亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要

在過去的幾十年里,美國海軍庫存中只保留了少許類型的海上水雷,且戰術理論研究停滯不前,而主要優先考慮反雷能力。本論文通過一個現代的視角來審視水雷戰(MIW),使用建模和仿真(M&S)來捕捉圍繞水雷戰環境的更廣泛的因素,除了水雷的性能特點和使用參數外,還包括根據最新的任務成功標準來衡量敵方的反應概率。本論文探討了三種通用的非保密實驗方案,得出了對水雷成功影響最大的因素的廣泛結論,并為未來探索具體水雷用例的演習奠定了基礎,以便為下一代水雷及其使用提供信息。分析表明,在影響敵方行為結果方面,空中投送策略通常優于水面、潛艇或無人水下航行器(UUV)投送。請注意,UUV的投放與較低的水雷總量有關,其影響可以通過UUV的移動速度和單個水雷的探測和交戰概率來減輕。

執行摘要

有許多歷史實例證明了海上水雷的價值和通過水雷戰(MIW)取得的勝利。美國海軍在反水雷(MCM)領域的大量投資說明了海軍水雷的致命功效。然而,目前用于進攻性水雷能力的支出與這些防御性工作的投資相比相形見絀。進攻性水雷理論、熟練程度和使用已經停滯、倒退,甚至被忽視,直到沖突迫在眉睫或已經開始。最近,人們對利用水雷的成本效益和力量倍增的特點又有了新的興趣。美國海軍正在重新調整其任務重點,以包括這些潛在的好處,特別是當它涉及到無人水下航行器(UUV)能力的進步、探測傳感器技術,以及未來水雷的自主性、半自主性和可編程性的實際可行性。

該項目尋求更好地了解在不同的水雷作戰框架內可以利用的關鍵性能驅動因素,以最大限度地提高雷場的有效性。在傳統的進攻性水雷有效性措施(MOE)的基礎上,增加了愛德華茲(2019年)定義的四個以任務為中心的MOE,即轉向、阻斷、固定和破壞,定義了一種新的進攻性水雷思維,稱為進攻性拒止水雷(ODM)。ODM可以與現代戰爭的殺傷鏈相結合,對不需要的海上交通提供戰略威懾,在這樣做的同時也被動地釋放了海軍的關鍵資源,否則將支持戰略目標。這個項目的重點是使用概率行為模擬對ODM進行定義、建模和分析,以比較這些更新的MOE下的雷場有效性。

海軍水面作戰中心達爾格倫分部在過去十年中一直在開發通過建模進行協調模擬(OSM)框架。目前,利用OSM框架的JAVA GUI軟件的迭代被稱為MAST,是建模和仿真工具包的簡稱,是專門為這種類型的海軍系統的作戰研究和任務工程分析而創建。該團隊開發了三個實驗場景,定義為探索非保密級別的ODM考慮之間的關系。這些場景分別被指定為空中、艦艇和UUV投送,其中藍色為友軍,紅色為敵軍。為了便于比較和大致了解與這些替代場景有關的作戰考慮因素,每種場景一般都以投送平臺的速度、水雷部署能力、利用的投放點數量和部署水雷的相對能力為特征。空中投送實驗是一種高速、中等能力的飛行器,在單一地點部署能力較弱的水雷。艦艇投送實驗是一個中等速度、高能力的飛行器,在多個地點部署普通水雷。而UUV投送實驗則是一個慢速、低容量的飛行器,能夠使用高能力的水雷,如表1所示。

表1. 基準實驗方案假設

如圖1所示,所有的模擬考察都利用了在50 x 50海里的雷場區域內隨機分配的雷場投放點,目的是影響兩艘紅色船只從部署區以東的設定起始位置向西的預期航點過渡。紅色船只的邏輯實現了概率行為決策,以模擬敵人對其探測到的水雷的反應,或者改變其路線,固定在原地,或者繼續其路徑,并以 "逃離"信息傳達危險。

為了評估行動的重要性,我們開發了五個MOE。主要的MOE,稱為 "紅色影響",是指雷區影響紅方船只駛向預定航點的能力。如果紅色船只都沒有決定轉向或固定,那么紅色影響在該次航行中為零。如果兩艘紅方船只都被抑制,紅色影響為2;如果只有一艘船只受到影響,紅色影響為1。Agent的終止被指定為次要的MOE,用來捕捉傳統思維的MOE,最后部署的水雷被指定為次要的MOE,以更好地通知各實驗的決策點。MOE表見表2。

圖1. ODM移動場景(MAST)

表2. ODM MOEs

輸入變量的定義是為了檢查對藍軍行動、藍軍系統設計特征和紅軍行為邏輯的變化的影響。在空中實驗中定義了21個變量,在艦艇和UUV實驗中定義了25個變量。一個近乎正交的拉丁超立方實驗設計(DOE)在所有三種情況下運行。為空氣實驗確定的21個變量產生了128個獨特的偏移運行,為船舶和UUV確定的25個變量各產生了256個偏移。然后,在與NPS SEED中心的合作下,利用Hamming超級計算機復制了這些DOEs,為空氣產生了3780次偏移,為船只和UUV產生了5000次偏移,以供分析。研究小組發現,與紅色船只的概率決策邏輯有關的變量通常比那些具有物理價值的變量(如速度、范圍或水雷數量)更具影響力。在所有三種情況下,紅色影響的主要MOE也是如此。

為了降低紅色行為在模型中的相對重要性,進行了細化分析,特別關注對作戰效能影響最大的藍色配置特征。初級MOE(紅色影響)、傳統MOE(Agent終止)和次級MOE(部署時間)的結果顯示在圖2。盡管三個實驗似乎都顯示出類似的主要MOE結果,但結果差異在模型中是有統計學意義的。空中投送在 "紅色沖擊 "方面是最有效的,而且部署的速度比船只或UUV投送都快得多。這一點特別重要,因為在只關注紅色制劑死亡的傳統思維模式下,空中投送的單點播種將被歸類為最不有效。同樣,緩慢但有能力的UUV水雷投送,在使用毒劑死亡的情況下,也只是略微有效,但在使用ODM紅色影響MOE的情況下,其評級僅次于空中。

圖 2. ODM場景的結果

該模型為ODM的運行分析提供了一個起點。雖然模擬中的系統故意是通用的,以避免分類,但該模型的設計允許快速引入特定的系統數據。未來的工作可以更全面地實現任務目標(Edwards 2019)的MOE,或增加紅軍決策邏輯的復雜性。然而,即使在這個較高的水平和早期成熟階段,在這個項目中應用ODM概念的意義可以應用于集中開發和采購努力,并更好地告知未來戰斗空間的使用戰略。

I. 簡介

A. 背景情況

有許多歷史實例表明了海上水雷的價值和通過水雷戰(MIW)取得的勝利。美國海軍對其反水雷(MCM)社區的大量投資說明了海軍水雷的致命功效。然而,對防御性努力的投資使目前對未來進攻性水雷能力或國家研究委員會所說的進攻性拒止水雷(ODM)(2000)的支出相形見絀。從歷史上看,進攻性水雷的理論、熟練程度和使用已經停滯、倒退,甚至被忽視,直到沖突迫在眉睫或已經開始。

最近,人們對利用水雷的成本效益和力量倍增的特點重新產生了興趣。美國海軍正在重新調整其任務重點,以包括這些潛在的好處,特別是涉及到無人水下航行器(UUV)能力的進步、探測傳感器技術,以及未來水雷的自主性、半自主性和可編程性的實際可行性。ODM是為海軍作戰司令部(CNO)項目 "超配 "挑戰做出貢獻的自然選擇,即通過 "提供同步的致命和非致命效果"(2020年),"支持將使我們的持續海上主導地位的作戰......環境"。實現CNO建立未來部隊的海軍作戰架構的目標所必需的信條是由他在2020年10月的A Novel Force備忘錄中定義的 "一個綜合的任何傳感器/任何射手的殺傷鏈 "來建立。ODM能夠通過積極參與這些殺傷鏈來加強這一目標,對不受歡迎的海上交通提供戰略威懾,并在這樣做的同時也被動地釋放了原本支持這些戰略目標的關鍵海軍資源。

B. 項目目標

一般來說,進攻性水雷和具體的ODM是可以提供不對稱戰略優勢的領域,但對其研究不足,因此也沒有得到充分的利用。這就提供了一個機會。目前的ODM理論和戰術需要通過現代有效性措施(MOE)進行分析,以量化保護性(藍水)和進攻性(敵對海岸線12英里內)的潛在水雷環境,并確定任何不足之處(Edwards 2019)。在以前的研究中,"重點是孤立地檢查雷場的部署和特點,這項研究......檢查了能夠部署和支持雷場的替代無人和有人系統,作為聯合進攻行動的一個組成部分......[通過]考慮多個候選操作區域和替代交付平臺"(Beery 2020)。給予該小組探索的具體任務是。

1.定義一個候選的進攻性水雷戰行動概念(CONOPS)。

2.界定一個可供審查的作戰活動和相關系統的系統結構,以確定其對雷場部署有效性的影響

3.開發和分析作戰模擬,以便:a. 確定關鍵的性能驅動因素;b. 為作戰框架的比較提供依據(Beery 2020)。

C. 過程

為了實現這些廣泛的項目目標,團隊開發了一個項目瀑布方法,以定義主要的門和里程碑,如圖1所示,首先是文獻回顧,以熟悉MIW、其附屬元素和相關主題。目前的MIW分析員、操作員和專家被確認,他們幫助確定審查的范圍,并闡明了一些圍繞它的歷史。該小組與顧問合作,以確定MIW領域的適用資源和其他專家。項目發起人和顧問團的投入被用來為小組規劃提供信息和貢獻專業知識,以確保小組的產出為海軍提供價值。最初的文獻審查發現了涵蓋MIW CONOPS的材料和分析MIW操作的技術報告,但它未能產生一個普遍可用的ODM實用指南。為了填補現有文獻的空白,項目工作的重點是開發一個操作模擬,可以用來確定關鍵的性能驅動因素,并最終就如何最大限度地提高雷場部署的有效性提出建議。

圖1.BCM論文項目方法論

為了開發將要使用的作戰模擬模型,該小組采用了自上而下的系統工程(SE)方法,如圖2所示的修改后的軟件工程Vee。通過將通用的高層軍工項目分解為其系統需求的組成部分,團隊設計了一個仿真模型,產生了與這些需求相對應的數據,如修改后的Vee方法的左側所示。模型的輸出數據被收集和分析,驗證其與系統設計要求的適當映射,并驗證建議以滿足操作框架的比較。

此外,團隊每季度向社區利益相關者和感興趣的NPS教師介紹情況,以征求所有相關方的額外意見,并提供一個合作論壇的機會。最終的結果和建議在本報告中正式公布,并在畢業前的進度審查中提出。

圖2:BCM修改后的Vee方法。改編自Buede(2009)。

D. 團隊組織

團隊成員被分配了責任,以確保公平分工,充分考慮技術能力和行政后勤。盡管所有的團隊成員在每個階段都是積極的貢獻者,并幫助確保SE原則在每個步驟中得到遵循,但指定的牽頭人在其主題領域的執行方面保留了打破僵局的投票權。

  • 首席程序員和軟件開發人員。負責模型設計架構、模擬開發,以及與軟件(SW)開發人員和團隊外部的SW項目主題專家(SME)的聯絡。

  • 海上環境專家和UUV社區聯絡員。負責識別環境變量和考慮因素,并將其納入模型,通過無人潛航器社區的聯系和無人潛航器測試的個人經驗進行驗證。

  • 艦隊聯絡和安全經理。負責與美國海軍運營商和社區經理互動,以確保在整個模型開發、數據生產和分析報告中充分納入適當分類級別的CONOPS和技術規范。

  • 首席編輯和數據分析師。負責所有團隊交付成果的最終審查、格式化和提交。對報告的格式和內容的決定擁有最終決定權。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

本報告著重于2025年混合部隊的任務工程過程。來自OPNAV N9I的最新任務強調了關注使用成本保守的無人系統的必要性。具體來說,重點放在近鄰的競爭對手大國以及在南海的反介入/區域拒止(A2/AD)情況下可能出現的問題。海軍水面作戰中心的任務工程方法被用來確定擬議的替代艦隊架構的具體事件,然后使用作戰模擬和優化模型進行分析。對目前的無人系統,特別是那些正在開發的高技術準備水平無人系統的性能特征和成本的研究進行了匯編。提議的無人系統架構是作為A2/AD問題的解決方案而開發的。然后,無人系統架構通過優化模型運行,以最大限度地提高系統性能,同時最小化成本。然后,架構優化的結果被輸入到建模和仿真中。然后比較每個架構的整體有效性,以找到最有效的解決方案。對結果進行了分析,以顯示預期的任務有效性和利用擬議解決方案的無人架構的擬議成本。最有效的架構包括搜索、反蜂群、運送和攻擊系統。

執行總結

A 引言

系統工程分析31組由美海軍作戰司令部戰爭整合處(OPNAV N9I)負責確定一個解決方案,以彌補與大國在2025年的預期能力差距(Boensel 2021)。該解決方案系統必須具有成本效益并能在2025年之前交付。SEA團隊利用任務工程過程來確定候選的未來艦隊架構來解決問題(工程副主任辦公室2020)。

B 問題陳述

到2025年,如何才能有效地對抗近鄰對手的反介入和區域拒止能力?

C 能力需求

以具有成本效益的方式調整目前的能力,并創建一個未來的架構,以加強美國海軍的作戰能力,包括存在、欺騙、ISR以及在反介入和區域拒止環境中的防御和進攻能力。

D 任務描述

利用任務工程流程,總體情景被設定在2025年的南海。大國已執行了其九段線的領土要求,并建立了一個反介入/區域拒止(A2/AD)區。大國不斷擴大的艦隊、對人造島嶼的使用、遠距離ASCMs以及對無人系統的擴大使用使美國的水面作戰艦艇處于高風險之中。總體任務是美國海軍DDG通過提高其殺傷力和生存能力,在A2/AD區域內進行FONOPS。在整個方案中,有三個小場景被開發出來。OTH ISR、目標選擇和交戰,威脅無人機蜂群,以及提供目標選擇的威脅無人機ISR資產。

E 任務衡量

衡量任務成功與否的總體標準是美國海軍部隊在近乎同行的反介入區域拒止環境中的作戰能力。有助于衡量成功的有效性的措施是DDG的生存能力和殺傷力的提高程度與解決方案系統的成本相結合。

F 分析設計

為了分析擬議的系統解決方案(SoS)是否能達到既定的成功標準,設計了一個價值體系。利用通用的海軍任務列表,項目組確定了擬議的系統解決方案需要完成的三個二級任務,以完成任務(海軍部,2008)。

對三個選定任務下的后續任務進行了評估,以確定擬議系統需要完成的具體功能。通過這次審查,確定了候選無人系統需要完成的四項高級功能。這些功能是交付、搜索、通信中繼和打擊。為每項功能選擇了性能措施,以用于多屬性價值分析。

多屬性價值分析被用來比較完成四個功能中一個或多個功能的候選系統。一個系統的價值是根據每個性能指標對完成一個特定功能的重要性,給每個性能指標分配一個權重而得出的。權重從1到5不等,其中5表示最重要的MOP。計算MOP和權重的乘積,并將每個乘積相加,以獲得系統的價值。

為了確定可行的候選系統,項目組成員各自研究了一個不同的無人系統,并收集了每個候選系統的性能衡量標準。如果一個特定的無人系統的MOP值不知道,則推斷其值與一個類似的系統相同。如果不存在這樣的類似系統,則使用啟發式方法估計該值。對于每項功能,至少有一個系統符合技術成熟度,可考慮用于2025年的混合部隊。

F.1 建議的系統簇

為了實現所有四個功能,候選系統的組合被排列組合成16個系統簇。每個備選方案的系統價值和成本都被計算出來。系統價值的計算方法是將每個備選方案中的每個系統的價值相加。

F.2 優化

為了產生用于比較的替代方案,該團隊使用整數線性規劃生成了架構。這是用Pyomo的優化功能完成的。線性規劃被創建、約束以更好地表示現實,并被解決以生成分別針對性能、預算和替代合約選項進行優化的替代架構。

F.3 使用炮擊作戰模型計算MOE

現代導彈戰可以使用炮擊作戰模型進行評估。這個模型被用來計算每個小場景中的每個SoS備選方案的有效性。結果顯示了超視距ISR平臺的重要性,一個獨立的武器系統來對付敵人的無人機,目前IAMD作戰系統的有限防御能力,以及超視距搜索和瞄準能力。

F.4 基于電子表格的戰斗模擬

“大國”和美國都擁有深入的綜合空中和導彈防御。為了證明這種互動,在微軟Excel中使用反二項式函數對不同的交戰進行了建模。每一個擬議的艦隊架構都被輸入到三個小插曲的戰斗模擬中。為了獲得隨機的結果,試驗的數量被設定為300次,每個概率都有一個可能的值范圍。該模型中的自變量可分為防御性或進攻性變量。防御性變量是每個單位的綜合防空和導彈防御武器的殺傷數量和殺傷概率。PLAN的進攻性變量是YJ-18 ASCM和Harpy無人機的命中數。美國海軍的進攻性變量是海上攻擊戰斧、ASCM和特定攻擊無人機的進攻性命中數量。

模擬的結果顯示了擊中敵方水面平臺或美國海軍水面部隊的數量。通過比較建議的系統與基線的命中率,可以得出變化的百分比。在我們的分析中,進攻和防御的有效性被平均加權,允許將進攻和防御百分比變化的高值相加,以計算出高低變化的總百分比。

F.5 使用基于智能體的建模和仿真進行模型驗證

基于智能體的建模和仿真(ABMS)被用來驗證每個設想的系統架構與所需的MOE。ABMS旨在通過對智能體之間的相互作用進行建模,來捕捉戰爭交戰的隨機性,但又很復雜。進行了蒙特卡洛分析,以收集每個系統性能的個體層面的數據。隨后的統計分析提供了一個途徑,以確定和量化每個擬議的系統架構所實現的改進。為此目的,指揮部:現代行動(CMO),是一個跨領域的現代兵棋推演計算機軟件,旨在模擬戰術到作戰水平的行動,被用作仿真引擎。CMO模擬的是基于規則的智能體,它們相互之間以及與環境之間的互動,包括感興趣的場景中的武器系統(Coyote, YJ-18, Chaff)和平臺(例如PLAN DDG, Luyang)。與多屬性價值分析方法相比,CMO允許對定量的系統MOP進行建模,并在模擬結果中觀察其相對差異。

G 電子表格作戰模擬結果

電子表格戰斗模型模擬的第一個結果是解放軍DDG在三個不同的迭代中對美國海軍DDG的命中率,即只用YJ-18攻擊,只用哈比攻擊,以及YJ-18和哈比同時攻擊。同時使用YJ-18和Harpy的命中率被作為防御性MOE的基線值。接下來,兩種不同的防御性無人機系統被分別加入到作戰模型中。對只有哈比的攻擊和YJ-18與哈比的同時攻擊進行了重復模擬。每個系統的防御性百分比變化是用前面描述的公式計算的。

接下來的結果是美國海軍DDG在三次不同的迭代中擊中PLAN DDG的次數。模擬了僅用MST攻擊、僅用ASUW無人機攻擊以及MST和ASUW同時攻擊的結果。只用MST攻擊的命中率作為進攻性MOE的基線值。接下來,七個不同的運載系統被分別加入到作戰模型中。對僅有ASUW無人機攻擊和同時進行的MST和ASUW無人機攻擊進行了重復模擬。每個投送系統的進攻百分比變化被計算出來。

將同等權重的進攻和防守百分比變化相加,計算出高和低的總變化百分比。根據該模型,期望值是這樣的:在0.95的置信度下,增加SoS將使水面部隊的有效性增加一個介于高值和低值之間的百分比。

H. 基于智能體的建模和仿真結果

總的來說,從ABMS觀察到的性能與從電子表格模型觀察到的性能MOE相關。在所有提議的架構中,都觀察到了防御和進攻MOE的明顯改善。這是預料之中的,因為在DDG上增加任何防御性武器系統應該減少艦隊DDG的直接命中數量。同樣,增加一個具有增強OTH感知能力的進攻性武器系統會增加對目標直接作用的武器數量。

對防御性和進攻性MOE與每一方所消耗的平均武器數量的比率的進一步分析顯示,由于美國海軍DDG上增加了反群武器系統,防御性MOE得到了改善。這種增加被證明是對所有架構的一種有效的廣泛改進。三種提議的架構之間最明顯的差異來自于進攻性MOE(%),其中性能系統優于其他架構。與發射的武器總數相比,預計一個性能更好的系統會向目標發射更少的武器,同時造成更多的命中。

I 結論

這項工作證明了低成本的無人駕駛威脅系統給傳統水面戰艦帶來的危險,這些系統可以在幾乎沒有警告的情況下進行協調和攻擊,并為船員提供很少的反應時間。為了避免強制增加對峙距離以提高生存能力,有必要使用增程傳感器系統和反無人機系統來彌補預期的能力差距并提供進入被拒絕區域的機會。為了使這些系統可行和安全,高帶寬的通信系統將是必需的。

為了滿足這些需求,建議的解決方案系統利用Dive-LD來運送Coyote無人機平臺。搜索和通信中繼將由兩個VBAT無人機平臺提供。這種平臺組合為每一美元的系統成本提供了最高的進攻和防御能力的提高。叢林狼 "無人機也將作為一個蜂群來防御威脅性無人機群和威脅性無人機ISR資產。增加解決方案系統的采購將提高艦隊的生存能力和殺傷力,并允許在其他艦隊優先領域進行額外投資。

建議通過為無人機平臺配備額外的無源傳感器來改進該系統,以利用電磁頻譜的所有部分,從而提高在所有天氣和戰斗條件下探測敵方威脅的能力。此外,擬議的解決方案系統可以擴展到許多其他領域和任務區,如港口防御和反對出口。

付費5元查看完整內容

人工智能(AI)應用于武器系統是過去10年研究的一個主要趨勢。這些舉措旨在提高武器的準確性,執行非主動的瞄準手段,幫助導航和制導與控制(例如,在全球定位系統被拒絕的情況下),并減少與傳統的基于物理學的方法相比的整體計算資源,以便在更小、更實惠的武器系統上實現智能瞄準。這項研究還包括將作戰人員的戰斗空間擴展到無人駕駛飛行器,并使用蜂群方法與有人和無人平臺進行合作。

我們首先概述了人工智能的描述和歷史,并概述了人工智能在武器系統中的原理、技術和應用。這包括對監督自主系統;制導、導航和控制;行為和路徑規劃;傳感器和信息融合;智能戰略和規劃;兵棋推演建模;以及認知電子戰的研究和計劃的回顧。

然后,對將人工智能應用于武器系統的系統和項目進行了調查。雖然重點是基于美國的系統和項目,但也包括一個關于俄羅斯和中國相關系統的小節。最后,我們對將人工智能用于武器系統的倫理考慮進行了簡要評論。

引言

1.1 問題陳述

機器學習(ML)和人工智能研究的最新進展揭示了人工智能在實現創新、增加機器的效用以及增強人類能力和經驗方面的力量和潛力。人工智能技術的顛覆性和其影響的深度還沒有被廣大公眾完全掌握。考慮到新時代的新興技術威脅,展示關鍵和相關的人工智能研究和最先進的技術是很重要的,這些技術不僅為武器系統提供了比傳統武器系統更多的自主權,而且大大增加了它們的殺傷力和戰斗生存能力。最終,人工智能在開發改變游戲規則的技術方面帶來了巨大的戰略機遇,這將確保國家安全、繁榮和技術領先地位。

1.2 常規武器系統

美國軍方在創造先進的常規武器技術方面取得了巨大的進步,這些技術支持了士兵在戰場上的任務并增強了他們的能力。這些常規武器技術大多是自動化系統,在計劃、執行和完成一項任務或使命時依靠一套預先編程的規則。然而,在中國和俄羅斯等國家新開發的武器的前沿陣地上,人工智能支持的戰爭和高超音速武器給美國武裝部隊帶來了新一代的質量挑戰。下一代戰斗的步伐要求為戰略決策進行時間緊迫和大量的戰斗信息處理,這使得美國的許多常規武器系統只能執行低風險的任務,并在核領域之外處于威懾力減弱的態勢。

必須承認,人是昂貴的訓練資產。在戰場上增加更多的人員并不是推進最先進的戰爭的優雅或廉價的解決方案。相反,用支持人工智能的智能硬件來增強人在回路中的系統,可以在戰區提供更多的眼睛和耳朵,并通過使人工智能系統執行一些簡單和常規的任務來釋放人類的決策。

此外,無人駕駛作戰飛機系統(UCAS)是一種成熟的具有成本效益的系統解決方案,用于執行情報、監視和偵察(ISR)任務和遠程空襲。然而,自動化能力仍然受到人類在環形操作、評估和接觸的限制。雖然在任何可預見的未來都沒有打算消除武器化人工智能系統中的人類元素,但人類的能力仍然構成這些系統協同潛力的上限。但是,一個由人工智能驅動的智能武器系統的新生態系統將迎來新的戰爭形式和戰略。

人工智能國家安全委員會在其2021年的報告中提出,美國國防部(DoD)的軍事企業在整合人工智能技術方面落后于商業部門,并敦促在2025年前為整個國防部廣泛整合人工智能奠定基礎[1]。

1.3 人工智能的簡要歷史

幾個世紀以來,哲學家們一直在考慮以某種形式人工復制人類智能的某個方面的概念。1869年,威廉-杰農創造了第一臺基于布爾邏輯實現邏輯計算的機器。該機器能夠比人類更快地計算布爾代數和維恩圖。隨著這種邏輯計算機器的發展,人們很自然地質疑機器是否可以通過邏輯推理來為人類解決問題并做出決定。圖1-1中的時間軸顯示了人工智能的歷史和演變,并在本節中進行了詳細說明[2]。

在理論計算機科學的一些最早的工作中,英國數學家阿蘭-圖靈(Alan Turing)思考了機器是否能像人類一樣智能地行為和解決問題的問題。他在他的圖靈測試中提出,如果一臺機器能模糊地模仿人類這樣的智能生物,那么這臺機器就是智能的。這一理論測試成為一種指導性的形式主義,在這種形式主義中,當前的機器被測試其模仿人類智能概念的能力或潛力。作為測試的見證,Loebner獎是一個圖靈測試競賽,其任務是根據圖靈提出的基本問題來評估機器智能研究的現狀。

1928年,約翰-馮-諾伊曼證明了Minimax算法的基本定理,該算法旨在提供一種在零和博弈過程中使最大可能損失最小的策略。

圖1-1. AI歷史年表

在第二次世界大戰的高峰期,阿蘭-圖靈和他的團隊開發了一種機器算法,可以破譯德國的英格瑪信息密碼。他的算法的成功,推動了將復雜任務委托給機器的進一步努力,是機器計算的基礎,也是ML發展的先導。

1943年,McCulloch和Pitts開創了神經網絡(NN)的最早概念--McCulloch-Pitts的形式網絡理論--這在1949年馮-紐曼在伊利諾伊大學的四次演講中得到了體現[3]。

大約在同一時間,約翰-麥卡錫,一位計算機科學家,在1955年創造了 "人工智能 "來指代機器智能;計算機科學家艾倫-紐維爾;以及赫伯特-A-西蒙,一位經濟學家和政治學家,開創了第一個旨在自動推理的真正程序(稱為邏輯理論家)。隨著這一突破性的努力,對智能機器的探索開始了,為人工智能作為計算機科學的一個新的學術研究領域鋪平了道路。

1957年,一位名叫弗蘭克-羅森布拉特博士的心理學家開發了一個名為 "感知器 "的簡化數學模型,描述了我們大腦中的神經元如何運作。這一成就被強調為 "Perceptron收斂定理"。

同年,理查德-貝爾曼開發了動態編程,用于解決一類最佳控制問題。他還介紹了離散隨機最優控制問題的馬爾科夫決策過程表述,這為現在所稱的 "強化學習 "奠定了重要基礎。

在這些發展之后,另一位名叫阿瑟-塞繆爾的人工智能先驅利用他早先在ML方面的開創性工作,成功地開發了第一個檢查者算法。他實現了現在被稱為 "Alpha-Beta修剪 "的早期版本,這是一種搜索樹方法,通過Minimax算法減少評估節點的數量。1959年,一位名叫威廉-貝爾森(William Belson)的統計學家開發了一種名為決策樹的非參數、監督學習方法的早期版本。

在20世紀60年代,人工智能研究的重點是解決數學和優化問題。1960年,羅納德-霍華德提出了馬爾科夫決策過程的策略迭代方法,建立了一些與強化學習有關的最早的工作。

到1968年,著名的路徑搜索算法A-star是由計算機科學家尼爾斯-尼爾森提出的。60年代末,機器人建模、控制和機器視覺方面取得了進展,導致在1972年開發了第一個名為WABOT-1的 "智能 "擬人機器人,并整合了肢體操縱、視覺和語音系統。

Harry Klopf的 "適應性系統的異質理論 "的復興對適應性系統的試錯范式的發展有很大影響。1977年,Ian Witten提出了最早的強化學習系統之一,使用了時間差法。理查德-薩頓和安德魯-巴托設計了一種強化學習算法,稱為演員批評法。

由于70年代中期到80年代末計算機的計算能力限制,人工智能研究在有大量數據處理要求的應用中發現了困難,如視覺學習或優化問題。同時,數學研究 "證明 "了(單層)感知器不能學習某些模式。此外,1973年發表的一份Lighthill報告對人工智能的潛力非常悲觀,這導致人工智能研究的資金被削減。結果,資金短缺導致人工智能的研究經歷了一個被稱為 "人工智能冬天 "的時期。

到了80年代中后期,繼1986年多層感知器的發展之后,在NNs方面也做出了重要的理論貢獻。這些貢獻是David Rumelhart在1986年開發的遞歸神經網絡(RNNs),John Denker等人在1987年開發的貝葉斯網絡,以及Yann LeCun在1989年開發的卷積神經網絡(CNNs)。

此外,Chris Watkins在1989年開發了另一種重要的強化學習方法,稱為 "Q-Learning"。1992年,在IBM的Thomas J. Watson研究中心,Gerald Tesauro通過自我強化學習為雙陸棋游戲訓練了TD Gammon程序。1997年,IBM的 "深藍 "計算機使用粗暴的、基于搜索的算法擊敗了國際象棋世界冠軍加里-卡斯帕羅夫,使其成為第一個在國際象棋中戰勝頂級職業選手的程序。

在90年代末和21世紀初,在ML中看到的大部分進展是由計算機處理、存儲和分布式計算方面的指數級進展所推動的。2007年,需要大量計算資源的保證最優玩法在跳棋中得到了解決。在過去的20年里,圖形處理單元用于通用計算的激增導致了今天人工智能應用的進一步進展,特別是在2012年和2014年,不同的NN拓撲結構,如殘差網絡和生成式對抗網絡的發展。

2015年,ImageNet競賽,一個為約400萬張圖像的ImageNet圖像集開發分類器的公開競賽,有一個冠軍,其錯誤率被認為低于一個人。2016年,DeepMind的AlphaGo程序在擊敗當時被認為是最優秀的圍棋選手李世石后,成為最佳AlphaGo選手。繼AlphaGo的學習能力之后,AlphaZero在2017年擴展了AlphaGo,成為國際象棋和Shogi的最佳棋手。

2019年,美國國防部高級研究計劃局(DARPA)推出了AlphaDogfight,這是基于人工智能的空戰算法在模擬的F-16狗斗中與經過頂級訓練的飛行員進行的一系列三輪競賽。第一輪和第二輪比賽中,人工智能程序相互競爭。第三輪將人工智能勝利者的飛行員提煉出來,與美國空軍武器學校的優秀畢業生進行競爭。蒼鷺系統的人工智能飛行員不僅在競爭激烈的人工智能空中戰斗人員中獲勝,而且在與訓練有素的人類F-16飛行員的較量中取得了令人難以置信的五次勝利。

OpenAI在2020年5月推出了一個名為GP3的 "自然語言處理 "模型,它生成的寫作內容與人類無異。其最新版本可以從簡單的描述性語言生成編程語言代碼[4]。人工智能的歷史繼續向前發展,特別是對國防部的武器系統應用。本報告的其余部分將調查與武器系統有關的當代人工智能技術和系統。

1.4 什么是AI?

根據Barr和Feigenbaum的說法,人工智能被定義為 "計算機科學中與設計智能計算機系統有關的部分,即表現出我們與人類行為中的智能有關的特征的系統--理解語言、學習、推理、解決問題等等"[5]。

Stuart Russel和Peter Norvig在他們的《人工智能:一種現代方法》一書中對人工智能的最新定義是:"設計和建造能夠從環境中接收感知并采取影響環境的行動的智能體" [6]。

Pei Wang優雅地將智能定義為 "在知識和資源不足的情況下的適應"[7]。雖然該定義沒有說明適應的目的(如目標),但它揭示了為達到這種智能需要完成的工作。

如果要以人類為中心定義人工智能,即執行人類智能水平的任務,那么人工智能需要感知、推理、知識構建、推理、決策和計劃、學習、交流,以及有效移動和操縱環境的能力。

人工智能的科學目標是回答哪些關于知識表示、學習、規則系統、搜索等的想法可以解釋各種類型和水平的真實智能。工程目標是為不同的應用領域開發人工智能技術,以解決現實世界的問題。

在人工智能的科學基礎上,我們發現來自不同科學領域的可識別概念--哲學、邏輯/數學、計算、心理學和認知科學、生物學和神經科學以及進化。在尋求發現和更好地理解人工智能是什么或將是什么的過程中,來自這些不同知識領域的貢獻已經被證明是不可避免和不可或缺的了。許多研究人工智能的領域都在同時構建人類認知如何運作的模型,并在它們之間采用有用的概念。例如,NN,一個源于生物學的概念,試圖在簡化的人工神經元的基礎上建立人工系統,這個概念導致了一個簡單的抽象知識結構的表示,足以解決大型計算問題集。

人工智能大致分為三個主要層級--人工狹義智能(ANI)、人工通用智能(AGI)和人工超級智能(ASI)。圖1-2說明了這三個層級中的各種分組,本節將更多地討論這些分組。

1.4.1 人工狹義智能(ANI)

ANI是對一個執行狹窄或單一任務的人工智能系統的描述。它可以包括各種方法來獲得結果,如傳統的ML(以圖像分類為例)或目標檢測(包括ML和基于規則的系統)。給定一組規則或約束,它的目標是提供一組代表狹義任務的輸出。ANI不會擴展或學習新的認知,也不會自我學習新的操作模式。數據挖掘、大多數專家系統和針對某一應用的預測功能(例如,垃圾郵件檢測和面部識別)都被認為是ANI的形式。ANI還包括 "有限記憶人工智能"--用于自動駕駛汽車的系統類型,使用過去的經驗(訓練),并學習做決定,隨著時間的推移而改進。

1.4.2 人工通用智能(AGI)

AGI是一種更強大的智能形式,因為它被更多類似人類智能的特征所增強,例如自主學習的能力和解釋情緒和語音語調的能力。這使得與AGI相關的智能與人類的智能水平相當。AGI的一些關鍵核心能力如下:

  • 推理、解決問題、運用策略和在不確定情況下做出決定的能力。
  • 展示知識的能力。
  • 計劃的能力。
  • 學習的能力。
  • 用自然語言交流的能力。
  • 將所有上述內容整合為一個共同目標的能力。
  • 類似人類的思維與圖靈測試等計算的結合。

1.4.3 人工超級智能(ASI)

ASI是一種超越最聰明的人類頭腦的智能模型。實現ASI的方法仍在概念化中,但將是那些超越AGI并需要某種自我意識的系統。這些系統最好能代表所有人類的認知能力,甚至更多。

1.5 機器學習(ML)

ML是機器從數據中學習的能力,目的是做出準確的預測。它大致分為四類學習,提供了豐富的專用和通用的技術家族。

1.5.1 監督學習

在這種形式的學習中,訓練數據使用包含的輸入和標記的或預定的輸出數據。如果有缺失的輸入或輸出條目,它們會被預處理,以便將一個輸入正確地映射到其真正的對應輸出。通過從正確生成的訓練數據集中學習,系統學會了將不在原始數據集中的輸入與預測的輸出(標簽或值)聯系起來。這種類型的訓練解決的典型問題是回歸和分類[8]。

1.5.2 無監督學習

這種形式的學習中,系統直接從未標記的數據中發現有趣的或隱藏的結構[9]。無監督學習被用于聚類分析、降維或估計可能產生輸入數據的密度[8]。

1.5.3 半監督學習

當數據集包含有標記的和無標記的數據時,這種學習形式的系統利用無標記的數據來更好地捕捉潛在的數據分布,并獲得一個更好的預測,如果它只從標記的數據中訓練的話。這種學習形式適用于訓練數據集中的標注數據遠遠少于未標注數據的情況[8]。

1.5.4 強化學習

在這種學習模式中,系統使用獎勵/懲罰機制進行訓練,這樣它所選擇和執行的行動,當行動可取時,會使系統得到獎勵,當行動不可取時,會受到懲罰。強化學習問題涉及學習如何做(如何將情況映射到行動上)以最大化數字獎勵信號[9]。

03 人工智能在武器系統中的應用

人工智能有可能應用于武器系統生態系統的許多方面。它被用來控制系統,從而實現自主性和提高性能,以在具有挑戰性的環境中選擇指導、導航和控制方面的問題。同樣,人工智能可用于解決任務和路徑規劃中的挑戰性問題,從而實現更高水平的復雜任務目標和操作要求。人工智能也被用于電子戰領域的支持、反制,甚至是反制措施。它還可能被用于來自不同系統層次和領域的信息融合,以泄露抽象的高價值戰場情報,并提供關鍵線索和快節奏的決策,從而在現代戰爭中創造寶貴的戰術優勢。

報告的這一部分將強調最先進的人工智能方法在適用于自主和武器系統的各種人工智能問題領域的使用。它是根據以下問題領域來組織的。

  • 自主性

  • 感知中的人工智能

  • 制導、導航和控制中的人工智能

  • 任務和路徑規劃

  • 智能戰略

  • 對手建模

  • 認知型電子戰

提綱

第一章 引言

1.1問題陳述

1.2常規武器系統

1.3 AI簡史

1.4什么是AI?

1.4.1 ANI

1.4.2 AGI

1.4.3 ASI

1.5 ML

1.5.1監督學習

1.5.2無監督學習

1.5.3半監督學習

1.5.4強化學習

第二章 最先進的方法

2.1學習人工智能范例

2.1.1深度學習

2.1.2強化學習

2.2隨機優化和搜索算法

2.2.1隨機優化

2.2.2圖形搜索算法

2.3新興人工智能范例

2.3.1神經符號AI

2.3.2 NE

第三章 人工智能在武器系統中的應用

3.1自主性

3.1.1定義、級別和框架

3.1.2自主系統的功能組件

3.2感知中的人工智能

3.2.1圖像分割

3.2.2目標檢測、分類和場景理解

3.2.3傳感器融合

3.3制導、導航和控制中的人工智能

3.3.1 GN&C系統

3.3.2常規控制理論方法

3.3.3智能控制

3.3.4本地化和導航

3.3.5系統識別

3.4任務和路徑規劃

3.4.1GAs

3.4.2群體智能

3.5智能策略

3.6對手建模和兵棋推演

3.7認知電子戰

3.7.1電子支持措施

3.7.2 ECMs

3 .7.3 ECCMs

第四章 將人工智能應用于武器系統的系統和程序

4.1天線系統

4.1.1下一代空中優勢計劃

4.1.2 Shield AI Hivemind

4.1.3 Shield AI V-Bat

4.1.4 Kratos XQ-58 Valkyrie

4.1.5 MQ-20 Avenger UCAS

4.1.6自主彈藥

4.1.7 Dynetics X-61小精靈

4.2 海軍系統

4.3 陸軍系統

4.3.1 QinetiQ/Pratt Miller的遠征自主模塊化飛行器

4.3.2Textron系統公司的Ripsaw M5

4.3.3 Rheinmetall公司的Lynx KF41

4.4 群系統

4.4.1 DARPA的攻擊性蜂群戰術

4.4.2自主協同小直徑炸彈群

4.4.3 Perdix群

4.4.4 Mako UTAP22

4.4.5 Coyote UAS Block 3

4.4.6機器人代理命令和傳感群的控制架構

4.4.7激流勇進微型無人潛水器

4.5戰斗管理和智能指揮與控制

4.6 ISR和目標系統

4.6.1 SRC的HPEC Pod

4.6.2復仇女神

4.7導航

第五章 未來作戰中的AI

第六章 人工智能和外來威脅

6.1俄羅斯

6.2中國

第七章 倫理考量

第八章 總結

參考文獻

付費5元查看完整內容

美國海軍陸戰隊正在探索使用人機協作來控制前線部署環境中的無人駕駛航空系統(UAS),其任務范圍廣泛,包括情報、監視和偵察(ISR)、電子戰(EW)、通信中繼和動能殺傷。美國海軍陸戰隊設想使用未來的垂直起降平臺(VTOL)來支持混合戰爭任務并實現軍事優勢。對于美國海軍陸戰隊的混合戰爭應用,以實現任務優勢和戰爭主導權,美國海軍陸戰隊需要了解VTOL機組和無人機系統之間錯綜復雜的人機互動和關系,以獲得戰斗空間態勢感知,并有效地計劃和執行針對常規和不對稱威脅的旋轉翼行動。這項研究的重點是美國海軍陸戰隊在海洋環境中的打擊協調和偵察(SCAR)任務,以促進遠征基地先進作戰(EABO)在沿岸地區。有多種復雜的功能必須加以考慮和評估,以支持人機協作互動,提高任務的有效性:任務規劃、移動和滲透、區域偵察、偵察戰斗交接和過渡。

這份頂點報告探討了SCAR任務期間三個系統之間的人機協作:UAS、VTOL和地面控制站(GCS)。該研究從VTOL項目的文獻回顧開始,研究了美國海軍陸戰隊SCAR任務戰術和用于促進EABO的理論概念。此外,它還包括對自主性和自動化、人工智能和機器學習的研究。通過使用合作設計模型來探索這三個系統的人機協作互動和過程,文獻回顧探討了如何使用基于三個因素的相互依賴性分析(IA)框架來確定人類執行者和機器團隊成員之間的相互依賴性:可觀察性、可預測性和可指導性。

通過基于模型的系統工程(MBSE)工具,將SCAR任務的高級功能分解為分層次的任務和子任務,系統分析被用來支持聯合設計方法。根據Johnson(2014)的說法,合作設計方法研究了相互依賴的概念,并使用IA框架作為設計工具。IA框架捕捉了主要執行者和支持團隊成員之間的互動,以發展支持每個主要任務和分層子任務的所需能力,從而產生HMT要求。這份頂點報告分析了兩種選擇。第一個方案認為UAS是主要執行者,VTOL和GCS是輔助團隊成員。第二種方案認為VTOL是主要執行者,UAS和GCS是輔助團隊成員。基于這兩種選擇,IA框架評估了17個主要任務、33個分層子任務和85個執行SCAR任務的所需能力。

此外,研究發現需要一個強大的數字任務規劃系統,如升級后的海軍陸戰隊規劃和行動后系統(MPAAS),通過存儲以前的任務和經驗教訓的數據來促進機器學習。美國海軍陸戰隊將面臨無人機系統的處理能力和信息存儲方面的挑戰。應盡一切努力增加UAS的處理能力。必須實施一個有效的主要、備用、應急和緊急(PACE)通信計劃,以確保UAS、VTOL和GCS之間所有通信平臺的冗余。美國海軍陸戰隊必須實施支持信任、提供快速反饋和簡單操作的接口。

最后,為了準確評估VTOL、UAS和GCS之間的HMT要求,頂點報告促成了一個探索性實驗的發展,該實驗將在海軍研究生院(NPS)建模虛擬環境和模擬(MOVES)實驗室使用,以促進未來的研究。制定了操作要求和測量方法,以確定HMT要求的有效性。

這項頂點研究為在SCAR任務中執行VTOL/UAS混合行動的人機互動復雜性提供了明確的證據。該頂點研究確定了使用系統分析和協同設計作為一種有效的方法,通過IA框架促進人機協作需求的發展。此外,該研究確定了對復雜的自主性和技術準備程度的需求,這可能是目前還沒有的。頂點建議美國海軍陸戰隊繼續研究人機協作,并利用SCAR任務探索性實驗來進一步完善和研究VTOL/UAS的高級系統要求,以支持具有前沿部署的UAS的混合行動,重點是實現4級自主權。

付費5元查看完整內容

前沿作戰基地(FOB)防御是一項人力密集型任務,需要占用作戰任務的寶貴資源。雖然能力越來越強的無人駕駛飛行器(UAV)具備執行許多任務的能力,但目前的理論并沒有充分考慮將其納入。特別是,如果操作人員與飛行器的比例為一比一時,并沒有考慮提高無人機的自主性。本論文描述了使用先進機器人系統工程實驗室(ARSENL)蜂群系統開發和測試自主FOB防御能力。開發工作利用了基于任務的蜂群可組合性結構(MASC),以任務為中心、自上而下的方式開發復雜的蜂群行為。這種方法使我們能夠開發出一種基于理論的基地防御戰術,在這種戰術中,固定翼和四旋翼無人機的任意組合能夠自主分配并執行所有必要的FOB防御角色:周邊監視、關鍵區域搜索、接觸調查和威脅響應。該戰術在軟件模擬環境中進行了廣泛的測試,并在現場飛行演習中進行了演示。實驗結果將使用本研究過程中制定的有效性措施和性能措施進行討論。

第1章:導言

1.1 背景和動機

2019年,美國海軍陸戰隊司令大衛-H-伯杰將軍發布了他的規劃指南,作為塑造未來四年的部隊的一種方式。他在其中指出:"我們今天做得很好,我們明天將需要做得更好,以保持我們的作戰優勢"[1]。這句話摘自海軍陸戰隊司令大衛-H-伯杰將軍的《2019年司令員規劃指南》(CPG),呼吁采取集中行動,以應對海軍陸戰隊在未來戰爭中預計將面臨的不斷變化的挑戰。在為海軍陸戰隊確定未來四年的優先事項和方向的CPG中的其他指導,呼吁建立一個 "適合偵察、監視和提供致命和非致命效果的強大的無人駕駛系統系列"[1]。伯杰將軍進一步呼吁利用新技術來支持遠征前沿基地作戰(EABO)。EABO將需要靈活的系統,既能進行有效的進攻行動,又能進行獨立和可持續的防御行動。簡而言之,實現EABO將需要最大限度地利用每個系統和海軍陸戰隊。

從本質上講,伯杰將軍正在呼吁改變無人駕駛飛行器的使用方式。通過使用大型的合作自主無人飛行器系統,或稱蜂群,將有助于實現這一目標。無人飛行器蜂群提供了在人力需求和后勤負擔增加最少的情況下成倍提高戰場能力的機會。正如伯杰將軍所提到的 "下一個戰場",海軍陸戰隊將必須利用各種技術,最大限度地利用自主性和每個作戰人員在戰場上的影響。

目前的無人系統使用理論是以很少或沒有自主性的系統為中心。另外,目前的系統依賴于單個飛行器的遠程駕駛;也就是說,每輛飛行器有一個操作員。部隊中缺乏自主系統,這在監視和直接行動的作戰能力方面造成了差距。此外,側重于一對一操作員-飛行器管理的無人系統理論要求操作員的數量與車輛的數量成線性比例。這對于 "下一個戰場 "來說是不夠的。相反,海軍陸戰隊將需要能夠讓操作員擺脫束縛或提高他們同時控制多個飛行器的能力系統[2]。

考慮到這些目標,美國海軍研究生院(NPS)的先進機器人系統工程實驗室(ARSENL)已經開發并演示了一個用于控制大型、自主、多飛行器的系統,該系統利用了分布式計算的優勢,并將駕駛的認知要求降到最低。ARSENL在現場實驗中證明了其系統的功效,在該實驗中,50個自主無人駕駛飛行器(UAV)被成功發射,同時由一個操作員控制,并安全回收[3]。

1.2 研究目標

這項研究的主要目標是證明使用無人機蜂群來支持前沿作戰基地(FOB)的防御。特別是,這需要自主生成、分配和執行有效的、符合理論的基地防御所需的子任務。這部分研究的重點是開發基于狀態的監視、調查和威脅響應任務的描述;實施支持多飛行器任務分配的決策機制;以及任務執行期間的多飛行器控制。

輔助研究目標包括展示基于任務的蜂群可組合性結構(MASC)過程,以自上而下、以任務為中心的方式開發復雜的蜂群行為,探索自主蜂群控制和決策的分布式方法,以及實施一般的蜂群算法,并證明了對廣泛的潛在蜂群戰術有用。總的來說,這些目標是主要目標的一部分,是實現主要目標的手段。

1.3 方法論

基地防御戰術的制定始于對現有基地防御理論的審查。這一審查是確定該行為所要完成的基本任務和子任務的基礎。然后,我們審查了目前海軍陸戰隊使用無人機的理論,以確定這些系統在基地防御任務中的使用情況。

在確定了任務要求的特征后,我們為基地防御的整體任務制定了一個高層次的狀態圖。子任務級別的狀態圖等同于MASC層次結構中的角色。

ARSENL代碼庫中現有的算法和游戲以及在研究過程中開發的新算法和游戲被用來在ARSENL系統中實現子任務級的狀態圖。最后,根據高層次的狀態圖將這些游戲組合起來,完成基地防御戰術的實施。

在游戲和戰術開發之后,設計了基于理論的有效性措施(MOE)和性能措施(MOPs)。通過在循環軟件(SITL)模擬環境中的廣泛實驗,這些措施被用來評估基地防御戰術。在加利福尼亞州羅伯茨營進行的實戰飛行實驗中,也展示了該戰術和游戲。

1.4 結果

最終,本研究成功地實現了其主要目標,并展示了一種包含周邊監視、關鍵區域搜索、接觸調查和威脅響應的基地防御戰術。此外,開發工作在很大程度上依賴于MASC層次結構,以此來制定任務要求,并將這些要求分解成可在ARSENL蜂群系統上實施的可管理任務。這一戰術在實戰飛行和模擬環境中進行了測試,并使用以任務為中心的MOP和MOE進行了評估。最后的結果是令人滿意的,在本研究過程中開發的戰術被評估為有效的概念證明。

1.5 論文組織

本論文共分六章。第1章提供了這項研究的動機,描述了這個概念驗證所要彌補的能力差距,并提供了ARSENL的簡短背景和所追求的研究目標。

第2章討論了海軍陸戰隊和聯合出版物中描述的當前海軍陸戰隊后方作戰的理論。還概述了目前海軍陸戰隊內無人機的使用情況,并描述了目前各種系統所能達到的自主性水平。

第3章概述了以前自主系統基于行為的架構工作,ARSENL多車輛無人駕駛航空系統(UAS)和MASC層次結構。

第4章對基地防御戰術的整體設計以及高層戰術所依賴的游戲進行了基于狀態的描述。本章還詳細介紹了用于創建、測試和評估這一概念驗證的方法。在此過程中,重點是對每一戰術和戰術所針對的MOP和MOE進行評估。

第5章詳細介紹了所進行的實戰飛行和模擬實驗,并討論了與相關MOPs和MOEs有關的測試結果。

最后,第6章介紹了這個概念驗證的結論。本章還提供了與基地防御戰術本身以及更廣泛的自主蜂群能力和控制有關的未來工作建議。

付費5元查看完整內容

現代綜合防空系統(IADS)所帶來的日益復雜的反介入區域拒止(A2AD)威脅,加上高端隱形平臺所提供的日益強大的優勢,促使美國空軍高級領導人投資于徹底改變2030年及以后的空中力量。這一新設想的一個突出因素是蜂群武器,其目的是通過用大量低成本、可損耗的航空資產來壓倒國際航空運輸系統,并通過自主能力來解決這一挑戰。這項研究提出了一個框架,按照三個獨立的維度對不同級別的自主能力進行分類,即單獨行動的能力、合作能力和適應能力。使用模擬、集成和建模高級框架(AFSIM)構建了一個虛擬作戰模型,模擬以有人駕駛的穿透式轟炸機和自主巡航導彈群為特征的友軍空襲包與以A2AD角色行動的敵軍IADS之間的交戰。通過使用自主性框架作為設計實驗的基礎,評估了不同水平的自主性對攻擊包性能的影響。對實驗結果的分析揭示了哪些方面和什么級別的自主性對促進這一模擬場景的生存能力和殺傷力最有影響。

1. 引言

1.1 動機和背景

戰爭的技術性質正在迅速發展,人們越來越重視對大量數據的收集、處理和決策。隨著指揮與控制(C2)決策空間的復雜性增加,指揮系統根據現有信息采取行動的速度越來越成為一個限制性因素。具有不同程度的人與系統互動的自主系統為緩解這一不足提供了機會。美國2018年國防戰略(NDS)[18]明確要求國防部(DoD)"廣泛投資于自主性的軍事應用",作為促進大國競爭優勢的一項關鍵能力。

參與大國競爭的一個自然后果是反介入區域拒止(A2AD)環境在聯合沖突的所有方面擴散。從美國空軍(USAF)的角度來看,現代綜合防空系統(IADS)構成了卓越的A2AD威脅,這嚴重抑制了通過常規手段建立空中優勢的前景[2, 20]。這一挑戰促使部隊結構的優先事項發生了變化,因為將能力集中在相對較少的高端系統中的感知風險越來越大。美國空軍科學和技術戰略[26]設想,數量龐大的低成本、易受攻擊的航空資產將很快發揮曾經由數量有限的高價值資產完成的作用。這種大規模的蜂群的任務規劃和空戰管理(ABM)工作的規模可能很快超過人類的認知能力,這使得它成為非常適合自主性研究和開發的應用領域。

1.2 問題陳述

本研究試圖評估幾種自主巡航導彈群的行為對A2AD環境中藍方(友方)空中性能的影響。具體來說,所研究的A2AD場景考慮了紅方(對手)的IADS被藍方聯網的自主巡航導彈群吸引,以促進穿透式轟炸機的后續打擊。在任務規劃時沒有考慮到的突然出現的威脅,可能會進入該場景以增加紅色IADS的力量。蜂群必須在沒有外部反彈道導彈的幫助下,檢測并應對這些突發威脅以及任何其他對抗性任務參數的變化。A2AD場景的建模是使用模擬、集成和建模高級框架(AFSIM)完成的。

1.3 研究問題

為了解決問題陳述,本研究將對以下問題提供答案:

1.具有自主反彈道導彈能力的巡航導彈蜂群能在多大程度上提高藍方空襲包在A2AD環境下的生存能力(即避免被紅方IADS發現和摧毀的能力)?

2.具有自主反彈道導彈能力的巡航導彈群能在多大程度上提高A2AD環境下藍方空襲包的殺傷力(即探測和摧毀紅方IADS元素的能力)?

1.4 論文的組織

本論文的其余部分包含四章,組織如下:第二章對包括自主性、A2AD環境、基于代理的建模和仿真(ABMS)以及實驗設計(DOE)等主題的參考材料進行了回顧。第三章建立了A2AD場景、AFSIM模型實現和實驗設計的結構,作為本研究的框架。第四章介紹了實驗模擬運行的結果和附帶的分析。最后,第五章討論了從這項研究中得出的結論,以及對未來研究方向的建議。

付費5元查看完整內容

該項目通過比較傳統彈藥和美國傳統武器系統發射的超高速炮彈(HVP),探討了普通超高速炮彈如何支持反空戰(AAW)、反水面戰(ASUW)和海軍水面火力支援(NSFS)任務。這項研究考察了HVP在任務規劃、后勤和多個任務區使用的效果。該研究的主要目標問題是:"在傳統武器系統中使用HVP是否能提供同等的進攻和防御能力,并改善任務規劃中的后勤運作?" 利用基于模型的系統工程和架構,該項目正式確定了對HVP系統中固有的操作或任務靈活性進行定量系統分析所需的標準。創建了一個深入的模型,分析了包括和不包括HVP彈藥的情況下多個變量的性能,這提供了整體有效性的信息。結果證明了將HVP納入武器系統裝載的好處。在保持性能的同時,在成本、再補給和可用彈藥方面都有好處。基于這個模型的結果,最初的假設被證實,HVP彈藥的有效性提高了整個任務的成功率,并提供了一個成本效益高的替代方案,而不是只使用傳統的武器系統。

執行摘要

本研究考察了在DDG 51(Arleigh Burke)和CG(Ticonderoga)級海軍艦艇上的MK 45-5英寸炮以及DDG 1000(Zumwalt)級海軍艦艇上的先進火炮系統(AGS)155毫米炮中使用超高速炮彈(HVP)作為普通彈藥在任務規劃、操作和后勤方面的效果。HVP是一種多任務彈藥,可以與傳統的武器系統一起使用。

這篇論文通過比較傳統彈藥和美國傳統武器系統發射的HVP,探討了HVP彈藥如何支持反水面戰(ASUW)、反空戰(AAW)和海軍水面火力支援(NSFS)任務。化學推進的HVP彈藥提供了多任務的靈活性,使作戰人員在離開港口時可以帶著比常規導彈更深的彈倉裝載。HVP彈藥改善了由DDG和CG艦組成的海軍遠征軍的后勤作業,減輕了防御和進攻任務的特定武器配置。在艦隊中部署HVP彈藥使這些艦艇具有更強的能力,并為建造或改裝帶有電磁軌道炮及其相關能源支持系統的艦艇提供了一個更實用和更具成本效益的選擇。

在這項研究中,任務情景的重點是在水面行動組(SAG)中使用DDGs和CGs進行AAW、ASUW和NSFS行動。具體的任務場景集中在一個行動的攻擊前階段,以消除敵方持有的島嶼對航行造成的威脅。一個適應性部隊組合(AFP)已經形成,以奪取控制權并消除位于具有戰略意義的紅島上的威脅性進攻能力和少量敵軍部隊。AFP包括一個兩棲準備小組(ARG)和一個由兩艘DDGs和一個CG組成的SAG,其任務是保衛ARG,獲得周圍水域的海上控制權,并在兩棲攻擊前消除威脅性的海岸設施。使用ExtendSim建立了一個作戰模型來模擬行動的預突擊階段,并允許進行系統分析。

Microsoft Excel被用來創建一個隨機模型,探討在對可能擁有武器優勢的對手進行防御性或進攻性交戰時實施HVPs。通過射程目標圖和隨機模型,該場景被模擬成靜態版本。這些工具被用來估計發射的導彈數量、發射的HVP子彈,以及我們場景的統計結果。使用我們的ExtendSim模型進行分析的結果,使用Minitab進行分析,允許驗證隨機模型所捕獲的數據的能力。這使團隊能夠根據不同的統計圖和圖表軟件來分析數據,以收集計算有效性(MOE)和性能(MOP)的措施所需的信息。

衡量效力和性能的結果證明了將HVPs納入武器系統裝載的好處。在保持性能的同時,在成本、再補給、可用彈藥方面都有好處。這些都證實了最初的假設,即HVP彈藥的有效性提高了整個任務的成功率,并提供了一個具有成本效益的替代方案,而不是只使用傳統的武器系統。

用于模擬防御場景的DDG和CG艦的導彈和火炮的致命性概率數據是不保密的,因此本論文中提出的結果需要用保密數據來運行,以獲得現實的結果。

I. 簡介

A. 綜述

美國海軍的使命是 "維持、訓練和裝備能夠贏得戰爭、阻止侵略和維護海洋自由的戰斗準備的海軍部隊"(美國海軍2017)。為了實現這一使命,美國海軍艦艇必須能夠支持幾個不同的任務領域,并能夠在沒有預警的情況下適應不斷變化的任務。為了做到這一點,海軍艦艇依靠使用幾種彈藥類型來支持幾個任務領域。本研究考察了在DDG 51(Arleigh Burke)和CG(Ticonderoga)級海軍艦艇上的MK 45-5英寸炮以及DDG 1000(Zumwalt)級海軍艦艇上的先進火炮系統(AGS)155毫米炮中使用超高速炮彈(HVP)作為通用彈藥在作戰、任務規劃和后勤方面的效果。

B. 問題陳述

目前,美國海軍依靠幾種類型的彈藥來支持進攻性和防御性武器系統和任務能力。任務的需要驅動著艦上彈藥的裝載(即彈藥的類型和數量),在開航前就已經上船。在海上,如果任務或威脅發生了重大變化,艦艇根據其彈藥裝載和能力進行調整和應對的能力可能是有限的,至少在他們能夠在海上或岸上得到補給之前。由于需要在開航前確定武器裝載量,以及必須考慮的各種特定任務的彈藥,限制了作戰的靈活性、能力和容量。這項研究考察了HVP在任務規劃、后勤和使用方面的影響,作為美國海軍反空戰(AAW)、反水面戰(ASUW)和海軍水面火力支援(NSFS)任務領域中的一種通用彈藥。

C. 研究目標

本研究通過比較傳統彈藥和美國傳統武器系統發射的HVP,探討了一種通用的HVP彈藥如何支持ASUW、AAW和NSFS任務。化學推進的HVP彈藥提供了多任務的靈活性,使作戰人員在離開港口時擁有比常規導彈更深的彈倉裝載量,而不必在特定任務的武器中進行選擇。利用系統工程和架構,該項目正式確定了對HVP系統中固有的操作或任務靈活性進行定量系統分析所需的標準。

主要的研究目標是解決這個研究問題,它指出 "在傳統武器系統中使用HVP是否能提供同等的進攻和防御能力,并改善任務規劃中的后勤運作?"

D. 系統工程方法

本項目使用的系統工程方法包括三個階段。它在圖1中被描繪出來。從最初的研究階段開始,對論文主題進行了徹底的研究,以更好地了解被分析的系統。確定了能力差距,進行了利益相關者分析,并對當前系統的運行概念進行了分析。不同的分析被用來確定項目的范圍。該階段完成后,開始了系統架構階段。在這個階段,通過需求分配、功能分析和貿易研究,開發了一個架構來指導系統的設計和開發。在第二階段完成后,系統分析階段開始。在第三階段,團隊對傳統彈藥與傳統武器系統發射的普通HVP彈藥進行了離散事件建模的比較分析。根據這一建模的結果,提出了建議。

圖1. 系統工程方法

付費5元查看完整內容

私營部門不斷收集和整理關鍵數據及其來源,以通過利用數據密集型的人工智能機器學習(AI/ML)技術來確保支持和發展新的業務。大部分行業數據都是有價值的共享資源,而海軍到目前為止還沒有實現這種做法。本頂點研究通過研究、訪談和個人專業知識,探討了海軍在創造數據可用性和質量方面的挑戰性任務。研究側重于過程、技術和管理,采用了詳細需求評估、利益相關者分析、功能設計。其研究結果是一個集中式人工智能庫(CAIL)的概念框架,旨在匹配行業對數據作為關鍵商品的堅定關注。美國海軍需要持久和動態的數字化準備,因此這個擁有70多年美國海軍數據專業知識的頂點團隊建議 OVERMATCH 考慮這些發現并生成一個確保海軍數據可用性和質量的系統。

執行摘要

美國海軍部(DON)對研究和開發人工智能和機器學習(AI/ML)系統的興趣源于這些創新能力對海軍任務和對作戰人員的直接支持所帶來的深遠和改變游戲規則的影響。人工智能/機器學習系統可以被用來改善任務規劃,減少人員配置,改善戰術決策,簡化系統維護和支持,提高安全性,在某些情況下,還可以將作戰人員從危險中移除。戰士日常活動的許多方面將發生變化,從常規和勞動密集型工作的自動化到支持復雜和時間緊迫的戰斗空間決策。

只有當美國國防部首先釋放數據的力量,才能實現AI/ML系統的這些進步。目前,在獲取或"釋放"DON的數據以開發未來的AI/ML系統方面存在許多障礙。整個海軍的數據主要停留在"筒倉"或難以訪問的數據庫中,每個"筒倉"都在其領域內受到保護。在DON的數據領域內,定位、請求、獲取和策劃數據的過程并不正式。米勒(2021)說:"數據的所有者是美國人民。海軍只是管理人和監護人"。這句話包含了將數據從孤島中 "解放"出來的需要,以使海軍真正成為一個以數據為中心的企業,并實現海軍的數字化準備。

這個頂點項目開始了一項研究,以了解美國防部內AI/ML開發人員的數據需求,并制定一個概念性的解決方案來解決數據需求。其他目標是:

  • 研究AI/ML方法如何在DON任務中應用。

  • 了解數據需求是否在DON任務中普遍是標準的,或者數據需求是否在DON任務中有所不同。

  • 制定一套 DON AI/ML利益相關者的要求。

  • 為一個支持DON AI/ML數據需求的系統制定一個概念性設計。

  • 研究實施概念性解決方案系統的潛在成本和進度效益。

時區團隊(Team Time Zone)應用系統工程分析方法研究DON AI/ML開發人員的數據需求,并開發和評估一個概念性的系統解決方案,以解決這一數據挑戰,并最終支持DON未來的數字準備,以解決復雜的任務。該團隊通過采訪三個不同的海軍任務領域的主題專家(SME)來進行利益相關者的需求分析:系統維護、物理安全和戰備。這三個任務被認為是 "數據提供者"的代表。此外,該團隊還采訪了數據研究人員和AI/ML科學家,以了解他們的數據需求。訪談為團隊提供了基于獨特和不同領域和經驗的關注、挫折、經驗教訓和挑戰的洞察力。從數據提供者的角度來看,反復出現的主題包括所有權的劃分、信息保障的需要、數據未被收集或存儲的情況以及對可訪問性的擔憂。從數據用戶的角度來看,明顯的軼事包括尋找數據的耗時,承諾的數據并不總是能夠實現,以及即使在獲得數據后,理解數據的背景也是至關重要的。該小組根據利益相關者的訪談和信息收集工作,為DON AI/ML制定了一套數據要求。DON AI/ML的數據需求是:

  • 數據必須能夠被外部組織訪問。

  • 數據必須被翻譯成與其領域應用兼容的標準格式。

  • 數據必須有確定的所有者。

  • 數據必須伴隨著描述性的元數據。

  • 數據必須有標準化的管理。

  • 數據必須以其 "最低標準"的形式被訪問。

  • 數據必須具有保護和適當共享的安全性。

  • 數據必須具有混淆性,以保護個人身份信息(PII)。

  • 數據必須伴有背景信息。

為了解決DON數據研究人員和AI/ML科學家確定的數據需求,Team Time Zone開發了一個中央AI庫(CAIL)系統的概念設計,作為解決方案。CAIL系統的目的是簡化 DON內部的數據訪問和管理,以支持AI/ML系統的開發。CAIL系統旨在減少訪問數據的時間(和相關費用),騰出更多時間用于AI/ML系統的實際開發、培訓和評估。該團隊提出,為了滿足未來計劃的訪問和整合要求,CAIL需要成為一個 "數據云"。圖1是CAIL的OV-1;它描述了為AI/ML開發簡化DON數據訪問和管理的擬議過程。

圖1. CAIL OV-1

該團隊根據六個主要類別制定了CAIL系統要求:數據準備、數據偏差、數據整理、數據分類、數據治理和數據安全。每一個類別都是針對利益相關者分析過程中發現的需求。CAIL系統將主要與外部聯合數據、數據庫、文件和權威數據生產商/供應商的內容對接。它將像 "谷歌 "一樣為DON用戶尋找數據。數據將是結構化的,并將伴隨著元數據(關于數據的描述性信息),使數據可以被搜索。一個管理數據的社區將提供規則來管理對數據的安全訪問和授權。

在利益相關者的分析中,很明顯,在訪問數據之前需要進行一些重要的活動。AI/ML開發人員解釋了了解數據收集方式、數據來源以及其他有關數據的特定領域的背景方面的重要性。Team Time Zone將這些過程指定為 "預CAIL活動",并將其作為整個CAIL過程的一部分。

Team Time Zone進行了成本分析,以估計為DON實施CAIL系統的成本。該團隊使用了兩種方法來估計成本:傳統的成本估計和基于模型的系統工程(MBSE)方法。該小組估計CAIL系統的成本(基于傳統的成本估算)為3380萬美元,持續時間為5年,每年的重復維持成本為400萬美元。團隊估算的CAIL系統成本(基于MBSE方法),在運行了一萬次蒙特卡洛模擬后,平均為3290萬美元,持續時間為5年。運營和維護模型的平均成本為每年440萬美元。表1顯示了CAIL開發和維護成本的摘要。

表1. CAIL系統成本匯總

為了使DON的AI/ML項目蓬勃發展,并在未來幾十年內實現AI/ML的進步,DON必須確保數據的管理,并使AI/ML的發展能夠被訪問。Team Time Zone提出的CAIL系統解決方案將為AI/ML項目提供一個單一來源的綜合數據環境,以訪問存儲在整個DON各種數據庫中的數據庫目錄。Team Time Zone建議海軍實施CAIL系統,通過確保AI/ML開發者訪問持久和動態的數字數據來支持數字準備。CAIL系統支持DON項目和開發人員的協調方法,以安全訪問數據。該小組建議超配項目(Project Overmatch)考慮這些發現并實施CAIL系統和流程,以確保海軍的數據可用性和質量。該小組開發了一個CAIL標志(見圖2),表明CAIL系統是海軍的一個重要基礎。

圖2:CAIL標志。改編自美國海軍標志。

I. 簡介

A. 背景情況

技術的進步給軍事領域帶來了新的威脅類型和現有威脅的改進版本。對抗性威脅的進步要求海軍改進現有的能力并開發新的能力,以提高防御能力并應對這些威脅。能力的增強需要提高速度、隱身性、機動性、反措施、擴大范圍、更早發現和更大的殺傷力。這些增強的能力使我們能夠在不確定的、復雜的和時間緊迫的條件下做出關鍵決定。現代戰術作戰人員面臨著越來越復雜的決策空間。他們需要獲得對動態戰斗空間的態勢感知,并確定有效的行動方案(COA)以滿足任務需求。圖1強調了造成這種戰術復雜決策空間的因素。決策的復雜性來自于威脅環境,來自于知識的不確定性,來自于戰爭和信息系統本身,來自于作戰人員與自動化系統和信息系統的互動和使用所產生的挑戰,以及任務決策的重要性或后果的嚴重性。

圖1:戰士的復雜決策空間。資料來源:Johnson (2021).

美國國防部(DOD)和海軍部(DON)正在研究使用人工智能(AI)來解決復雜的戰術決策空間,通過改善態勢感知和提供自動決策輔助來支持戰術作戰人員。利用人工智能方法的先進算法可以通過減少信息過載、改善態勢感知、提高決策速度和加強一般的戰術決策來減輕作戰人員的認知負荷。預測分析(PA)可以支持對系統可靠性和故障概率的預測,這為物流提供了廣泛的改進(Zhao和Mata 2020)。諸如PA等技術可以通過開發 "what-if "和 "if-then "情景來加強戰術決策,通過預測決策選擇的長期影響來改善戰士的COA決策(Johnson 2020)。人工智能方法可以通過檢測異常情況和從大量的安全攝像機數據中識別可能的威脅來改善海軍基地的物理安全。

米切爾(2019)將人工智能定義為一個包括許多不同方法的領域,以創造具有智能的機器。圖2顯示,人工智能存在于一套廣泛的自動化方法中,使機器能夠根據命令和規則執行任務。人工智能是使系統能夠執行模仿人類智能的功能的一套方法。機器學習(ML)方法是人工智能方法的一個子集。ML方法允許系統從被訓練的大型數據集上學習。ML系統從訓練的數據集中學習。然后,這些 "訓練有素 "的ML系統在操作上被用來識別模式,并在新的操作數據下產生預測的結果(Johnson 2021)。

圖2:什么是人工智能?資料來源:Johnson (2021)。

人工智能算法是編碼的計算機程序,用于對數據進行分類、分析和得出預測。監控、交通預測和虛擬個人助理是實施ML算法的應用實例。

開發人工智能系統,特別是ML系統,是一項具有挑戰性的工作。ML算法的初始訓練是一個數據密集型的演變。人工智能/ML系統對數據要求很高,其準確性在很大程度上取決于數據訓練集的質量和數量(Godbole 2020)。作為一個參考點,訓練DeepMind的AlphaGo Zero系統學習下圍棋花了大約40天,包括2900萬場比賽(Feldman, Dant, and Massey 2019)。想象一下人工智能/ML武器系統算法所涉及的額外復雜性,它需要考慮戰爭背景(戰爭游戲、冷戰、和平時期)、朋友或敵人、道德和合法性等概念(Feldman, Dant, and Massey 2019)。

隨著美國防部開始開發人工智能和ML方法,出現了獨特的數據挑戰。開發人員需要大量的驗證數據來訓練他們的算法;這些數據需要準確、安全和完整,以確保算法不會被破壞或有偏見。這些數據集必須代表適當的操作環境。對于海軍的應用,訓練數據必須代表眾多的任務,包括海上、空中、太空、水下、沿岸、網絡和陸基領域的任務。盡管許多海軍司令部和實驗室正在研究和開發基于人工智能/ML系統的未來能力,但沒有協調的程序來獲取他們所需的海軍數據。在許多情況下,數據是存在的,但要確定國防部的數據來源并獲得數據是一項耗時和昂貴的工作。

這個頂點項目采用了系統工程分析方法來研究DON AI/ML開發者的數據需求,并確定和評估一個概念性的系統解決方案來解決這個數據挑戰,并最終支持未來DON的數字準備來解決復雜的任務。

B. 問題陳述

DON對研究和開發AI/ML系統的興趣為各種應用帶來了數據挑戰。盡管DON的許多指揮部和實驗室正在研究和開發基于AI/ML系統的未來能力,但沒有一個協調的程序來訪問他們所需的DON數據。AI/ML系統需要大量的驗證數據來支持他們的發展和訓練算法。在許多情況下,數據是存在的,但要確定美國防部的數據來源并獲得數據是一項耗時和昂貴的工作。這個頂點研究了這個問題,并進行了需求分析,以確定DON AI/ML開發人員的數據需求,并開發和評估了解決DON數字準備這方面的解決方案概念。

C. 項目目標

這個頂點項目的主要目標是分析 DON AI/ML 開發的數據需求,并開發一個概念性的解決方案來解決數據需求。其他目標是

  • 研究AI/ML方法如何在DON任務中應用。

  • 了解數據需求在DON任務中是否有普遍的標準,或者數據需求在DON任務中是否有差異。

  • 制定一套 DON AI/ML利益相關者的要求。

  • 為一個支持DON AI/ML數據需求的系統制定一個概念性設計。

  • 研究實施概念解決方案系統的潛在成本和進度效益。

D. 項目團隊和組織

時區團隊由五個具有不同學術和專業經驗的NPS系統工程學生組成。該團隊由以下人員組成。

  • Robert French于2016年畢業于Old Dominion大學,獲得了計算機工程和電子工程的學士學位。他目前是位于弗吉尼亞州弗吉尼亞海灘的海軍水面作戰中心Dahlgren分部-Dam Neck附件的特殊傳感器技術部門的R.F.工程師。羅伯特也是美國艦隊司令部海上作戰中心N6(信息系統)的高級入伍領導(USNR)。他曾在現役中擔任電子技術員超過14年,并成為現役預備役軍人達9年之久。

  • Wallace Fukumae前擁有夏威夷大學的電子工程學位。他目前居住在夏威夷,為海軍太平洋信息戰中心工作,擔任印度-太平洋部門主管。他的經驗包括指揮和控制(C2)系統的開發和交付以及操作。

  • Kheng Hun目前居住在日本,擁有華盛頓大學的電子工程學位。他目前在海軍信息戰中心(NIWC)太平洋分部工作,擔任位于日本橫須賀的夏威夷西太平洋(HWP)分部的項目工程師。他的專業背景包括設計和安裝各種C4I系統,如電子安全系統(ESS)和網絡系統以及MILCON項目的C4I系統規劃。

  • Obed Matuga擁有馬里蘭州巴爾的摩市摩根州立大學的工業工程學位,在華盛頓特區的海軍海洋系統司令部工作。與宙斯盾和艦船自衛系統一起工作,目前居住在馬里蘭州。

  • Caitlyn O’Shaughnessy于2015年畢業于馬薩諸塞大學達特茅斯分校,獲得計算機科學學士學位。她目前是羅德島紐波特的海軍海底作戰中心的CANES(S.S.)項目的首席工程師。

圖3描述了時區團隊(Team Time Zone)的組織結構和每個團隊成員的主要職責。圖中還顯示了NPS的項目顧問,Bonnie Johnson博士(系統工程系)和美國海軍上尉Scot Miller(退役)(信息科學系)。

圖3:團隊時區組織圖

E. 項目方法

時區團隊采用了系統工程的方法來進行這個項目。圖4說明了該團隊的過程。團隊從需求分析開始,以了解問題并為DON AI/ML開發者定義數據要求。在這個階段,團隊確定了三個DON任務領域作為AI/ML應用的代表性領域。接下來,團隊在功能分析和系統綜合的基礎上,制定了一個名為中央人工智能庫(CAIL)系統的解決方案戰略的概念設計。該小組對CAIL系統進行了建模,并利用DON的三個任務領域來分析實施CAIL系統的效用和潛在的成本/進度效益。該團隊的分析過程涉及幾種分析方法,包括定性調查、定量調查、建模和模擬、數據結構和格式分析、需求分析和操作概念評估。

圖4:頂點項目的方法

首先,該團隊通過進行需求分析和為海軍AI/ML開發人員制定一套數據要求來確定需求的定義。該團隊確定了利益相關者,并與來自不同海軍任務領域的AI/ML開發者會面,以了解他們的數據需求。該小組進行了文獻回顧,以收集背景信息并了解當前的人工智能/ML方法。團隊對來自利益相關者會議和文獻審查的信息進行了匯編,以了解與支持海軍AI/ML應用有關的要求和限制、數據所有者、數據源、數據系統、數據元素和數據屬性。

該小組研究并確定了利益相關者和三個海軍任務主線的獨特數據要求:系統維護、實體安全和戰斗群準備。該小組確定并采訪了任務領域的主題專家(SMEs),以了解獲得AI/ML實施數據的過程,并關注需要從DON系統和組織中收集和存儲哪些數據。圖5說明了海軍的三個任務主線,以及數據、架構、基礎設施和互操作性能力在支持這些作戰人員任務領域方面的直接潛在重要性。

圖5:美國防部任務領域

接下來,團隊根據需求分析結果,制定了一個概念設計方案,以解決海軍對人工智能/ML發展的數據需求。該團隊綜合了CAIL系統,并生成了CAIL操作概念(CONOPS)和CAIL功能模型。基于國防部建筑框架(DODAF)和系統建模語言(SysML),該團隊開發了概念模型,詳細說明了CAIL的系統特征、功能和操作概念。

頂點項目的最后階段是團隊對CAIL解決方案方法的評估和分析。該團隊使用Innoslate(一種基于模型的系統工程工具)開發了一個模型,以表示CAIL系統在三個海軍任務主線中的使用情況。該小組評估了CAIL系統的能力,以簡化和改善收集、格式化、策劃、驗證和確保安全訪問海軍任務數據集的過程,以支持在三個海上任務線領域工作的AI/ML開發人員。對該模型進行了評估,以估計海軍實施CAIL系統的潛在成本和調度效益。CAIL系統模型被用來驗證和確認需求。

F. 頂點報告概述

第一章提供了項目的介紹和動機,描述了問題陳述、項目目標,以及團隊的組織和完成項目的方法。

第二章總結了團隊的文獻回顧,為需求分析提供了基礎,強調了訓練AI和ML算法所需的數據。文獻回顧包括對數據科學、統計學習、深度學習、分類學以及支持AI和ML系統的企業信息技術解決方案的信息探索。

第三章包含了團隊的需求分析結果。

第四章包含了對團隊的概念性解決方案--CAIL系統的描述。

第五章介紹了團隊對CAIL系統的分析和評估結果,該系統是解決海軍在支持AI/ML發展方面的數據挑戰的解決方案。

最后,第六章討論了擁有CAIL系統的影響和結論以及對后續研究和工作的建議。

付費5元查看完整內容

美國國防部(DOD)報告稱,人工智能(AI)是一項革命性的技術,有望改變未來的戰場和美國面臨的威脅的速度。人工智能能力將使機器能夠執行通常需要人類智能的任務,如得出結論和做出預測此外,人工智能機器可以以人類操作員無法企及的速度操縱和改變戰術。由于AI具有廣泛用途的潛力,國防部將其指定為頂級現代化領域,并投入大量精力和資金開發和獲取AI工具和能力,以支持作戰人員。在2022財年,國防部為科學和技術項目申請了147億美元,以及8.74億美元用于直接支持其人工智能努力。根據國防部2018年的人工智能戰略,未能將人工智能能力納入武器系統可能會阻礙戰士保護我們的國家抵御近同行對手的能力其他國家正在這一領域進行大量投資,這可能會削弱美國的軍事技術和作戰優勢。

美國國防部(DOD)正在積極追求人工智能(AI)能力。人工智能指的是旨在復制一系列人類功能,并不斷在分配的任務上做得更好的計算機系統。GAO之前確定了三種AI類型,如下圖所示

國防部認識到開發和使用人工智能不同于傳統軟件。傳統軟件的編程是根據靜態指令執行任務,而人工智能的編程則是學習如何改進給定的任務。這需要大量的數據集、計算能力和持續監控,以確保功能按預期執行。支持國防部作戰任務的大部分人工智能能力仍在開發中。這些能力主要集中在分析情報,增強武器系統平臺,如不需要人工操作的飛機和艦船,并在戰場上提供建議(如將部隊轉移到哪里)。

當獲取依賴于復雜軟件的新能力時,國防部一直面臨著挑戰,例如長時間的獲取過程和熟練工人的短缺。GAO發現,它繼續面臨這些挑戰,同時還面臨人工智能特有的其他挑戰,包括有可用的數據來訓練人工智能。例如,人工智能探測對手的潛艇需要收集各種潛艇的圖像,并標記它們,這樣人工智能就可以學會自己識別。國防部還面臨著將訓練有素的人工智能集成到非為其設計的現有武器系統中的困難,以及在其人員中建立對人工智能的信任。國防部發起了一系列努力,如為人工智能和人工智能特定培訓建立一個跨服務的數字平臺,以應對這些挑戰,并支持其對人工智能的追求,但現在評估有效性還為時過早

付費5元查看完整內容
北京阿比特科技有限公司