隨著當前海軍戰爭的趨勢轉向自動化作戰武器系統,美國海軍正將其戰略重點放在人工智能(AI)能力上,以減少作戰人員行動時間。這個系統工程(SE)項目使用約翰-博伊德的觀察、定向、決策和行動(OODA)概念和海軍陸戰隊規劃過程(MCPP)(Angerman 2004;美國海軍部2016)來代表人類-人工智能決策過程。空中和導彈防御(AMD)的殺傷鏈是通過簡化聯合目標定位理論“JP 3-60”(參謀長聯席會議2018)來體現的。殺傷鏈過程中提高操作動化水平被證明可以大大減少執行時間,如果進一步發展和實戰化,將為海員和海軍陸戰隊提供防空的戰術優勢。通過使用專家系統和人工智能加速殺傷鏈將大大縮短交戰時間,有效地擴大戰斗空間。
該項目開發了用于防空和導彈防御的人工智能(AI-AMD)架構,該架構旨在通過對威脅進行優先排序并在人類用戶的最小介入下采取行動來改善作戰決策。該項目專注于理解和評估空空導彈防御(AMD)的殺傷鏈,通過確定使用AI-AMD可以更快地執行行動。項目組確定并評估了與應用于殺傷鏈過程中各個步驟的AI-AMD自動化水平相關的風險。該小組進行了建模和模擬(M&S)分析,以比較低水平自動化("無 "人工智能)的殺傷鏈和高水平自動化("有 "人工智能)的殺傷鏈,根據節省的時間來評估改進。
該團隊在M&S分析的基礎上開發了高度自動化的AI-AMD決策輔助作戰能力的概念,并確定了有可能應用于未來AI-AMD架構的現有和未來人工智能方法。該團隊按照美國防部的架構框架(DODAF)進行了架構分析,以確定AI-AMD的操作過程。該小組采用基于模型的系統工程(MBSE)方法,使用SE工具Innoslate來開發概念架構。架構分析結合了藍軍(BLUFOR)防空傳感器、武器裝備和聯合網絡,創建了一個OV- 5b/6c行動圖,描述了AI-AMD決策輔助輸出與JP 3-60聯合目標定位程序步驟協同應用,以消除敵人的威脅(參謀長聯席會議2018)。為了完成其任務,BLUFOR系統(SoS)執行36項業務活動:AI-AMD內部的17個決策點和外部系統的19個功能(包括傳感器行動和網絡通信)。該團隊使用實驗設計(DOE)、離散事件和隨機模擬分析了架構分析的結果,發現在目標定位過程中高壓力的AMD場景需要完全自動化水平,而低壓力的AMD場景需要最低水平的自動化。該團隊開發了一個決策風險矩陣,顯示出高壓力情況下的風險可以通過完全的自動化水平來降低。目標定位過程中17個步驟中的每個步驟的風險評估都被分為四類:低、中低、中和高。團隊制定了一個相關的風險值來進行風險評估確定。團隊利用Parasuraman的自動化水平(1-10級)來進行風險評估,將決策風險與目標定位過程中各個步驟的自動化水平聯系起來(Parasuraman, Sheridan, and Wickens 2000)。該小組開發并使用了一條效用曲線來幫助確定每個自動化水平所節省的時間。自動化程度越高,節省的時間就越多。
該項目側重于單一威脅的交戰,以了解殺傷鏈過程中AI-AMD的時機。該小組進行了M&S分析,以證明AI-AMD架構的能力。該小組使用Innoslate MBSE工具和Microsoft Excel進行了離散事件模擬。在大量投資于行動圖之前,團隊使用Excel來評估元模型。仿真的主要重點是建立AI-AMD在不同壓力水平下的時間性能,如低、中、高。次要目標是將該模型發展為可交付的設計工具,在NPS用于未來研究。該小組從公開來源的威脅數據中選擇了三個有代表性的交戰:低壓力情景(時間軸為58.65分鐘),中度壓力情景(時間軸為9.72分鐘),以及高壓力情景(時間軸為1.51分鐘)。該小組的M&S分析結果顯示,在低壓力情景下,僅由人類做出的決策(自動化水平1)導致對飛入時間為58分鐘或以上的敵方威脅的AMD殺傷率達到100%。對于中度威脅情景(代表AI-AMD對每個作戰活動決策節點的不同自動化水平(如6到10)),1000次隨機運行的數據結果顯示所有交戰的平均完成時間為8.08分鐘。當AI-AMD系統被設置為較高的自動化水平時,該系統在中等威脅情況下成功地進行了AMD防御。高壓力場景的分解時間線允許每個作戰活動決策節點有0.09分鐘。該小組將人工智能-AMD系統設置為在高壓力情景下僅由人工智能進行決策(自動化水平10)。高壓力場景的結果表明,在自動化程度為10級的情況下,有可能成功應對敵人的威脅。該小組進行了敏感性分析,以探索替代的基本代表分布(基線、對稱變量擴散和高度傾斜)的影響。雖然分布形狀的變化確實影響了結果,但在每一種情況下,只有在人工智能支持的節約率超過97%的情況下,才會在高壓力場景中取得成功。
該項目研究了人工智能方法如何應用于AMD決策,以提高自動化水平,減少人類-人工智能團隊的執行時間(人工智能輔助決策)。該團隊自上而下地分析了AMD殺傷鏈:從OODA到尋找、固定、跟蹤、目標、參與和評估(F2T2EA)。該小組確定了17個關鍵決策點,在這些決策點上,提高自動化水平可以提高AMD的決策速度。潛在的自動化水平與每個不同步驟相關的風險進行了平衡。該小組使用M&S來評估人工智能-AMD系統在低水平的自動化("無 "人工智能)到高水平的自動化("有 "人工智能)下的決策的及時性。由此產生的AI-AMD概念架構的高層次能力被記錄下來,隨著系統技術的成熟,建議利益相關者考慮。該團隊確定了現有和未來的人工智能方法及其在AMD殺傷鏈中的潛在應用。該小組已經確定了未來人工智能-AMD的迭代需求,以研究整個戰場上具有多種威脅和參與的更復雜的情況。
美國陸軍未來與概念中心 未來戰爭部主任 克里斯-羅杰斯上校
歷史上的戰爭包含了大量改變戰爭性質的工具和技術的例子。自最初研究多域作戰(MDO)以來,美國陸軍發現人工智能是一種新興技術,有可能改變戰爭的特點,也許也會改變戰爭的性質。使用人工智能(AI)解決方案來緩解軍事問題是過去兩年未來戰爭研究、檢查和學習的一個反復出現的主題。作為2019年未來研究計劃的一部分,我們與陸軍、聯合、多國、學術和科技組織合作,探索和了解人工智能對多軍種的影響,并為未來的研究和發展制定一個操作框架。
多域作戰的人工智能運作最終報告提供了采用人工智能的組織框架,以幫助陸軍和聯合部隊更好地定義所需的能力以及相關的數據和網絡架構,以實現多域能力部隊。描述聯合部隊如何采用人工智能解決方案,為了解人工智能在時間和空間上對多域作戰的影響提供了一個操作說明。本報告確定并解決了與人工智能相關的好處、機會和挑戰,為進一步分析提供了基礎。諸如人工智能等新興技術使陸軍不僅可以改進當前的戰術、技術和程序,而且可以創造新的運用和融合能力的方法。
該報告支持美國陸軍人工智能任務組,該組織負責制定陸軍的人工智能戰略和政策。本文通過描述部隊如何在整個MDO框架內采用人工智能解決方案和相關技術,啟動了陸軍的人工智能運用工作。這份報告使概念發展團體能夠修改陸軍功能概念和戰場發展計劃。它為能力發展團體提供了作戰視角和部隊在確定所需能力時必須考慮的技術影響。此外,該報告還為作戰概念文件或基于能力的評估提供了開發情景或小插曲的基礎。該文件為科學和技術界提供了行動背景,以便為人工智能研究、開發、建模和模擬提供信息和指導。最后,它支持制定一個在未來使用人工智能的全面愿景,以告知陸軍現代化的努力,這將創造有能力的MDO部隊,準備好與任何對手作戰并取得勝利。
人工智能(AI)是未來聯合部隊實現多域作戰(MDO)全部潛力的基礎。人工智能系統提供了跨越領域、電磁頻譜和信息環境戰勝對手的能力。在競爭中使用這些系統使聯合部隊能夠近乎實時地了解作戰環境,從而更好地運用能力來擊敗旨在破壞區域穩定的威脅行動,阻止暴力升級,并將被拒絕的空間變成有爭議的空間。在從競爭到武裝沖突的過渡中,人工智能的機動、火力以及情報、監視和偵察能力為聯合部隊提供了拒絕敵人奪取優勢地位的能力。改進的維持能力與攻擊敵人的反介入/空中拒止網絡的能力相結合,為美國部隊提供了奪取作戰、戰略和戰術優勢位置的能力。通過由人工智能支持的多領域聯合行動圖(MDCOP)增加了解,使美國部隊有能力協調多領域的效果以創造優勢窗口。
制定人工智能的作戰概念使陸軍能夠更好地理解這些技術對戰爭的性質和特征的潛在影響。描述陸軍如何在未來的作戰環境中使用人工智能,有助于說明其對戰爭的暴力、互動和基本的政治性質的影響,以及戰爭不斷演變的特點。本文提供了一些小插曲(附錄A),說明了人工智能的組織運用,為美國陸軍RAS總體概念、作戰和組織概念、基于編隊的作戰概念以及系統或單個系統的運用概念的潛在發展提供信息。
人工智能的運作影響到未來部隊將如何運作,如何針對對手開展行動,以及指揮官如何利用軍事藝術和科學,運用部隊能力來實現預期效果和目標。在2019年未來研究計劃(FSP19)期間,人工智能工作線(LoE)確定了與實施人工智能支持的多領域解決方案有關的以下問題:
數據管理--AI/ML應用程序依賴于對策劃的數據的訪問,以便發揮作用。陸軍必須培養一種以數據為中心的文化,以標準化的格式和協議有效地生成、存儲和訪問數據。人才管理的努力必須側重于發展、培訓和保留一支精通數據的員工隊伍。這可以通過以下方式實現:
在整個部門培養一種以數據為中心的文化
投資于整個員工隊伍的數據科學培訓
簡化數據訪問
設計和實施協議,以確保數據的可發現、可訪問、可共享和可互操作性
功能分解--狹義的人工智能本質上是有限的,構建算法的數據科學家需要精確的問題定義,準確確定聯合部隊的要求。
可解釋人工智能--人工智能支持的系統需要有能力解釋決策/建議和所采取的行動背后的邏輯。這種解釋 "為什么"的能力是人類對人工智能智能體的信任基礎。
邊緣計算/人工智能--未來的作戰環境與有爭議的電磁頻譜預期要求有能力向前處理極其龐大的數據集,以及能夠自主行動的人工智能平臺。
利用商業部門--美國防部實驗室繼續在人工智能/ML發展方面取得重大進展,特別是與聯邦資助的研究和發展中心合作。商業部門繼續探索和擴大可能適用于軍事應用的工作。
作為FSP19的一部分,人工智能LoE開發了五個小插曲和一個概念草圖(見附錄A),以協助人工智能和機器學習的運作。這些小插曲說明了聯合部隊如何利用人工智能/ML來解決多領域行動所需的關鍵能力。MDCOP概念將依靠幾個有限內存的人工智能來建立和維護描繪整個戰場的藍、紅、綠活動。一個反應式機器人工智能將為特定的指揮官和總部定制MDCOP。合作傳感、維持、攻擊和瞄準的小插曲依靠反應式機器人工智能來優化傳感器覆蓋、維持吞吐量、攻擊順序和射手選擇。
未來部隊需要人工智能來充分實現多領域作戰的潛力。人工智能支持的系統使未來部隊能夠進行信息收集和分析,以便在時間有限和信息競爭的環境中增加對形勢的了解。這種能力使快速、知情和合理的決策成為可能。人工智能的決策支持代理將減輕作戰人員的認知工作量并提高整體效率。由人工智能支持的無人系統將探測、識別和穿透高風險區域,以提高開展行動和保護部隊、人口和資源的能力。人工智能使MDO在與近似對手的沖突規模下實現了作戰速度的要求。
美國海軍陸戰隊正在探索使用人機協作來控制前線部署環境中的無人駕駛航空系統(UAS),其任務范圍廣泛,包括情報、監視和偵察(ISR)、電子戰(EW)、通信中繼和動能殺傷。美國海軍陸戰隊設想使用未來的垂直起降平臺(VTOL)來支持混合戰爭任務并實現軍事優勢。對于美國海軍陸戰隊的混合戰爭應用,以實現任務優勢和戰爭主導權,美國海軍陸戰隊需要了解VTOL機組和無人機系統之間錯綜復雜的人機互動和關系,以獲得戰斗空間態勢感知,并有效地計劃和執行針對常規和不對稱威脅的旋轉翼行動。這項研究的重點是美國海軍陸戰隊在海洋環境中的打擊協調和偵察(SCAR)任務,以促進遠征基地先進作戰(EABO)在沿岸地區。有多種復雜的功能必須加以考慮和評估,以支持人機協作互動,提高任務的有效性:任務規劃、移動和滲透、區域偵察、偵察戰斗交接和過渡。
這份頂點報告探討了SCAR任務期間三個系統之間的人機協作:UAS、VTOL和地面控制站(GCS)。該研究從VTOL項目的文獻回顧開始,研究了美國海軍陸戰隊SCAR任務戰術和用于促進EABO的理論概念。此外,它還包括對自主性和自動化、人工智能和機器學習的研究。通過使用合作設計模型來探索這三個系統的人機協作互動和過程,文獻回顧探討了如何使用基于三個因素的相互依賴性分析(IA)框架來確定人類執行者和機器團隊成員之間的相互依賴性:可觀察性、可預測性和可指導性。
通過基于模型的系統工程(MBSE)工具,將SCAR任務的高級功能分解為分層次的任務和子任務,系統分析被用來支持聯合設計方法。根據Johnson(2014)的說法,合作設計方法研究了相互依賴的概念,并使用IA框架作為設計工具。IA框架捕捉了主要執行者和支持團隊成員之間的互動,以發展支持每個主要任務和分層子任務的所需能力,從而產生HMT要求。這份頂點報告分析了兩種選擇。第一個方案認為UAS是主要執行者,VTOL和GCS是輔助團隊成員。第二種方案認為VTOL是主要執行者,UAS和GCS是輔助團隊成員。基于這兩種選擇,IA框架評估了17個主要任務、33個分層子任務和85個執行SCAR任務的所需能力。
此外,研究發現需要一個強大的數字任務規劃系統,如升級后的海軍陸戰隊規劃和行動后系統(MPAAS),通過存儲以前的任務和經驗教訓的數據來促進機器學習。美國海軍陸戰隊將面臨無人機系統的處理能力和信息存儲方面的挑戰。應盡一切努力增加UAS的處理能力。必須實施一個有效的主要、備用、應急和緊急(PACE)通信計劃,以確保UAS、VTOL和GCS之間所有通信平臺的冗余。美國海軍陸戰隊必須實施支持信任、提供快速反饋和簡單操作的接口。
最后,為了準確評估VTOL、UAS和GCS之間的HMT要求,頂點報告促成了一個探索性實驗的發展,該實驗將在海軍研究生院(NPS)建模虛擬環境和模擬(MOVES)實驗室使用,以促進未來的研究。制定了操作要求和測量方法,以確定HMT要求的有效性。
這項頂點研究為在SCAR任務中執行VTOL/UAS混合行動的人機互動復雜性提供了明確的證據。該頂點研究確定了使用系統分析和協同設計作為一種有效的方法,通過IA框架促進人機協作需求的發展。此外,該研究確定了對復雜的自主性和技術準備程度的需求,這可能是目前還沒有的。頂點建議美國海軍陸戰隊繼續研究人機協作,并利用SCAR任務探索性實驗來進一步完善和研究VTOL/UAS的高級系統要求,以支持具有前沿部署的UAS的混合行動,重點是實現4級自主權。
目前,人工智能(AI)為改造許多軍事行動領域提供了巨大的機會,包括作戰、指揮與控制(C2)、后勤、安全和維護,以提高其整體作戰效率。空中和導彈防御(AMD)是一個特別復雜的任務領域,人工智能的應用至關重要。空中導彈防御任務指的是保衛國土、保護區、地面基地、地面部隊或艦艇免受敵對的空中或導彈威脅。AMD的威脅包括敵對的飛機、無人駕駛飛行器(UAV)或機載導彈。AMD行動的復雜性源于威脅的嚴重性、威脅的意外性、對形勢認識的不確定性以及事件的快速發展,因為作戰人員必須迅速評估形勢,制定適當的行動方案,并最好地利用他們的戰爭資產來應對。美國國防部(U.S. DOD)正在研究使用AI系統(或AI-enabled AMD[AI-AMD]系統)作為AMD作戰人員的自動決策輔助工具,以大大減少他們的認知負荷(Jones等人,2020),使AMD決策更快、更好。
人工智能的一個關鍵方面已經聚集了大量的研究興趣,那就是信任。信任是有效團隊的一個基本原則。它同時適用于人類和人機團隊。信任使團隊成員能夠很好地合作,是有效團隊表現的基礎(Lee and See 2004)。與人工智能系統的成功合作將需要人類對人工智能系統有一個校準的信任和依賴程度(泰勒等人,2016)。
隨著更先進和更快的空中和導彈威脅彈藥的發展和投入使用,操作人員更需要在AMD行動中迅速作出監測。不及時的決策和反應將導致災難性的后果。因此,人工智能是一個可能的解決方案,通過自動決策輔助工具加快和加強決策過程。這些AMD自動戰斗管理輔助工具可以幫助戰術操作人員應對更快的決策周期、大量的數據以及需要觀察的幾個系統或屏幕(Galdorisi 2019)。然而,為了有效地利用人工智能能力的潛力,需要操作員的高度信任。操作員對系統的信任程度低,可能會導致人工智能-AMD系統利用不足,受到不適當的監控,或者根本不使用(Floyd, Drinkwater, and Aha 2016)。這些問題中的任何一個都可能導致操作者的工作量不必要的增加,或者任務失敗的可能性。
論文對信任的定義、人機交互(HMI)的概念、信任因素以及包括AMD殺傷鏈模型、威脅場景、架構、模型和功能在內的概念模型進行了廣泛的回顧。有了這樣的認識,論文提出了人工智能-AMD系統的信任框架,對人機交互和人工智能-AMD系統信任因素的描述。論文最后提出了在人類操作者和AI-AMD系統之間實現校準信任的策略。
信任框架始于對系統背景的分析。圖1顯示了AI-AMD指揮與控制(C2)系統(包括AI-AMD操作員和決策輔助工具)及其他與之互動的子系統的背景圖,這些子系統有助于操作員和AI-AMD決策輔助工具之間信任的發展。背景圖使我們能夠研究各系統之間的相互作用,以及它們對AI-AMD操作員和決策輔助工具之間信任動態的影響。
圖1. AI-AMD系統框架圖。
這篇論文將信任定義為操作者的態度,即AI-AMD決策輔助工具將有助于實現操作者的目標,即在一個以不確定性和脆弱性為特征的作戰環境中迅速摧毀來襲威脅的任務。這種信任的定義表明,它是對操作者相信或感知AI-AMD決策輔助工具的一種情感評估。為了積極地影響信任,操作者必須親自看到并感受到AI-AMD決策輔助行動的優勢。AI-AMD行動涉及很多不確定因素,以及天氣、電磁干擾和地形等環境因素以及不斷變化的威脅的性質所帶來的脆弱性。操作員將預期AI-AMD決策輔助系統按照 "合同 "執行,以處理這些不確定性和脆弱性。這些合同將是人工智能-AMD決策輔助工具應該執行的感知功能或任務,以及執行這些功能或任務的理想表現。
圖2說明了操作員和AI-AMD決策輔助工具之間的信任框架。y軸代表人類對AI-AMD決策輔助系統的信任程度,x軸代表AI-AMD決策輔助系統的能力。綠色的45°虛線表示最佳的信任水平或校準的信任線,其中的信任與AI-AMD的能力相對應,導致正確的利用(Lee and See 2004)。過度信任由最佳信任水平線以上的區域表示,此時的信任超過了系統能力,導致誤用。低于理想信任水平線的區域表示不信任,這時的信任沒有達到系統能力,導致濫用。假設存在一些默認的信任水平(如黃框所示),目標是制定一個策略,以提高AI-AMD輔助決策能力的信任。在使用該系統時,可能會發生違反信任的情況,從而降低操作員的信任。因此,信任修復行動必須被納入,以保持信任在最佳水平。
圖2. 人類操作員和AI-AMD決策輔助工具之間的信任。
基于功能分配的操作員和AI-AMD決策輔助工具之間的人機交互研究表明,操作員和AI-AMD決策輔助工具應該被設計成在大多數殺戮鏈功能中作為一個 "團隊"運作。這引導論文研究了單獨和集體考慮人類和決策輔助的信任因素。對操作員和人工智能-AMD決策之間的人機交互的研究還顯示,操作員的角色已經從手動控制器變成了監督控制器。因此,一個值得信賴的決策輔助工具是很重要的,因為操作者會期望系統的表現符合預期,以幫助操作者更好地履行他的角色。另外,為了進一步幫助減輕操作者的認知工作量,信息的外部表示、決策輔助工具的建議必須易于閱讀和理解。
關于信任因素,本論文提出了一個 "由外而內 "的框架,如圖3所示。論文首先考慮了與操作環境相關的因素,這些因素描述了AMD操作系統的背景。第二,它研究了與組織環境相關的因素,操作人員和人工智能-AMD系統得到了培訓和發展。第三,論文研究了操作人員和人工智能-AMD決策輔助工具之間的交互,以提出與操作人員、人工智能-AMD、單獨和集體相關的因素。
圖3. 建議的信任因素
圖4顯示了擬議的戰略銜接圖,以實現操作者和AI-AMD輔助決策之間的校準信任。對信任定義、人機界面和信任因素的審查表明,該戰略應關注三個關鍵領域:(1)人類對自動化技術和AI-AMD決策輔助系統的集體和個人感知;(2)增強操作員和AI-AMD決策輔助系統的團隊活力;(3)AI-AMD決策輔助系統的可信度,重點是系統開發。該戰略利用DOTMLPF-P框架提出了三個關鍵原則和五個支持原則。首先,軍事作戰人員需要被告知自動化技術的真正能力和局限性,特別是AI-AMD輔助決策。第二,操作員的培訓要求必須增加,以應對新的工作范圍和不斷變化的威脅。第三,必須在人工智能-AMD決策輔助系統的開發中加入新的要求,以提高系統的可感知的可信度。這三個關鍵原則得到了DOTMLPF-P框架其他方面的支持,如組織、領導、人員、設施和政策。
圖4. 實現操作員和人工智能-AMD決策輔助工具之間校準信任的戰略銜接圖
融合項目(PC)是一項美國陸軍學習活動,旨在整合和推進他們對聯合部隊(陸軍、海軍、空軍和海軍陸戰隊)的貢獻。根據研究和分析中心(TRAC)-蒙特雷的說法,"PC確保陸軍作為聯合戰斗的一部分,能夠快速和持續地整合或'融合'所有領域的效果--空中、陸地、海上、太空和網絡空間,以便在競爭和沖突中戰勝對手"(研究和分析中心[TRAC]2020)。目標是評估在PC21上展示的新的創新系統(SoS)技術是否滿足為聯合部隊提供必要的速度、范圍和融合所需的作戰能力,以產生未來的決策主導權和大國競爭的超能力。然而,鑒于PC期間各種現代技術的注入,TRAC-蒙特雷目前缺乏一種方法來衡量作戰效果以及作為軍隊和聯合部隊的融合是否正在實現。因此,本項目的重點是制定一個概念性的評估框架,以確定在PC21演習中測試的多域作戰(MDO)任務中SoS的作戰有效性。這個框架將集中在那些被證明可以減少傳感器到射手(S2S)時間的技術的行動有效性,以便在聯合MDO任務中消滅一個固定的目標。
該小組確定,對某一特定能力的功能分解,結合用于開發MOE的Langford綜合框架的修改版,將產生描述該特定能力的行動有效性的良好措施。為了將衡量標準轉化為價值分數,團隊使用了構建價值尺度的理想范圍方法,該方法為每個衡量標準建立了一個從最好到最壞的情況,使其具有適應任何能力的靈活性。帕內爾的搖擺加權法被用來量化利益相關者對每個蘭福衍生的MOE的重要性,以確定能力的每個MOE的加權價值分數(WVS)。WVS相加得出總分,這就提供了對運營有效性的最終評估。然后,該團隊產生了一個行動有效性量表,向利益相關者說明他們的能力在這個量表中的得分情況。
該項目最后針對概念評估框架應用了PC21用例,以衡量其在生成與用例中的能力最相關的MOE以及單一行動有效性分數方面的穩健性。該模型的最終驗證將在目前計劃于2021年10月開始的PC21期間進行。
總之,該團隊使用系統工程流程建立了一個概念性評估框架系統,該系統將使TRAC-Monterey有能力評估PC21期間展示的新的創新SoS技術的作戰能力。該團隊開發了一個利益相關者分析,一個由利益相關者衍生的目標層次,一個功能分解,以及一個創建良好措施的過程,將這些措施轉化為價值分數,量化措施的重要性,并將產生的價值匯總為一個單一的、行動有效性分數。該框架將為利益相關者提供信息,使他們能夠就進一步的技術開發做出明智的決定。TRAC-Monterey還可以將本研究中制定的衡量標準作為指南,在整個PC21和未來的PC活動中收集相關信息。
建議 TRAC 在 PC21 期間對照 S2S 用例 1-1 驗證概念性評估框架。還應采用其他用例來測試框架的靈活性和可用性。還建議進一步研究行動效率的認知方面,以及如何利用這些信息來擴大本評估框架的范圍。TRAC和JMC向團隊表示,PC的努力將有助于改寫聯合行動的理論。
現代戰術戰爭需要迅速而有效的決策和行動,以便在經常是高度動態和復雜的戰區保持競爭優勢。需要考慮的因素的數量因不確定性、事件的快速發展和人為錯誤的風險而放大。自動化、人工智能和博弈論方法的潛在應用可以為作戰人員提供認知支持。這項研究以自動兵棋推演輔助決策的形式探索了這些應用。該團隊為這個未來的系統開發了一個概念設計,并將其稱為兵棋推演實時人工智能輔助決策(WRAID)能力。
頂點項目的目標是探索自動化、人工智能和博弈論的應用,作為支持未來WRAID能力的方法。該團隊為WRAID能力開發了需求、概念設計和操作概念。該小組確定并探索了可能對未來實施WRAID能力構成障礙的挑戰性領域。該小組調查了與使用人工智能來支持戰爭決策有關的倫理挑戰和影響。
本報告首先對與WRAID能力相關的主題進行文獻回顧。文獻回顧從人工智能的回顧開始,提供了一個關于人工智能如何工作以及它能夠完成什么類型任務的概述。文獻綜述探討了人機協作的方法,以支持未來指揮官和人類用戶與WRAID系統之間的互動。需要翻譯指揮官的意圖,并讓WRAID將有意義的輸出傳達給指揮官,這需要一個強大的界面。審查包括傳統的兵棋推演,以研究目前的模擬兵棋推演是如何進行的,以便深入了解,未來的WRAID能力如何能夠實時復制兵棋推演的各個方面,并認為以前的兵棋推演可以為人工智能和機器學習(ML)算法的發展提供訓練數據。ML算法的訓練需要大量的代表性數據。文獻回顧研究了人類的認知負荷,以深入了解人類大腦的認知技能和上限;并確定人類思維的極限,以顯示人工智能可能提供的支持。文獻綜述中涉及的最后一個主題是,傳統的計劃和決策,以了解目前在軍事上如何制定戰術行動方案。
該小組進行了需求分析和利益相關者分析,探索WRAID能力如何支持作戰人員。該小組在需求分析的基礎上為WRAID系統開發了一套需求。這些要求被歸類為:硬件/軟件,人機界面,和道德規范。第一階段的分析結果包括 (1)戰爭的復雜性需要發展一種未來的WRAID能力,這種能力利用自動化方法,包括人工智能、ML和博弈論,(2)WRAID能力需要大量的計算能力和復雜的軟件算法,(3)實現未來WRAID系統的挑戰將是技術和道德的。
未來WRAID系統的概念設計是基于需求分析的。概念設計被記錄在一套系統模型中,包括背景圖、系統視圖、功能工作流程圖和操作視圖。該團隊開發了一個作戰場景,以支持對WRAID能力如何在作戰中使用。
在開發WRAID的過程中,預計會有一些路障。開發WRAID系統的技術是存在的,然而,研究小組發現數據挑戰、人工智能訓練、程序限制和當前系統工程的局限性將是需要解決的障礙。數據挑戰指的是獲得足夠的數據集的能力,這些數據集代表了訓練ML算法所需的真實世界的戰術行動和兵棋推演分析。程序性挑戰包括國防部實施網絡安全、機密數據、數據庫訪問和信息分配協議的能力。系統工程方面的障礙是需要新的方法來設計安全和可靠的人工智能系統,如WRAID能力。將需要SE方法來處理不可預見的故障模式,并在系統生命周期的早期確定根本原因。
對像WRAID能力這樣的人工智能系統的倫理考慮是系統發展的一個重要因素。開發系統以取代倫理學,將使系統更有可能被部署。有幾個有道德問題的自主武器系統被拉出來作為WRAID能力的道德對話的基礎。通過一個示例場景,對道德狀況進行定性分析,以了解在部署WRAID能力時可能出現的道德問題。倫理學在未來的技術中發揮著巨大的作用;從一開始就考慮到倫理學,建立技術是很重要的。
未來的重點需要放在繼續對想象中的WRAID系統采取正規的系統工程方法。WRAID系統需要一個強大的數據集,需要收集和注釋;收集的定性兵棋推演數據越多,WRAID系統的可行性和準確性就越高。與軍事部門的合作對于最大化WRAID的利益至關重要,例如情報和偵察組織。WRAID的模擬將是完善系統要求和創建現實模型的關鍵。關于如何使用WRAID的培訓和文檔應該同時開發,所以利益相關者,特別是指揮官已經準備好,知道如何使用這個新工具。未來的研究領域包括認知工程、基于正式模型的系統工程和人機協作。
隨著目前技術進步的速度和外國的目標,人工智能將在未來的沖突和戰爭中發揮作用。自上而下的指令將需要設計和實施WRAID能力:提供大量的資源,解決操作和文化變化,重組系統工程,并確保網絡安全和收購變化。實現未來的WRAID能力并不是一個微不足道的任務。然而,它對確保現在和未來的戰斗空間優勢至關重要。
前沿作戰基地(FOB)防御是一項人力密集型任務,需要占用作戰任務的寶貴資源。雖然能力越來越強的無人駕駛飛行器(UAV)具備執行許多任務的能力,但目前的理論并沒有充分考慮將其納入。特別是,如果操作人員與飛行器的比例為一比一時,并沒有考慮提高無人機的自主性。本論文描述了使用先進機器人系統工程實驗室(ARSENL)蜂群系統開發和測試自主FOB防御能力。開發工作利用了基于任務的蜂群可組合性結構(MASC),以任務為中心、自上而下的方式開發復雜的蜂群行為。這種方法使我們能夠開發出一種基于理論的基地防御戰術,在這種戰術中,固定翼和四旋翼無人機的任意組合能夠自主分配并執行所有必要的FOB防御角色:周邊監視、關鍵區域搜索、接觸調查和威脅響應。該戰術在軟件模擬環境中進行了廣泛的測試,并在現場飛行演習中進行了演示。實驗結果將使用本研究過程中制定的有效性措施和性能措施進行討論。
2019年,美國海軍陸戰隊司令大衛-H-伯杰將軍發布了他的規劃指南,作為塑造未來四年的部隊的一種方式。他在其中指出:"我們今天做得很好,我們明天將需要做得更好,以保持我們的作戰優勢"[1]。這句話摘自海軍陸戰隊司令大衛-H-伯杰將軍的《2019年司令員規劃指南》(CPG),呼吁采取集中行動,以應對海軍陸戰隊在未來戰爭中預計將面臨的不斷變化的挑戰。在為海軍陸戰隊確定未來四年的優先事項和方向的CPG中的其他指導,呼吁建立一個 "適合偵察、監視和提供致命和非致命效果的強大的無人駕駛系統系列"[1]。伯杰將軍進一步呼吁利用新技術來支持遠征前沿基地作戰(EABO)。EABO將需要靈活的系統,既能進行有效的進攻行動,又能進行獨立和可持續的防御行動。簡而言之,實現EABO將需要最大限度地利用每個系統和海軍陸戰隊。
從本質上講,伯杰將軍正在呼吁改變無人駕駛飛行器的使用方式。通過使用大型的合作自主無人飛行器系統,或稱蜂群,將有助于實現這一目標。無人飛行器蜂群提供了在人力需求和后勤負擔增加最少的情況下成倍提高戰場能力的機會。正如伯杰將軍所提到的 "下一個戰場",海軍陸戰隊將必須利用各種技術,最大限度地利用自主性和每個作戰人員在戰場上的影響。
目前的無人系統使用理論是以很少或沒有自主性的系統為中心。另外,目前的系統依賴于單個飛行器的遠程駕駛;也就是說,每輛飛行器有一個操作員。部隊中缺乏自主系統,這在監視和直接行動的作戰能力方面造成了差距。此外,側重于一對一操作員-飛行器管理的無人系統理論要求操作員的數量與車輛的數量成線性比例。這對于 "下一個戰場 "來說是不夠的。相反,海軍陸戰隊將需要能夠讓操作員擺脫束縛或提高他們同時控制多個飛行器的能力系統[2]。
考慮到這些目標,美國海軍研究生院(NPS)的先進機器人系統工程實驗室(ARSENL)已經開發并演示了一個用于控制大型、自主、多飛行器的系統,該系統利用了分布式計算的優勢,并將駕駛的認知要求降到最低。ARSENL在現場實驗中證明了其系統的功效,在該實驗中,50個自主無人駕駛飛行器(UAV)被成功發射,同時由一個操作員控制,并安全回收[3]。
這項研究的主要目標是證明使用無人機蜂群來支持前沿作戰基地(FOB)的防御。特別是,這需要自主生成、分配和執行有效的、符合理論的基地防御所需的子任務。這部分研究的重點是開發基于狀態的監視、調查和威脅響應任務的描述;實施支持多飛行器任務分配的決策機制;以及任務執行期間的多飛行器控制。
輔助研究目標包括展示基于任務的蜂群可組合性結構(MASC)過程,以自上而下、以任務為中心的方式開發復雜的蜂群行為,探索自主蜂群控制和決策的分布式方法,以及實施一般的蜂群算法,并證明了對廣泛的潛在蜂群戰術有用。總的來說,這些目標是主要目標的一部分,是實現主要目標的手段。
基地防御戰術的制定始于對現有基地防御理論的審查。這一審查是確定該行為所要完成的基本任務和子任務的基礎。然后,我們審查了目前海軍陸戰隊使用無人機的理論,以確定這些系統在基地防御任務中的使用情況。
在確定了任務要求的特征后,我們為基地防御的整體任務制定了一個高層次的狀態圖。子任務級別的狀態圖等同于MASC層次結構中的角色。
ARSENL代碼庫中現有的算法和游戲以及在研究過程中開發的新算法和游戲被用來在ARSENL系統中實現子任務級的狀態圖。最后,根據高層次的狀態圖將這些游戲組合起來,完成基地防御戰術的實施。
在游戲和戰術開發之后,設計了基于理論的有效性措施(MOE)和性能措施(MOPs)。通過在循環軟件(SITL)模擬環境中的廣泛實驗,這些措施被用來評估基地防御戰術。在加利福尼亞州羅伯茨營進行的實戰飛行實驗中,也展示了該戰術和游戲。
最終,本研究成功地實現了其主要目標,并展示了一種包含周邊監視、關鍵區域搜索、接觸調查和威脅響應的基地防御戰術。此外,開發工作在很大程度上依賴于MASC層次結構,以此來制定任務要求,并將這些要求分解成可在ARSENL蜂群系統上實施的可管理任務。這一戰術在實戰飛行和模擬環境中進行了測試,并使用以任務為中心的MOP和MOE進行了評估。最后的結果是令人滿意的,在本研究過程中開發的戰術被評估為有效的概念證明。
本論文共分六章。第1章提供了這項研究的動機,描述了這個概念驗證所要彌補的能力差距,并提供了ARSENL的簡短背景和所追求的研究目標。
第2章討論了海軍陸戰隊和聯合出版物中描述的當前海軍陸戰隊后方作戰的理論。還概述了目前海軍陸戰隊內無人機的使用情況,并描述了目前各種系統所能達到的自主性水平。
第3章概述了以前自主系統基于行為的架構工作,ARSENL多車輛無人駕駛航空系統(UAS)和MASC層次結構。
第4章對基地防御戰術的整體設計以及高層戰術所依賴的游戲進行了基于狀態的描述。本章還詳細介紹了用于創建、測試和評估這一概念驗證的方法。在此過程中,重點是對每一戰術和戰術所針對的MOP和MOE進行評估。
第5章詳細介紹了所進行的實戰飛行和模擬實驗,并討論了與相關MOPs和MOEs有關的測試結果。
最后,第6章介紹了這個概念驗證的結論。本章還提供了與基地防御戰術本身以及更廣泛的自主蜂群能力和控制有關的未來工作建議。
私營部門不斷收集和整理關鍵數據及其來源,以通過利用數據密集型的人工智能機器學習(AI/ML)技術來確保支持和發展新的業務。大部分行業數據都是有價值的共享資源,而海軍到目前為止還沒有實現這種做法。本頂點研究通過研究、訪談和個人專業知識,探討了海軍在創造數據可用性和質量方面的挑戰性任務。研究側重于過程、技術和管理,采用了詳細需求評估、利益相關者分析、功能設計。其研究結果是一個集中式人工智能庫(CAIL)的概念框架,旨在匹配行業對數據作為關鍵商品的堅定關注。美國海軍需要持久和動態的數字化準備,因此這個擁有70多年美國海軍數據專業知識的頂點團隊建議 OVERMATCH 考慮這些發現并生成一個確保海軍數據可用性和質量的系統。
美國海軍部(DON)對研究和開發人工智能和機器學習(AI/ML)系統的興趣源于這些創新能力對海軍任務和對作戰人員的直接支持所帶來的深遠和改變游戲規則的影響。人工智能/機器學習系統可以被用來改善任務規劃,減少人員配置,改善戰術決策,簡化系統維護和支持,提高安全性,在某些情況下,還可以將作戰人員從危險中移除。戰士日常活動的許多方面將發生變化,從常規和勞動密集型工作的自動化到支持復雜和時間緊迫的戰斗空間決策。
只有當美國國防部首先釋放數據的力量,才能實現AI/ML系統的這些進步。目前,在獲取或"釋放"DON的數據以開發未來的AI/ML系統方面存在許多障礙。整個海軍的數據主要停留在"筒倉"或難以訪問的數據庫中,每個"筒倉"都在其領域內受到保護。在DON的數據領域內,定位、請求、獲取和策劃數據的過程并不正式。米勒(2021)說:"數據的所有者是美國人民。海軍只是管理人和監護人"。這句話包含了將數據從孤島中 "解放"出來的需要,以使海軍真正成為一個以數據為中心的企業,并實現海軍的數字化準備。
這個頂點項目開始了一項研究,以了解美國防部內AI/ML開發人員的數據需求,并制定一個概念性的解決方案來解決數據需求。其他目標是:
研究AI/ML方法如何在DON任務中應用。
了解數據需求是否在DON任務中普遍是標準的,或者數據需求是否在DON任務中有所不同。
制定一套 DON AI/ML利益相關者的要求。
為一個支持DON AI/ML數據需求的系統制定一個概念性設計。
研究實施概念性解決方案系統的潛在成本和進度效益。
時區團隊(Team Time Zone)應用系統工程分析方法研究DON AI/ML開發人員的數據需求,并開發和評估一個概念性的系統解決方案,以解決這一數據挑戰,并最終支持DON未來的數字準備,以解決復雜的任務。該團隊通過采訪三個不同的海軍任務領域的主題專家(SME)來進行利益相關者的需求分析:系統維護、物理安全和戰備。這三個任務被認為是 "數據提供者"的代表。此外,該團隊還采訪了數據研究人員和AI/ML科學家,以了解他們的數據需求。訪談為團隊提供了基于獨特和不同領域和經驗的關注、挫折、經驗教訓和挑戰的洞察力。從數據提供者的角度來看,反復出現的主題包括所有權的劃分、信息保障的需要、數據未被收集或存儲的情況以及對可訪問性的擔憂。從數據用戶的角度來看,明顯的軼事包括尋找數據的耗時,承諾的數據并不總是能夠實現,以及即使在獲得數據后,理解數據的背景也是至關重要的。該小組根據利益相關者的訪談和信息收集工作,為DON AI/ML制定了一套數據要求。DON AI/ML的數據需求是:
數據必須能夠被外部組織訪問。
數據必須被翻譯成與其領域應用兼容的標準格式。
數據必須有確定的所有者。
數據必須伴隨著描述性的元數據。
數據必須有標準化的管理。
數據必須以其 "最低標準"的形式被訪問。
數據必須具有保護和適當共享的安全性。
數據必須具有混淆性,以保護個人身份信息(PII)。
數據必須伴有背景信息。
為了解決DON數據研究人員和AI/ML科學家確定的數據需求,Team Time Zone開發了一個中央AI庫(CAIL)系統的概念設計,作為解決方案。CAIL系統的目的是簡化 DON內部的數據訪問和管理,以支持AI/ML系統的開發。CAIL系統旨在減少訪問數據的時間(和相關費用),騰出更多時間用于AI/ML系統的實際開發、培訓和評估。該團隊提出,為了滿足未來計劃的訪問和整合要求,CAIL需要成為一個 "數據云"。圖1是CAIL的OV-1;它描述了為AI/ML開發簡化DON數據訪問和管理的擬議過程。
圖1. CAIL OV-1
該團隊根據六個主要類別制定了CAIL系統要求:數據準備、數據偏差、數據整理、數據分類、數據治理和數據安全。每一個類別都是針對利益相關者分析過程中發現的需求。CAIL系統將主要與外部聯合數據、數據庫、文件和權威數據生產商/供應商的內容對接。它將像 "谷歌 "一樣為DON用戶尋找數據。數據將是結構化的,并將伴隨著元數據(關于數據的描述性信息),使數據可以被搜索。一個管理數據的社區將提供規則來管理對數據的安全訪問和授權。
在利益相關者的分析中,很明顯,在訪問數據之前需要進行一些重要的活動。AI/ML開發人員解釋了了解數據收集方式、數據來源以及其他有關數據的特定領域的背景方面的重要性。Team Time Zone將這些過程指定為 "預CAIL活動",并將其作為整個CAIL過程的一部分。
Team Time Zone進行了成本分析,以估計為DON實施CAIL系統的成本。該團隊使用了兩種方法來估計成本:傳統的成本估計和基于模型的系統工程(MBSE)方法。該小組估計CAIL系統的成本(基于傳統的成本估算)為3380萬美元,持續時間為5年,每年的重復維持成本為400萬美元。團隊估算的CAIL系統成本(基于MBSE方法),在運行了一萬次蒙特卡洛模擬后,平均為3290萬美元,持續時間為5年。運營和維護模型的平均成本為每年440萬美元。表1顯示了CAIL開發和維護成本的摘要。
表1. CAIL系統成本匯總
為了使DON的AI/ML項目蓬勃發展,并在未來幾十年內實現AI/ML的進步,DON必須確保數據的管理,并使AI/ML的發展能夠被訪問。Team Time Zone提出的CAIL系統解決方案將為AI/ML項目提供一個單一來源的綜合數據環境,以訪問存儲在整個DON各種數據庫中的數據庫目錄。Team Time Zone建議海軍實施CAIL系統,通過確保AI/ML開發者訪問持久和動態的數字數據來支持數字準備。CAIL系統支持DON項目和開發人員的協調方法,以安全訪問數據。該小組建議超配項目(Project Overmatch)考慮這些發現并實施CAIL系統和流程,以確保海軍的數據可用性和質量。該小組開發了一個CAIL標志(見圖2),表明CAIL系統是海軍的一個重要基礎。
圖2:CAIL標志。改編自美國海軍標志。
技術的進步給軍事領域帶來了新的威脅類型和現有威脅的改進版本。對抗性威脅的進步要求海軍改進現有的能力并開發新的能力,以提高防御能力并應對這些威脅。能力的增強需要提高速度、隱身性、機動性、反措施、擴大范圍、更早發現和更大的殺傷力。這些增強的能力使我們能夠在不確定的、復雜的和時間緊迫的條件下做出關鍵決定。現代戰術作戰人員面臨著越來越復雜的決策空間。他們需要獲得對動態戰斗空間的態勢感知,并確定有效的行動方案(COA)以滿足任務需求。圖1強調了造成這種戰術復雜決策空間的因素。決策的復雜性來自于威脅環境,來自于知識的不確定性,來自于戰爭和信息系統本身,來自于作戰人員與自動化系統和信息系統的互動和使用所產生的挑戰,以及任務決策的重要性或后果的嚴重性。
圖1:戰士的復雜決策空間。資料來源:Johnson (2021).
美國國防部(DOD)和海軍部(DON)正在研究使用人工智能(AI)來解決復雜的戰術決策空間,通過改善態勢感知和提供自動決策輔助來支持戰術作戰人員。利用人工智能方法的先進算法可以通過減少信息過載、改善態勢感知、提高決策速度和加強一般的戰術決策來減輕作戰人員的認知負荷。預測分析(PA)可以支持對系統可靠性和故障概率的預測,這為物流提供了廣泛的改進(Zhao和Mata 2020)。諸如PA等技術可以通過開發 "what-if "和 "if-then "情景來加強戰術決策,通過預測決策選擇的長期影響來改善戰士的COA決策(Johnson 2020)。人工智能方法可以通過檢測異常情況和從大量的安全攝像機數據中識別可能的威脅來改善海軍基地的物理安全。
米切爾(2019)將人工智能定義為一個包括許多不同方法的領域,以創造具有智能的機器。圖2顯示,人工智能存在于一套廣泛的自動化方法中,使機器能夠根據命令和規則執行任務。人工智能是使系統能夠執行模仿人類智能的功能的一套方法。機器學習(ML)方法是人工智能方法的一個子集。ML方法允許系統從被訓練的大型數據集上學習。ML系統從訓練的數據集中學習。然后,這些 "訓練有素 "的ML系統在操作上被用來識別模式,并在新的操作數據下產生預測的結果(Johnson 2021)。
圖2:什么是人工智能?資料來源:Johnson (2021)。
人工智能算法是編碼的計算機程序,用于對數據進行分類、分析和得出預測。監控、交通預測和虛擬個人助理是實施ML算法的應用實例。
開發人工智能系統,特別是ML系統,是一項具有挑戰性的工作。ML算法的初始訓練是一個數據密集型的演變。人工智能/ML系統對數據要求很高,其準確性在很大程度上取決于數據訓練集的質量和數量(Godbole 2020)。作為一個參考點,訓練DeepMind的AlphaGo Zero系統學習下圍棋花了大約40天,包括2900萬場比賽(Feldman, Dant, and Massey 2019)。想象一下人工智能/ML武器系統算法所涉及的額外復雜性,它需要考慮戰爭背景(戰爭游戲、冷戰、和平時期)、朋友或敵人、道德和合法性等概念(Feldman, Dant, and Massey 2019)。
隨著美國防部開始開發人工智能和ML方法,出現了獨特的數據挑戰。開發人員需要大量的驗證數據來訓練他們的算法;這些數據需要準確、安全和完整,以確保算法不會被破壞或有偏見。這些數據集必須代表適當的操作環境。對于海軍的應用,訓練數據必須代表眾多的任務,包括海上、空中、太空、水下、沿岸、網絡和陸基領域的任務。盡管許多海軍司令部和實驗室正在研究和開發基于人工智能/ML系統的未來能力,但沒有協調的程序來獲取他們所需的海軍數據。在許多情況下,數據是存在的,但要確定國防部的數據來源并獲得數據是一項耗時和昂貴的工作。
這個頂點項目采用了系統工程分析方法來研究DON AI/ML開發者的數據需求,并確定和評估一個概念性的系統解決方案來解決這個數據挑戰,并最終支持未來DON的數字準備來解決復雜的任務。
DON對研究和開發AI/ML系統的興趣為各種應用帶來了數據挑戰。盡管DON的許多指揮部和實驗室正在研究和開發基于AI/ML系統的未來能力,但沒有一個協調的程序來訪問他們所需的DON數據。AI/ML系統需要大量的驗證數據來支持他們的發展和訓練算法。在許多情況下,數據是存在的,但要確定美國防部的數據來源并獲得數據是一項耗時和昂貴的工作。這個頂點研究了這個問題,并進行了需求分析,以確定DON AI/ML開發人員的數據需求,并開發和評估了解決DON數字準備這方面的解決方案概念。
這個頂點項目的主要目標是分析 DON AI/ML 開發的數據需求,并開發一個概念性的解決方案來解決數據需求。其他目標是
研究AI/ML方法如何在DON任務中應用。
了解數據需求在DON任務中是否有普遍的標準,或者數據需求在DON任務中是否有差異。
制定一套 DON AI/ML利益相關者的要求。
為一個支持DON AI/ML數據需求的系統制定一個概念性設計。
研究實施概念解決方案系統的潛在成本和進度效益。
時區團隊由五個具有不同學術和專業經驗的NPS系統工程學生組成。該團隊由以下人員組成。
Robert French于2016年畢業于Old Dominion大學,獲得了計算機工程和電子工程的學士學位。他目前是位于弗吉尼亞州弗吉尼亞海灘的海軍水面作戰中心Dahlgren分部-Dam Neck附件的特殊傳感器技術部門的R.F.工程師。羅伯特也是美國艦隊司令部海上作戰中心N6(信息系統)的高級入伍領導(USNR)。他曾在現役中擔任電子技術員超過14年,并成為現役預備役軍人達9年之久。
Wallace Fukumae前擁有夏威夷大學的電子工程學位。他目前居住在夏威夷,為海軍太平洋信息戰中心工作,擔任印度-太平洋部門主管。他的經驗包括指揮和控制(C2)系統的開發和交付以及操作。
Kheng Hun目前居住在日本,擁有華盛頓大學的電子工程學位。他目前在海軍信息戰中心(NIWC)太平洋分部工作,擔任位于日本橫須賀的夏威夷西太平洋(HWP)分部的項目工程師。他的專業背景包括設計和安裝各種C4I系統,如電子安全系統(ESS)和網絡系統以及MILCON項目的C4I系統規劃。
Obed Matuga擁有馬里蘭州巴爾的摩市摩根州立大學的工業工程學位,在華盛頓特區的海軍海洋系統司令部工作。與宙斯盾和艦船自衛系統一起工作,目前居住在馬里蘭州。
Caitlyn O’Shaughnessy于2015年畢業于馬薩諸塞大學達特茅斯分校,獲得計算機科學學士學位。她目前是羅德島紐波特的海軍海底作戰中心的CANES(S.S.)項目的首席工程師。
圖3描述了時區團隊(Team Time Zone)的組織結構和每個團隊成員的主要職責。圖中還顯示了NPS的項目顧問,Bonnie Johnson博士(系統工程系)和美國海軍上尉Scot Miller(退役)(信息科學系)。
圖3:團隊時區組織圖
時區團隊采用了系統工程的方法來進行這個項目。圖4說明了該團隊的過程。團隊從需求分析開始,以了解問題并為DON AI/ML開發者定義數據要求。在這個階段,團隊確定了三個DON任務領域作為AI/ML應用的代表性領域。接下來,團隊在功能分析和系統綜合的基礎上,制定了一個名為中央人工智能庫(CAIL)系統的解決方案戰略的概念設計。該小組對CAIL系統進行了建模,并利用DON的三個任務領域來分析實施CAIL系統的效用和潛在的成本/進度效益。該團隊的分析過程涉及幾種分析方法,包括定性調查、定量調查、建模和模擬、數據結構和格式分析、需求分析和操作概念評估。
圖4:頂點項目的方法
首先,該團隊通過進行需求分析和為海軍AI/ML開發人員制定一套數據要求來確定需求的定義。該團隊確定了利益相關者,并與來自不同海軍任務領域的AI/ML開發者會面,以了解他們的數據需求。該小組進行了文獻回顧,以收集背景信息并了解當前的人工智能/ML方法。團隊對來自利益相關者會議和文獻審查的信息進行了匯編,以了解與支持海軍AI/ML應用有關的要求和限制、數據所有者、數據源、數據系統、數據元素和數據屬性。
該小組研究并確定了利益相關者和三個海軍任務主線的獨特數據要求:系統維護、實體安全和戰斗群準備。該小組確定并采訪了任務領域的主題專家(SMEs),以了解獲得AI/ML實施數據的過程,并關注需要從DON系統和組織中收集和存儲哪些數據。圖5說明了海軍的三個任務主線,以及數據、架構、基礎設施和互操作性能力在支持這些作戰人員任務領域方面的直接潛在重要性。
圖5:美國防部任務領域
接下來,團隊根據需求分析結果,制定了一個概念設計方案,以解決海軍對人工智能/ML發展的數據需求。該團隊綜合了CAIL系統,并生成了CAIL操作概念(CONOPS)和CAIL功能模型。基于國防部建筑框架(DODAF)和系統建模語言(SysML),該團隊開發了概念模型,詳細說明了CAIL的系統特征、功能和操作概念。
頂點項目的最后階段是團隊對CAIL解決方案方法的評估和分析。該團隊使用Innoslate(一種基于模型的系統工程工具)開發了一個模型,以表示CAIL系統在三個海軍任務主線中的使用情況。該小組評估了CAIL系統的能力,以簡化和改善收集、格式化、策劃、驗證和確保安全訪問海軍任務數據集的過程,以支持在三個海上任務線領域工作的AI/ML開發人員。對該模型進行了評估,以估計海軍實施CAIL系統的潛在成本和調度效益。CAIL系統模型被用來驗證和確認需求。
第一章提供了項目的介紹和動機,描述了問題陳述、項目目標,以及團隊的組織和完成項目的方法。
第二章總結了團隊的文獻回顧,為需求分析提供了基礎,強調了訓練AI和ML算法所需的數據。文獻回顧包括對數據科學、統計學習、深度學習、分類學以及支持AI和ML系統的企業信息技術解決方案的信息探索。
第三章包含了團隊的需求分析結果。
第四章包含了對團隊的概念性解決方案--CAIL系統的描述。
第五章介紹了團隊對CAIL系統的分析和評估結果,該系統是解決海軍在支持AI/ML發展方面的數據挑戰的解決方案。
最后,第六章討論了擁有CAIL系統的影響和結論以及對后續研究和工作的建議。
過去的決策是如何做出的,其驅動力、戰略和理由是什么?關于組織應該如何從過去的經驗中學習以幫助在未來做出更好的決策,這句老話是正確的。目前的第一階段研究著眼于美國防部(DOD)如何灌輸機構企業記憶。具體來說,該研究對如何開發一個透明的決策選項登記冊(DOR)綜合智能數據庫系統進行測試并提出建議,其中DOR有助于捕捉國防部(DOD)內部項目的所有歷史決策(假設、數據輸入、約束、限制、競爭目標和決策規則)。這個DOR中的信息將與元語義搜索和數據科學分析引擎兼容。DOR用于對未來的決策方案進行建模,以便在不確定的情況下做出決策,同時依靠過去的最佳實踐,使高級領導層能夠做出可辯護的、實用的決策。目前第一階段的研究使用程式化的數據和例子來說明推薦的方法。
這項研究采用先進的定量建模方法(隨機模擬、投資組合優化),加上人工智能(AI)和機器學習(ML)算法(數據搜刮、文本挖掘、情感分析)和企業風險管理(ERM)程序,實施行業最佳決策分析。DOR將部分基于使用風險登記冊的ERM方法,其中不同的風險元素被細分為不同的GOPAD組,或目標(軍事能力、成本節約、新技術、未來武器能力、公共安全、政府優先事項、指揮偏好,等等。 )、組織(空軍、陸軍、海軍、海軍陸戰隊)、計劃(采購、商業現貨、聯合產業、混合等)、活動(庫存、替換、新開發、研究和開發等)和領域(空中、海上、網絡等)類別。
多個相互競爭的利益相關者(例如,國防部長辦公室、海軍作戰部長辦公室、美國國會和平民)有其特定的目標(例如,能力、效率、成本效益、競爭力和殺傷力,以及替代方案和權衡)、約束(例如,時間、預算、進度和人力)和基于任務的領域需求(例如,平衡網絡安全、網絡反恐、反潛戰、反-飛機戰或導彈防御)。
這項研究采取了多學科的方法,來自先進分析、人工智能、計算機科學、決策分析、國防采購、經濟學、工程和物理學、金融學、期權理論、項目和計劃管理、隨機建模的模擬、應用數學和統計學的方法被應用。最終的目標是為決策者提供可操作的情報和對未來決策選項或靈活的真實選項的可見性,以及導致某些可比較決策的假設。
推薦的方法包括使用監督和無監督的AI/ML情感文本分析、AI/ML自然語言文本處理以及AI/ML邏輯分類和支持向量機(SVM)算法,再加上更傳統的高級分析和數據科學方法,如蒙特卡洛模擬、隨機組合優化和項目選擇、使用財務和經濟指標的資本預算,以及PROMETHEE和ELECTRE等詞匯學排名方法。
介紹了案例應用、代碼片段和模擬的DOR,并以典型的數據來說明其能力。目前的研究成果將為下一階段的多年研究提供基礎,將建立原型,實際數據可以通過規定的分析引擎運行。
這項擬議研究的目的是生成一個透明的決策選項登記冊(DOR)綜合智能數據庫系統,該系統有助于捕捉所有未來的歷史決策,包括其假設、數據輸入、約束、限制、競爭目標和國防部(DOD)的決策規則。該DOR中的信息將與元語義搜索和數據科學分析引擎兼容。DOR用于對未來的決策選項進行建模,以實施和實現在不確定的情況下做出決策,同時依靠過去的最佳實踐,并允許高級領導層做出可辯護的和實用的決策。
DOR是基于私營企業的企業風險管理(ERM)實踐,通常會列出過去、現在和未來擬議項目的風險和經驗教訓。建立一個決策歷史的文件數據庫是至關重要的。如果沒有曲線,就沒有學習曲線,而沒有任何數據或信息就不可能有曲線。有了目前這項研究中推薦的DOR和相關方法,我們可以通過觀察新項目的特點,以歷史數據為參考,計算出新項目的成功和失敗的概率,從而預測結果。當然,有必要對成功與失敗進行操作和定義。僅僅因為一個項目低于預算,按時完成,幾乎不需要返工,達到了所有要求的規格和技術發布水平,這是否意味著它是成功的?我們還可以用什么其他的指標來確定明確的成功或明確的失敗,以及在這兩者之間的所有其他層次呢?我們需要確定可用的數據以及差距,以使我們有一個堅實的決策選項登記冊。我們在操作上定義的成功和失敗的一些統計學上的重要預測因素是什么?另一個問題是減輕風險和戰略靈活性。
這項研究將展示業界最佳的決策分析和企業風險管理(ERM)程序。DOR將部分基于使用風險登記冊的ERM方法,其中不同的風險元素被細分為不同的GOPAD組,或目標(軍事能力、成本節約、新技術、未來武器能力、公共安全、政府優先事項、指揮偏好,等等。 )、組織(空軍、陸軍、海軍、海軍陸戰隊)、計劃(采購、商業現成的、聯合產業、混合等)、活動(庫存、替換、新開發、研究和開發等)和領域(空中、海上、網絡等)類別。
多個相互競爭的利益相關者(如國防部長辦公室、海軍作戰部長辦公室、美國國會和平民)有其特定的目標(如能力、效率、成本效益、競爭力和殺傷力,以及替代方案和權衡)、限制(如。時間、預算、時間表和人力),以及基于任務的領域要求(例如,平衡網絡安全、網絡反恐、反潛戰、防空戰或導彈防御中的數字化轉型需求)。當需要考慮新的決定時,這些因素是至關重要的。一個保存機構知識和記憶的DOR數據庫將有助于這種努力,并為決策注入信任。
這項研究將采取多學科的方法,我們將應用先進的分析方法、人工智能、計算機科學、決策分析、國防采購、經濟學、工程和物理學、金融、期權理論、項目和項目管理、隨機建模的模擬、應用數學和統計學。最終的目標是為決策者提供可操作的情報,以及對未來決策選項或靈活的真實選項的可見性,并提供導致某些可比決策的假設。
在法律糾紛中,法院在決定案件的結果時使用先例。先例的使用已經有200多年的歷史,通常是為了上訴或推翻以前的判決。然而,基于先例的決策是工業界和政府還沒有完全接受的東西。由于人力資本的波動和外流,以及雇員離開或被重新分配到其他地方時機構知識的流失,包括國防部在內的各組織往往記憶短暫。目前的研究旨在包括對基于先例的決策技術現狀的相關研究是如何進行的,什么可能被認為是技術現狀,以及其目前的局限性是什么。
該研究應用了多種新穎的方法,以提高其在生成一個強大的、可搜索的DOR數據庫方面的成功率。建議將包括關鍵參數、假設、輸入數據、保存的模型和計算、做出的決定、領導的輸入和重寫、約束和限制、最終目標和其他相關信息,然后可以使用機器學習的情感分析,加上刮削算法和自定義詞匯集的文本挖掘來挖掘。該系統的用戶將能夠把基于先例的洞察力應用于他們當前和未來的項目。此外,在可能的情況下,預測值將由隨著時間推移捕獲的實際值來補充。這允許對以前的項目進行事后分析,并提供一路走來的經驗教訓。掌握關鍵決策的歷史將有助于高級領導層做出更可信和可辯護的決定,這可能最終導致國防部的法律和法規變化。
擬議的方法將允許收集可應用于各種領域的數據,包括但不限于綜合風險管理?方法,其中可以運行蒙特卡洛模擬、隨機組合優化等隨機分析,以及高級數據分析方法、人工智能和數據科學方法。隨著時間的推移,可以應用回溯分析來更新DOR,使其更接近國防部的需求。該系統應該能夠收集不同類型的經濟數據(總生命周期成本、總擁有成本、采購成本、成本遞延、以及進度和風險成本);后勤數據(例如。固有可用性、有效可用性、任務可靠性、操作可靠性、平均停機時間、平均維護時間、后勤延遲時間、實現可用性、操作可用性、任務可用性、實戰能力、創造性和新穎技術的李克特水平以及其他指標);定性的主題專家估計(戰略價值、對社會的價值、指揮部優先事項、法律和監管影響得分等);以及市場可比性,以操作國防部利益的各種要素。在適當的時間間隔內,可以采用非線性判別分析、神經網絡、分布式擬合、有限因變量、路徑依賴的偏最小二乘法等反擬合分析,以找出導致一個項目或采購中某些決策成功或失敗的關鍵成功因素。
目前的研究是重要的,因為它將在國防部的決策過程中創造一個重大的差異。國防部一直在為決策分析、資本預算和投資組合優化尋找更好的、理論上合理的、定量上嚴格的分析方法。具體的興趣在于如何識別和量化每個項目對軍隊的價值,并優化選擇正確的項目、系統和能力組合,使一些軍事價值(戰略、作戰或經濟)最大化,同時受到預算、成本、進度和風險限制。這項研究應用了私營部門和行業的最佳實踐,再加上先進的分析方法和模型,以幫助創建這些方法來做到這一點。然而,國防部的獨特性要求我們做更多的工作,以確定對軍隊的價值概念,同時考慮競爭的利益相關者的需求。國防部在其投資回報中需要有可辯護的、量化的、強有力的軍事價值概念,以做出最佳的資金決策,如在哪里投資、投資多少、投資多長時間。在國防部的非經濟環境中進行替代方案分析和平衡成本效益權衡時,這些決策選擇(戰略順序復合實際選擇、最佳時機選擇、增長選擇和其他選擇,以擴大、收縮和放棄)是至關重要的。國防部將提供歷史上保存下來的關于假設的各種替代性未來、模擬的替代方案以及為什么做出某些決定的見解。
人工神經網絡(NN)是一個數據驅動的、無分布的非參數方法系列,可用于非線性模式識別、預測建模和預測。神經網絡經常被用來指代生物神經元的組合網絡電路。該術語的現代用法通常也指 "人工神經網絡",包括在軟件環境中重新創建的人工神經元,或節點。這種人工網絡試圖模仿人類大腦中的神經元或神經元節點的思維方式,識別模式,以及在我們的情況下,識別模式來預測時間序列數據。NN方法可用于行為良好的時間序列以及混亂的物理系統。當用于大數據(BD)并與機器學習(ML)方法結合使用時,它可以被視為半監督的人工智能(AI)系統的一個交叉點。NN仍然被認為是半監督的,因為神經網絡需要一個多層次的訓練過程作為激活函數的一部分。例如,一旦系統中的激活被觸發,神經節點的權重和交互式卷積就可以自主地運行。在多層神經元節點中,第一個節點層的結果將成為后續節點層的輸入。
本文提議增加一個內部優化過程,以迭代運行的方式不斷訓練節點,使其最小化一系列的誤差測量,如標準化的誤差平方和,同時平衡和約束Akaike信息準則、Bayes準則和Hannan-Quinn準則。此外,這里的建議是在組合中加入組合模糊邏輯方法,以產生盡可能好的預測。模糊邏輯一詞來自模糊集合理論,用于處理近似而非精確的推理。相對于脆性邏輯,二元集有二元邏輯,模糊邏輯變量可能有一個真值,范圍在0和1之間,不受經典命題邏輯的兩個真值的限制。這種模糊加權模式與組合方法一起使用,可以得到時間序列的預測結果。
Augur(2016)對數據科學的歷史做了一個很好的總結。根據他的研究,"數據科學 "一詞最早出現在1974年,當時Peter Naur發表了題為 "計算機方法簡明調查 "的文章,并將其定義為:"處理數據的科學,一旦它們被建立起來,而數據與它們所代表的關系被委托給其他領域和科學。" 這個詞花了一段時間才流行起來,直到2010年才完全融入白話。數據科學家 "一詞通常歸功于2008年Facebook和LinkedIn的Jeff Hammerbacher和D. J. Patil。在2011年和2012年之間,"數據科學家 "的職位列表增加了15,000%,重點是與大數據的工作。到2016年,數據科學開始在人工智能領域根深蒂固,特別是在機器學習和深度學習的子領域。