的優勢,如增加敏捷性、增加過載耐久性和增加隱身能力,無人機已經逐漸發展起來,并在許多空中任務中取代了有人系統[3]。然而,由于戰斗的動態性質,在視覺范圍之外的空戰中用無人系統取代有人平臺是具有挑戰性的。在空戰中,無人機可以被遠程控制,但由于無人機飛行員對形勢的認識有限,它將在與有人平臺的對抗中處于劣勢。然而,這種限制可以通過自動戰斗機動[4]和戰術編隊的優化來克服。此外,使用無人機可以允許一些戰術編隊和戰略,而這些戰術編隊和戰略在有人駕駛的飛機上是不會被考慮的,例如允許中隊的飛機被擊落,如果它有助于團隊贏得戰斗。文獻中最早的一篇旨在優化超視距(BVR)作戰中的飛機戰術編隊的文章[5]表明,空戰戰術是用遺傳算法(GA)進行優化的候選方案。該實施方案采用分層概念,從小型常規作戰單位建立大型編隊戰術,并從兩架飛機的編隊開始,然后是四架飛機,最后是這些飛機的倍數。在模擬中沒有對導彈發射進行建模。當一架飛機將其對手置于武器交戰區(WEZ)的高殺傷概率(Pkill)區域內一段特定時間,簡化的交戰模擬器就宣布傷亡。事實證明,所提出的方法的應用是有效的,它消除了團隊中所有沒有優化編隊的飛機,并為整個優化編隊的飛機團隊提供了生存空間。
Keshi等人[6]使用了與[5]相同的分層概念,從由兩架飛機組成的元素中構建大型戰術編隊。模擬退火遺傳算法(SAGA)被用來優化編隊,使其能夠克服對局部最優解的收斂。對16架飛機的編隊進行了優化,提出的最優解表明SAGA比基本的GA更有效。最后,為了探索一個穩健的SAGA,對不同的馬爾科夫鏈進行了比較,事實證明自調整馬爾科夫電流更適合所提出的問題。
Junior等人[7]提出使用計算機模擬作為一種解決方案,以確定BVR空戰的最佳戰術,使擊落敵機的概率最大化。在低分辨率下使用通用參數對飛機和導彈進行建模,并改編了名為COMPASS的模擬優化算法,模擬了兩架飛機對一架飛機的BVR戰斗。低分辨率模型假定在水平面的二維空間內有一個均勻的直線運動。使用優化的戰術表明,擊落敵機的平均成功率從16.69%提高到76.85%。 Yang等人[8]提出了一種方法來優化飛機對一組目標的最佳攻擊位置和最佳路徑。該工作考慮到飛機能夠同時為每個目標發射導彈,并將飛機與目標有關的攻擊性和脆弱性因素作為評價攻擊位置的指標。一個高保真模擬被用來模擬每個導彈的飛機、雷達、導彈和WEZ的動態特性。這項工作并沒有解決在BVR戰斗場景中優化一組飛機對另一組飛機的編隊問題。
Li等人[9]提出了一種基于指揮員主觀認識的編隊優化方法,即在空戰中目標設備信息不確定的情況下選擇飛機編隊的問題。首先,計算戰斗機的戰斗力,這是通過指揮員的主觀認識評估目標戰斗力的基礎。戰斗機的戰斗力以能力的形式表現出來,包括攻擊、探測、生存能力、通信、電子戰、預警系統等。因此,通過采用前景理論和綜合模糊評估來優化空戰訓練。最后,一個應用實例證明了該方法在小規模空戰中的可行性。作者聲稱,利用戰斗力評估戰斗情況的能力為優化空戰訓練提供了一種新的方法。
?zpala等人[10]提出了一種在兩個對立小組中使用多個無人駕駛戰斗飛行器(UCAVs)進行空戰的決策方法。首先,確定兩隊中每個智能體的優勢地位。優勢狀態包括角度、距離和速度優勢的加權和。在一個團隊中的每個智能體與對方團隊中的每個智能體進行比較后,每個航空飛行器被分配到一個目標,以獲得其團隊的優勢而不是自己的優勢。為一對對立的團隊實施了一個零和博弈。對許多智能體參與時的混合納什均衡策略提出了一種還原方法。該解決方案基于博弈論方法;因此,該方法在一個數字案例上進行了測試,并證明了其有效性。
Huang等人[11]開發了新的方法來處理UCAV編隊對抗多目標的合作目標分配和路徑規劃(CTAPPP)問題。UCAV的編隊是基于合作決策和控制的。在完成目標偵察后,訓練指揮中心根據戰場環境和作戰任務向每架UCAV快速傳輸任務分配指令。UCAV機動到由其火控系統計算出的最佳位置,發射武器裝備。合作目標分配(CTAP)問題通過增強型粒子群優化(IPSO)、蟻群算法(ACA)和遺傳算法(GA)來解決,并在歸因、精度和搜索速度等方面進行了比較分析。在進化算法的基礎上發展了UCAV多目標編隊的合作路徑規劃(CPPP)問題,其中提供并重新定義了獨特的染色體編碼方法、交叉算子和突變算子,并考慮燃料成本、威脅成本、風險成本和剩余時間成本來規劃合作路徑。
Ma等人[12]開展的工作解決了在BVR作戰場景中優化兩組(R和B)無人機對手之間的優勢地位問題。一個無人機ri∈R對一個無人機bj∈B的優勢是通過ri和bj之間的距離、ri的導彈發射距離的下限和上限、ri的高度和bj的高度之差以及ri的最佳發射高度來估計的。決定性的變量是無人機在兩組中的空間分布和每架飛機在這些組中的目標分配。無人機在三維作戰空間BVR中的可能位置被簡化(離散化),通過立方體的中心位置來表示。每個無人機組都有一組立方體。優化問題被建模為一個零和博弈,并被解決以獲得納什均衡。
Ma等人[12]提出的工作沒有使用高保真模擬來分析無人機空間分布的選擇和分配給它們的目標對BVR作戰的影響。高保真模擬對飛機、雷達、導彈及其導彈的WEZ的動態特性進行建模。這些動態特性也影響到BVR作戰時每架飛機的行動觸發,因此也影響到最終的結果。例如,如果在兩組無人機之間第一次沖突后的時間窗口內考慮高保真BVR作戰模擬,新的沖突可能會發生,直到模擬結束。因此,每個在交戰中幸存的無人機將能夠選擇一個新的目標,這取決于可用目標的優勢值。在[12]中沒有考慮與無人機行為有關的不確定性。有關敵方無人機在戰術編隊中的確切位置及其導彈發射距離的信息是行為不確定性的例子。這兩個信息和上面描述的其他信息在BVR戰斗中是相關的:它們直接影響飛機之間的交戰結果。
在這項研究中,我們試圖解決文獻中發現的一些局限性,如低分辨率模擬、與敵人有關的不確定性的處理以及缺乏對優化解決方案的穩健性的確認,旨在提高兵棋結果的質量。我們的目標是驗證哪些藍色蜂群的戰術編隊可以在BVR戰斗中戰勝紅色蜂群。作為一個案例研究,RED蜂群使用了空軍經常采用的戰術編隊,稱為line abreast[13]。為了評估BLUE蜂群解決方案的穩健性,我們解決了新的問題,改變了RED蜂群每架飛機的位置,目的是估計新的RED蜂群編隊對BLUE蜂群的優化戰術編隊的效率的影響。
我們使用自主智能體和高保真計算機模擬來優化BVR戰斗中的無人機戰術編隊,考慮與敵人相關的不確定性,如戰術編隊中的位置誤差和導彈發射距離。統一行為框架(UBF)被采納為創建自主智能體的基礎。飛機和導彈在三維環境中用六個自由度(DoFs)建模。
該程序將在接下來的章節中進一步討論。
隨著當前海軍戰爭的趨勢轉向自動化作戰武器系統,美國海軍正將其戰略重點放在人工智能(AI)能力上,以減少作戰人員行動時間。這個系統工程(SE)項目使用約翰-博伊德的觀察、定向、決策和行動(OODA)概念和海軍陸戰隊規劃過程(MCPP)(Angerman 2004;美國海軍部2016)來代表人類-人工智能決策過程。空中和導彈防御(AMD)的殺傷鏈是通過簡化聯合目標定位理論“JP 3-60”(參謀長聯席會議2018)來體現的。殺傷鏈過程中提高操作動化水平被證明可以大大減少執行時間,如果進一步發展和實戰化,將為海員和海軍陸戰隊提供防空的戰術優勢。通過使用專家系統和人工智能加速殺傷鏈將大大縮短交戰時間,有效地擴大戰斗空間。
該項目開發了用于防空和導彈防御的人工智能(AI-AMD)架構,該架構旨在通過對威脅進行優先排序并在人類用戶的最小介入下采取行動來改善作戰決策。該項目專注于理解和評估空空導彈防御(AMD)的殺傷鏈,通過確定使用AI-AMD可以更快地執行行動。項目組確定并評估了與應用于殺傷鏈過程中各個步驟的AI-AMD自動化水平相關的風險。該小組進行了建模和模擬(M&S)分析,以比較低水平自動化("無 "人工智能)的殺傷鏈和高水平自動化("有 "人工智能)的殺傷鏈,根據節省的時間來評估改進。
該團隊在M&S分析的基礎上開發了高度自動化的AI-AMD決策輔助作戰能力的概念,并確定了有可能應用于未來AI-AMD架構的現有和未來人工智能方法。該團隊按照美國防部的架構框架(DODAF)進行了架構分析,以確定AI-AMD的操作過程。該小組采用基于模型的系統工程(MBSE)方法,使用SE工具Innoslate來開發概念架構。架構分析結合了藍軍(BLUFOR)防空傳感器、武器裝備和聯合網絡,創建了一個OV- 5b/6c行動圖,描述了AI-AMD決策輔助輸出與JP 3-60聯合目標定位程序步驟協同應用,以消除敵人的威脅(參謀長聯席會議2018)。為了完成其任務,BLUFOR系統(SoS)執行36項業務活動:AI-AMD內部的17個決策點和外部系統的19個功能(包括傳感器行動和網絡通信)。該團隊使用實驗設計(DOE)、離散事件和隨機模擬分析了架構分析的結果,發現在目標定位過程中高壓力的AMD場景需要完全自動化水平,而低壓力的AMD場景需要最低水平的自動化。該團隊開發了一個決策風險矩陣,顯示出高壓力情況下的風險可以通過完全的自動化水平來降低。目標定位過程中17個步驟中的每個步驟的風險評估都被分為四類:低、中低、中和高。團隊制定了一個相關的風險值來進行風險評估確定。團隊利用Parasuraman的自動化水平(1-10級)來進行風險評估,將決策風險與目標定位過程中各個步驟的自動化水平聯系起來(Parasuraman, Sheridan, and Wickens 2000)。該小組開發并使用了一條效用曲線來幫助確定每個自動化水平所節省的時間。自動化程度越高,節省的時間就越多。
該項目側重于單一威脅的交戰,以了解殺傷鏈過程中AI-AMD的時機。該小組進行了M&S分析,以證明AI-AMD架構的能力。該小組使用Innoslate MBSE工具和Microsoft Excel進行了離散事件模擬。在大量投資于行動圖之前,團隊使用Excel來評估元模型。仿真的主要重點是建立AI-AMD在不同壓力水平下的時間性能,如低、中、高。次要目標是將該模型發展為可交付的設計工具,在NPS用于未來研究。該小組從公開來源的威脅數據中選擇了三個有代表性的交戰:低壓力情景(時間軸為58.65分鐘),中度壓力情景(時間軸為9.72分鐘),以及高壓力情景(時間軸為1.51分鐘)。該小組的M&S分析結果顯示,在低壓力情景下,僅由人類做出的決策(自動化水平1)導致對飛入時間為58分鐘或以上的敵方威脅的AMD殺傷率達到100%。對于中度威脅情景(代表AI-AMD對每個作戰活動決策節點的不同自動化水平(如6到10)),1000次隨機運行的數據結果顯示所有交戰的平均完成時間為8.08分鐘。當AI-AMD系統被設置為較高的自動化水平時,該系統在中等威脅情況下成功地進行了AMD防御。高壓力場景的分解時間線允許每個作戰活動決策節點有0.09分鐘。該小組將人工智能-AMD系統設置為在高壓力情景下僅由人工智能進行決策(自動化水平10)。高壓力場景的結果表明,在自動化程度為10級的情況下,有可能成功應對敵人的威脅。該小組進行了敏感性分析,以探索替代的基本代表分布(基線、對稱變量擴散和高度傾斜)的影響。雖然分布形狀的變化確實影響了結果,但在每一種情況下,只有在人工智能支持的節約率超過97%的情況下,才會在高壓力場景中取得成功。
該項目研究了人工智能方法如何應用于AMD決策,以提高自動化水平,減少人類-人工智能團隊的執行時間(人工智能輔助決策)。該團隊自上而下地分析了AMD殺傷鏈:從OODA到尋找、固定、跟蹤、目標、參與和評估(F2T2EA)。該小組確定了17個關鍵決策點,在這些決策點上,提高自動化水平可以提高AMD的決策速度。潛在的自動化水平與每個不同步驟相關的風險進行了平衡。該小組使用M&S來評估人工智能-AMD系統在低水平的自動化("無 "人工智能)到高水平的自動化("有 "人工智能)下的決策的及時性。由此產生的AI-AMD概念架構的高層次能力被記錄下來,隨著系統技術的成熟,建議利益相關者考慮。該團隊確定了現有和未來的人工智能方法及其在AMD殺傷鏈中的潛在應用。該小組已經確定了未來人工智能-AMD的迭代需求,以研究整個戰場上具有多種威脅和參與的更復雜的情況。
聯合戰區級模擬--全球行動(JTLS-GO?)是一個互動的、網絡化的、聯合和聯盟的兵棋推演系統。JTLS-GO從全球一體化作戰層面的角度表現軍民決策環境,其中包括空中、陸地、海上、太空、情報、后勤和特種作戰。這些環境可以被配置和擴展,以考察國家戰略(SN)、戰略戰區(ST)、作戰(OP)和戰術(TA)戰爭層面的聯合任務、行動、功能和使命。重要的是要理解JTLS-GO主要是一個作戰層面的模擬。
執行概述描述了模擬的基本操作,包括主要的軟件程序和構成系統的眾多小型支持程序。這些不同的、相互依賴的程序相互配合,以準備場景,運行模擬,并分析結果。本概述還提供了運行模擬系統所需的軟件和標準硬件的描述。JTLS-GO可以在一臺或幾臺計算機上同時運行,可以是單一的,也可以是多個分布的站點,這取決于訓練或分析環境和場景的大小。它是獨立于戰場的,不需要編程知識就可以執行。第4頁強調了一些新的模擬能力和特點。
JTLS-GO是一個復雜的模擬,專門設計來研究不斷變化的戰爭模式。來自作戰指揮部(COCOMs)、軍種、后備部隊、國民警衛隊、戰斗支援機構(CSA)、聯合參謀部(JS)和聯合特遣部隊(JTFs),包括北約和聯盟軍隊的領導人和主管都了解這一點,因為他們必須在國家戰略的背景下不斷地規劃、計劃、預算和執行財政政策。
本出版物針對JTLS-GO的主要版本和維護版本進行了更新和修訂。