亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

前沿作戰基地(FOB)防御是一項人力密集型任務,需要占用作戰任務的寶貴資源。雖然能力越來越強的無人駕駛飛行器(UAV)具備執行許多任務的能力,但目前的理論并沒有充分考慮將其納入。特別是,如果操作人員與飛行器的比例為一比一時,并沒有考慮提高無人機的自主性。本論文描述了使用先進機器人系統工程實驗室(ARSENL)蜂群系統開發和測試自主FOB防御能力。開發工作利用了基于任務的蜂群可組合性結構(MASC),以任務為中心、自上而下的方式開發復雜的蜂群行為。這種方法使我們能夠開發出一種基于理論的基地防御戰術,在這種戰術中,固定翼和四旋翼無人機的任意組合能夠自主分配并執行所有必要的FOB防御角色:周邊監視、關鍵區域搜索、接觸調查和威脅響應。該戰術在軟件模擬環境中進行了廣泛的測試,并在現場飛行演習中進行了演示。實驗結果將使用本研究過程中制定的有效性措施和性能措施進行討論。

第1章:導言

1.1 背景和動機

2019年,美國海軍陸戰隊司令大衛-H-伯杰將軍發布了他的規劃指南,作為塑造未來四年的部隊的一種方式。他在其中指出:"我們今天做得很好,我們明天將需要做得更好,以保持我們的作戰優勢"[1]。這句話摘自海軍陸戰隊司令大衛-H-伯杰將軍的《2019年司令員規劃指南》(CPG),呼吁采取集中行動,以應對海軍陸戰隊在未來戰爭中預計將面臨的不斷變化的挑戰。在為海軍陸戰隊確定未來四年的優先事項和方向的CPG中的其他指導,呼吁建立一個 "適合偵察、監視和提供致命和非致命效果的強大的無人駕駛系統系列"[1]。伯杰將軍進一步呼吁利用新技術來支持遠征前沿基地作戰(EABO)。EABO將需要靈活的系統,既能進行有效的進攻行動,又能進行獨立和可持續的防御行動。簡而言之,實現EABO將需要最大限度地利用每個系統和海軍陸戰隊。

從本質上講,伯杰將軍正在呼吁改變無人駕駛飛行器的使用方式。通過使用大型的合作自主無人飛行器系統,或稱蜂群,將有助于實現這一目標。無人飛行器蜂群提供了在人力需求和后勤負擔增加最少的情況下成倍提高戰場能力的機會。正如伯杰將軍所提到的 "下一個戰場",海軍陸戰隊將必須利用各種技術,最大限度地利用自主性和每個作戰人員在戰場上的影響。

目前的無人系統使用理論是以很少或沒有自主性的系統為中心。另外,目前的系統依賴于單個飛行器的遠程駕駛;也就是說,每輛飛行器有一個操作員。部隊中缺乏自主系統,這在監視和直接行動的作戰能力方面造成了差距。此外,側重于一對一操作員-飛行器管理的無人系統理論要求操作員的數量與車輛的數量成線性比例。這對于 "下一個戰場 "來說是不夠的。相反,海軍陸戰隊將需要能夠讓操作員擺脫束縛或提高他們同時控制多個飛行器的能力系統[2]。

考慮到這些目標,美國海軍研究生院(NPS)的先進機器人系統工程實驗室(ARSENL)已經開發并演示了一個用于控制大型、自主、多飛行器的系統,該系統利用了分布式計算的優勢,并將駕駛的認知要求降到最低。ARSENL在現場實驗中證明了其系統的功效,在該實驗中,50個自主無人駕駛飛行器(UAV)被成功發射,同時由一個操作員控制,并安全回收[3]。

1.2 研究目標

這項研究的主要目標是證明使用無人機蜂群來支持前沿作戰基地(FOB)的防御。特別是,這需要自主生成、分配和執行有效的、符合理論的基地防御所需的子任務。這部分研究的重點是開發基于狀態的監視、調查和威脅響應任務的描述;實施支持多飛行器任務分配的決策機制;以及任務執行期間的多飛行器控制。

輔助研究目標包括展示基于任務的蜂群可組合性結構(MASC)過程,以自上而下、以任務為中心的方式開發復雜的蜂群行為,探索自主蜂群控制和決策的分布式方法,以及實施一般的蜂群算法,并證明了對廣泛的潛在蜂群戰術有用。總的來說,這些目標是主要目標的一部分,是實現主要目標的手段。

1.3 方法論

基地防御戰術的制定始于對現有基地防御理論的審查。這一審查是確定該行為所要完成的基本任務和子任務的基礎。然后,我們審查了目前海軍陸戰隊使用無人機的理論,以確定這些系統在基地防御任務中的使用情況。

在確定了任務要求的特征后,我們為基地防御的整體任務制定了一個高層次的狀態圖。子任務級別的狀態圖等同于MASC層次結構中的角色。

ARSENL代碼庫中現有的算法和游戲以及在研究過程中開發的新算法和游戲被用來在ARSENL系統中實現子任務級的狀態圖。最后,根據高層次的狀態圖將這些游戲組合起來,完成基地防御戰術的實施。

在游戲和戰術開發之后,設計了基于理論的有效性措施(MOE)和性能措施(MOPs)。通過在循環軟件(SITL)模擬環境中的廣泛實驗,這些措施被用來評估基地防御戰術。在加利福尼亞州羅伯茨營進行的實戰飛行實驗中,也展示了該戰術和游戲。

1.4 結果

最終,本研究成功地實現了其主要目標,并展示了一種包含周邊監視、關鍵區域搜索、接觸調查和威脅響應的基地防御戰術。此外,開發工作在很大程度上依賴于MASC層次結構,以此來制定任務要求,并將這些要求分解成可在ARSENL蜂群系統上實施的可管理任務。這一戰術在實戰飛行和模擬環境中進行了測試,并使用以任務為中心的MOP和MOE進行了評估。最后的結果是令人滿意的,在本研究過程中開發的戰術被評估為有效的概念證明。

1.5 論文組織

本論文共分六章。第1章提供了這項研究的動機,描述了這個概念驗證所要彌補的能力差距,并提供了ARSENL的簡短背景和所追求的研究目標。

第2章討論了海軍陸戰隊和聯合出版物中描述的當前海軍陸戰隊后方作戰的理論。還概述了目前海軍陸戰隊內無人機的使用情況,并描述了目前各種系統所能達到的自主性水平。

第3章概述了以前自主系統基于行為的架構工作,ARSENL多車輛無人駕駛航空系統(UAS)和MASC層次結構。

第4章對基地防御戰術的整體設計以及高層戰術所依賴的游戲進行了基于狀態的描述。本章還詳細介紹了用于創建、測試和評估這一概念驗證的方法。在此過程中,重點是對每一戰術和戰術所針對的MOP和MOE進行評估。

第5章詳細介紹了所進行的實戰飛行和模擬實驗,并討論了與相關MOPs和MOEs有關的測試結果。

最后,第6章介紹了這個概念驗證的結論。本章還提供了與基地防御戰術本身以及更廣泛的自主蜂群能力和控制有關的未來工作建議。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

本報告認為,相互作用的地緣政治和技術趨勢提高了歐洲國家面臨的來自彈道導彈或巡航導彈、有人和無人駕駛飛機或其他武器系統的威脅類型和水平。這使得歐洲國家對更好和更綜合的防空和導彈防御(IAMD)的需求變得非常緊迫。目前歐洲的防空和導彈防御能力不能滿足有效抵御全方位威脅的任務。

由于改進的天基傳感器和基于無人系統的傳感器,戰場的透明度正在增加。同時,更精確、更快速、更集成的空中和導彈武器系統的技術正被更多的行為者所掌握。因此,不僅是大國,而且是地區大國和非國家行為者,都比以前更有能力使用或威脅使用這些武器。歐洲的軍事基礎設施和部隊以及民用目標特別容易受到攻擊,這些攻擊使用廣泛的復雜和不復雜的武器組合來壓倒和迷惑防御者。

主動防空和導彈防御系統由傳感器、攔截器和指揮與控制(C2)節點組成。防御者面臨的挑戰是盡可能早地發現威脅,跟蹤它們,并用攔截器阻止它們。在不同的階段需要一系列不同類型的傳感器,雖然攔截器通常是導彈,但也有其他選擇。這個復雜的系統是通過C2單元聯系在一起的。人工操作和自動裝置都會處理來自傳感器的信息,并向發射器發出指令。這些防御系統通常是針對各種類型的威脅而設計的,但對某些威脅的抵抗力往往比其他的強。防御系統可以基于陸地、海洋、空中或太空,并在這些領域內進行組合。它們可以抵御一切威脅,從我們本土的城市和民用基礎設施,到遠離家鄉的軍事基礎設施和部署部隊。因此,防空和導彈防御在戰略、戰區和戰術層面都很重要。

簡而言之,主動防空和導彈防御是一項高要求和高風險的任務。攻擊者和防御者為爭奪優勢而進行著高度競爭的斗爭。因此,防御者不僅要依靠主動防御,還要依靠被動防御措施:隱蔽性、分散性、流動性和硬化。此外,威懾和軍備控制措施應高度降低對手事實上使用這些武器的風險。防御者也可以采用先發制人的措施,試圖在敵方發動(另一次)攻擊之前,利用空中力量或網絡武器摧毀其能力。

報告重點介紹了主動防御措施,并強調這些措施又變得新的重要。最近的例子很容易找到,從2021年的以色列-哈馬斯沖突,2020年的納戈爾諾-卡拉巴赫沖突,到2019年的沙特油田襲擊。所有這些都表明小國和非國家行為者如何創造性地、有效地使用導彈和無人駕駛車輛來尋找和摧毀目標,繞過防御系統或使其飽和。

更令人擔憂的是可能在更大范圍內發生的事情。俄羅斯已經投資于導彈庫,將港口、空軍基地、C2節點和主要軍事力量置于危險之中。這些所謂的反介入區域拒止(A2/AD)能力可以阻止或提高在其附近行動的部隊的成本,或勸阻他們向受到直接威脅的盟友和伙伴提供援助。俄羅斯,與美國和其他主要國家一樣,也在投資高超音速武器,這為大國政治增加了另一個層面的速度和不可預測性。

因此,對歐洲國家來說,改進空中和導彈防御不僅是一個在國家基礎上保護其人民和軍隊的問題:聯盟承諾、地理范圍和威脅的復雜性也要求采取多國辦法。威脅環境的發展速度,以及在戰略、戰區和戰術層面的影響,要求歐洲各國首都有更大的政治緊迫感。

美國在多個地區可能(或成為)軍事上的過度投入,這一概念意味著可行的防空和導彈防御對歐洲的戰略自主權和歐洲對北約的承諾具有強烈的影響。如果美國沒有能力在歐洲迅速采取行動,歐洲國家需要解決方案,既要保護自己的安全,又要維護整個北約的信譽。這也為美國在多個地區的危機中創造了回旋空間,并能抑制大國在危機中迅速升級到并包括核級別的途徑。不斷變化的空中和導彈威脅環境說明了對歐洲工業解決方案的需求。空中和導彈防御對歐洲人口、基礎設施和部隊的威脅是歐洲人應該能夠掌握的最低限度的能力,而不需要依賴他人。但這也是一個加強跨大西洋關系的問題,因為如果各個成員國的核心資產沒有得到適當的保護,聯盟就不能有效地遏制威脅。報告的具體部分可以細分為以下幾點:

  • 威脅

由于地緣政治和技術發展的相互作用,威脅環境正在發生變化。報告發現三個地緣政治的發展,共同直接和間接地影響著歐洲的安全:(1)美國與俄羅斯和中國之間的競爭加劇,為(2)在歐洲和亞洲投資軍事技術,特別是導彈相關技術創造了新的動力。這一趨勢因(3)有關歐洲周邊地區的小國和非國家行為者的動態而得到加強。

這種威脅的常規性質尤其突出。自冷戰結束以來,導彈防御的重點一直是防御來自歐洲周邊所謂無賴國家的少量核武但相當不先進的彈道導彈。然而,常規導彈的質量和數量不斷增加,應該成為重新考慮這一重點的理由。特別是因為這些導彈能力現在得到了無人駕駛飛行器的補充,這些飛行器有助于提高戰場的透明度和精確攻擊,并可用于摧毀關鍵節點,為更先進的武器鋪平道路。2020年在納戈爾諾-卡拉巴赫的戰爭說明了使用這類資產的新的創造性方式;然而,雖然具有高度的破壞性,但與大國之間的潛在沖突相比,它仍然是小規模的。

為了抵消美國在其附近投射力量的能力,同行競爭者俄羅斯等國家正在增加其對軍事基礎設施和陸上、海上和空中力量的打擊能力。他們的武器庫包括短程和中程彈道導彈和巡航導彈、有人和無人駕駛飛機,以及可能在不久的將來的高超音速武器。通過這些能力,俄羅斯可以提高美國和西歐部隊增援北約東翼的難度。雖然可能不是對歐洲東北部安全的最直接威脅,但這些能力仍然使排除俄羅斯制造既成事實變得更加困難。此外,這些導彈技術中的大多數都可以用來瞄準帶有核彈頭或其他非常規彈頭的城市。俄羅斯有可能利用這些能力來勒索歐洲盟友和美國,使其放棄對盟友的援助。

在海洋領域,像伊朗這樣的地區大國可以威脅離海岸越來越遠的船只,也可以利用非國家代理人,從而破壞歐洲船只進出印度洋和通過波斯灣的安全通道。此外,小國和非國家行為者越來越有效地利用無人駕駛飛行器傳感、游蕩彈藥以及火箭和火炮相結合的可能性。這尤其對戰術層面上的陸上軍事單位構成了威脅。例如,這使得歐洲陸軍的穩定任務比以前更有風險。

技術發展也很重要。該報告確認了四個趨勢和發展。(1)由于成本下降,更容易獲得;(2)精度和透明度的提高;(3)時間和空間的壓縮減少了反應時間;(4)在攻擊中結合不同的武器,迷惑和壓倒防御者的能力。

無人駕駛飛行器將在各個層面和陸、海、空領域產生影響。具體來說,無人駕駛飛行器可以使其他能力的效果得到加強或倍增。它們可以為提高戰場的透明度提供持久的感應,或者以其更復雜的形式,提高更復雜的武器的精度。作為游蕩彈藥,它們可以被用來摧毀關鍵的C2或雷達設施,并通過消除這些關鍵節點,為更大規模和更復雜的攻擊掃清道路。雖然更先進的模型可能停留在許多國家和非國家行為者無法企及的地方,但總的來說,它們正迅速成為更多行為者可以獲得的東西。

高超音速武器在短期內構成威脅的程度還不確定。然而,從中長期來看,它們可能會破壞穩定。鑒于可能獲得這些武器的國家數量有限,它們的影響在戰略層面上可能感覺不到,因為大多數核武國家已經擁有充足的能力。可以說被低估的是高超音速武器快速消除關鍵軍事基礎設施--港口、空軍基地、C2節點--的潛在能力,從而在戰區層面重塑沖突的參數。它們的速度、機動性和從多個平臺部署的能力可以在常規戰區級沖突中取得重大影響。

報告的核心信息之一是,關于空中和導彈威脅,真正的新危險在于正在出現的將不同類型的武器結合在一起的能力,這些武器的質量大不相同,可以壓倒和迷惑防御者的系統,或者通過打擊特定的節點來蒙蔽他們。冷戰后,歐洲國家已經習慣于將大部分空中和導彈威脅的危險作為戰略和戰術層面的不同問題來處理,同時能夠在很大程度上忽視大國的戰區級威脅。在新出現的威脅環境中,高端和低端武器的組合構成了一個重大的挑戰,而戰區級的防御措施具體來說是不發達的,不一定是在技術上,而是在概念和理論的運用上,以及攔截器的數量上。我們的研究強調,在戰區一級對軍事基礎設施,如港口、機場、節點以及高價值海軍艦艇的常規威脅被低估了。

總之,技術發展、概念和理論創新以及對數量的投資使潛在的侵略者具有明顯的優勢。在攻擊中結合各種武器系統的能力,以及更多不同的傳感器,已經創造了一個360度的威脅環境。具有不同復雜程度的武器系統可以結合在一起,使防御者的系統達到飽和、混亂并被壓倒。無論是彈道導彈還是高超音速武器、戰斗轟炸機、巡航導彈或無人駕駛飛行器,每種武器系統在速度、彈道、機動性、消耗性和成本方面都有明顯的優勢,可以用來對付防御者的系統。威脅不再主要來自所謂的無賴國家的少量彈道導彈,以及來自非國家行為者。它不僅是一個新的或正在出現的尖端技術如高超音速武器的問題,也是一個具有不同種類的尖端武器的原始數量的問題,特別是對這些武器的創造性使用。歐洲在國防方面的答案也應該在技術、數量以及概念和理論的創新中尋找。簡而言之,在本報告中,我們沒有探討具體防御系統與具體武器的相對質量,而是通過一個全面的戰略視角來具體審視防空和導彈防御問題。

  • 解決方案

該研究提出了一些改善歐洲主動防空和導彈防御的解決方案。

不要再忽視中低級別的威脅了。在過去的幾十年里,對空中和導彈防御的關注主要集中在更高層次的戰略威脅上。但是,隨著在戰區一級結合武器系統進行常規攻擊的可能性越來越大,投資應該轉向那里。無人駕駛飛行器在每個威脅級別上的使用,盡管目的不同,而且往往是為更具破壞性或更復雜的武器鋪路,強調了投資于更好的針對無人駕駛飛行器的點防御是必要的和具有成本效益的。風險在于,組合攻擊將迅速耗盡有限的高端攔截器庫存。

結合防御性解決方案。為了成功的防空和導彈防御,歐洲國家不僅應該為高端威脅投資高端技術,如針對高超音速武器的高能武器,還應該刺激新興和現有技術的創造性應用。畢竟,新出現的威脅環境主要不是技術快速發展的結果,而是注意將現有武器與較新的系統有效結合,以及對武器數量的投資。因此,改進的被動防御措施,如分散性、隱蔽性、機動性和加固性,應與主動防御措施相結合。需要這些措施來抵消精度和戰場透明度的提高。在改進主動和被動防御措施的同時,預防性的解決方案,如空中力量、特種部隊和網絡行動,應被視為有效的解決方案。

投資于庫存。歐洲國家應繼續投資攔截器的數量,無論是陸基、海基還是空基系統。數量很重要,特別是當對手依靠武器組合的飽和攻擊來迷惑和壓倒防御系統時。如果攔截器庫存中沒有內置的冗余,整個防御系統將變得脆弱。雖然這代價很高,但與失去被防御的目標的代價相比,這個代價就顯得微不足道了。但歐洲國家可以對其采購過程更加明智,并協調其采購過程,以確保從生產商那里獲得更好的交易。向工業企業施壓以提高系統之間的互操作性,將有助于陸基和海基系統之間以及歐洲國家和美國之間共享攔截器。

整合武器、技術和投資。歐洲國家應該在國內和國際上更好地整合他們的防空和導彈防御系統,在歐洲內部以及與美國之間。對技術的進一步投資,以更好地整合構成主動防空和導彈防御的各種空基系統的傳感器、攔截器和C2節點,將獲得高額回報。這是一個從已有的東西中獲得更多的東西的問題,而不是一個節約成本的措施。作為永久結構化合作和歐洲防務基金的一部分,正在進行的歐洲項目具有很大的前景。然而,這不僅是一個技術解決方案和智能采購政策的問題,也是一個通過模擬、測試和演習使就業實踐同步的問題。荷蘭可以發揮作用,特別是它的海基傳感能力,這為它提供了一個移動和靈活的利基能力。

強調政治-戰略的緊迫性。如果沒有歐洲對防空和導彈防御投資的共同政治緊迫性,作為爭取更多戰略自主權的一個組成部分,這些解決方案都無法實施。這些是政治選擇,而不僅僅是技術問題。在目前的格局中,歐洲國家在戰略導彈防御和戰區級防御方面高度依賴美國。歐洲在綜合防空和導彈防御方面的改進將大大有助于建立歐洲通過自己的反介入區域拒止能力進行常規威懾的能力。鑒于歐洲無法再確保美國能夠迅速增援歐洲-大西洋和印度-太平洋戰區,因此需要加強歐洲保護關鍵民用和軍事基礎設施的能力,以保護高價值的歐洲資產,以及提高侵略歐洲的成本,同時也為盟友爭取時間,以防美國無法迅速增援歐洲戰區。

總之,在歐洲范圍內加強防空和導彈防御是必要的,并應在公眾辯論中得到更多的關注,盡管它具有技術性。它不能成為個別政府在國家基礎上的事情。鑒于新出現的威脅環境的復雜性,有必要以更聰明和更有效的方式結合歐洲的防御資產。

付費5元查看完整內容

世界各地的軍隊現在正在開發和構想無人機群。蜂群由多個無人駕駛飛行器(UAV)組成,具有一定的自主性,可以導航和感知周圍區域。與 "捕食者 "或 "死神 "相比,它們更聰明、更自主,被設計為自行起飛和降落,自行飛行任務集,自行在空中加油,并自行穿透敵人的防空設施。

在最近和正在進行的敘利亞、也門和納戈爾諾-卡拉巴赫的沖突中,無人機的使用凸顯了大規模應用無人駕駛和自主平臺的意義和效用。這種蜂群也迫使對手消耗彈藥和其他軍事資源,從而以一種能夠進一步精確攻擊或電子反制的方式發出陣地信號。

無人機群的發展和該技術在各國的進一步發展將在后面的段落中介紹。

美國:美國蜂群計劃

為了保持領先地位,美國一直在大力投資于無人機群的研究和開發。美國蜂群計劃中的三項發展特別令人感興趣:Perdix無人機蜂群、低成本無人機蜂群技術(LOCUST)、機器人智能體指揮和傳感的控制架構,即CARACaS系統

Perdix無人機群。2016年10月,美國戰略能力辦公室(SCO)在加利福尼亞發射了一個由103架Perdix無人機組成的蜂群。這些無人機是從三架F/A-18 "超級大黃蜂 "戰斗機上發射的,表明美國空軍有能力結合其先進的空中優勢和 "尖端創新 "來使用蜂群技術的發展。

Perdix無人機是一種微型無人機,因為它的翼展不到30厘米--使它成為在城市環境中運行的理想選擇。它有兩組機翼,一個小型電池組,以及一個內置攝像頭。這是一個簡單的設計,起源于2011年麻省理工學院的林肯實驗室,后來被SCO拿去做實驗。無人機被裝在一個小盒子里,可以從戰斗機上的照明彈分配器中彈出,這是一個重要的解決方案,因為它意味著這些系統可以輕松地安裝在現有的飛機上。該蜂群展示了先進的行為,"如集體決策、自適應編隊飛行和自我修復"。它被比喻為一個集體有機體,共享一個分布式大腦進行決策,并像自然界中的蜂群一樣相互適應。

Perdix系統相互連接并自行形成蜂群,不需要操作員的微觀管理。即使一些系統死亡,蜂群也能做出反應,重新制定模式或完成任務,這意味著一架Perdix無人機的失敗不會導致其他無人機放棄任務。Perdix微型無人機演示如上所示。

LOCUST計劃。Perdix無人機表明向自主運作的硬件邁進,而LOCUST計劃是指所使用的軟件。LOCUST目前正被用于Coyote(叢林狼)無人機,該無人機從一個平臺上發射--與目前美國海軍艦艇上的反艦導彈發射器一致。被認為是獲得攻擊能力的一種更便宜的方式,LOCUST計劃有可能取代單一的、昂貴的反艦導彈。LOCUST系統在40秒內至少發射30個 "叢林狼 "無人機,然后在飛行過程中進行同步,形成蜂群。30架無人機群的價格約為50萬美元,單機價格僅為1.5萬美元,LOCUST的成本不到目前部署的價值百萬美元的魚叉反艦導彈的一半。LOCUST的具體目的是利用低成本的無人機,如Coyote--無人機是可消耗的,因此如果一個被摧毀,"其他的無人機會自主地改變其行為以完成任務"--進入進攻層面。

CARACaS計劃。最后,美國蜂群計劃的第三個發展可以在CARACaS計劃中找到。CARACaS開發的軟件和硬件都可以安裝在美國海軍的任何船只上,這說明走向自主系統的過程正在多個戰場上發生。CARACaS目前用于小型無人船--但也可用于任何船只--并使用群集技術進行操作,使船只能夠相互溝通。這個項目背后的想法是,昂貴但重要的日常任務,如港口巡邏,可以委托給一個無人監督的系統。海軍的CARACaS系統正在消除 "水手生活中枯燥、骯臟和危險的任務"。

小精靈計劃。美國國防高級研究計劃局(DARPA)也展示了X-61A Gremlin空中發射無人機。DARPA的 "小精靈 "計劃背后的想法是將像C-130這樣的貨運飛機變成母艦,能夠在遠離敵人防線的地方發射和回收成群的小型無人機。小精靈 "飛行器長約14英尺,加滿燃料后重約1,600磅。這比Perdix微型無人機大得多。

最初展示的是回收四個Gremlins,從長遠來看,一個C-130可以回收多達16個這樣的飛行器,這取決于操作要求。從概念上講,"小精靈 "也可以從F-16戰斗機、B-52戰斗機和其他飛機上發射,只需對飛機進行少量改裝。這可以大大改變蜂群中的系統數量。

這將為軍方開辟一個可能性的世界,允許部署小型、廉價、可重復使用的無人機群,其傳感器和有效載荷與傳統的飛機不同。

俄羅斯

俄羅斯軍方正在努力開發空中、地面和海上的機器人系統群,其中一些項目已經接近于現實。

早在2017年,在關于 "俄羅斯武裝部隊機器人化 "的年度會議上,就審議了機器人群的概念。

2018年,俄羅斯國防部MOD的 "ERA軍事創新技術城"與高級研究基金會--一個類似于美國 "國防DARPA "的組織--以及莫斯科物理技術學院的科學家一起主辦了無人機群試驗。

同年,關注無線電電子技術公司,一家國有企業集團,聲稱到2025年,它將開發一種能夠控制無人機群的直升機。

2020年,俄羅斯國防部還用三種不同的無人機類型進行了首次空中蜂群試驗,這些無人機在敘利亞被廣泛使用,使俄羅斯軍隊的分層覆蓋范圍擴大到250公里。

Staya-93計劃。俄羅斯國防部的茹科夫斯基和加加林航空學院的科學研究中心目前正在研究Staya-93提案--Staya在俄語中是 "flock"的意思--專注于領導者和跟隨者無人機之間的連接和通信,特別是當無人機可能受到對手的廣泛反制。

Molniya計劃。Kronshtadt設計局最近提出的另一個名為Molniya的蜂群概念涉及從有人和無人的平臺上發射多個噴氣動力的隱形無人機,進行空中和地面打擊,并提供電子戰和偵察能力。

到2021年底,俄羅斯軍隊將獲得多功能遠程無人機,以提供精確打擊,可與有人駕駛飛機以及地面和海基機器人系統一起群起而攻之。這些無人機包括Okhotnik S-70重型戰斗無人機和Altius無人機

俄羅斯國防部對軍用無人機開發的優先事項包括將人工智能元素引入無人機控制系統,同時進行無人機群開發

2021年4月,俄羅斯國防部宣布,它正在進行一個項目,以創建一個專門的無人駕駛飛行器來識別和打擊敵人的潛艇。按照設想,這些無人機將能夠利用人工智能的元素在群中運行。俄羅斯國防部暗示,為了容納必要的設備和武器,可以使用具有大型有效載荷的無人機模型,如S70 Okhotnik或Altius。另一項建議涉及俄羅斯未來的遠程隱形PAK-DA轟炸機發射和指揮無人機群。

高級研究基金會正在開發Marker UGV,作為多種技術的試驗臺,包括地面和空中機器人的人工智能和群集控制。

另一種UGV,即重型Udar,以BMP-3裝甲車底盤為基礎,設想與無人機和UGV編隊協同作戰。

正在接受俄羅斯國防部評估的新Kungas概念涉及一組不同大小的UGV,用于情報、監視和偵察以及戰斗任務。

俄國防部還在設計一個水下微型機器人群,可以在北極條件下連續工作數小時,同時還在為北極探索設計一個巨大的冰山水下概念,將涉及多個有人和無人的平臺。

當談到利用人工智能進行蜂群 "指揮和控制 "時,俄羅斯軍事機構及其專家承認,在開發關鍵算法方面還有很多工作要做。

中國

中國是最接近美國高密度無人機群能力的國家,開發人工智能授權的自主無人機群。最近,中國電子信息研究院(CAEIT)測試了一個由CH-901無人機組成的48×管狀發射無人機群。CAEIT過去曾在2017年展示了一個200個單位的無人機群。中國公司還展示了令人印象深刻的1000多架無人機群,使用四旋翼無人機進行大型公開展示,然而這些無人機是由地面控制的,不具備分布式智能。

中國正在進行現有無人機機群的整合,與軍方進行強有力的協作自主作用。它還有一個忠誠的僚機AVIC 601-S '暗劍'正在開發中,它將與第四代和第五代PLAAF戰斗機平臺一起運行。中國已經保持了一項吉尼斯世界紀錄,即同時飛行3,051架預設程序的無人機。

英國

英國可能在2021年中期擁有世界上第一支可操作的蜂群無人機部隊,以執行包括在敵方防線內執行自殺式任務和壓倒對手防空的任務。皇家空軍的№216中隊已被賦予測試和部署未來無人機群能力的任務。英國還宣布了 "蚊子項目",這是英國皇家空軍的輕量級廉價新型作戰飛機(LANCA)無人駕駛忠誠僚機計劃的一部分。這旨在到2023年飛出一個聯網的無人駕駛僚機。

英國還測試了一個自主的無人機群,每個無人機都攜帶萊昂納多的BriteCloud消耗性主動誘餌的變種,作為電子戰有效載荷。使用含有電子戰干擾器的BriteClouds,無人機能夠對作為假想敵綜合防空網絡代理的雷達發動模擬的非動能攻擊。

法國

法國空中客車公司首次為未來戰斗航空系統(FCAS)/Systeme de Combat Arien du Futur(SCAF)計劃展示了協作式遠程載具(RC)群和僚機技術。

其他國家

以色列正在開發蜂群技術,關于這種舉措的細節被嚴密保護。有趣的是,IAI提供了一個基于智能手機的蜂群指揮和控制應用程序,在全球范圍內銷售。

土耳其已經通過TB-2等國產平臺在敘利亞和利比亞證明了成熟的MALE無人機能力,它也有各種蜂群無人機計劃。其中最主要的是 "卡爾古(Kargu)"四旋翼飛機,它可以在戰術戰場上發揮動能攻擊作用。在未來的日子里,土耳其正在努力成為一個全球無人機大國。

伊朗是另一個在行動上使用無人機的中東國家。伊朗當局將無人機用于兩個主要目的--監視和攻擊,伊朗有能力在地平線上和大多數天氣條件下執行任務。這些無人機包括有能力投擲炸彈或發射導彈并返回基地的無人機和尋找機會目標的 "神風 "無人機。伊朗當局在后者方面取得了更大的成功,這在2019年沙特油田襲擊事件中可見一斑,據稱當時使用了伊朗制造的無人機和巡航導彈。雖然在車輛群方面可能有基本的協作自主權,但伊朗和土耳其都沒有在其無人機群中展示真正的分布式情報能力。但他們的努力清楚地表明了該技術是如何成熟和擴散的。

印度:無人機群發展

印度陸軍展示了一種成熟的進攻能力,由75架具有分布式智能和邊緣計算的自主無人機群組成,在2021年1月新德里的印度建軍節閱兵期間用神風攻擊摧毀了各種模擬目標。在演示中,偵察無人機調查了目標,然后攻擊和母艦無人機釋放有效載荷和裝有炸藥的神風特攻隊無人機,進行攻擊。西方評論家注意到印度陸軍演示的幾個重要特點,并將其與美國圍繞無人機所做的努力相比較,后者往往強調一個大型同質化的蜂群。有人指出,印度的原創工作,在世界上第一次公開展示了異質蜂群的努力,是這一領域可能的發展方向。一家印度初創公司NewSpace Research & Technologies與印度陸軍的蜂群開發項目有關。

印度斯坦航空有限公司(HAL)已經公布了空中發射靈活資產(ALFA -S)空中發射蜂群無人機系統,作為其下一代戰斗空中編隊系統(CATS)的一部分。這是一個獨特的計劃,它利用空中發射的遠程載體和蜂群單位的網絡來滲透到有爭議的空域。美國空軍的空軍研究實驗室正在與印度就ALFA-S的各個方面進行合作。新空間研究與技術有限公司也是HAL的ALFA計劃的合作伙伴。

HAL的CATS計劃的另一個組成部分是 "勇士 "忠誠翼人資產。這是為防空和進攻性打擊任務準備的,將與印度的Tejas LCA和即將到來的AMCA第五代作戰飛機一起以載人和無人機組隊(MUM-T)的方式使用。值得注意的是,印度被本土研究的力量和政府的 "印度制造 "所推動,以擁抱顛覆性技術,這在某些領域與世界各地發生的類似努力不相上下。HAL在班加羅爾舉行的2021年印度航空展上公布了勇士號的第一個1:1模擬模型。

三家印度初創公司在印度空軍組織的為期三年的蜂群無人機競賽中獲勝。"蜂群架構"獎由前印度空軍軍官Sameer Joshi經營的新空間研究與技術私人有限公司獲得。順便說一下,新空間公司最近從印度陸軍贏得了1500萬美元的蜂群無人機訂單。"通信架構"獎由德里科技大學團隊與阿達尼防御公司合作獲得,"無人機架構"獎由Dhaksha無人系統公司獲得。

IAF構思了2018年10月3日啟動的 "梅哈爾-巴巴蜂群無人機競賽",以鼓勵開發蜂群無人機,在不同領域中使用。該競賽的名稱是為了紀念已故空軍準將梅哈爾-辛格,他在IAF的同事和崇拜者親切地稱為 "Baba"梅哈爾-辛格。它的概念是為蜂群無人機技術發展專有的設計、開發、制造和生產的 "低成本-高影響 "解決方案。該競賽只對本地人才和本地初創企業開放。

無人機群的特性

美國戰略能力辦公室(SCO)實際上并沒有創造出蜂群;麻省理工學院(MIT)的工程學生采用了 "全商業組件設計"。因此,如果無人機蜂群技術足夠容易獲得,以至于學生可以開發它,全球擴散幾乎是不可避免的。因此,新的無人機技術正在被各個國家迅速部署。

創建任務分配算法。創建無人機群從根本上說是一個規劃問題。無人機可以很容易地在電子商店買到,或者就像伊拉克和敘利亞伊斯蘭國那樣用膠帶和膠合板建造。無人機群的挑戰是讓各個單元一起工作。這意味著開發通信協議,以便它們能夠共享信息,管理無人機之間的沖突,并共同決定哪些無人機應該完成哪些任務。要做到這一點,研究人員必須創建任務分配算法。這些算法允許蜂群將特定的任務分配給特定的無人機。一旦創建了算法,它們就可以隨時共享,只需要在無人機上進行編碼。

人工智能(AI)的利用。國家安全和人工智能方面的專家爭論的是,單一的自主武器是否能夠充分區分民用和軍用目標,更不用說數千或數萬架無人機。據美國的人工智能專家稱,在某些狹窄的環境中,這種武器可能在50年內就能做出這種區分。他們認為,人工智能還不能管理戰場上的復雜情況。

先進的蜂群能力。先進的蜂群能力,如異質性(不同大小的無人機或在不同領域運行的無人機)和靈活性(輕松增減無人機的能力)仍然相當新穎。然而,讓無人機協作并投擲炸彈是可以實現的。

涉及的風險量。無人機群惡化了致命的自主武器所帶來的風險。即使一個精心設計、測試和驗證的自主武器擊中錯誤目標的風險只有0.1%,但如果乘以數千架無人機,仍然意味著巨大的風險。

無人機通信。無人機通信意味著一架無人機的錯誤可能會傳播到整個蜂群。

涌現行為。這是一個術語,指的是由單個單元的行為導致的復雜的集體行為,是蜂群的一個強大的優勢,允許像自我修復這樣的行為,在這種情況下,蜂群會改革以適應無人機的損失。但是,涌現行為也意味著每個無人機共享的不準確信息可能導致集體錯誤。

無人機群未來發展路徑

武裝的、完全自主的無人機群是未來的大規模毀滅性武器。蜂群可以造成與在長崎和廣島使用的核武器同樣程度的破壞、死亡和傷害--即數萬人死亡。這是因為無人機群結合了傳統大規模殺傷性武器特有的兩個特性:大規模傷害和缺乏控制以確保武器不傷害平民。

各國已經在把非常大的無人機群放在一起。美國海軍研究生院也在探索在海上、水下和空中運行的100萬架無人機群的潛力。要達到長崎的潛在傷害水平,無人機群只需要39,000架武裝無人機,如果無人機上有能夠傷害多人的爆炸物,也許會更少。

繼2021年1月在新德里建軍節閱兵式上展示了75架無人機群后,印度已表示有意將無人機群規模擴大到1000架以上。

無人機群也可以作為沒有核武器的國家的戰略威懾武器,以及作為恐怖分子的暗殺武器而發揮作用。

消耗性微型無人機。佩迪克斯微型無人機能夠進行低空情報、監視和偵察以及其他短期任務。它們可以從空中、海上或地面發射,并以小群和大群的方式運行,以執行其任務。

DARPA的Gremlins計劃,如這個藝術家的概念所示,設想從轟炸機、運輸機和戰斗機上發射無人駕駛飛機群,在主機仍在射程之外的時候攻擊目標。

在飛行中改變。DARPA的 "拒止環境中的協作行動"(CODE)計劃將使多個配備CODE的無人駕駛飛機能夠協作地感知、適應和應對意外的威脅和新目標。這些系統可以共享信息,計劃和分配任務目標,做出協調的戰術決策,并在高威脅環境中做出反應。

俄羅斯S-70 Okhotnik忠實僚機與蘇-57戰斗機

2021年建軍節,印度軍隊在新德里展示了75架無人機的異構蜂群

土耳其軍隊已經部署了500多個卡爾古群集無人機系統進行動力攻擊

付費5元查看完整內容

美國導彈防御局(MDA)和空間發展局(SDA)目前正在開發高超音速導彈防御系統的要素,以防御高超音速武器和其他新興的導彈威脅。這些要素包括國防空間架構(NDSA)的跟蹤和運輸層以及各種攔截器項目。隨著MDA和SDA繼續開發這些系統,國會可能會考慮對監督和國防授權及撥款的影響。

背景介紹

高超音速武器,像彈道導彈一樣,飛行速度至少為5馬赫,或大約每秒1英里。與彈道導彈不同,高超音速武器不遵循彈道軌跡,可以在到達目標的途中進行機動。據報道,俄羅斯在2019年12月出動了其第一批高超音速武器,同時一些專家認為,中國早在2020年就出動了高超音速武器。預計美國在2023年之前不會裝備高超音速武器。(關于俄羅斯、中國和美國的高超音速武器項目的概述,見CRS報告R45811,高超音速武器:國會的背景和問題,作者是凱利-M-賽勒)。

高超音速武器的機動性和低飛行高度可以挑戰現有的探測和防御系統。例如,由于雷達探測的視線限制,大多數地面雷達在武器飛行后期才能探測到高超音速武器。這給防御者留下了極少的時間來發射攔截器,以抵消入境武器的影響。圖1描述了陸基雷達對彈道導彈和高超音速武器探測時間的差異。

圖1. 基于地面的彈道導彈探測與高超音速武器的探測

美國國防官員表示,現有的地面和天基傳感器架構都不足以探測和跟蹤高超音速武器;前國防部負責研究和工程的副部長邁克-格里芬指出,"高超音速目標比美國通常通過地球靜止軌道上的衛星跟蹤的目標要暗淡10到20倍。"

國防空間架構

SDA開發了國防空間架構,以 "統一和整合整個[國防部(DOD)]和行業的下一代能力"。NDSA的目標是成為一個 "單一的、連貫的、有七個層次的擴散空間架構",其中包括圖2中描述的數據跟蹤和傳輸層,并在下面討論。其他層包括支持移動地面資產目標的監護層;提供基于空間的指揮和控制的戰斗管理層;提供 "潛在的GPS否認環境的替代定位、導航和授時"的導航層;探測深空潛在敵對行動的威懾層;以及為其他NDSA層促進衛星操作的支持層。一旦全面投入使用,NDSA將包括550顆衛星并提供全面的全球覆蓋。

跟蹤層

跟蹤層是為了 "提供全球指示、警告、追蹤和瞄準高級導彈威脅,包括高超音速導彈系統"。作為該層的一部分,SDA正在開發一個寬視場(WFOV)衛星的結構,最終將提供全球覆蓋。SDA要求在2023財政年度為第0階段跟蹤活動提供8130萬美元,為第1階段跟蹤活動提供4.998億美元(也稱為彈性導彈預警導彈跟蹤-低地球軌道)。

與SDA的跟蹤衛星協同工作的將是高超音速和彈道跟蹤空間傳感器(HBTSS),以前被稱為空間傳感器層,它是由MDA與SDA和美國空軍合作開發。與WFOV相比,HBTSS將提供更靈敏,但更有限的(或中視場[MFOV])覆蓋范圍。出于這個原因,WFOV旨在為HBTSS提供提示數據,然后HBTSS可以為地面攔截器提供更具體的目標質量數據。到2023年,SDA計劃擴大跟蹤層,包括70顆WFOV和MFOV衛星,據SDA主任德里克-圖爾尼爾博士說,"這將使我們在低地球軌道上有足夠的覆蓋面,以便我們基本上可以有區域性的持久性"。MDA要求在2023財政年度為HBTSS提供8920萬美元。

2020財年NDAA(P.L. 116-92)第1682條要求導彈防御局局長 "開發一個高超音速和彈道導彈跟蹤空間傳感器有效載荷"。2021財年NDAA(P.L. 116-283)第1645條確認,MDA局長與SDA局長協調,負責開發和采購傳感器有效載荷,"至少到2022財年"。第1645節還要求最遲在2023年12月31日開始對傳感器有效載荷進行在軌測試,并在 "此后技術上可行的情況下 "盡快將傳感器有效載荷納入SDA更廣泛的天基傳感器架構。最后,2022財年NDA(P.L. 117-81)第1662條禁止MDA主任"[授權]或[承諾]為生產衛星或與此類衛星運行相關的地面系統的記錄計劃提供資金"。如果滿足某些條件,包括確定 "由于技術、成本或進度因素,這種限制會延遲交付可運行的[HBTSS]",空軍負責空間采購和集成的助理部長可以放棄對HBTSS的這種限制。

圖2. NDSA的部分內容

傳輸層

美國防部表示,NDSA的傳輸層旨在將跟蹤層與地面的攔截器和其他武器系統連接起來,將 "加強包括導彈防御在內的若干任務領域"。據國防部稱,SDA已經為運輸層的第1階段授予了三個原型協議,"一個由126個光學相互連接的空間飛行器組成的網狀網絡",將于2024年9月開始發射。運輸層最終將包括一個由大約300-500顆衛星組成的星座。SDA要求在2023財政年度為 "數據傳輸層、傳感器能力和備用位置、導航和計時能力 "提供8.164億美元。

攔截器

MDA已經探索了一些消除對手高超音速武器的方案,包括攔截導彈、超高速彈丸、定向能武器和電子攻擊系統。2020年1月,MDA發布了一份關于高超音速防御區域滑行階段武器系統攔截器的原型提案要求草案。該計劃旨在 "減少攔截器的關鍵技術和集成風險";然而,據當時的MDA主任喬恩-希爾海軍中將稱,它在2030年代的某個時候才會準備好過渡到開發。MDA轉而將重點轉向較近的解決方案,并在2021年4月啟動了滑翔階段攔截器(GPI),它將與宙斯盾武器系統整合,并在2020年代中期至末期提供高超音速導彈防御能力。洛克希德-馬丁公司、諾斯羅普-格魯曼公司和雷神導彈與防御公司已經獲得了GPI的 "加速概念設計 "階段的合同。

此外,2022財年NDAA(P.L. 117-81)第1664條授予MDA主任 "預算、指導和管理適用于 "高超音速導彈防御的定向能源項目的權力。國防高級研究計劃局(DARPA)也正在進行一項名為 "滑翔破壞者 "的計劃,其目的是 "開發關鍵的組件技術,以支持一種輕型飛行器,用于在非常遠的距離上精確對付高超音速威脅。" DARPA要求在2023財年為 "滑翔破壞者 "提供1830萬美元。總體而言,MDA在2023財年為高超音速防御申請了2.255億美元,低于其2.479億美元的2022財年申請和2.878億美元的撥款。

國會的問題

一些分析家認為,天基傳感層--與跟蹤和瞄準系統相結合以引導高性能攔截器或定向能量武器--理論上可以提供防御高超音速武器的可行選擇。2019年導彈防御審查報告指出,"這種傳感器利用了從空間可看到的大面積,以改善跟蹤,并可能瞄準先進的威脅,包括高超音速[武器]。" 其他分析家對高超音速武器防御的可負擔性、技術可行性和/或效用提出質疑。此外,一些分析家認為,美國目前的指揮和控制架構將無法 "快速處理數據,以應對和消除即將到來的高超音速威脅"。

一些分析家還對目前SDA和MDA在高超音速導彈防御方面的分工提出質疑。SDA主任Tournear此前曾對這兩個機構之間可能存在冗余的批評作出回應,稱兩者都向負責研究和工程的國防部副部長報告。然而,從2022年10月1日起,SDA將改為向負責采購和整合的空軍助理部長報告。國會可以監督這種新的報告結構對效率和效能的影響。

國會的潛在問題

  • 加快對高超音速導彈防御方案的研究是否必要且在技術上可行?高超音速導彈防御方案的技術成熟度是否值得目前的資金水平?

  • SDA和MDA是如何在高超音速導彈防御的各種要素上進行合作的?它們目前的作用是增加還是減少了成本以及技術發展的速度和效率?

  • 國防部是否具備執行高超音速導彈防御所需的能力,如適當的指揮和控制架構?

付費5元查看完整內容

融合項目(PC)是一項美國陸軍學習活動,旨在整合和推進他們對聯合部隊(陸軍、海軍、空軍和海軍陸戰隊)的貢獻。根據研究和分析中心(TRAC)-蒙特雷的說法,"PC確保陸軍作為聯合戰斗的一部分,能夠快速和持續地整合或'融合'所有領域的效果--空中、陸地、海上、太空和網絡空間,以便在競爭和沖突中戰勝對手"(研究和分析中心[TRAC]2020)。目標是評估在PC21上展示的新的創新系統(SoS)技術是否滿足為聯合部隊提供必要的速度、范圍和融合所需的作戰能力,以產生未來的決策主導權和大國競爭的超能力。然而,鑒于PC期間各種現代技術的注入,TRAC-蒙特雷目前缺乏一種方法來衡量作戰效果以及作為軍隊和聯合部隊的融合是否正在實現。因此,本項目的重點是制定一個概念性的評估框架,以確定在PC21演習中測試的多域作戰(MDO)任務中SoS的作戰有效性。這個框架將集中在那些被證明可以減少傳感器到射手(S2S)時間的技術的行動有效性,以便在聯合MDO任務中消滅一個固定的目標。

該小組確定,對某一特定能力的功能分解,結合用于開發MOE的Langford綜合框架的修改版,將產生描述該特定能力的行動有效性的良好措施。為了將衡量標準轉化為價值分數,團隊使用了構建價值尺度的理想范圍方法,該方法為每個衡量標準建立了一個從最好到最壞的情況,使其具有適應任何能力的靈活性。帕內爾的搖擺加權法被用來量化利益相關者對每個蘭福衍生的MOE的重要性,以確定能力的每個MOE的加權價值分數(WVS)。WVS相加得出總分,這就提供了對運營有效性的最終評估。然后,該團隊產生了一個行動有效性量表,向利益相關者說明他們的能力在這個量表中的得分情況。

該項目最后針對概念評估框架應用了PC21用例,以衡量其在生成與用例中的能力最相關的MOE以及單一行動有效性分數方面的穩健性。該模型的最終驗證將在目前計劃于2021年10月開始的PC21期間進行。

總之,該團隊使用系統工程流程建立了一個概念性評估框架系統,該系統將使TRAC-Monterey有能力評估PC21期間展示的新的創新SoS技術的作戰能力。該團隊開發了一個利益相關者分析,一個由利益相關者衍生的目標層次,一個功能分解,以及一個創建良好措施的過程,將這些措施轉化為價值分數,量化措施的重要性,并將產生的價值匯總為一個單一的、行動有效性分數。該框架將為利益相關者提供信息,使他們能夠就進一步的技術開發做出明智的決定。TRAC-Monterey還可以將本研究中制定的衡量標準作為指南,在整個PC21和未來的PC活動中收集相關信息。

建議 TRAC 在 PC21 期間對照 S2S 用例 1-1 驗證概念性評估框架。還應采用其他用例來測試框架的靈活性和可用性。還建議進一步研究行動效率的認知方面,以及如何利用這些信息來擴大本評估框架的范圍。TRAC和JMC向團隊表示,PC的努力將有助于改寫聯合行動的理論。

付費5元查看完整內容

序言

1. 范圍

本出版物為計劃、執行和評估聯合陸地作戰提供基本原則和指導。

2. 目的

本出版物是參謀長聯席會議主席(CJCS)關于聯合陸地作戰的官方建議,并考慮了與政府和非政府機構、多國部隊和其他組織間伙伴的軍事互動。它并不限制聯合部隊指揮官(JFC)的權力,即以被認為最合適的方式組織部隊和執行任務,以確保統一作戰。

3. 應用

a. 本出版物確立的聯合原則適用于聯合參謀部、作戰指揮部指揮官、下屬統一指揮部、聯合特遣部隊、這些指揮部的下屬部門、各軍種、國民警衛局和作戰支援機構。

b. 本理論構成了有關所附主題的官方建議;然而,在所有情況下,指揮官的判斷是最重要的。

c. 如果本出版物的內容與各軍種出版物的內容發生沖突,則以本出版物為準,除非首席軍事委員會通常與參謀長聯席會議的其他成員協調,提供更多最新和具體的指導。作為多國(聯盟或同盟)軍事指揮部一部分的部隊指揮官應遵循美國批準的多國學說和程序。對于未經美國批準的學說和程序,指揮官應評估并遵循多國指揮部的學說和程序,只要適用并符合美國法律、法規和學說。

代表參謀長聯席會議主席。DANIEL J. O'DONOHUE 美國海軍陸戰隊中將,聯合部隊發展部主任

變化摘要

2014年2月24日對聯合出版物3-31的修改1

  • 增加了附錄E,"戰區戰俘行動"

  • 將 "軍事行動的范圍 "改為 "競爭的連續性"

  • 根據統一指揮計劃刪除了 "地域作戰指揮官 "一詞

  • 根據聯合出版物(JP)3-0《聯合行動》和JP 5-0《聯合規劃》,修改了關于行動分階段的討論和相關數字

  • 將標題改為《聯合陸地作戰》

  • 將第二章分為兩章,即第二章 "組建聯合部隊陸軍司令部 "和第三章 "聯合部隊陸軍司令部的指揮與控制"

  • 擴大了對戰區聯合部隊陸軍司令部的討論,以及與聯合行動區聯合部隊陸軍司令部的區別

  • 闡明了聯合部隊陸軍指揮官在戰區或聯合行動區的權力和責任

  • 根據JP3-0《聯合行動》更新了對大規模作戰行動的討論,包括對野戰軍作為多軍種總部的基礎的討論

  • 擴大了對軍事行動的范圍和類型的討論

  • 更新了關于聯合職能的討論,將信息作為一項聯合職能

  • 擴展了JP 4-0《聯合后勤》中關于設置戰場的討論

  • 更新了定義和術語

  • 更新了數字、引言和小插曲

  • 增加了附錄D,"戰區-聯合部隊陸地部分指揮官建立指令的例子"。

執行摘要

指揮官的概述

  • 討論了組織聯合陸軍的問題

  • 概述了聯合部隊陸地部分指揮官的角色和責任

  • 討論了聯合部隊陸地部分指揮部的指揮與控制

  • 介紹了計劃和評估聯合陸地行動的戰略和行動考慮

  • 描述了聯合陸地行動的執行

緒論

聯合陸地作戰

聯合陸地行動包括任何類型的聯合軍事行動,可以是單獨的,也可以是組合的,由各軍種提供的聯合陸地部隊(陸軍、海軍陸戰隊或特種作戰)在整個競爭過程中進行,以支持聯合部隊指揮官(JFC)的行動或戰役目標,或支持聯合部隊的其他組成部分。陸地聯合行動需要所有國家權力工具的同步和整合,以實現戰略和行動目標。

組織陸地聯合部隊

戰斗指揮官(CCDRs)根據他們的愿景和行動概念(CONOPS),以及對任務、敵人、地形和天氣、可用部隊和支持以及可用時間的考慮,組織指定和分配的部隊來完成任務。統一行動的集中規劃和指導,以及分散執行也是關鍵的考慮因素。

除了在統一指揮計劃中指定的責任區(AORs)外,中央指揮部和其他聯合司令部還臨時指定較小的作戰區域(例如,聯合行動區[JOA]和行動區[AO])。作戰區的物理尺寸由空中、陸地、海上和太空領域的某種組合組成。戰區和作戰區是由中央指揮部定義的作戰區域,分別用于進行大規模作戰和主要行動,以及進行或支持其他特定的軍事行動。多個戰區通常在地理上是分開的,并側重于不同的任務。

擁有指定戰區的中央指揮部可以通過下屬的統一指揮部、下屬的聯合特遣部隊、單一軍種特遣部隊、軍種組成部分指揮部、職能組成部分指揮部,或軍種和職能組成部分指揮部的組合來開展行動。

組建的考慮因素

組建一個聯合部隊的陸地部分指揮部是一個關鍵的組織決定,它將極大地影響聯合陸地行動的開展。以下是聯合部隊司令部在做出這一決定時需要考慮的一些因素。

  • 任務。任務要求將一個以上軍種的能力和職能用于密切相關的陸上目標,統一行動是首要考慮的問題。

  • 行動的范圍。當聯合陸地行動的預計范圍在部隊規模、持續時間和/或行動區域方面接近大規模作戰行動時,聯合指揮部需要在主要行動和/或行動階段之間進行同步和責任分配。

  • 規劃。組建聯合部隊陸上部分指揮部,并配備聯合部隊陸上部分指揮官(JFLCC),將陸上行動的規劃整合到聯合部隊司令部以下的水平。

  • 持續時間。行動的持續時間必須足夠長,以保證建立一個聯合部隊陸地部分指揮部。

  • 經驗。指定一個擁有經驗豐富的陸上工作人員的聯合后勤中心,可以加強對聯合陸上行動的詳細規劃、協調和執行。

  • 多國行動。多國行動是由兩個或更多國家的部隊進行的行動,通常在一個聯盟或同盟的結構中進行。

組建聯合部隊陸地部分指揮部

指定的權力

每個JFC都有權組織部隊,以便根據作戰計劃以最佳方式完成指定任務。JFC建立下屬指揮部,分配責任,建立或委派適當的指揮關系,并為組成部分的指揮官建立協調指令。

角色和責任

JFLCC的總體職責和作用,無論是在戰區一級隸屬于CCDR,還是在聯合行動區為下屬的JFC服務,都是根據JFLCC的授權,計劃、協調和使用為支持JFC的CONOPS而提供的陸地部隊。

指定陸地行動區

行動區通常由JFC為水面(陸地和海洋)部隊定義。陸地行動區通常不包括JFC的整個陸地行動區,但其大小、形狀和位置應足夠大,以便JFLCC完成任務并保護所提供的部隊或能力。在指定的陸上作戰區域內,JFLCC為該作戰區域建立一個作戰框架,將責任分配給下屬的陸上指揮官,并使所有下屬單位的作戰能力最大化。

組織工作

建立一個職能部門指揮部的JFC有權指定其指揮官。通常情況下,擁有大量待命部隊并有能力指揮和控制這些部隊的軍種指揮官將被指定為職能部門的指揮官;然而,在選擇指揮官時,JFC將始終考慮任務、性質和行動的持續時間、部隊能力和C2能力。

在聯合部隊陸地部分指揮部(總部)內,指揮官、副指揮官、參謀長和參謀部的主要成員(從聯合參謀部的人力和人事局到聯合參謀部的通信系統局[J-6])應與來自提供給聯合后勤協調中心的部隊和能力的代表充分整合。被指定為JFLCC的指揮官通常將提供參謀部的核心要素。

組建參謀和指揮部門

總部是根據JFC的執行指令組織的,該指令規定了JFLCC的角色和責任,并指定了任務和分配的部隊。通常情況下,參謀部是圍繞聯合部隊陸軍司令部的軍種人員而建立的,并由其他軍種的人員或部隊的人員來充實。聯合部隊陸軍司令部的工作人員應該有關鍵的工作人員職位分配,這樣所有軍種都有適當的代表,并公平地分享人員配置任務。

聯絡要求

聯合部隊陸地組成部分指揮部的聯絡要求至少包括與聯合部隊的其他組成部分的聯絡,無論是職能部門還是服務部門。指揮官可能需要與其他組織進行額外的聯絡,如聯合部隊總部、主要下屬指揮部和不屬于該指揮部的多國陸軍。

聯合部隊陸地部分指揮部的指揮與控制

職能部門的指揮權

職能部門對提供給他們的部隊或能力有特定的授權,但這并不影響軍種部門指揮官與聯合部隊司令部之間的指揮關系。通常情況下,這些具體的權力在建立指令或由聯合部隊司令部工作人員編寫的 "職責范圍 "文件中有所描述。

聯合安全協調員的職責

JFLCC可以被JFC指定為聯合安全協調員(JSC)。聯合安全協調員根據JFC的指令和優先事項,在各組成部分的指揮官之間協調聯合安全區的整體保護工作。聯合安全協調員確保聯合安全區的表面區域要求和優先事項被納入聯合部隊的整體安全要求中,并與負責保衛作戰區域空域的地區防空指揮官協調。

指揮和支持的關系

JFLCC負責指定的聯合陸地行動,并在JFC規定的范圍內建立對下屬部隊的指揮關系。JFLCC計劃并執行JFC行動或戰役計劃中的陸地行動部分。JFLCC為JFC的作戰計劃準備一份輔助計劃或命令,提供JFLCC的意圖、CONOPS和細節。JFLCC指導當前的陸地行動,同時繼續為未來的陸地行動進行計劃和準備。

職能指揮關系

JFC在各軍種和/或職能部門指揮官之間建立指揮關系,明確行動區域、授權和分配的責任,以最好地整合聯合部隊的能力。不同軍種的人員可以被置于戰術控制或行動控制之下,由職能部門指揮,同時保留與各自軍種指揮官的行政控制關系。然而,支持關系也可以用來為作戰環境中的相互支持提供必要的權力和基礎。

名義上的跨職能工作人員組織

JFLCC可能被要求建立各種跨職能的參謀組織,并向JFC和其他組成部分的跨職能參謀組織派遣代表。

組織間的合作

聯合部隊的陸地部分指揮部有可能在各種情況下與美國政府(USG)的其他部門和機構、外國政府、非政府組織、國際組織和私人部門一起行動。組織間合作的性質要求JFLCC和工作人員考慮所有的國家權力工具,并認識到哪些機構最有資格使用這些元素來實現目標。在一些行動中,其他機構可能會提供主導力量,國防部(DOD)提供支持;然而,美國軍隊在支持其他機構的同時,仍然處于國防部的指揮結構之下。在某些情況下,法律、法規或有關機構之間的協議規定了一個負有領導責任的聯邦機構。

多國行動

為了實現最有效的C2和對多國陸軍能力的最佳利用,多國部隊指揮官通常會指定一個單一的陸軍部門指揮官負責陸軍行動。多國部隊可能是一個聯盟或同盟的一部分。該結構如何組織將基于參與國的需求、政治目標、限制和目標。多國指揮官可以選擇在聯盟或同盟中建立一個陸軍司令部。

通信支持系統

CCDR通過J-6監督的聯合網絡操作控制中心確保有效、可靠和安全的通信系統,以實現作戰指揮部的作戰計劃。在任務的驅動下,通信系統的基礎是由分配給JFC的部隊的C2組織奠定的。

規劃與評估

戰略規劃的考慮

聯合規劃將軍事行動與其他國家權力工具和我們的多國伙伴在時間、空間和目的上進行整合,以達到特定的最終狀態。陸軍聯合規劃通過實現作戰目標將陸軍的戰術運用與行動或戰役目標聯系起來。

競爭的連續性

軍事接觸、安全合作和威懾活動中使用陸軍能力塑造了OE,并有助于將國家或團體之間的日常緊張關系保持在武裝沖突的門檻之下,同時保持美國的全球影響力。許多與危機應對和有限的突發事件有關的任務,如外國人道主義援助,可能不需要陸地作戰。

需要大量陸軍的重大行動和運動往往有助于更大的長期努力。OE的性質決定了美國陸軍往往會同時進行幾種類型的聯合行動。

對聯合規劃的支持

聯合規劃過程(JPP)提供了一個行之有效的過程來組織指揮官、參謀部、下級指揮官和其他合作伙伴的工作,以制定能夠適當解決問題的計劃。在應急和危機計劃期間,聯合后勤中心的工作人員可以使用JPP。JPP的重點是指揮官、參謀部和各梯隊之間的規劃互動。JPP還與作戰環境的聯合情報準備(JIPOE)相關聯。JIPOE是聯合情報組織用來制作情報評估、估計和其他情報產品的分析過程,以支持JFC的決策過程。

行動規劃的考慮因素

單一軍種作戰計劃和聯合陸軍作戰計劃的主要區別在于使每支部隊的獨特能力和限制同步化,以實現統一行動。這需要所有參謀人員對這些能力和限制的理解,但在聯合規劃小組中尤為重要。

聯合陸地作戰計劃

JFLCC的聯合陸地作戰計劃、概念格式的作戰計劃和作戰命令傳達了陸地部隊如何幫助完成JFC的任務。由JFLCC制定的計劃描述了支持實現JFC目標的聯合陸地行動的預期行為。

作戰環境

作戰環境是指影響能力運用和影響指揮官決策的條件、環境和影響因素的綜合。它通常包括空中、陸地、海上和空間領域的物理區域和因素,以及信息環境(包括網絡空間)。其中包括與特定陸地聯合行動有關的對手、友軍和中立系統。了解OE有助于指揮官了解各種友軍、敵軍和中立方行動的結果,以及這對實現軍事目標的影響。

常規和特種作戰部隊的整合

JFC的C2組織應考慮獨特的特種作戰部隊的組織結構,以及他們的能力和限制,其方式與不同軍種的陸軍部隊相同。所有陸軍部隊的獨特屬性及其整合是整個計劃和執行過程中的考慮因素。為了最大限度地提高效率,各軍種和美國特種作戰司令部在行動中相互依賴,履行各種職能。

評估

評估是一個衡量聯合部隊完成任務的進展的過程。指揮官不斷地評估行動目標和行動的進展,并將其與他們的愿景和意圖進行比較。指揮官根據他們的評估調整行動,以確保軍事目標的實現和軍事最終狀態的達到。評估過程是持續的,并與指揮官在整個行動的計劃、準備和執行過程中的決策直接掛鉤。

行動的層次和評估的考慮

評估發生在軍事行動的各個層面。即使在不包括戰斗的行動中,對進展的評估也同樣重要,而且可能比傳統的戰斗評估更加復雜。一般來說,具體行動、任務或行動所處的級別應該是評估此類活動的級別。行動和戰略層面的評估通常比戰術層面的評估(如戰斗評估)更廣泛,并使用支持戰略和行動任務完成的指標(性能和有效性的衡量標準)。

執行

行動類型

所有的聯合戰役和主要行動都有一個特點,即在所有階段的進攻和防御行動以及穩定活動之間進行適當的組合和平衡。

軍事行動的范圍和類型

美國軍隊在國內和國外的各種軍事行動中運用其能力,以支持其在沖突連續體背景下的競爭連續體的國家安全目標。聯合后勤中心開展的一些行動可能只涉及軍事接觸、安全合作、塑造和威懾活動。諸如對外援助、外國內部防衛、和平行動、外國人道主義援助、打擊恐怖主義、反毒品行動、展示武力行動和軍備控制等行動被用于實現軍事接觸、安全合作和威懾目標。其他危機應對和有限應急行動,如反叛亂、支持叛亂和打擊恐怖主義,主要涉及非正規戰爭。重大行動和戰役的特點可能是與傳統戰爭相關的大規模作戰行動。所有這些情況--每一種都可能有不同的根源和目標--都可能在一個行動區域內同時存在,并可能需要聯合后勤中心考慮。

進攻性行動

進攻性陸地控制行動是為擊敗和摧毀敵方陸地部隊并奪取地形、資源和人口中心而進行的戰斗行動。對于在戰役中進行的大規模作戰行動,可能需要多個軍團規模的編隊,可能包括美國陸軍(USA)軍團、海軍陸戰隊遠征部隊或多國部隊,這就需要一個基于美國野戰軍總部的聯合或多國部隊陸地部分指揮部。

防御性作戰

防御作戰是為了擊敗敵人的進攻,贏得時間,節省兵力,并為進攻或穩定活動和任務創造有利條件而進行的作戰行動,單純的防御通常不是決定性的行動。然而,防御性陸地行動使聯合部隊的陸地部分指揮部能夠進行或準備進行決定性的進攻或穩定活動和任務。

穩定

美國軍隊對穩定工作的貢獻包括在美國境外與其他國家權力工具協調進行的各種軍事使命、任務和活動,以維持或重建一個安全的環境,提供基本的政府服務、緊急基礎設施重建和人道主義救濟。陸地聯合部隊在開展陸地行動之前、期間和之后,在整個行動范圍內承擔這一角色。在這樣做的時候,軍事部隊的努力適當地集中在支持國家權力的其他工具上。穩定活動不僅包括穩定任務,而且往往有進攻和防御的內容。

國防部對民事當局的支持

國防部對民事當局的支持 國防部對民事當局的支持包括國防部(DOD)對美國民事當局的支持,以應對人為和自然的國內緊急情況,以及指定的執法和其他活動,如國家特別安全事件。這包括由總統或國防部長指示的國防部部隊。美國政府各部門和機構或各州州長通過聯邦援助請求程序請求國防部的能力來支持其應急工作。

聯合職能

聯合職能是指相關的能力和活動,它們被組合在一起,以幫助聯合指揮中心整合、同步和指導聯合行動。所有戰爭級別的聯合行動所共有的功能分為七個基本組別--信息、C2、情報、火力、運動和機動、保護和維持。一些功能,如信息、保護、C2和情報,適用于所有的行動,并構成了執行其他功能的基礎。其他功能,如火力,則根據任務的需要進行。

過渡

過渡旨在使聯合部隊的工作重點發生明顯的轉變,通常伴隨著指揮關系的變化。涉及JFLCC指揮關系的過渡通常包括一個軍種總部被JFC指示承擔一個戰區或JOA JFLCC的職責。這種過渡可以基于一個永久性的指令或一個被批準的應急計劃。在任何一種情況下,被選為聯合陸軍司令部的軍種總部都要準備使用經批準的聯合理論為其各自的聯合部隊進行聯合陸軍行動,并繼續使用適當的軍種理論和法規履行其先前作為軍種總部的職能。反之,當聯合空軍司令部認為作戰要求需要改變對聯合陸地行動的控制時,也可以指示從聯合空軍司令部過渡到聯合空軍司令部工作人員。

結語

本出版物提供了基本的原則和指導,以便由一個聯合部隊陸軍司令部在整個軍事行動范圍內計劃、執行和評估聯合陸軍行動,并指定一名聯合部隊陸軍司令。

付費5元查看完整內容

摘要

一系列因素(射程空間減少、空域限制、武器系統可用性、缺乏目標模擬能力、敵對能力監測)正在推動北約向分布式合成訓練過渡。為了幫助實現這一轉變,北約科技組織(STO)成立了MSG-165任務組,負責為聯合和聯盟空中行動通過分布式仿真(MTDS)執行任務訓練。

MTDS能力的發展并不局限于MSG-165的工作;事實上,它是北約的智能防御計劃之一,由美國贊助,因此在各個層面都有很好的知名度,但仍然未能取得必要的進展。雖然仍有一些挑戰,但該小組迄今為止所開展的工作已經為北約現有的其他合成訓練問題提供了解決方案。這些都體現在文件中,包括:

  • 建立共同的空中訓練目標,幫助確定聯盟的訓練要求,幫助調整適當的訓練媒體。

  • 制定參考架構原則,為聯合MTDS能力的使用提供基礎。

  • 建立MTDS能力驗證演習,稱為 "斯巴達勇士20-9"(SW 20-9)。SW20-9是對以前“斯巴達勇士”方案的修改,是一個由美國空軍-非洲作戰中心(UAWC)協調的多邊參與機會,通過北約機密級別的聯合戰斗實驗室(CFBL)網絡為聯盟伙伴提供持續的連接,進行日常的、以聯盟為中心的、由單位領導的訓練。

  • 制定MSG-165關于如何利用MTDS來支持北約空中作戰訓練的設想。在開發這個愿景時采用的方法顯示了更廣泛的效用,并有可能用于幫助其他部門確定他們自己的未來培訓愿景。

本文將強調在建立一個共同的北約聯合MTDS環境方面所取得的成就。

關于作者

Arjan Lemmers是英國皇家海軍陸戰隊的高級項目經理。他是北約MSG-165任務組MTDS的聯合主席,在國際分布式任務訓練計劃方面有長期經驗。Arjan也是機載嵌入式訓練系統和LVC互操作性方面的專家。Arjan領導著這個領域的幾個研發項目,并且是幾個國際社區中這些主題的主要參與者。

Clark Swindell是美國空軍作戰中心(UAWC)的建模和仿真主管。他在通過聯合模擬提供分布式訓練方面有豐富的經驗,是NMSG-165的美國國家負責人。克拉克的經驗主要集中在大規模演習,使用聯合模擬,如JLVC,JLCCTC和BLCSE,這些都是使用分布式仿真和玩家的位置,以及整合LVC互操作性和合成環境。

Richard Hemmings是亨廷頓-英格爾斯工業公司(HII)的承包商,是美國空軍作戰中心(UAWC)的LVC集成和開發負責人。最初,他在UAWC作為操作主題專家(SME)和多國LVC演習的項目官員工作,后來他被調到 "未來計劃 "工作,負責整合和開發。作為專家加入北約MSG-165任務組,理查德幫助領導UAWC的工作,主持驗證演習。

1 引言

北約和各國都需要進行聯合的集體訓練,以確保任務準備就緒。一系列的因素(射程空間的減少、空域的限制、武器系統的可用性、目標模擬能力的缺乏、敵對能力的監測)促使北約向分布式合成訓練過渡。為了幫助實現這一轉變,北約科技組織(STO)成立了MSG-165任務組,負責為聯合和聯盟空中行動通過分布式仿真(MTDS)執行任務訓練的增量實施。

本文將強調在建立一個共同的北約聯合MTDS環境方面取得的成就。它首先解釋了北約MTDS能力的背景,以及之前為實現這一能力所做的努力。然后,它提出了訓練目標,并描述了實現這一即將到來的重要訓練能力的步驟。隨后是MTDS原則的定義,為多個利益相關者的觀點提供要求和標準。這促成了MTDS參考架構,它提供了一個符合上述架構原則的通用和可重復使用的描述。在下一部分中,考慮了為聯盟集體訓練部署MTDS跨域安全解決方案時應考慮的安全問題。本文最后對斯巴達勇士20-9演習進行了展望,該演習被用作北約MTDS能力的驗證演習。

2 北約MTDS研究的背景

合成能力已經成為滿足北約軍事力量作戰訓練需求的一個重要工具。新的系統和平臺正變得越來越復雜,需要更多的準備時間來使用。技術能力的提高和成本的降低,再加上環境限制的增加和對實戰活動的敵對(電子)監控能力的提高,使得合成訓練的使用更具吸引力。因此,通過分布式仿真任務訓練(MTDS)實現的集體訓練(CT)對北約和成員國的準備工作變得越來越重要。許多成員國正朝著更多地使用先進的模擬進行任務訓練和采用國家MTDS能力的方向發展,但北約目前還沒有一個集體的MTDS能力來利用這些發展進行聯盟CT。

過去,北約在這一領域采取了一些舉措,從2000年開始進行了關于MTDS的SAS-013研究(NATO RTO SAS-013, 2004)。這項研究確定了參與國的空勤人員任務訓練的做法和局限性,并確定了先進的分布式仿真是否能加強北約飛行員和空勤人員的訓練。它提出了未來的方向,將促進北約空勤人員培訓和任務演練的分布式仿真能力的發展。這在2004年的培訓示范演習First WAVE中得到了推進,即 "虛擬環境中的第一個作戰人員聯盟"(NATO RTO SAS-034,(2007)。第一次波浪演習沒有遇到不可克服的技術障礙,并證實MTDS可以提供一個重要的新能力來滿足北約的任務培訓需求。MTDS工作組建議,北約和聯合國應認可MTDS的潛力,并共同努力將MTDS推進到作戰能力。第一波倡議的后續是北約SMART(2007年)、北約現場、虛擬、建設性(LVC)(2010年)項目,以及2011-2012年北約工業咨詢小組(NIAG)關于空中聯合任務訓練的分布式仿真研究小組(NIAG SG 162,2012)。這些研究為北約MTDS行動概念(CONOPS)的發展提供了越來越清晰的思路。然而,沒有一項研究提供了持久的MTDS能力,目的是支持作戰人員為未來行動實現任務準備。鑒于演習預算的減少,可用于實戰演習的資產的減少,以及現實模擬復雜威脅環境的難度的增加,北約缺少一種具有成本效益的手段來提高未來聯合作戰的集體行動準備能力。

北約建模與仿真小組(NMSG)的任務是 "開發和利用建模與仿真(M&S),使聯盟及其合作伙伴受益"。上述考慮是NMSG在2013年啟動MSG-128任務組 "通過分布式作戰逐步實施北約任務訓練"(NATO STO MSG-128, 2018)的動機。MSG-128研究已經驗證了連接異構作戰訓練模擬器的技術可行性,以便為多國空中任務演習提供真正的訓練價值。它已經起草了MTDS參考架構,為多國訓練演習提供了一個初步的基線,即使在促進MTDS演習就業方面仍有許多差距。多國MTDS演習的成熟將是一個漫長的過程。MSG-128小組建議,為達到這一成熟度,有以下幾個努力的軸心(Lemmers和Faye等人,2017):

  1. 在小型/中型演習的操作成熟度方面取得進展,為上述確定的差距提供技術解決方案。

  2. 繼續在作戰演習環境中驗證這些解決方案,并將這些解決方案整合到MTDS最佳實踐文件中。

  3. 將MTDS演習的可擴展性擴展到大型和聯合演習,包括空軍、海軍和陸軍之間的空域互操作性,以及包括聯合情報、監視和偵察(JISR)。這一行動將是LVC發展和MTDS在多國聯盟演習中使用的一個助推器。

MSG-128在2018年被后續任務組MSG-165 "通過分布式仿真為聯合和聯盟空中行動逐步實施任務訓練 "所接替,該任務組將持續到2021年初。其目標是為北約持久的MTDS環境建立基本要素,并通過初步的操作測試和評估來驗證這些要素。MTDS能力的發展并不局限于MSG-165的工作;事實上,它是北約的智能防御計劃之一,由美國贊助,因此在各個層面都有很好的可見度,但可悲的是仍然未能取得必要的進展。雖然仍有一些挑戰,但該小組迄今為止所開展的工作已經為北約現有的其他合成訓練問題提供了解決方案。這些都體現在文件中,包括

  • 建立共同的空中訓練目標,幫助確定聯盟的訓練要求,幫助調整適當的訓練媒體。

  • 制定參考架構原則,為聯合MTDS能力的使用提供基礎。

  • 建立空中MTDS能力驗證演習,稱為 "斯巴達勇士20-9"(SW 20-9)。SW20-9是由美國空軍非洲作戰中心(UAWC)協調的一個多邊參與機會,為聯盟伙伴提供北約機密級別的聯合戰斗實驗室(CFBL)網絡的持續連接,以進行日常的、以聯盟為重點的、單位領導的訓練。

  • 制定MSG-165關于如何利用MTDS來支持北約空中作戰訓練的設想。在開發這個愿景時采用的方法顯示了更廣泛的效用,并有可能用于幫助其他部門確定他們自己的未來培訓愿景。

3 共同的空中訓練目標

為了提供最大的價值和效率,北約MTDS必須關注現有訓練安排中沒有涉及的領域。因此,它不尋求復制通過現有國家或北約活動提供的訓練,而是提供額外的聯盟合成訓練能力。北約有能力提供作戰航空部門指揮能力的合成集體訓練(CT)。然而,它還沒有能力對空中指揮部(ACC)以下的戰術能力進行綜合訓練。在合成提供 "從輪子到輪子 "的空中活動方面的這一差距,是北約MTDS提供訓練的主要重點。然而,為了實現端到端的合成訓練,任何未來的系統都應該能夠連接到現有的北約合成訓練能力,特別是支持(NATO STO MSG-165, 2019):

  • 合成傳播和執行空軍司令部(ACC)訓練衍生的空中任務指令(ATO)、空域控制指令(ACO)和特別指令(SPINS)。

  • ACC執行階段的訓練,將合成訓練的任務與ACC戰術人員聯系起來,支持其動態訓練。

空中訓練的要求可以分成三個日益復雜和具有挑戰性的層次,如圖1所示,并在下文中描述:

  • 第1級:個人能力,涵蓋人員的個人訓練和貨幣,安全地發揮作用。

  • 第2級:戰術團隊訓練,訓練分隊的 "基石",為個人和隊員的作戰戰術和程序做準備。

  • 第3級:戰術集體訓練,為復雜的空中行動提供訓練,需要多種空中能力和單位來完成一個行動任務。

在這三個級別中,1級和2級培訓將仍然是國家的責任。然而,3級戰術集體訓練是北約MTDS的關鍵多國要求;這源于許多國家難以實現這一級別的現實訓練所需的密度和能力范圍。盡管如此,在北約MTDS剩余能力允許的情況下,作為次要的優先事項,MTDS將用于2級訓練,作為提高這種訓練的真實性和復雜性的一種手段。

圖1:空中訓練的級別

為確保任何未來的MTDS能力能夠滿足必要的作戰訓練和演練要求,必須確定MTDS將提供的作戰訓練類型。因此,通過與MSG-165行動小組代表協商,制定了北約聯盟反恐目標(CCTO)(NATO STO MSG-165,2019)。這項工作提供了50個CCTVO。這些CCTVO被分組,以提供MTDS解決方案必須能夠支持的廣泛任務集,并幫助未來的培訓設計。以下任務集被確定。攻擊、進攻性反空、防御性反空、空中C2、空中機動性、空中情報監視和偵察、戰斗支援、空地一體化和空海一體化。

在第1級和第2級活動中的個人和構件訓練中,重點是確保機組人員能夠在駕駛艙內采取必要的行動來有效地打擊他們的平臺。然而,在第三級培訓中,雖然正確的機組人員行動仍然很重要,但概念上的重點卻發生了微妙的變化。第三級培訓必須提供培訓機會,以確保在通常大型和復雜的編隊中,控制人員和機組人員之間發生正確、及時的C2互動,如圖2所示。

圖2:將在CT環境中復制的操作互動

與1級和2級培訓相比,3級培訓的重點發生了微妙的變化,允許更加關注合成培訓的交付。因此,雖然大型實戰演習仍然是實現訓練真實性、建立信心和戰略信息的重要手段,但北約空中訓練的更大比例可以在合成環境中常規實施。這一假設已經在MSG-165行動小組中進行了討論和測試,主要的結論是,對于3級多國訓練,對于任務集,超過50%的訓練可以以合成方式進行。

4 參考架構

北約MTDS能力旨在將國家或北約的模擬資產整合到一個分布式的合成集體訓練環境中,這些資產通過一個共同的模擬基礎設施連接。仿真資產一般通過網關或門戶連接到該基礎設施。合成訓練環境的一致性也是參與集體合成訓練和演習的模擬資產的互操作性的關鍵。含有合成環境數據的數據庫的制作可能是整個M&S成本的重要組成部分,這意味著應該促進重復使用。仿真資產提供者通常使用相同的高級流程來生成他們的環境數據產品,但詳細的數據生成流程因生產商或集成商的不同而略有不同。這些差異使數據重用變得復雜,并危及目標應用的最終互操作性。

為了實現MTDS的合成集體訓練環境,能夠快速響應新的訓練需求,需要為訓練環境的開發和工程制定共同的流程和技術協議。由于技術協議通常是在每次演習中制定的,因此仍然缺少一個具有相關工程流程和技術協議的共同認可的模擬基礎設施。這就是MTDS參考架構(RA)發揮作用的地方(van den Berg, Huiskamp, et al., 2019)。該參考架構以構件、互操作性標準和模式的形式概述了MTDS的要求,用于實現和執行由分布式仿真支持的合成集體訓練和演習,與應用領域(陸地、空中、海上)無關。MTDS RA的重點是合成集體訓練和演習,因此將包括具有MTDS特定功能和接口的構件和模式。由于RA是在北約范圍內開發的,它也將利用北約的模擬互操作性標準。

用于特定訓練或演習活動(如 "斯巴達勇士 "演習系列)的模擬環境架構被稱為解決方案架構。由于MTDS的RA為合成集體訓練環境提供了一個 "模板解決方案",因此解決方案架構中使用的許多元素的要求原則上應來自RA。但是,可能還需要進行一些改進,以滿足特定事件的要求。這可能包括選擇仿真協議和特定的中間件解決方案(DIS、HLA)、網關組件、跨域解決方案、數據記錄工具,以及代表合成物理環境(SPE)的協議和格式。參考數據交換模型是通過RA提供的,但解決方案架構仍然需要就這些參考數據交換模型中的哪些具體部分將在具體事件中使用達成協議。

通常情況下,各套原則形成一個層次結構,即架構原則將被企業原則所告知、闡述和約束。架構原則定義了使用和部署資源和資產的基本一般規則和準則。它們反映了企業各要素之間的某種程度的共識,并形成了做出未來決策的基礎。在MSG-165中,為MTDS定義了10個主要的架構原則。下面將討論這些原則。

1.支持北約行動的合成集體訓練和任務演練 MTDS工作的主要預期應用是在北約范圍內的合成集體訓練。應為單一服務和聯合行動開發一個共同的技術和程序解決方案。就技術要求而言,任務演練被認為與任務訓練密切相關。

2.啟用(混合的)現場、虛擬和建設性資產 MTDS應(在未來)支持(混合的)現場、虛擬和建設性的模擬玩家。聯合行動和聯合行動的集體訓練需要有許多模擬實體的復雜訓練場景。訓練對象通常會在實戰、虛擬和混合的LVC環境下進行訓練。解決方案應支持LVC的混合集成。

3.提供靈活性和發展能力 許多國家已經使用模擬系統進行訓練。然而,這些現有的系統在技術上往往是非常不同的。MTDS RA應定義一個框架,該框架在技術上是先進的,沒有限制性(例如,可擴展新的模擬資產),并且不會不必要地阻礙訓練(例如,帶寬,穩健性)。應定義門戶或網關,以允許在MTDS中整合遺留系統,并允許MTDS所需的靈活性。

4.使用開放標準 北約提倡使用開放標準,因為它促進了成本效益的互操作性。開放標準可以被所有各方自由使用。對私人方(如供應商)的使用沒有任何限制。

5.遵守北約政策和標準 MTDS應遵守北約關于M&S互操作性和標準的政策和協議。偏離這一原則需要說明理由,包括對合適的北約標準的評估和與替代解決方案的比較。

6.支持在北約保密級別或最高級別使用 MTDS應支持北約行動的合成訓練和任務演練。系統、理論和任務執行的保密方面需要得到保護。應就系統、網絡、場地和能夠接觸上述內容的人員的實施和認證達成協議。

7.在一次演習中支持多個安全域或飛地 應就屬于不同飛地的系統、網絡、場地和人員之間的信息交流的實施和認證達成協議,可能通過使用CDS解決方案。每個國家和北約之間的CDS解決方案的認證將由每個國家承擔。

8.提供有代表性的訓練環境 MTDS應提供一個有代表性的集體訓練環境,以支持演習中所有參與者的公平競爭(或公平戰斗)。仿真系統性能的差異不應導致某些參與者獲得不現實的(不)優勢。

9.解決多個利益相關者的觀點 MTDS使用RA來提供對特定MTDS解決方案設計的通用和可重復使用的描述。RA是以架構構件的形式來描述的,對這些構件的解決方案有要求和適用標準。為了實施MTDS,將涉及不同的利益相關者。這些構件應該為不同利益相關者的觀點提供指導。

10.通過聯網模擬器為北約和國家的集體培訓提供具有成本效益的培訓解決方案,不得對用戶以及各中心及其工作人員施加不可接受的限制,因為這些限制不值得花費時間,也不能被行動上的好處所抵消。

MTDS原則為多個利益相關者的觀點提供了要求和標準。MTDS RA提供了一個符合上述架構原則的通用和可重復使用的描述。它使用了架構積木(ABB)和架構模式(AP)的概念來定義應用和服務的框架,使國家訓練系統能夠被整合到一個分布式的合成集體訓練環境中。圖3提供了該框架中主要ABB的概述。

圖3:MTDS框架的應用和服務

圖3中的應用是面向用戶的能力,與稱為服務的后端能力互動。例如,圖中顯示--在解決方案層面--將有一個或幾個用于場景準備的應用程序;這些軟件組件與后端服務實現(如威脅生成服務)互動,向這些服務提供模擬場景數據。框架應用和服務的一個子集(門戶服務、面向消息的中間件服務、威脅和跟蹤生成服務以及合成自然環境(SNE)服務)在(van den Berg, Huiskamp, et al., 2019)中有更詳細的討論。

5 跨域安全

北約國家有必要在北約MTDS演習中整合和操作其國家或主權機密模擬資產,以實現其共同的空中集體訓練目標。同時,北約國家希望保護這些最敏感或最機密的資產、其基礎數據和信息,防止因加入這種北約MTDS演習而受到(網絡)安全威脅。在不同國家敏感度、信任度或安全分類級別的模擬資產之間實現安全連接和互操作性,對于成功實施北約MTDS能力和演習至關重要。

M&S跨域安全(CDS)服務旨在滿足這一要求,使北約國家能夠通過共同共享的北約MTDS模擬主干,對位于其國家安全領域的模擬資產進行安全互操作。在這種情況下,安全域被定義為在一致的安全政策下運行的模擬資產,并由一個組織、國家和/或安全認證機構(SAA)擁有。安全政策定義了關鍵要素,如安全分類、可釋放性、利益共同體和任何其他對模擬資產中包含和處理的實際軍事系統和理論的數據和信息的特殊處理注意事項。

在這里,M&S CDS被定義為一個由安全強化服務組成的系統,該服務是為減輕在不同安全領域運行的模擬資產之間傳輸模擬數據的特定安全風險而定制的。這樣的M&S CDS可以被看作是一種網關環境的形式。與普遍應用的M&S(網絡)網關不同,M&S CDS提供了廣泛的安全控制,以提供全面的模擬數據過濾和深度防御,具有更高的保障水平。M&S CDS服務是保護整個北約MTDS基礎設施及其組成的模擬資產免受所有形式的安全威脅所需的整個安全措施的一個專門部分。除其他外,這包括:模擬資產和設施的物理和網絡邊界保護裝置,模擬資產或設施與網絡連接的物理安全,模擬資產和監測之間的加密通信保護,人員安全許可和意識培訓。這些常見的安全措施對于MTDS演習的安全執行也應到位。

理論上,可以設想許多通用的應用拓撲結構,其中部署M&S CDS解決方案,以確保在多個安全域之間進行受控和安全的模擬數據交換。然而,在實踐中,這種拓撲結構的實施必須符合具體的使用案例和威脅環境所施加的跨域安全要求和限制。這意味著分布式仿真環境的跨域安全不僅僅是孤立地關注M&S CDS設備(如數據節點、防護裝置或信息交換網關)。只有當每個連接的安全域內的模擬資產和網段滿足某些可信的安全政策、實踐和要求,并且其相關的安全風險被充分理解和接受時,才能保證整個分布式仿真環境的適當安全水平(反之亦然)。因此,在北約MTDS用戶背景和威脅環境下,在為聯盟集體訓練部署M&S CDS解決方案時,應考慮以下安全因素。

1.最重要的是,每個北約國家需要保持對其國家擁有的模擬數據和信息的完全控制,以及在MTDS訓練演習之前、期間和之后如何共享這些數據和信息。這意味著每個國家將始終通過本國擁有的CDS設備將其機密模擬資產與北約MTDS模擬主干連接起來,這些設備受本國的SAA和安全政策的約束。

2.所有將參加北約MTDS演習的北約國家都使用私營軍事網絡北約聯盟戰斗實驗室網絡(CFBLNet)作為共同的網絡基礎設施,以連接他們的機密模擬資產和其他相關的培訓應用,直至北約機密級別。這意味著參與的北約國家有一個共同的協議,在每個國家對這些資產或應用的安全等級執行方面相互信任,在此基礎上,他們可以通過這個網絡連接、共享數據和信息。因此,目前,從這個北約CFBL網絡到較低信任安全域的級聯連接對任何北約國家來說都是非常不可取的,甚至是不可接受的。

3.北約MTDS將部署符合北約STANAG和標準的仿真互操作性中間件服務(如HLA、DIS和TENA),以便在一個統一的分布式仿真環境中對國家仿真資產進行互操作,用于集體任務訓練和演習。目前,這些中間件標準通過一個共同的共享數據空間和模擬信息交換數據模型來交換模擬數據,而這并不提供任何安全措施。這意味著,任何國家只要能進入北約CFBL網絡,并被允許用正確的加密密鑰加入特定的MTDS演習,也可以直接訪問參與模擬資產之間交換的所有模擬數據。因此,這個集體模擬數據集是MTDS演習中所有參與國(即安全領域)的 "共享秘密"。

4.M&S CDS部署拓撲結構過于復雜,將使每個國家安全領域內的機密模擬資產的安全保障和操作復雜化,并可能增加攻擊面、轉換數據流渠道的風險以及與較低信任環境的級聯連接。這意味著過于復雜的部署拓撲結構可能會在整個MTDS演習準備、執行和匯報階段給北約國家帶來額外的成本和準備時間。因此,CDS的部署拓撲結構應該在滿足國家安全和培訓要求的前提下,設計得盡可能的簡單。

圖4描述了在北約MTDS演習中部署M&S CDS的參考拓撲,該拓撲是根據前面提到的安全考慮因素確定的(Roza,等人,2020)。

圖4:北約MTDS CDS部署的參考拓撲結構

該參考拓撲結構反映了這樣一種典型情況:參與北約聯盟級分布式仿真環境的仿真資產由不同的國家擁有,因此屬于受不同SAA管轄的安全領域。為了確保每個國家完全控制其國家擁有的機密模擬數據,以及如何與其他國家共享這些數據,每個國家通常應使用自己的CDS設備。在這里,每個國家的CDS首先將自己的主權機密模擬數據集轉換并映射成可釋放的數據集,然后根據商定的集體模擬信息交換模式將其發布到集體共享的模擬數據集中。這種共享數據受到共同商定的安全措施的集體保護,如數據加密,以確保通過第三方網絡基礎設施進行保密信息交流,并對每個國家的參與模擬設施采取安全措施,以獲得加入北約MTDS聯盟級演習的權限。反之,國家擁有的CDS設備可以保護單個或聯合的國家機密模擬資產免受來自北約CFBL網絡的網絡攻擊,包括因訂閱共享數據空間的數據而導致的未經授權的模擬數據入侵。

6 MTDS驗證演習

從UAWC的演習選項中選擇,"斯巴達勇士 "活動是通過分布式仿真進行的多國、以空中為重點的訓練。這次演習將在北約的CFBL網絡上進行,在四天的時間里使用每個國家的模擬或仿真器通過DIS和HLA進行連接。UAWC模擬/環境生成器將提供整體的合成環境、安全語音、聊天功能和紅色部隊來填充該領域。

為了建立支持大規模演習所需的行動區域,UAWC雇用了其他模擬中心的專家,包括空戰訓練中心(英國皇家空軍瓦丁頓空軍基地)、北約預警系統ASCOT控制員(北約蓋倫基興航空站)和萊昂納多公司(意大利)。此外,計劃中的參與包括法國空軍(FAF)、意大利空軍(ItAF)、北約預警系統、英國皇家空軍(UK)、加拿大皇家空軍(RCAF)、荷蘭皇家空軍(RNLAF)、西班牙空軍(SpAF)、美國空軍(USAF)和美國陸軍(USA)。因此,它還將通過采用嵌入盟軍控制和報告中心(CRC)和北約預警機的美國陸軍防空炮火控制官(ADAFCO)來實現聯合和北約的互操作性訓練。為了繼續提供互操作性的機會,演習還將通過北約預警機E-3、建設性的E-8 JSTARS和皇家空軍RC-135 "鉚釘 "聯合模擬器支持情報監視偵察(ISR)的 "鐵三角"。這種ISR融合能力模擬了關鍵的現實世界ISR整合,以提高跨平臺和機構的決策技能。這項培訓還將在盟軍CRC和聯合戰術空中管制員(JTAC)之間執行美國空軍支援行動中心(ASOC)的連接。最后,為了支持這項工作,將有多架反空和攻擊飛機,包括建設性的和有人駕駛的模擬器,通過故意瞄準(DT)、打擊協調和偵察(SCAR)以及近距離空中支援(CAS)來支持協調打擊。

由于有機會進行驗證演習,目前建立的基礎設施和系統得到了利用。由此產生的系統和網絡提供了探索規定的RA和CDS配置的混合機會。因此,支持演習的數據被記錄下來,用于進一步的參考架構測試和比較,這使得演習規劃者能夠專注于實現MTDS CONEMP(NATO STO MSG-165, 2019)中概述的聯盟集體訓練目標(CCTO)。通過在整個演習責任區(AOR)創造3級訓練機會,集中精力實現盡可能多的CCTVO,演習策劃者能夠將50個CCTVO中的37個作為計劃目標(NATO STO MSG- 165,2019)。

參照上圖2,不同的任務和飛機類型之間的相互作用有助于建立3級訓練的復雜性。為了開始建立所需的部隊互動過程,規劃者希望建立一個能夠支持現有參與者所需復雜性的戰斗空間。隨著四(4)個指揮和控制(C2)元素的使用,結構化的通道被分配給每個C2元素。有了這些通道,就需要控制戰斗機的進攻/防御行動,以及確保空中加油保持所需的CAPs的支持要求。這種最初的集體行動將戰斗機及其加油機與控制它們的C2機構聯系起來,以滿足聯合空中作戰司令部(CAOC)在規劃文件中制定的規定的區域防空計劃(AADP)。這種看似簡單的互動現在發生在四(4)個不同的元素之間,可以想象是在四(4)個不同的地點。對于 "斯巴達勇士 "20-9,意大利空軍(ItAF)的歐洲戰斗機在作為C2機構的北約預警機控制的航道上與作為建設性實體的UAWC控制的加油機之間的互動現在將3個不同的單位聯系在一起,以實現一個相對良性的集體訓練目標,AAR.02--在同一地點進行空對空加油。同樣地,一個集體可以通過綜合空中行動(COMAO)完成一個更復雜的舉措,以實現進攻性反空(OCA)目標OCA.01(護航),OCA.02(戰斗空中掃蕩)和SEAD.01(壓制敵人防空)。為了建立這個集體目標,規劃人員利用C2機構在機會窗口期間將屬于COMAO包的飛機組織到他們的集結點,然后提供空中掩護(護送),假設達到CAOC的規劃文件規定的可接受的風險水平(ALR)。這個目標給C2機構帶來了決策,他們有能力從以前的打擊中辨別出ALR(防空設施是否被充分壓制?)、COMAO包的狀態、護航OCA組的狀態以建立空中控制,然后是打擊發生后的戰斗損傷評估(BDA)信息。這些集體行動現在占了多個地點的多個小組,處理融合的情報(敵方防空狀態),以及打擊前和打擊后的有效信息交流。

對于MTDS事件的規劃者來說,場景的復雜性不應掩蓋手頭任務的復雜性。在這種情況下,規劃文件根據ALR定義了限制,并建立了已知的時間事件來創建這些打擊窗口。這就創造了機會,或缺乏機會,基于提供給決策者的輸入--在這種情況下,接受培訓的C2機構。對于演習策劃者來說,所需的CCTVO成為驅動特定場景的焦點。通過創建這些決策點,在多個平臺上收集相關信息,所有這些平臺都在為已知的事件進行協調,從而實現了集體訓練點。在更大的事件中,實現這些功能的機會可能會在細節和機會的海洋中消失,以引起更大的力量反應。然而,正是通過保持任務的簡單性來控制信息的流程和流動,才可以在不影響訓練對象或創造支持環境的白軍元素的情況下常規地實現CCTO。

最后,為了改變行動區的任務,特定的任務集在整個行動區被輪換使用。這種輪換使不同的C2機構能夠在四個演習日的每一天改變他們的重點。當一些機構負責支持CAS時,其他機構則負責協調COMAO包、SCAR資產或動態目標事件。此外,戰斗的性質在四天的演習中也有所改變。通過不保持時間線(演習第1天=第100天,演習第2天=第101天,等等),計劃者可以用較小的每日投入進一步構建演習事件。在這個例子中,演習日以10天為單位向前移動。這樣,雙方的補給都可以完成,但更重要的是,戰爭的基調可以得到調整。對于SW20-9來說,10天的增量提供了創造紅方部隊推進日、藍方部隊推進日、停火(以及隨后重新陷入戰爭)日和僵局日的機會。這些都會在對事件的整體解釋中產生色調和變化,從可能的叛逃者到自相殘殺的擔憂,都需要加以考慮。這些變化為所有玩家提供了一系列的事件和任務集,以解釋和建立他們的行動方案,從而增加集體的訓練機會。

7 結論和對北約聯合MTDS的建議

北約內部MTDS能力的發展并不限于MSG-165的工作。MSG-180工作組努力在海洋領域建立MTDS能力(名為LVC-T)(NATO STO MSG-169. 2019)。此外,這兩個小組的工作與MSG-164建模與仿真服務(MSaaS)有關(NATO STO MSG-164. 2018)。MTDS也是北約的智能防御倡議之一,由美國贊助,因此在各個層面都有很好的知名度,但遺憾的是仍然未能取得必要的進展。為了幫助這個問題,我們打算通過將海洋領域納入MTDS倡議,將智能防御的努力結合起來。雖然仍有一些挑戰,但迄今為止所開展的工作已經為其他現有的北約合成訓練問題提供了解決方案。這些問題包括:

  • 分析未來的空中訓練需求,從而重新確認多國MTDS活動的好處。

  • 建立共同的空中訓練目標,幫助確定聯盟的訓練要求,幫助調整適當的訓練媒體。

  • 制定參考架構原則,為聯合MTDS能力的使用提供基礎。

  • 制定MSG 165的愿景,即如何利用MTDS來支持北約空中業務培訓。在開發這個愿景時采用的方法顯示了更廣泛的效用,并有可能用于幫助其他部門確定他們自己的未來培訓愿景。

為了支持北約聯合MTDS的發展,我們提出了以下建議:

  • 發展北約綜合演習要求,從北約贊助的年度MTDS演習開始。這將有助于提高整個北約對MTDS能力和好處的認識,并有助于為MTDS的培訓制定必要的優先次序。

  • 正式確定聯盟對未來多國合成訓練的期望。我們相信,這將帶來巨大的好處,并提供必要的自上而下的方向和指導,以幫助推動MTDS能力的發展,這是一個初步要素。

鳴謝

本文介紹的工作是由以下北約國家和組織在MSG-165任務組中合作完成的。比利時、加拿大、法國、德國、意大利、荷蘭、挪威、西班牙、土耳其、英國、美國、歐洲航空集團(EAG)、北約工業咨詢集團(NIAG)和北約空中作戰卓越中心。所以這項工作的功勞應該歸功于這個MSG-165任務小組的所有參與者。本文的作者是MSG-165的聯合主席,并代表整個小組的作用。

付費5元查看完整內容

摘要

在過去的幾十年里,美國海軍庫存中只保留了少許類型的海上水雷,且戰術理論研究停滯不前,而主要優先考慮反雷能力。本論文通過一個現代的視角來審視水雷戰(MIW),使用建模和仿真(M&S)來捕捉圍繞水雷戰環境的更廣泛的因素,除了水雷的性能特點和使用參數外,還包括根據最新的任務成功標準來衡量敵方的反應概率。本論文探討了三種通用的非保密實驗方案,得出了對水雷成功影響最大的因素的廣泛結論,并為未來探索具體水雷用例的演習奠定了基礎,以便為下一代水雷及其使用提供信息。分析表明,在影響敵方行為結果方面,空中投送策略通常優于水面、潛艇或無人水下航行器(UUV)投送。請注意,UUV的投放與較低的水雷總量有關,其影響可以通過UUV的移動速度和單個水雷的探測和交戰概率來減輕。

執行摘要

有許多歷史實例證明了海上水雷的價值和通過水雷戰(MIW)取得的勝利。美國海軍在反水雷(MCM)領域的大量投資說明了海軍水雷的致命功效。然而,目前用于進攻性水雷能力的支出與這些防御性工作的投資相比相形見絀。進攻性水雷理論、熟練程度和使用已經停滯、倒退,甚至被忽視,直到沖突迫在眉睫或已經開始。最近,人們對利用水雷的成本效益和力量倍增的特點又有了新的興趣。美國海軍正在重新調整其任務重點,以包括這些潛在的好處,特別是當它涉及到無人水下航行器(UUV)能力的進步、探測傳感器技術,以及未來水雷的自主性、半自主性和可編程性的實際可行性。

該項目尋求更好地了解在不同的水雷作戰框架內可以利用的關鍵性能驅動因素,以最大限度地提高雷場的有效性。在傳統的進攻性水雷有效性措施(MOE)的基礎上,增加了愛德華茲(2019年)定義的四個以任務為中心的MOE,即轉向、阻斷、固定和破壞,定義了一種新的進攻性水雷思維,稱為進攻性拒止水雷(ODM)。ODM可以與現代戰爭的殺傷鏈相結合,對不需要的海上交通提供戰略威懾,在這樣做的同時也被動地釋放了海軍的關鍵資源,否則將支持戰略目標。這個項目的重點是使用概率行為模擬對ODM進行定義、建模和分析,以比較這些更新的MOE下的雷場有效性。

海軍水面作戰中心達爾格倫分部在過去十年中一直在開發通過建模進行協調模擬(OSM)框架。目前,利用OSM框架的JAVA GUI軟件的迭代被稱為MAST,是建模和仿真工具包的簡稱,是專門為這種類型的海軍系統的作戰研究和任務工程分析而創建。該團隊開發了三個實驗場景,定義為探索非保密級別的ODM考慮之間的關系。這些場景分別被指定為空中、艦艇和UUV投送,其中藍色為友軍,紅色為敵軍。為了便于比較和大致了解與這些替代場景有關的作戰考慮因素,每種場景一般都以投送平臺的速度、水雷部署能力、利用的投放點數量和部署水雷的相對能力為特征。空中投送實驗是一種高速、中等能力的飛行器,在單一地點部署能力較弱的水雷。艦艇投送實驗是一個中等速度、高能力的飛行器,在多個地點部署普通水雷。而UUV投送實驗則是一個慢速、低容量的飛行器,能夠使用高能力的水雷,如表1所示。

表1. 基準實驗方案假設

如圖1所示,所有的模擬考察都利用了在50 x 50海里的雷場區域內隨機分配的雷場投放點,目的是影響兩艘紅色船只從部署區以東的設定起始位置向西的預期航點過渡。紅色船只的邏輯實現了概率行為決策,以模擬敵人對其探測到的水雷的反應,或者改變其路線,固定在原地,或者繼續其路徑,并以 "逃離"信息傳達危險。

為了評估行動的重要性,我們開發了五個MOE。主要的MOE,稱為 "紅色影響",是指雷區影響紅方船只駛向預定航點的能力。如果紅色船只都沒有決定轉向或固定,那么紅色影響在該次航行中為零。如果兩艘紅方船只都被抑制,紅色影響為2;如果只有一艘船只受到影響,紅色影響為1。Agent的終止被指定為次要的MOE,用來捕捉傳統思維的MOE,最后部署的水雷被指定為次要的MOE,以更好地通知各實驗的決策點。MOE表見表2。

圖1. ODM移動場景(MAST)

表2. ODM MOEs

輸入變量的定義是為了檢查對藍軍行動、藍軍系統設計特征和紅軍行為邏輯的變化的影響。在空中實驗中定義了21個變量,在艦艇和UUV實驗中定義了25個變量。一個近乎正交的拉丁超立方實驗設計(DOE)在所有三種情況下運行。為空氣實驗確定的21個變量產生了128個獨特的偏移運行,為船舶和UUV確定的25個變量各產生了256個偏移。然后,在與NPS SEED中心的合作下,利用Hamming超級計算機復制了這些DOEs,為空氣產生了3780次偏移,為船只和UUV產生了5000次偏移,以供分析。研究小組發現,與紅色船只的概率決策邏輯有關的變量通常比那些具有物理價值的變量(如速度、范圍或水雷數量)更具影響力。在所有三種情況下,紅色影響的主要MOE也是如此。

為了降低紅色行為在模型中的相對重要性,進行了細化分析,特別關注對作戰效能影響最大的藍色配置特征。初級MOE(紅色影響)、傳統MOE(Agent終止)和次級MOE(部署時間)的結果顯示在圖2。盡管三個實驗似乎都顯示出類似的主要MOE結果,但結果差異在模型中是有統計學意義的。空中投送在 "紅色沖擊 "方面是最有效的,而且部署的速度比船只或UUV投送都快得多。這一點特別重要,因為在只關注紅色制劑死亡的傳統思維模式下,空中投送的單點播種將被歸類為最不有效。同樣,緩慢但有能力的UUV水雷投送,在使用毒劑死亡的情況下,也只是略微有效,但在使用ODM紅色影響MOE的情況下,其評級僅次于空中。

圖 2. ODM場景的結果

該模型為ODM的運行分析提供了一個起點。雖然模擬中的系統故意是通用的,以避免分類,但該模型的設計允許快速引入特定的系統數據。未來的工作可以更全面地實現任務目標(Edwards 2019)的MOE,或增加紅軍決策邏輯的復雜性。然而,即使在這個較高的水平和早期成熟階段,在這個項目中應用ODM概念的意義可以應用于集中開發和采購努力,并更好地告知未來戰斗空間的使用戰略。

I. 簡介

A. 背景情況

有許多歷史實例表明了海上水雷的價值和通過水雷戰(MIW)取得的勝利。美國海軍對其反水雷(MCM)社區的大量投資說明了海軍水雷的致命功效。然而,對防御性努力的投資使目前對未來進攻性水雷能力或國家研究委員會所說的進攻性拒止水雷(ODM)(2000)的支出相形見絀。從歷史上看,進攻性水雷的理論、熟練程度和使用已經停滯、倒退,甚至被忽視,直到沖突迫在眉睫或已經開始。

最近,人們對利用水雷的成本效益和力量倍增的特點重新產生了興趣。美國海軍正在重新調整其任務重點,以包括這些潛在的好處,特別是涉及到無人水下航行器(UUV)能力的進步、探測傳感器技術,以及未來水雷的自主性、半自主性和可編程性的實際可行性。ODM是為海軍作戰司令部(CNO)項目 "超配 "挑戰做出貢獻的自然選擇,即通過 "提供同步的致命和非致命效果"(2020年),"支持將使我們的持續海上主導地位的作戰......環境"。實現CNO建立未來部隊的海軍作戰架構的目標所必需的信條是由他在2020年10月的A Novel Force備忘錄中定義的 "一個綜合的任何傳感器/任何射手的殺傷鏈 "來建立。ODM能夠通過積極參與這些殺傷鏈來加強這一目標,對不受歡迎的海上交通提供戰略威懾,并在這樣做的同時也被動地釋放了原本支持這些戰略目標的關鍵海軍資源。

B. 項目目標

一般來說,進攻性水雷和具體的ODM是可以提供不對稱戰略優勢的領域,但對其研究不足,因此也沒有得到充分的利用。這就提供了一個機會。目前的ODM理論和戰術需要通過現代有效性措施(MOE)進行分析,以量化保護性(藍水)和進攻性(敵對海岸線12英里內)的潛在水雷環境,并確定任何不足之處(Edwards 2019)。在以前的研究中,"重點是孤立地檢查雷場的部署和特點,這項研究......檢查了能夠部署和支持雷場的替代無人和有人系統,作為聯合進攻行動的一個組成部分......[通過]考慮多個候選操作區域和替代交付平臺"(Beery 2020)。給予該小組探索的具體任務是。

1.定義一個候選的進攻性水雷戰行動概念(CONOPS)。

2.界定一個可供審查的作戰活動和相關系統的系統結構,以確定其對雷場部署有效性的影響

3.開發和分析作戰模擬,以便:a. 確定關鍵的性能驅動因素;b. 為作戰框架的比較提供依據(Beery 2020)。

C. 過程

為了實現這些廣泛的項目目標,團隊開發了一個項目瀑布方法,以定義主要的門和里程碑,如圖1所示,首先是文獻回顧,以熟悉MIW、其附屬元素和相關主題。目前的MIW分析員、操作員和專家被確認,他們幫助確定審查的范圍,并闡明了一些圍繞它的歷史。該小組與顧問合作,以確定MIW領域的適用資源和其他專家。項目發起人和顧問團的投入被用來為小組規劃提供信息和貢獻專業知識,以確保小組的產出為海軍提供價值。最初的文獻審查發現了涵蓋MIW CONOPS的材料和分析MIW操作的技術報告,但它未能產生一個普遍可用的ODM實用指南。為了填補現有文獻的空白,項目工作的重點是開發一個操作模擬,可以用來確定關鍵的性能驅動因素,并最終就如何最大限度地提高雷場部署的有效性提出建議。

圖1.BCM論文項目方法論

為了開發將要使用的作戰模擬模型,該小組采用了自上而下的系統工程(SE)方法,如圖2所示的修改后的軟件工程Vee。通過將通用的高層軍工項目分解為其系統需求的組成部分,團隊設計了一個仿真模型,產生了與這些需求相對應的數據,如修改后的Vee方法的左側所示。模型的輸出數據被收集和分析,驗證其與系統設計要求的適當映射,并驗證建議以滿足操作框架的比較。

此外,團隊每季度向社區利益相關者和感興趣的NPS教師介紹情況,以征求所有相關方的額外意見,并提供一個合作論壇的機會。最終的結果和建議在本報告中正式公布,并在畢業前的進度審查中提出。

圖2:BCM修改后的Vee方法。改編自Buede(2009)。

D. 團隊組織

團隊成員被分配了責任,以確保公平分工,充分考慮技術能力和行政后勤。盡管所有的團隊成員在每個階段都是積極的貢獻者,并幫助確保SE原則在每個步驟中得到遵循,但指定的牽頭人在其主題領域的執行方面保留了打破僵局的投票權。

  • 首席程序員和軟件開發人員。負責模型設計架構、模擬開發,以及與軟件(SW)開發人員和團隊外部的SW項目主題專家(SME)的聯絡。

  • 海上環境專家和UUV社區聯絡員。負責識別環境變量和考慮因素,并將其納入模型,通過無人潛航器社區的聯系和無人潛航器測試的個人經驗進行驗證。

  • 艦隊聯絡和安全經理。負責與美國海軍運營商和社區經理互動,以確保在整個模型開發、數據生產和分析報告中充分納入適當分類級別的CONOPS和技術規范。

  • 首席編輯和數據分析師。負責所有團隊交付成果的最終審查、格式化和提交。對報告的格式和內容的決定擁有最終決定權。

付費5元查看完整內容

現代綜合防空系統(IADS)所帶來的日益復雜的反介入區域拒止(A2AD)威脅,加上高端隱形平臺所提供的日益強大的優勢,促使美國空軍高級領導人投資于徹底改變2030年及以后的空中力量。這一新設想的一個突出因素是蜂群武器,其目的是通過用大量低成本、可損耗的航空資產來壓倒國際航空運輸系統,并通過自主能力來解決這一挑戰。這項研究提出了一個框架,按照三個獨立的維度對不同級別的自主能力進行分類,即單獨行動的能力、合作能力和適應能力。使用模擬、集成和建模高級框架(AFSIM)構建了一個虛擬作戰模型,模擬以有人駕駛的穿透式轟炸機和自主巡航導彈群為特征的友軍空襲包與以A2AD角色行動的敵軍IADS之間的交戰。通過使用自主性框架作為設計實驗的基礎,評估了不同水平的自主性對攻擊包性能的影響。對實驗結果的分析揭示了哪些方面和什么級別的自主性對促進這一模擬場景的生存能力和殺傷力最有影響。

1. 引言

1.1 動機和背景

戰爭的技術性質正在迅速發展,人們越來越重視對大量數據的收集、處理和決策。隨著指揮與控制(C2)決策空間的復雜性增加,指揮系統根據現有信息采取行動的速度越來越成為一個限制性因素。具有不同程度的人與系統互動的自主系統為緩解這一不足提供了機會。美國2018年國防戰略(NDS)[18]明確要求國防部(DoD)"廣泛投資于自主性的軍事應用",作為促進大國競爭優勢的一項關鍵能力。

參與大國競爭的一個自然后果是反介入區域拒止(A2AD)環境在聯合沖突的所有方面擴散。從美國空軍(USAF)的角度來看,現代綜合防空系統(IADS)構成了卓越的A2AD威脅,這嚴重抑制了通過常規手段建立空中優勢的前景[2, 20]。這一挑戰促使部隊結構的優先事項發生了變化,因為將能力集中在相對較少的高端系統中的感知風險越來越大。美國空軍科學和技術戰略[26]設想,數量龐大的低成本、易受攻擊的航空資產將很快發揮曾經由數量有限的高價值資產完成的作用。這種大規模的蜂群的任務規劃和空戰管理(ABM)工作的規模可能很快超過人類的認知能力,這使得它成為非常適合自主性研究和開發的應用領域。

1.2 問題陳述

本研究試圖評估幾種自主巡航導彈群的行為對A2AD環境中藍方(友方)空中性能的影響。具體來說,所研究的A2AD場景考慮了紅方(對手)的IADS被藍方聯網的自主巡航導彈群吸引,以促進穿透式轟炸機的后續打擊。在任務規劃時沒有考慮到的突然出現的威脅,可能會進入該場景以增加紅色IADS的力量。蜂群必須在沒有外部反彈道導彈的幫助下,檢測并應對這些突發威脅以及任何其他對抗性任務參數的變化。A2AD場景的建模是使用模擬、集成和建模高級框架(AFSIM)完成的。

1.3 研究問題

為了解決問題陳述,本研究將對以下問題提供答案:

1.具有自主反彈道導彈能力的巡航導彈蜂群能在多大程度上提高藍方空襲包在A2AD環境下的生存能力(即避免被紅方IADS發現和摧毀的能力)?

2.具有自主反彈道導彈能力的巡航導彈群能在多大程度上提高A2AD環境下藍方空襲包的殺傷力(即探測和摧毀紅方IADS元素的能力)?

1.4 論文的組織

本論文的其余部分包含四章,組織如下:第二章對包括自主性、A2AD環境、基于代理的建模和仿真(ABMS)以及實驗設計(DOE)等主題的參考材料進行了回顧。第三章建立了A2AD場景、AFSIM模型實現和實驗設計的結構,作為本研究的框架。第四章介紹了實驗模擬運行的結果和附帶的分析。最后,第五章討論了從這項研究中得出的結論,以及對未來研究方向的建議。

付費5元查看完整內容

美國海軍部長

托馬斯-W-哈克: 海軍部長(代理)

美國海軍部正在有目的地進行創新和適應新技術,為未來建立一支更具殺傷力和分布式的海軍部隊。為了在一個大國競爭的時代進行競爭并取得勝利,海軍部致力于在先進的自主性、強大的網絡和無人系統方面進行投資,以創造真正的人機一體化團隊,在整個艦隊中無處不在。

這些持續的投資將產生新的能力,遠遠超出獨立的平臺或以人為本的系統的有效性。它們將通過為每一個水手和海軍陸戰隊員提供不對稱的優勢來改變海戰。

美國海軍和海軍陸戰隊現在已經邁出了下一步,調整無人系統愿景,以執行分布式海上作戰(DMO)和有爭議環境中的瀕海作戰(LOCE)。為了確保成功,海軍和海軍陸戰隊正在將需求、資源和采購政策緊密結合起來,以便更快地開發、建造、整合和部署有效的無人系統

美國海軍部的無人駕駛作戰規劃橫跨整個理論、組織、培訓、物資解決方案、領導和教育、人員、設施和政策的構建。這份文件提供了運動計劃的總體框架,并得到了更高等級的詳細實施計劃的支持。它們共同勾勒出一個具體的戰略,其根基是對當今每個領域的現實評估。前進的道路需要一個整體的方法來開發和部署無人系統,確保個別技術可以在一個更廣泛的網絡化作戰系統架構中運行,并得到正確的人員、政策、作戰概念和其他推動因素的支持。

整個海軍企業致力于為美國和每一個水手和海軍陸戰隊員提供人機協作所提供的戰略和戰術優勢,以保證所有人的海洋自由。

美國海軍水手和公務員水手從美國海軍 "赫歇爾 "號上發射一個無人水面飛行器(USV)從USNS赫歇爾 伍迪-威廉姆斯,2019年9月14日。

美國海軍作戰部部長

M. M. GILDAY:美國海軍作戰部長海軍上將

隨著海軍適應日益復雜的安全環境,必須了解未來的部隊在日常競爭和高端戰斗中都需要什么。

無人系統(UxS)已經并將繼續在未來的分布式海上作戰(DMO)中發揮關鍵作用,而且顯然需要部署負擔得起的、致命的、可擴展的和連接的能力。這就是為什么海軍正在擴大和發展一系列無人駕駛飛行器(UAV)、無人駕駛水下航行器(UUV)和無人駕駛水面艦艇(USV),當把重點轉向以更分散的方式運作的小型平臺時,它們將發揮關鍵作用。

一個混合艦隊對于海軍滿足新出現的安全問題來說是必要的。需要平臺在所有領域的多軸上同時提供致命和非致命的效果。UxS將為未來艦隊提供額外的能力--在空中、在水面上和在水下。

該活動計劃將作為實現無人系統作為海軍作戰團隊的一個組成部分的未來的全面戰略。它將是一份活的、反復的文件,闡明愿景,即通過加快技術、流程和伙伴關系中的關鍵使能因素,建立一支更加準備就緒、致命和有能力的艦隊。

注意到過去的缺點,因此其方法是深思熟慮的,但有一種緊迫感。將解決理論、組織、訓練、物資、領導和教育、人事、設施和政策(DOTmLPF-P)的各個方面,確定并消除能力差距,并努力創建和維護未來的海軍部隊。

MQ-25 T1,左翼下有空中加油站,在坡道上。

海軍陸戰隊司令員的致辭

大衛-H-貝格爾:美國海軍陸戰隊將軍 海軍陸戰隊司令員

美國、盟國和敵方部隊獲得無人駕駛技術的速度要求有一個愿景和路線圖來最大化這種能力。海軍陸戰隊需要無人駕駛的空中、水面和地面系統來充分利用固有的遠征性質和能力。與海軍伙伴合作,將提供一個聯合部隊的海上組成部分指揮部,在居住的獨特海域支持聯合部隊。當在惡劣的條件下以小隊形式在前方作戰時,最大限度地利用無人系統為盟友和對手創造巨大的效果的能力是未來成功的一個關鍵因素。

該戰役計劃作為海軍陸戰隊的一個起點,使其了解到無人系統在不久的將來必須而且將具有更大的重要性。諸如一半的航空機隊在近期到中期內實現無人駕駛,或者大部分的遠征后勤在近期到中期內實現無人駕駛的概念不應該讓任何人感到害怕。相反,這些想法應該點燃海軍陸戰隊的創造性和狡猾的天性,以便前沿部署部隊對聯合部隊更加致命和有用。

大衛-H-貝格爾和海軍作戰司令部(CNO)一起,致力于為海軍陸戰隊的無人駕駛系統制定一個審慎但積極的前進路線。這份文件提供了初步的愿景,并取決于與海軍陸戰隊艦隊、艦友、聯合部隊、國會、盟友和工業界的反復討論。大衛-H-貝格爾希望海軍陸戰隊能接受這種未來的戰爭,并將其轉化為他們在戰場上的優勢;從日常競爭到大規模作戰行動。

一架VBAT垂直起降(VTOL)無人機系統準備在飛行甲板上降落。準備在海軍艦艇的飛行甲板上著陸。一艘海軍艦艇的飛行甲板上。

美國海軍作戰架構

無人系統通過解除對有人系統的限制來提供實現任務結果的能力。僅靠搭建平臺是無法實現任務成果的。為了在無人空間提供整體解決方案,DON 將更加關注開發成功擴展投資經驗所需的推動力。其中一些關鍵推動因素包括:網絡、控制系統、基礎設施、接口、人工智能和數據。海軍和海軍陸戰隊正在設計和實施一個全面的作戰架構來支持 DMO。這種架構將為單位、作戰群和艦隊提供準確、及時、分析的信息。

付費5元查看完整內容

摘要

軍事決策在不同的領域--陸地、海洋、空中、太空和網絡--以及不同的組織層面--戰略、作戰、戰術和技術上發揮著關鍵作用。建模和仿真被認為是支持軍事決策的一個重要工具,例如,生成和評估潛在的行動方案。為了成功地應用和接受這些技術,人們需要考慮到整個決策 "系統",包括決策過程和做出決策的指揮官或操作員。

人工智能技術可以以各種方式改善這個決策系統。例如,人工智能技術被用來從(大)數據流中提取觀察結果,自動建立(物理/人類/信息)地形模型,產生對未來事件和行動方案的預測,分析這些預測,向人類決策者解釋結果,并建立人類決策者的用戶模型。

對于所有這些應用,人工智能技術可以在不同的情況下被使用,并且已經開始被使用,因此有不同的要求。在本文中,我們概述了人工智能技術和模擬在決策"系統"中的不同作用,目的是在我們的社區中促進對人工智能的綜合看法,并為用于軍事決策的各種人工智能研發奠定基礎。

1.0 引言

軍事決策有多種形式。它發生在不同的領域--陸地、海洋、空中、太空、網絡--以及不同的組織層次[7]。例如,在戰略層面上,決策是否以及何時在一個特定的作戰區域內開始一項軍事任務。在作戰層面上,聯合部隊指揮官決定為某項行動分配哪些軍事要素,并指定在具體行動中尋求的預期效果。在戰術層面上,例如,海上任務組的反空戰指揮官決定由哪艘護衛艦來應對來襲的威脅。最后,在技術層面上,要決定在什么范圍內使用什么武器來消滅對手。

建模和仿真被認為是支持這些現場決策過程的一個重要工具(例如,見[3]的清單)。它提供了一種理解復雜環境和評估潛在行動方案有效性的手段,而不必使用現場測試。因此,借助于建模和模擬可以更安全、更便宜、更快速,而且可以更容易地測試不同的操作方式。此外,對于戰場上的軍事行動來說,廣泛地試驗軍事行動應該如何進行,甚至可能在道德上不負責任。因為,在指揮官可以決定不繼續按照同樣的戰術行動之前,就已經產生了意想不到的效果。

現代建模和仿真經常得到人工智能(AI)技術的支持。例如,用于仿真單個節點、組織和社會行為模型(見一些背景資料[13][4]),以獲得對對手合理和可能行為的洞察力。在這種行為洞察力的基礎上,可以為許多決策層面的軍事行動設計提供智能分析和決策支持。此外,人工智能技術被用來構建這些模型,與這些模型互動,并迅速分析大量的模擬結果數據。這里的技術進步非常多,例如,使用機器學習來構建更真實的行為模型[11],改善人機協作[5],對大量的模擬數據進行理解[10]。然而,人工智能技術只有在對決策者有用的情況下才能也應該被用于軍事決策。這意味著,只有在決策質量提高或決策過程變得更容易的情況下,才應將人工智能技術(在建模和仿真中)整合起來。

成功應用和接受用于決策支持的模擬仿真--可能建立在人工智能技術之上--取決于與主要軍事決策過程的互動和不斷學習([1])。決策者和分析員應該知道如何提出正確的輸入問題,以便通過建模和仿真來回答。然后,這些問題應該通過建模和仿真研究轉化為正確的輸出答案。因此,在各種互補的人工智能技術的支持下,應該對軍事決策過程和軍事模擬之間的互動有一個廣泛、全面的看法,并服從不同的功能要求。在本文中,我們概述了由人工智能技術支持的軍事仿真在決策"系統"中的不同作用,目的是在我們的社區內促進對人工智能的綜合看法,并為軍事決策的各種人工智能研發奠定基礎。

2.0 基于仿真的軍事決策

如引言所述,決策發生在不同的領域和不同的組織層面。在這里,我們提出了一個決策系統的示意圖,以提供一個關于如何通過仿真來支持決策的一般見解。這一觀點(圖1)來自于對多個決策過程的分析,如聯合定位[5]、作戰計劃[7]、海上反空戰[1],并與著名的OODA環[8]相結合。該觀點中的元素解釋如下。

圖1:由建模和仿真支持的軍事決策周期的系統觀點。

觀察:OODA循環的第一步是觀察,從廣義上講,就是觀察現實世界中正在發展和出現的事件和情況。觀察包括,例如,來自傳感器的(原始)數據,包括我們自己的眼睛和耳朵,以及來自報告、報紙和社會媒體的符號數據。還收集了來自高層指揮和控制實體的指導意見。這些數據由分析員處理,對鏡頭中的個體進行命名,計算某些Twitter標簽的出現次數,驗證某個事件是否真的發生,等等。根據[9],這可以被稱為情境意識的第一級:對當前情況下的元素的感知。

世界模型:在OODA環的觀察步驟中,已經開始了構建世界模型的過程,無論是隱性的還是顯性的。符合軍事決策觀點的世界模型的另一個名稱是共同行動圖。所有相關的概念都在世界模型中得到體現,包括不確定因素和假設。請注意,世界模型可以被仿真,即個體、平臺、團體或社會的行為可以隨著時間的推移而被預測,即使是在用戶的頭腦中隱含完成。

定位:在OODA循環的第二步,分析者使用他的專業知識,對觀察結果進行推理,形成假設,例如對手的意圖。通過這樣做,實現了對真實世界的深入理解[12],這反映在世界模型中(仍然是顯性或隱性的)。在態勢感知方面,這被稱為第2級(對當前形勢的理解)和態勢感知能力第3級(對未來狀態的預測)。在任何時候,推理的結果可能是世界模型結構是不充分的,例如,現實世界的一個方面被認為是不相關的,但最后發現是相關的。因此,世界模型需要被更新。

決定:決策者,可能是與分析員相同的人,將根據對現實世界的理解,考慮如何采取行動的選項。世界模型的預測能力被用來演繹各種情景,讓人了解什么是理想的行動方案,什么不是,或者讓人了解空間和/或時間上的關鍵點,這樣就可以對這些關鍵點給予額外考慮。當然,如果世界模型是隱含的,這都是決策者的精神努力。此外,對于感興趣的現實世界系統的預測行為,可以得出的結論的精確性和/或確定性有很大不同:從精確的路線,到可能的戰略和理論的廣泛指示。

行動:在OODA-環的這一步,行動被執行。這些行動發生在真實世界中,然后一個新的OODA-環開始觀察是否需要重新考慮已經做出的決定。另一個行動可以是向 "較低層次"的決策過程下達命令,例如,讓下屬單位計劃和執行他們所得到的任務。這就是不同組織層次的決策過程的互動方式。還要注意的是,盡管每個組織層面的世界模型都與真實世界相聯系,但這些世界模型的結構(即被認為是相關的)可能是不同的。

從概念上講,在上述的決策過程中引入模擬(實際上首先是建模的巨大努力)是很直接的。在第一步和第二步中,建立了世界相關部分的模型,在以后的時間里,它被用來評估許多不同的情景,分析由此產生的結果,并根據其結論做出決定。正如后面將顯示的那樣,人工智能技術的作用與建模和模擬的使用有很大關系。

雖然從概念上來說,納入仿真模擬和人工智能技術是很簡單的,但為了給行動提供真正的附加值,它需要被嵌入到具體的決策過程中。而每個決策過程都是不同的,有不同的時間限制,不同的行動者,在不同的操作環境中。這將對開發使用的解決方案,包括人工智能技術,提出不同的功能要求。此外,根據具體的作戰決策環境,應用人工智能技術的附加值(或缺乏附加值)將是不同的。在下一節中,我們將對一個具體的案例進行進一步的探索,盡管肯定不是詳盡的努力,以允許對這種系統在這個過程中可能具有的不同角色進行更通用的識別。

3.0 案例研究:聯合目標定位周期

本節提供了一個關于如何利用仿真和人工智能技術來支持作戰層面上的(蓄意)聯合目標定位決策的案例研究。對于每個想法,都有以下描述:被加強的行為者(決策者)和/或產品,人工智能如何提供支持,以及使用這種形式的支持的附加值是什么。請注意,這個案例研究的目的是為了更好地了解人工智能技術應用的廣度,因此,目標不是完全涵蓋所有的可能性,也不是過于詳細。這種類型的案例研究已經確保了可以得出初步的功能要求,人工智能技術和智能建模與仿真應該應用于此。

圖2顯示了北約盟國聯合出版物3.9中的聯合瞄準決策周期,其中強調了五個想法。

圖2--來自北約盟國聯合出版物3.9的聯合目標定位周期,JFC=聯合部隊指揮官,JTCB=聯合瞄準協調委員會,JTL=聯合瞄準清單,TNL=目標

想法1--基于AI的目標系統分析的所有來源分析。第一個想法是支持目標小組的成員在聯合目標定位周期的第二階段參與目標系統分析,進行目標開發。例如,假設從第一階段開始,就打算通過瞄準對手的石油生產來擾亂其資金能力。在第二階段,分析人員將研究石油生產的目標系統,以確定油井、煉油廠、管道、重要的道路,也許還有相關的關鍵人物,等等,基于他們擁有的所有來源(圖像、信號情報、人類情報,等等)。

人工智能技術可以協助人類分析員建立 "目標系統模型",即通過采用模式識別算法來處理大量的所有來源的信息,通過使用推理算法將信息碎片組合成一個結構化和連貫的整體。分析傳入信息的算法可能--經過增量的人工智能驅動的創新--也能夠識別尚未反映在目標系統模型中的新概念,然后可以自動添加到模型中。另一種可能性是創建一個 "虛擬分析師"(見圖3),通過不斷挑戰假設、假說和人類偏見來協助人類分析師,這需要額外的用戶建模和可解釋的AI技術。

圖3:人類和虛擬分析員,一起解釋數據,推理信息和知識,以建立一個目標系統模型。

這個想法的潛在附加值首先體現在完整性上,更多的目標可以呈現給人類分析員--它仍然可以為交叉檢查的目的做最后一步的目標審查。因為所有來源的情報都被整合到目標識別決策中,所以可以得出更具體的目標信息。識別算法經過訓練后,與基于人眼從數據中識別目標時相比,可以更快更及時地進行識別。最后,該算法可以明確地轉向識別不同類型的目標,這些目標可能并不都在人類分析員的經驗或觀察能力范圍內。

想法2--通過算法識別來自目標系統分析的優先目標。第二個想法是支持從一個給定的目標系統分析中識別優先目標。這有助于目標支持小組成員得出一個聯合的優先目標清單,該清單是在聯合目標定位周期的第二階段,即目標開發階段制定的。人工智能技術的支持始于將目標系統分析(如果還沒有的話)轉化為計算機可理解的形式,該形式由功能關系連接的實體組成,并由目標任務的目標支持。然后,在相關的時間范圍內計算直接或間接瞄準不同實體所產生的效用(例如,效果和效果的持續時間)。

然后,最終結果可以由人類分析員檢查,該分析員可能會重新引導算法的某些部分,以確保最終結果選擇的優先目標盡可能地滿足和平衡任務目標。另一種可能性是,分析表明,對目標系統的某些部分還沒有足夠的了解,無法做出某種決定,然后發出新的情報請求,以減少這種不確定性。

在這種情況下,使用人工智能技術的附加價值首先體現在通過完整地確定優先事項,包括最大限度地實現任務目標,同時最大限度地減少負面問題,從而更好更快地確定優先次序。這種全面的分析可能會導致原始的目標選擇,在這種情況下,會發現反直覺但非常有效的目標。目標優先級的可追溯性增加了,因為目標選擇問題的算法規范以及積極和消極的相關功能迫使決策者在激發他們的偏好時完全明確。

想法3--能力和優先目標的自動映射。與目標開發(第二階段)密切相關的是第三階段的能力分析。第三個想法是協助,仍然支持目標支持小組的成員,找到最適當的(致命和非致命)能力的最佳同步組合,可以應用于產生所需的物理和心理效果。使用模擬和人工智能技術來自動生成和播放高水平和低水平的行動方案,可以獲得對計劃的優勢、機會、弱點和威脅的深刻理解。當然,只有在與人類分析員和決策者密切合作的情況下,建立這樣的理解才是有用的,這就需要有人類意識的 "虛擬分析員 "技術。

想法4--計算機輔助的穩健和適應性部隊規劃和分配。在聯合定位的第四階段,能力分析的結果被整合到進一步的行動考慮中,推動聯合部隊指揮官對目標的最終批準。仿真和人工智能優化技術可用于尋找稀缺資源對目標或其他任務的最佳分配。什么被認為是 "最好的 "可以是不同的,例如,爭取最大的效果、安全、穩健、靈活,或這些和更多因素的任何組合。這可能會提供原始的規劃和分配方案,從人類分析者的角度來看,這些方案部分是反直覺的,但卻富有成效。智能優化算法可以幫助確定時間和/或空間上值得監測的關鍵點。而且,如果可以實時跟蹤進展,在事件或機會實際發生之前就可以立即生成重新分配方案,在時間緊迫的情況下減少決策時間。

想法5--自動評估軍事行動績效措施。在聯合定位的最后階段,收集和分析數據和信息,以確定計劃的行動在多大程度上得到執行(績效的衡量),以及達到預期的效果(效果的衡量)。因為這種類型的分析與其他階段的分析基本相似(即需要觀察和理解),所以在這里采用的模擬和人工智能技術可以被重復使用。例如,"目標系統模型"可以用來事先確定哪些措施或措施的組合最能說明性能和/或成功,也許還要考慮到其他因素,如效果的可測量性和延遲性。這些見解可用于指導例如戰斗損失評估工作。算法可以自動產生多種假設,當數據/信息可用時,"虛擬分析師"可以協助對這些假設和信息進行推理,幫助人類分析師以結構化的方式更好地解釋復雜的情況。

4.0 討論:人工智能在軍事決策中的作用

在本節中,我們將討論人工智能技術在軍事決策中可以發揮的作用,并將這些作用與前面介紹的軍事決策系統聯系起來。這些作用是由上面的案例研究綜合而成的。不同的作用是沿著兩個層次結構的,從上到下:在 "過程"層面,不同但連貫的步驟/階段被執行;在 "個體"層面,人類(或團隊)負責執行決策過程的特定步驟。

在整個決策過程的層面上,有多個步驟可以區分。在前面介紹的決策系統觀點中,這些步驟是觀察、定位、決定和行動。在聯合定位案例研究中,這些對應于六個階段,由不同的人在不同的時間執行。在這個層面上,我們為人工智能技術定義了四個功能角色,以支持決策過程。

  • 感知:這個角色中的人工智能技術,主要以模式識別的形式,幫助處理大量的數據,如在圖像中尋找人,檢測數據流中的異常情況等。

  • 態勢理解:這個角色的功能是實現對當前或假設的作戰環境的理解[12],從而描述所有相關實體、它們之間的關系以及不可觀察的屬性,如它們的野心和目標。例如,對關于最近敵對活動的現有信息進行推理,結合關于他們的理論的一般知識,可以用來產生關于他們最可能的意圖的假設。

  • 計劃生成:在這個角色中,人工智能技術,例如搜索和優化,被用來生成旨在達到(或避免)某種目標情況的計劃、策略和行動方案。處理元標準,如計劃的穩健性或情況的實用性也是這個作用的一部分。顯然,在許多情況下,不確定性是行動環境所固有的,因此不能被忽視。盡管如此,對當前形勢的理解越好,預測能力就越強。

  • 學習:扮演這一角色的人工智能技術被用來更新有關作戰環境的知識。例如,在某個時間點,人們可能會發現一個被認為是正確的關于敵人理論的假設不再有效了。為了能夠保持正確的理解,這種新知識應該反映在所有其他決策步驟中。

在單個節點層面上,決策過程的單一步驟被執行,通常由一個或一組人類分析員和/或決策者負責。無論這一步需要什么,人工智能技術都可以在不同的合作角色中被使用,以支持人類。

  • 專家系統支持:在這個角色中,支持的形式就像一個經典的專家系統,以知識和優化結果的形式向人類決策者或分析員提供建議。重要的考慮因素是,例如,如何以人類能夠接受的方式向其提供建議。對可解釋人工智能的研究可能是一個方向。

  • 虛擬團隊成員:在這個角色中,人工智能技術被用來在人類和支持系統之間創造一種更平等的互動關系,積極為一個共同的目標工作。例如,虛擬團隊成員可以通過提出問題使假設明確化或挑戰偏見來幫助做出決定的(認知)過程。人類-人工智能的研究可能是一個追求的方向。

  • 自主決策:決策過程中的其他步驟的互動,專家系統和虛擬團隊成員支持的考慮同樣有效。例如,在其他決策中的人類需要能夠推斷出一個自主系統。

圖4顯示了在軍事決策系統視圖中繪制的人工智能的七個角色。當使用模擬和人工智能來支持決策過程時,應該始終考慮這些不同的角色是如何互動的,無論是在過程層面還是在個人層面。例如,在聯合目標定位的過程層面上,第二階段包括定位(目標系統分析)和決定(為達到預期效果而瞄準什么)。第三階段也包括定位(自身能力)和決定(如何實現預期效果)。這些階段共享相同的世界模型,在這個過程中引入人工智能支持將推動這些步驟的合并,這不是不可想象的。在個體層面上,例如再次考慮第2階段,分析員可以得到綜合態勢理解、規劃生成和學習技術的支持,以及虛擬團隊成員和專家系統支持技術的任何組合。

圖4:由建模和仿真支持的軍事決策周期的系統視圖,其中人工智能技術的功能(黃色)和協作(綠色)作用被描繪出來。

5.0 結論和進一步研究

在本文的第一部分,我們介紹了軍事決策的系統觀點,主要基于OODA循環,其中我們介紹了世界模型,作為向整個決策周期提供建模和仿真支持的核心手段。接下來,從我們的聯合目標定位案例研究中,我們推斷出人工智能可以為軍事決策做出貢獻的七個功能性和協作性角色。這些角色對應于決策步驟,或者對應于如何向負責該過程步驟的人提供支持。最后,我們將這些人工智能角色整合到決策系統視圖中。

本文的目標是為我們社區內人工智能的綜合觀點做出貢獻,并為軍事決策的人工智能各種研發奠定基礎。在開發支持軍事決策的模擬和人工智能時,我們建議同時考慮過程層面和單個節點層面。在過程層面上,通過使用建模和仿真可以獲得好處。在單個節點層面上,為人類分析員和決策者提供實際支持,人工智能技術可以通過不同的角色組合對此作出貢獻。鑒于決策過程的各個步驟都是不同的,并且提出了不同的要求,履行這些不同角色的人工智能技術需要作為一個整體來開發。

我們相信,隨著對這一主題的更多研究,軍事決策的速度和質量都可以得到改善。然而,非常重要的是,要持續關注特定的未來人工智能應用的附加值,以及研究這些應用可能對,例如,負責該過程的人的所需技能,甚至該過程本身的影響。最后需要的是一個系統,它的存在是因為它可以建立,而不是有人幫助。對于這一點,應該更普遍地回答如何限定然后量化應用人工智能進行具體軍事決策應用的附加價值的問題。這樣的見解反過來又會成為關于人工智能用于軍事決策的集體技術路線圖的寶貴基礎。

6.0 參考文獻

[1] Bloemen, A., Kerbusch, P., van der Wiel, W., Coalition Force Engagement Coordination, TNO Report TNO-2013-R12117, 2015.

[2] Connable B, Perry W, Doll A, et al. Modeling, Simulation, and Operations Analysis in Afghanistan and Iraq. Santa Monica, CA: RAND, 2014.

[3] Davis P., Kulick J., Egner M. Implications of Modern Decision Science for Military Decision-Support Systems. Santa Monica, CA: RAND, 2005.

[4] Kunc, M., Malpass, J., White, L.(2016). Behavioral Operational Research, Theory, Methodology and Practice. Palgrave Macmillan, London.

[5] Langley, P., Meadows, B., Sridharan, M., Choi, D. (2017). Explainable Agency for Intelligent Autonomous Systems. Proceedings of the Twenty-Ninth AAAI Conference on Innovative Applications (IAAI-17).

[6] NATO Allied Joint Doctrine For Joint Targeting AJP 3.9(B), 2015.

[7] NATO Allied Command Operations. Comprehensive Operations Planning Directive Interim V2.0.

[8] “OODA loop.” Wikipedia, The Free Encyclopedia. 10 Mar. 2018.//en.wikipedia.org/wiki/OODA_loop

[9] “Situation Awareness.” Wikipedia, The Free Encyclopedia. 17 Mar. 2018.

[10] Smit, S., Veldhuis, G., Ferdinandus,G., et al. KaV Advanced Visual Analytics, TNO Report DHWELSS-, 2016.

[11] Toubman, A., Poppinga, G., Roessingh, J. (2015). Modeling CGF Behaviour with Machine Learning Techniques: Requirements and Future Directions. Proceedings of Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015.

[12] “Understanding.” Wikipedia, The Free Encyclopedia. 18 Apr. 2018.

[13] Zacharias, G., MacMillan, J., van Hemel, S. (2008). Behavioral modeling and simulation: From individuals to societies. National Research Council, National Academies Press.

付費5元查看完整內容
北京阿比特科技有限公司