目前,人工智能(AI)為改造許多軍事行動領域提供了巨大的機會,包括作戰、指揮與控制(C2)、后勤、安全和維護,以提高其整體作戰效率。空中和導彈防御(AMD)是一個特別復雜的任務領域,人工智能的應用至關重要。空中導彈防御任務指的是保衛國土、保護區、地面基地、地面部隊或艦艇免受敵對的空中或導彈威脅。AMD的威脅包括敵對的飛機、無人駕駛飛行器(UAV)或機載導彈。AMD行動的復雜性源于威脅的嚴重性、威脅的意外性、對形勢認識的不確定性以及事件的快速發展,因為作戰人員必須迅速評估形勢,制定適當的行動方案,并最好地利用他們的戰爭資產來應對。美國國防部(U.S. DOD)正在研究使用AI系統(或AI-enabled AMD[AI-AMD]系統)作為AMD作戰人員的自動決策輔助工具,以大大減少他們的認知負荷(Jones等人,2020),使AMD決策更快、更好。
人工智能的一個關鍵方面已經聚集了大量的研究興趣,那就是信任。信任是有效團隊的一個基本原則。它同時適用于人類和人機團隊。信任使團隊成員能夠很好地合作,是有效團隊表現的基礎(Lee and See 2004)。與人工智能系統的成功合作將需要人類對人工智能系統有一個校準的信任和依賴程度(泰勒等人,2016)。
隨著更先進和更快的空中和導彈威脅彈藥的發展和投入使用,操作人員更需要在AMD行動中迅速作出監測。不及時的決策和反應將導致災難性的后果。因此,人工智能是一個可能的解決方案,通過自動決策輔助工具加快和加強決策過程。這些AMD自動戰斗管理輔助工具可以幫助戰術操作人員應對更快的決策周期、大量的數據以及需要觀察的幾個系統或屏幕(Galdorisi 2019)。然而,為了有效地利用人工智能能力的潛力,需要操作員的高度信任。操作員對系統的信任程度低,可能會導致人工智能-AMD系統利用不足,受到不適當的監控,或者根本不使用(Floyd, Drinkwater, and Aha 2016)。這些問題中的任何一個都可能導致操作者的工作量不必要的增加,或者任務失敗的可能性。
論文對信任的定義、人機交互(HMI)的概念、信任因素以及包括AMD殺傷鏈模型、威脅場景、架構、模型和功能在內的概念模型進行了廣泛的回顧。有了這樣的認識,論文提出了人工智能-AMD系統的信任框架,對人機交互和人工智能-AMD系統信任因素的描述。論文最后提出了在人類操作者和AI-AMD系統之間實現校準信任的策略。
信任框架始于對系統背景的分析。圖1顯示了AI-AMD指揮與控制(C2)系統(包括AI-AMD操作員和決策輔助工具)及其他與之互動的子系統的背景圖,這些子系統有助于操作員和AI-AMD決策輔助工具之間信任的發展。背景圖使我們能夠研究各系統之間的相互作用,以及它們對AI-AMD操作員和決策輔助工具之間信任動態的影響。
圖1. AI-AMD系統框架圖。
這篇論文將信任定義為操作者的態度,即AI-AMD決策輔助工具將有助于實現操作者的目標,即在一個以不確定性和脆弱性為特征的作戰環境中迅速摧毀來襲威脅的任務。這種信任的定義表明,它是對操作者相信或感知AI-AMD決策輔助工具的一種情感評估。為了積極地影響信任,操作者必須親自看到并感受到AI-AMD決策輔助行動的優勢。AI-AMD行動涉及很多不確定因素,以及天氣、電磁干擾和地形等環境因素以及不斷變化的威脅的性質所帶來的脆弱性。操作員將預期AI-AMD決策輔助系統按照 "合同 "執行,以處理這些不確定性和脆弱性。這些合同將是人工智能-AMD決策輔助工具應該執行的感知功能或任務,以及執行這些功能或任務的理想表現。
圖2說明了操作員和AI-AMD決策輔助工具之間的信任框架。y軸代表人類對AI-AMD決策輔助系統的信任程度,x軸代表AI-AMD決策輔助系統的能力。綠色的45°虛線表示最佳的信任水平或校準的信任線,其中的信任與AI-AMD的能力相對應,導致正確的利用(Lee and See 2004)。過度信任由最佳信任水平線以上的區域表示,此時的信任超過了系統能力,導致誤用。低于理想信任水平線的區域表示不信任,這時的信任沒有達到系統能力,導致濫用。假設存在一些默認的信任水平(如黃框所示),目標是制定一個策略,以提高AI-AMD輔助決策能力的信任。在使用該系統時,可能會發生違反信任的情況,從而降低操作員的信任。因此,信任修復行動必須被納入,以保持信任在最佳水平。
圖2. 人類操作員和AI-AMD決策輔助工具之間的信任。
基于功能分配的操作員和AI-AMD決策輔助工具之間的人機交互研究表明,操作員和AI-AMD決策輔助工具應該被設計成在大多數殺戮鏈功能中作為一個 "團隊"運作。這引導論文研究了單獨和集體考慮人類和決策輔助的信任因素。對操作員和人工智能-AMD決策之間的人機交互的研究還顯示,操作員的角色已經從手動控制器變成了監督控制器。因此,一個值得信賴的決策輔助工具是很重要的,因為操作者會期望系統的表現符合預期,以幫助操作者更好地履行他的角色。另外,為了進一步幫助減輕操作者的認知工作量,信息的外部表示、決策輔助工具的建議必須易于閱讀和理解。
關于信任因素,本論文提出了一個 "由外而內 "的框架,如圖3所示。論文首先考慮了與操作環境相關的因素,這些因素描述了AMD操作系統的背景。第二,它研究了與組織環境相關的因素,操作人員和人工智能-AMD系統得到了培訓和發展。第三,論文研究了操作人員和人工智能-AMD決策輔助工具之間的交互,以提出與操作人員、人工智能-AMD、單獨和集體相關的因素。
圖3. 建議的信任因素
圖4顯示了擬議的戰略銜接圖,以實現操作者和AI-AMD輔助決策之間的校準信任。對信任定義、人機界面和信任因素的審查表明,該戰略應關注三個關鍵領域:(1)人類對自動化技術和AI-AMD決策輔助系統的集體和個人感知;(2)增強操作員和AI-AMD決策輔助系統的團隊活力;(3)AI-AMD決策輔助系統的可信度,重點是系統開發。該戰略利用DOTMLPF-P框架提出了三個關鍵原則和五個支持原則。首先,軍事作戰人員需要被告知自動化技術的真正能力和局限性,特別是AI-AMD輔助決策。第二,操作員的培訓要求必須增加,以應對新的工作范圍和不斷變化的威脅。第三,必須在人工智能-AMD決策輔助系統的開發中加入新的要求,以提高系統的可感知的可信度。這三個關鍵原則得到了DOTMLPF-P框架其他方面的支持,如組織、領導、人員、設施和政策。
圖4. 實現操作員和人工智能-AMD決策輔助工具之間校準信任的戰略銜接圖
人工智能已經使用了幾十年。它已經被部署在有人駕駛的編隊中,并將在未來幾年內繼續被用于軍事。目前的戰略和作戰概念要求在整個國防企業中增加使用人工智能能力,從高級領導人到戰術邊緣。不幸的是,人工智能和它們所支持的戰士不會 "開箱即用"地兼容。簡單地將人工智能植入人類團隊并不能確保成功。美國防部必須仔細注意如何將人工智能與人類一起部署。這在團隊中尤其如此,因為團隊的結構和成員的行為可以決定業績的好壞。由于人類和機器的工作方式不同,團隊的設計應該利用每個伙伴的優勢。團隊設計應該考慮到機器伙伴的固有優勢,并利用它們來彌補人類的弱點。這項研究通過提交新的概念模型,捕捉人類和機器在人機合作結構中運作時的理想團隊行為,對知識體系做出了貢獻。這些模型可以為人機團隊的設計提供信息,從而提高團隊的績效和敏捷性。
圖1 智能自主系統技術框架
圖3 美國人工智能相關戰略
核導彈發射被探測到。那是1960年10月5日,北約正處于最高級別的警戒狀態。以99.9%的準確率,來襲的蘇聯彈道導彈被格陵蘭島的預警系統探測到。值得慶幸的是,北約的報復行動被制止了,操作人員發現,"智能 "系統正在跟蹤上升的月亮(Singer,2009)。自然,這并不是唯一一次世界幾乎在人工智能(AI)引起的核交換中喪生。1983年9月26日,蘇聯的彼得羅夫中校發現自己是莫斯科附近Serpukhov15掩體內的值班人員。在太空中運行的蘇聯Oko預警衛星系統完全肯定地報告說,多枚導彈正在前往莫斯科的路上。問題是,奧科系統把從云頂反射的陽光誤認為是美國的一系列導彈發射(Scharre,2018)。解讀其系統的局限性,并將事件置于背景中,操作人員能夠防止災難的發生。當然,這些極端案例是少見的,對于今天的人工智能,我們沒有那么依賴人類的判斷,對嗎?不幸的是,不盡然。人類和人工智能(AI)的工作方式不同,所以像美國防部(DOD)這樣的組織在將人工智能系統插入操作團隊時,需要非常慎重。
本研究試圖回答以下問題:
將對文獻進行詳盡的回顧,并對兩個適用的案例研究進行分析。這項研究的目標是產生一個人機協作的概念模型,并提供有關人機團隊內部溝通的背景性、現實世界的知識。鑒于目前可用的基于實驗室的人機協作實驗數量有限,本研究將檢查數據以確定廣泛的主題和模式。
人類團隊和人類團隊動態的性質已經得到了廣泛的研究。這一領域的文獻有豐富的發現,可以提供關于人與人團隊動態的細節;然而,關于機器融入人與人團隊的文章卻很少。隨著機器伙伴被納入傳統意義上的人類團隊,就需要對人機團隊進行研究。本研究將首先描述人工智能的特點及其對戰爭的預期影響。將提供關于機器-機器團隊的現有文獻分析,然后是人類認知和人-人團隊的更多發展主題。這項研究在描述人機團隊的通信、協調和互動動態之前,將對人機團隊進行特征描述。然后,作者將展示這些動態如何與團隊敏捷性和績效的概念相聯系。
本研究目的是探索人機團隊中的溝通、協調和互動動態,并闡述它們對團隊敏捷性和績效的潛在影響。隨著人機團隊結構在DON中變得越來越普遍,這種探索對于發展對團隊動態的理解是必要的。這項研究將產生人機團隊的概念模型,可以為未來系統的設計提供參考。這項研究的結果可以幫助美海軍軍部更好地理解將狹義的人工智能能力整合到團隊構建中的影響。這種知識將最終使美國防部能夠應用研究結果來提高人機團隊的敏捷性。
美國海軍陸戰隊正在探索使用人機協作來控制前線部署環境中的無人駕駛航空系統(UAS),其任務范圍廣泛,包括情報、監視和偵察(ISR)、電子戰(EW)、通信中繼和動能殺傷。美國海軍陸戰隊設想使用未來的垂直起降平臺(VTOL)來支持混合戰爭任務并實現軍事優勢。對于美國海軍陸戰隊的混合戰爭應用,以實現任務優勢和戰爭主導權,美國海軍陸戰隊需要了解VTOL機組和無人機系統之間錯綜復雜的人機互動和關系,以獲得戰斗空間態勢感知,并有效地計劃和執行針對常規和不對稱威脅的旋轉翼行動。這項研究的重點是美國海軍陸戰隊在海洋環境中的打擊協調和偵察(SCAR)任務,以促進遠征基地先進作戰(EABO)在沿岸地區。有多種復雜的功能必須加以考慮和評估,以支持人機協作互動,提高任務的有效性:任務規劃、移動和滲透、區域偵察、偵察戰斗交接和過渡。
這份頂點報告探討了SCAR任務期間三個系統之間的人機協作:UAS、VTOL和地面控制站(GCS)。該研究從VTOL項目的文獻回顧開始,研究了美國海軍陸戰隊SCAR任務戰術和用于促進EABO的理論概念。此外,它還包括對自主性和自動化、人工智能和機器學習的研究。通過使用合作設計模型來探索這三個系統的人機協作互動和過程,文獻回顧探討了如何使用基于三個因素的相互依賴性分析(IA)框架來確定人類執行者和機器團隊成員之間的相互依賴性:可觀察性、可預測性和可指導性。
通過基于模型的系統工程(MBSE)工具,將SCAR任務的高級功能分解為分層次的任務和子任務,系統分析被用來支持聯合設計方法。根據Johnson(2014)的說法,合作設計方法研究了相互依賴的概念,并使用IA框架作為設計工具。IA框架捕捉了主要執行者和支持團隊成員之間的互動,以發展支持每個主要任務和分層子任務的所需能力,從而產生HMT要求。這份頂點報告分析了兩種選擇。第一個方案認為UAS是主要執行者,VTOL和GCS是輔助團隊成員。第二種方案認為VTOL是主要執行者,UAS和GCS是輔助團隊成員。基于這兩種選擇,IA框架評估了17個主要任務、33個分層子任務和85個執行SCAR任務的所需能力。
此外,研究發現需要一個強大的數字任務規劃系統,如升級后的海軍陸戰隊規劃和行動后系統(MPAAS),通過存儲以前的任務和經驗教訓的數據來促進機器學習。美國海軍陸戰隊將面臨無人機系統的處理能力和信息存儲方面的挑戰。應盡一切努力增加UAS的處理能力。必須實施一個有效的主要、備用、應急和緊急(PACE)通信計劃,以確保UAS、VTOL和GCS之間所有通信平臺的冗余。美國海軍陸戰隊必須實施支持信任、提供快速反饋和簡單操作的接口。
最后,為了準確評估VTOL、UAS和GCS之間的HMT要求,頂點報告促成了一個探索性實驗的發展,該實驗將在海軍研究生院(NPS)建模虛擬環境和模擬(MOVES)實驗室使用,以促進未來的研究。制定了操作要求和測量方法,以確定HMT要求的有效性。
這項頂點研究為在SCAR任務中執行VTOL/UAS混合行動的人機互動復雜性提供了明確的證據。該頂點研究確定了使用系統分析和協同設計作為一種有效的方法,通過IA框架促進人機協作需求的發展。此外,該研究確定了對復雜的自主性和技術準備程度的需求,這可能是目前還沒有的。頂點建議美國海軍陸戰隊繼續研究人機協作,并利用SCAR任務探索性實驗來進一步完善和研究VTOL/UAS的高級系統要求,以支持具有前沿部署的UAS的混合行動,重點是實現4級自主權。
最佳的飛行員-飛機互動一直被認為是實現有效操作性能的基石,同時在任務或使命中保持高水平的安全。隨著飛行任務越來越復雜,越來越多的信息到達機組成員手中。市場上有新的技術解決方案,任務中的表現是可以衡量的。當考慮到基于神經科學進步的人機互動時,就有可能衡量和評估任何人機接口(HMI)的有效性。為了支持空勤人員的表現,必須利用現有的創新,如數據融合或人工智能(AI)輔助決策和任務管理,以成功執行軍事任務。人工智能和大數據管理與機器學習相結合,是改善和運行現代作戰場景的關鍵因素。以網絡為中心的綜合武器系統為聯合部隊指揮官提供了靈活性,有助于當前和即將到來的聯合任務的成功。
在聯合行動中,當兩個或更多的國家使用所有可用的領域時,盡可能快速有效地利用所有的資產和能力,以獲得戰斗空間的最佳總體情況將是至關重要的。因此,解決和驗證為機組人員優化的下一代駕駛艙的創建是很重要的。先進的指揮和控制系統,為執行任務提供安全和可互操作的支持,將確保獲得一個綜合和同步的系統,并將實現戰場上的信息優勢。在未來,各級指揮官對戰場的可視化和理解方式,利用某些輔助手段來指導和引導他們的部隊,將成為勝利的決定因素。
根據JAPCC在2021年發布的聯合全域作戰傳單,全域作戰包括 "快速處理數據和管理情報,以及實現高效作戰所需的技術能力和政策,包括所有貢獻的資產"。其他北約出版物使用術語多域作戰(MDO),主要描述任務環境的相同挑戰。找到一個連貫的、共同使用的術語是不斷發展的,但它不會改變HMI定義背后的含義。此外,重要的是開發一個連接的、復雜的接口,能夠協助指揮官和他們的下屬軍事人員同時和毫不拖延地分享信息,并迅速做出決定和采取行動。
正如Todd Prouty在他的一篇文章中所認識到的,"聯合全域指揮與控制(JADC2)正在形成,成為連接行動的指導性概念","將使用人工智能和機器學習,通過以機器速度收集、處理和計算大量的數據來連接聯合部隊"。兩種類型的態勢感知(SA)都同樣重要,因為它們不僅可能影響任務的成功完成,甚至還可能影響戰略層面的意圖。定義SA的最簡單方法是對周圍環境的徹底了解。戰術上的SA意味著機組人員知道這個場景,知道自己在任務中的任務和角色,以及所有參與同一行動區域的部隊。他們知道如何飛行任務,也知道成功或失敗的目的和后果。飛行SA主要關注的是飛行的性能和參數,空間和時間上的位置,以及飛機的性能。這兩個SA是不同的,需要在飛行過程中不斷監測。通常情況下,兩者在任務的不同階段需要不同程度的關注,如果有能力的話,可以由機組成員共享。一些技術上的改進可以只提高一個SA,但最好是同時提高兩個SA,以滿足要求并提高整體SA。這些發展也必須支持戰略層面的意圖,并提供其在決策過程中需要的SA。
現代機體和駕駛艙應支持機組人員的機載工作量,戰斗飛行員需要這種支持以保持有效。這可以通過人工智能自動管理,使機組人員能夠將更多的精力放在他們的任務和使命上。可以說,用算法來增強機體的基本需要,以補充機組人員處理飛行期間增加的信息流的能力。
在開展行動期間,預計情況可能會迅速變化,指揮官必須立即采取行動,重新安排部隊的任務。在地面或飛行中,飛行員可能會在短時間內收到一個新的任務。這個新命令不應該被格式化為純粹的基本信息;當整個更新包也能被可視化時,支持將是最佳的。一個例子是數字移動地圖系統,它描述了關于友軍和敵軍的詳細信息,包括協調信息。當飛行員改變飛行計劃時,駕駛艙及其所有設置都將自動更新。正如《國防雜志》所指出的,"從無限的資源中收集、融合和分析數據,并將其轉化為可操作的情報傳遞到戰術邊緣的能力,需要前所未有的移動處理能力"。為了符合這些要求,推動下一代人機接口的整合應該在所有現代駕駛艙中實現標準化。
HMI-Cockpit的演變。左至右:Ramon Berk, Comando Aviazione dell'Eercito, Leonardo
值得注意的是,最近飛機駕駛艙的技術發展已經出現了巨大的轉變。在短短幾年內,駕駛艙已經從帶有模擬象限的 "經典飛行甲板 "過渡到現代的 "玻璃駕駛艙",其中經典的儀表通過復雜的多功能顯示器呈現。大多數信息在儀表、飛行管理系統和自動駕駛功能之間是相互聯系的。在現代駕駛艙中,傳統的 "旋鈕和表盤 "已經被拋棄,取而代之的是電子可重新配置的顯示器和多功能可重新配置的控制,即所謂的 "軟鍵"。
傳統上,駕駛艙設計和信息顯示方式的發展是由安全和性能提升驅動的,而現在似乎更多的是由效率和競爭力標準驅動。5例如,在全狀態操作和創新駕駛艙基礎設施(ALICIA)項目中,來自14個國家的41個合作伙伴正在合作進行研究和開發活動,旨在實現一個能夠提供全狀態操作的駕駛艙系統。考慮到在不久的將來商業航班數量的增加,該項目旨在通過使用新的操作概念和駕駛艙設計來實現更高水平的效率和競爭力。
ALICIA承諾新的解決方案能夠為機組人員提供更大的SA,同時減少機組人員的工作量并提高整個飛機的安全性。這是對HMI概念的徹底反思,尋求技術的整體整合。在設想的概念中,ALICIA利用多模態輸入/輸出設備,提供一個集成在增強的機組接口中的全條件操作應用程序。
改進軍用飛機的人機接口是一項更為復雜的任務。與商業飛行相比,需要分析的情況很多,也更復雜。在軍用駕駛艙中,與飛行本身相關的任務與完成戰斗任務所需的任務合并在一起,而且往往是在危險地區和退化的環境中飛行。此外,軍用飛機配備了更多的設備,旨在處理綜合戰斗任務和軍備系統管理。
軍事飛行的典型任務可分為兩類:
駕駛和導航:在整個飛行過程中執行。
戰斗任務:只在飛行任務的某些階段執行。
當戰斗任務發生時,它們必須與駕駛和導航任務同時進行,這是軍事和商業航空的主要區別。根據自己的經驗,軍事飛行員必須判斷在任何特定的飛行階段哪一個是優先的。因此,他們將大部分資源用于該任務,而將那些經常被誤認為不太重要的任務留給機載自動系統或利用他們的注意力的殘余部分來完成。
不幸的是,軍事飛行在任務、風險、威脅、持續時間、天氣條件等方面的復雜性和不可預測性,常常使機組人員很容易超過他們的個人極限。一旦發生這種情況,風險是任務無法完成,甚至可能被放棄。在最壞的情況下,飛機和機組人員可能會丟失,或者機組人員可能會在沒有適當或最佳SA的情況下采取行動,導致附帶損害的風險增加。
新興和顛覆性的技術可以改善未來軍用飛機上的人機接口。它們可以引入基于人工智能、深度學習或實時卷積神經網絡(RT/CNN)的新解決方案,以整合新的能力,如具有認知解決方案的系統。作為一個例子,認知人機接口和互動(CHMI2)的發展和演變,用于支持多個無人駕駛飛行器的一對多(OTM)概念中的自適應自動化,也可以被利用來支持完成 "軍事駕駛艙的多項任務 "的自適應自動化。
同樣地,研究和開發CHMI2來監測飛行員的認知工作量并提供適當的自動化來支持超負荷的機組。這些先進的系統應該能夠閱讀到達駕駛艙的命令,分析相關的威脅,并提出最 "適合任務 "的任務簡介和操作概念。同時,它們應該計算所有任務所需的數據,如燃料消耗、目標時間、"游戲時間"、路線、戰斗位置、敵人和友軍的部署、武器系統和彈藥的選擇、附帶損害估計以及適當的交戰規則等。然后,考慮到船員的認知狀態,將動態地選擇自動化水平和人機接口格式及功能。
在2009年的一項研究中,Cezary J. Szczepanski提出了一種不同的HMI優化方法,其依據是任務成功的關鍵因素是飛機操作員的工作量。如果工作量超過了一個特定的限度,任務就不能成功完成。因此,他提出了一種客觀衡量機組人員在執行任務期間的工作量的方法;具體來說,就是在設計人機接口時,要確保即使在最壞的情況下,工作量也不能超過人類操作員的極限。
將近11年后的2020年,北約科技組織成立了一個研究小組,以評估空勤人員是否有能力執行其分配的任務,并有足夠的備用能力來承擔額外的任務,以及進一步應對緊急情況的能力。該小組旨在確定和建立一種基于具體指標的實時客觀方法,以評估人機接口的有效性。
通過對神經生理參數的實時測量來評估認知狀態,有望支持新形式的適應性自動化的發展。這將實現一個增強的自主水平,類似于一個虛擬的機載飛行員,這將協助機組人員進行決策,并將他們從重復性的或分散注意力的任務中解放出來。自適應自動化似乎是實現最佳人機接口的一個重要組成部分。它有望支持高水平的自主性,以減少人類的工作量,同時保持足夠的系統控制水平。這在執行需要持續工作量的任務時可能特別重要。這預示著要全面分析與自主決策機相關的倫理和道德問題。然而,這已經超出了本文的范圍。
未來的戰斗將變得越來越快節奏和動態。新興的和顛覆性的技術有望徹底改變各級指揮官計劃和實施戰場行動的方式。人工智能、機器學習、增強的指揮和控制系統以及先進的大數據管理將大大有利于指揮官,改善SA,并極大地加快決策過程。現代軍隊設想未來的行動是完全集成的、連接的和同步的,這催生了MDO概念,以完善指揮官在多個領域快速和有效地分派/重新分派所有部隊的能力。
在概念和規劃階段的這種明顯的動態性也必須反映在執行階段。因此,必須假定,雖然指揮官能夠在很少或沒有事先通知的情況下重組和重新分配部隊任務,但機組人員也必須能夠快速、有效和安全地處理和執行這些新命令,很少或沒有時間進行預先計劃或排練。
這些新要求無疑將影響下一代軍用飛機駕駛艙的設計和開發。有必要采用一種新的方式來構思下一代人機接口,更加關注飛行員的真正認知能力。此外,需要新的解決方案來為機組人員提供更大的安全空間,同時將他們的工作量減少到可以接受的最大水平,使他們保持高效。他們應該結合任務優先級原則,審慎地考慮機組人員可以將哪些任務交給自主程序或系統。
本文重點討論了空中力量和飛行員在飛機上的工作量。可以預見,在現代情況下,所有平臺都將面臨同樣的挑戰。在行動的各個層面,所有的軍事人員都應該發展一種新的思維方式,以反映人機接口的更多整合和使用。要做到這一點,需要重新認識到人的因素的重要性。與民用航空類似,北約將需要制定和采用新的標準來指導未來軍用航空接口的設計。人機接口的改進必須包括所有的航空任務,并著重于實現實時規劃和執行。如果不仔細關注軍事飛行員所面臨的壓力,人機接口的改進只會讓飛行員更加安全,而在任務執行過程中的效率卻沒有類似的提高。開發通過實時測量神經生理參數來評估機組人員的認知狀態的方法,以及隨后開發新形式的適應性自動化,對于實現符合未來戰場要求的人機接口至關重要。
Imre Baldy,中校,于1988年加入匈牙利國防軍,并在匈牙利的'Szolnok'軍事航空學院開始了他的軍事教育。1992年,他作為武器操作員/副駕駛獲得了第一個少尉軍銜。1997年,他得到了他的第一個更高級別的任命,他加入了位于韋斯普雷姆的匈牙利空軍參謀部,在那里他獲得了國際關系和空軍防御規劃方面的經驗。2007年,他被調到塞克斯費厄爾,在那里建立了新的匈牙利聯合部隊司令部。除與直升機業務有關的其他職責外,他還負責空軍的短期規劃。他曾駕駛過米24、米8和AS-350直升機。從2018年7月開始,他成為JAPCC的載人空中/攻擊直升機的SME。
利維奧-羅塞蒂,中校,于1993年在意大利軍隊中被任命為步兵軍官。三年后,他轉入陸軍航空學校,并于1998年畢業,成為一名旋翼機飛行員。他曾擔任過排長、中隊指揮官和S3小組長。他曾駕駛過通用直升機。AB-206,AB-205,AB-212,AB-412,以及AW-129 Mangusta戰斗直升機。他曾多次作為機組成員或參謀被部署到巴爾干半島(阿爾巴尼亞,科索沃),中東(黎巴嫩,伊拉克)和中亞(阿富汗)。他還是一名合格的CBRN(化學、生物、輻射和核)專家,一名空中機動教官,他目前駐扎在JAPCC,擔任戰斗航空處的空地行動SME。
前沿作戰基地(FOB)防御是一項人力密集型任務,需要占用作戰任務的寶貴資源。雖然能力越來越強的無人駕駛飛行器(UAV)具備執行許多任務的能力,但目前的理論并沒有充分考慮將其納入。特別是,如果操作人員與飛行器的比例為一比一時,并沒有考慮提高無人機的自主性。本論文描述了使用先進機器人系統工程實驗室(ARSENL)蜂群系統開發和測試自主FOB防御能力。開發工作利用了基于任務的蜂群可組合性結構(MASC),以任務為中心、自上而下的方式開發復雜的蜂群行為。這種方法使我們能夠開發出一種基于理論的基地防御戰術,在這種戰術中,固定翼和四旋翼無人機的任意組合能夠自主分配并執行所有必要的FOB防御角色:周邊監視、關鍵區域搜索、接觸調查和威脅響應。該戰術在軟件模擬環境中進行了廣泛的測試,并在現場飛行演習中進行了演示。實驗結果將使用本研究過程中制定的有效性措施和性能措施進行討論。
2019年,美國海軍陸戰隊司令大衛-H-伯杰將軍發布了他的規劃指南,作為塑造未來四年的部隊的一種方式。他在其中指出:"我們今天做得很好,我們明天將需要做得更好,以保持我們的作戰優勢"[1]。這句話摘自海軍陸戰隊司令大衛-H-伯杰將軍的《2019年司令員規劃指南》(CPG),呼吁采取集中行動,以應對海軍陸戰隊在未來戰爭中預計將面臨的不斷變化的挑戰。在為海軍陸戰隊確定未來四年的優先事項和方向的CPG中的其他指導,呼吁建立一個 "適合偵察、監視和提供致命和非致命效果的強大的無人駕駛系統系列"[1]。伯杰將軍進一步呼吁利用新技術來支持遠征前沿基地作戰(EABO)。EABO將需要靈活的系統,既能進行有效的進攻行動,又能進行獨立和可持續的防御行動。簡而言之,實現EABO將需要最大限度地利用每個系統和海軍陸戰隊。
從本質上講,伯杰將軍正在呼吁改變無人駕駛飛行器的使用方式。通過使用大型的合作自主無人飛行器系統,或稱蜂群,將有助于實現這一目標。無人飛行器蜂群提供了在人力需求和后勤負擔增加最少的情況下成倍提高戰場能力的機會。正如伯杰將軍所提到的 "下一個戰場",海軍陸戰隊將必須利用各種技術,最大限度地利用自主性和每個作戰人員在戰場上的影響。
目前的無人系統使用理論是以很少或沒有自主性的系統為中心。另外,目前的系統依賴于單個飛行器的遠程駕駛;也就是說,每輛飛行器有一個操作員。部隊中缺乏自主系統,這在監視和直接行動的作戰能力方面造成了差距。此外,側重于一對一操作員-飛行器管理的無人系統理論要求操作員的數量與車輛的數量成線性比例。這對于 "下一個戰場 "來說是不夠的。相反,海軍陸戰隊將需要能夠讓操作員擺脫束縛或提高他們同時控制多個飛行器的能力系統[2]。
考慮到這些目標,美國海軍研究生院(NPS)的先進機器人系統工程實驗室(ARSENL)已經開發并演示了一個用于控制大型、自主、多飛行器的系統,該系統利用了分布式計算的優勢,并將駕駛的認知要求降到最低。ARSENL在現場實驗中證明了其系統的功效,在該實驗中,50個自主無人駕駛飛行器(UAV)被成功發射,同時由一個操作員控制,并安全回收[3]。
這項研究的主要目標是證明使用無人機蜂群來支持前沿作戰基地(FOB)的防御。特別是,這需要自主生成、分配和執行有效的、符合理論的基地防御所需的子任務。這部分研究的重點是開發基于狀態的監視、調查和威脅響應任務的描述;實施支持多飛行器任務分配的決策機制;以及任務執行期間的多飛行器控制。
輔助研究目標包括展示基于任務的蜂群可組合性結構(MASC)過程,以自上而下、以任務為中心的方式開發復雜的蜂群行為,探索自主蜂群控制和決策的分布式方法,以及實施一般的蜂群算法,并證明了對廣泛的潛在蜂群戰術有用。總的來說,這些目標是主要目標的一部分,是實現主要目標的手段。
基地防御戰術的制定始于對現有基地防御理論的審查。這一審查是確定該行為所要完成的基本任務和子任務的基礎。然后,我們審查了目前海軍陸戰隊使用無人機的理論,以確定這些系統在基地防御任務中的使用情況。
在確定了任務要求的特征后,我們為基地防御的整體任務制定了一個高層次的狀態圖。子任務級別的狀態圖等同于MASC層次結構中的角色。
ARSENL代碼庫中現有的算法和游戲以及在研究過程中開發的新算法和游戲被用來在ARSENL系統中實現子任務級的狀態圖。最后,根據高層次的狀態圖將這些游戲組合起來,完成基地防御戰術的實施。
在游戲和戰術開發之后,設計了基于理論的有效性措施(MOE)和性能措施(MOPs)。通過在循環軟件(SITL)模擬環境中的廣泛實驗,這些措施被用來評估基地防御戰術。在加利福尼亞州羅伯茨營進行的實戰飛行實驗中,也展示了該戰術和游戲。
最終,本研究成功地實現了其主要目標,并展示了一種包含周邊監視、關鍵區域搜索、接觸調查和威脅響應的基地防御戰術。此外,開發工作在很大程度上依賴于MASC層次結構,以此來制定任務要求,并將這些要求分解成可在ARSENL蜂群系統上實施的可管理任務。這一戰術在實戰飛行和模擬環境中進行了測試,并使用以任務為中心的MOP和MOE進行了評估。最后的結果是令人滿意的,在本研究過程中開發的戰術被評估為有效的概念證明。
本論文共分六章。第1章提供了這項研究的動機,描述了這個概念驗證所要彌補的能力差距,并提供了ARSENL的簡短背景和所追求的研究目標。
第2章討論了海軍陸戰隊和聯合出版物中描述的當前海軍陸戰隊后方作戰的理論。還概述了目前海軍陸戰隊內無人機的使用情況,并描述了目前各種系統所能達到的自主性水平。
第3章概述了以前自主系統基于行為的架構工作,ARSENL多車輛無人駕駛航空系統(UAS)和MASC層次結構。
第4章對基地防御戰術的整體設計以及高層戰術所依賴的游戲進行了基于狀態的描述。本章還詳細介紹了用于創建、測試和評估這一概念驗證的方法。在此過程中,重點是對每一戰術和戰術所針對的MOP和MOE進行評估。
第5章詳細介紹了所進行的實戰飛行和模擬實驗,并討論了與相關MOPs和MOEs有關的測試結果。
最后,第6章介紹了這個概念驗證的結論。本章還提供了與基地防御戰術本身以及更廣泛的自主蜂群能力和控制有關的未來工作建議。
美國國防部和空軍領導人認為,人工智能(AI)是一種改變游戲規則的技術,將幫助空軍情報、監視和偵察(ISR)體系克服大國沖突所需的情報分析速度和規模方面的長期挑戰。傳感網格概念(最近更名為傳感器集成)被作為未來框架引入,以整合人工智能和認知建模工具融入空軍ISR,但對于對手的威脅和道德方面的考慮卻很少討論,而這些考慮應該貫穿于系統的設計和功能模塊。為了讓空軍內部的人力和組織做好準備,以整合高度自動化的人工智能情報分析系統,領導人必須倡導以人為本的設計,從歷史上人機協作的成功和失敗中吸取教訓。領導人還必須采取積極主動的方法來培訓空軍的ISR勞動力,以便與革命性的但不完善的人工智能技術進行有效協作。
根據美國空軍作戰集成能力(AFWIC)傳感跨職能小組的說法,空軍情報、監視和偵察(ISR)的現狀是高度專業化、專有化,并且過于依賴人力密集的回傳(reach-back)過程。當規劃人員展望未來的大國沖突時,他們評估目前的硬件和分析過程將不足以建立對同行對手的決策優勢,情報工作在勝利所需的速度和規模方面落后。空軍A2的 "下一代ISR主導地位飛行計劃"對目前的ISR體系也提出了類似的批評,主張擺脫今天的 "工業時代的單一領域方法",以追求 "架構和基礎設施,以實現機器智能,包括自動化、人機合作,以及最終的人工智能。"雖然為空軍人員提供更快更智能的工具來制作和分享評估是空軍高級領導人的優先事項,但引入更高水平的自動化和機器主導的感知為情報界帶來了一系列新問題。考慮到這些工具可能遇到的篡改和故意提供錯誤信息的威脅,依靠算法走捷徑是否安全?追求由自動化武器系統促成的戰爭到底是否合乎道德?如果是這樣,情報界采用自動化工具以更快的速度產生關鍵的情報評估會帶來什么風險?
人工智能(AI)一詞被美國防部聯合人工智能中心定義為 "機器執行通常需要人類智慧的任務能力--例如,識別模式、從經驗中學習、得出結論、進行預測或采取行動。"參議員們希望AI能夠很快為人類分析師用來進行評估的軟件套件提供動力,并使物理系統在更多的自主應用中發揮作用。機器學習(ML)被國防部高級研究計劃局(DARPA)定義為人工智能中的一個領域,"將統計和概率方法應用于大型數據集",并可以將衍生模型應用于未來的數據樣本。利用ML好處的一個流行方法是通過深度神經網絡(DNN),它可以使用歷史數據被訓練成執行一系列的分類和預測任務。雖然在AFWIC或A2的出版物中沒有特別提及,但在模擬人類思維過程的應用中使用AI、ML和DNN是計算機科學和心理學的一個混合領域,稱為認知建模。在AFWIC對未來空軍ISR體系的設想中,AI、ML、DNNs和認知建模概念是向數字化、以網絡為中心的情報方法轉變的關鍵部分。
為了給空軍ISR體系的現代化舉措提供一個框架,AFWIC建立了傳感網的概念,定義為 "傳感器、平臺、人員、設備、內容和服務的組合,為決策者提供整體、準確、預測和及時的作戰環境特征。"該概念的設計者設想了一個具有預測分析、自主傳感和響應、融合多個數據源和邊緣處理的系統,所有這些都是通過利用AI、ML、DNN、數據分析和其他認知建模方法來實現的。盡管沒有公布傳感網格的首次亮相日期,但大多數討論表明,優化的系統簇至少還有十年。同時,美國防部領導層非常迫切地要趕上中國和俄羅斯在軍事人工智能應用方面的投資,鼓勵快速原型設計和實驗,以找到解決方案。人工智能在國防論壇上經常被認為是使以數據為中心的情報任務更快、加快戰術決策的答案,但如果所涉及的系統處于工程的初級階段,并且在國家安全領域仍未得到證實,這僅僅是猜想。
雖然AFWIC和空軍A2專注于人工智能傳感器和工具的研發投資,但很少討論使傳感網格安全和有效所需的人機合作動態。為了使傳感網格成為一個有效的系統,為空軍執行ISR和分析的方式帶來價值和進步,領導人應該在技術中倡導以人為本的設計,培訓和準備一線分析員與新系統有效的協作,并根據人工智能的優勢和劣勢調整組織做法。空軍領導人必須承認將更多的分析任務分配給人工智能工具所固有的對抗性威脅和道德問題,這些問題必須告知感知網格的藍圖。這并不是說正在進行的系統軟件開發應該停滯不前,而是說在情報和物資領導人之間必須同時進行對話,討論人類分析員的作用,因為這對減輕越來越多地依賴人工智能的弊端至關重要。空軍領導人還必須推行一項深思熟慮的計劃,將傳感網格組件整合到當前的傳感、識別、歸屬和共享(SIAS)活動中,使一線分析員為 "更高級別的推理和判斷"任務做好準備,同時承認機器應該增強人類任務,而不是完全取代人類。
接下來本文將提供與人工智能系統相關的脆弱性和道德問題的文獻回顧,以深入了解建設和應用傳感網格可能面臨的挑戰。它還將包括討論在完成和應用這個改變游戲規則的系統之前,情報和物資領導人應該考慮哪些因素。本文最后將就如何為空軍ISR戰斗空間準備傳感網格提出進一步的建議,為空軍人員在數字時代的行動提供必要的場景設置。
最近關于將人工智能應用于認知任務的相關弱點的研究大多強調了對抗性樣本的危險性,這些樣本修改了DNN的輸入,導致它們控制的系統以各種方式發生故障。對抗性輸入可以是物理的或非物理的,可以影響各種數據分類器分類媒體,包括圖像、音頻文件和文本。最常提到的物理欺騙樣本是一個實驗,工程師通過將停車標志調整成不同的角度來愚弄自動駕駛汽車上的光學傳感器,導致車輛錯過停車。物理欺騙在國防應用中不是一個新穎的計劃,但將邊緣處理和自動化納入像傳感網格這樣的系統可能排除了人類分析師第一手識別這些戰術。在非物理領域,訓練算法以類似于人腦的方式來識別模式是一項具有挑戰性的任務。計算機視覺(CV)算法對圖像的分類與人類分析人員非常不同,當只有幾個像素不合適時,很容易對物體進行錯誤分類。在不太直接的情況下,工程師無法解釋模型的錯誤,刺激了DARPA等組織對可解釋人工智能的倡議。 在最好的情況下,對抗性輸入被識別為異常值,并被具有強大訓練樣本的CV模型所忽略;在最壞的情況下,它們可能會破壞現實世界的輸入,并在人類分析師不知情的情況下從樣本中數字化地刪除物體或活動。如果對抗性輸入導致分析師錯過他們通常會在沒有協助的情況下捕捉到的重要活動,就會產生災難性的后果。
如果將AI、ML和DNN應用于情報數據集背后的目標是以更高的速度分析和傳播更多的信息,那么自然語言處理(NLP)也可能是感知網格架構的一部分。NLP模型今天被廣泛用于個人和商業用途,像Siri和亞馬遜Alexa這樣的工具使用語音提示來啟動其他應用程序。NLP模型也可用于大量文本或其他媒體的理解任務,使用衍生數據回答問題。這種技術在融合多種數據源的SIAS任務中可能非常有用,但也可能容易受到干擾。NLP中的對抗性輸入可以引入錯誤的句子或用文本文件中的反義詞替換關鍵詞,導致模型在沒有時間或能力進行人工審查的情況下錯誤描述數據集。
與任何分層模型的方案一樣,CV和NLP模型是否能像預測的那樣有效地協同工作還是個未知數,更不用說檢測像Deepfakes這樣在非保密領域進入DNN的偽造數據了。人類分析員離通常可以檢測錯誤信息的源數據流越遠,SIAS就越容易受到錯誤輸入的影響。盡管有這種擔憂,但空軍A2的指導意見表明,人們對分層模型利用非保密的公開信息(PAI)進行無縫傳感器提示寄予厚望,使ISR體系能夠更有效地找到相關目標。如果沒有一種強大的方法來檢測提示傳感器的PAI樣本中的偽造媒體,這個過程可能難以安全地實現。
技術的復雜性和自動化、人工智能系統對篡改的潛在脆弱性,引發了關于在軍事行動中應用這類技術是否符合道德的討論。雖然傳感網格的設計不是為了直接使用武器,但來自該系統的情報數據很可能為關于多個領域的關鍵決策提供信息。關于AI/ML的倫理學文獻通常對采用自主運作、人類干預窗口有限的系統持批評態度,其邏輯與反對地雷等傳統自動化武器的倫理學論點相似。雖然傳感網格及其前驅系統將具有比壓力板裝置高得多的認知行為屬性,但一些人認為,人類對黑盒系統的控制同樣很少,這些系統在向人類操作者提出選擇或結論之前,會執行層層的算法通信。
幸運的是,人工智能系統可能也能夠在人類容易出現道德失誤的情況下進行補償,因為機器不會經歷像恐懼或驚慌這樣的情緒,而這些情緒可能會引發危險的決定或違反LOAC。盡管利用人類與認知模型合作的這一潛在優勢是謹慎的,但美國防部的指導意見將速度作為人工智能最有用貢獻的具體價值,這引入了更多道德難題。對個人決策的測試表明,人類在復雜環境中的風險評估能力已經很差,而引入人工智能,使人類判斷的價值邊緣化,只會導致更快的、風險更高的結論。當人工智能帶來的錯誤評估或草率決定導致災難性錯誤時,問責也是美國防部領導人必須準備解決的混亂道德問題。
大多數文獻中隱含的減輕對手篡改和道德失誤威脅的解決方案,是在人類控制器和自主的人工智能系統之間進行最佳分工。不足為奇的是,對于這應該是什么樣子,以及它如何適用于像傳感網格這樣的系統,有許多觀點。一些人認為,在國際協議框架中沒有雇用自動武器系統的空間,并將其缺乏責任感與兒童兵相比較。其他人認為,如果像聯合目標定位這樣的程序以同樣的嚴格和參與規則進行,人工智能工具將不會導致不可接受的失控。雖然人們認為迫切需要通過購買現有的商業軟件向聯合情報界提供傳感網格的能力,但如果美國防部領導人希望減少前面討論的風險,工程師、需求所有者和分析師必須致力于仔細討論人工智能應用在ISR體系中最有幫助的地方以及它們有可能造成傷害的地方。
當涉及到投資建設由人工智能和認知建模應用驅動的未來ISR體系的項目時,美國防部和空軍除了需要快速投資并與大學和國家實驗室合作外,提供的指導有限。除了系統 "事故風險較低;對黑客和對手的欺騙行為更有彈性和表現出較少的意外行為"之外,對該部門在人工智能投資方面所期望的指導也是有限的。缺乏特殊性可能是人工智能在國防部戰略中首次出現的癥狀,但自滿和滿足于為投資而投資的情況并沒有遠遠超過這種情況。使用該技術的社區有責任決定與認知模型建立哪種類型的協作關系將提供最大的利益,但戰略指導似乎將責任交給了實驗室和行業合作伙伴,責成外部人士確定人工智能將解決的問題和解決方案。如果空軍ISR領導人在討論如何最好地將人類分析員與人工智能工具協作方面不發揮積極作用,他們將如何評估開發人員是否在提供資金的情況下取得足夠的進展?美國防部如何相信由非業務伙伴開發的解決方案能夠充分解決安全和道德問題?在什么時候,人工智能會從一個脆弱的研究項目過渡到改善SIAS的速度和準確性的可行解決方案?
討論人工智能及其在情報工作中的預期功能的一個更有成效的方法是,不要把它當作一個神奇的子彈,因為它的定義太不明確,根本無法研究。雖然將認知模型應用于情報過程可能是新的,但在戰爭中實現自動化的技術已經存在了幾十年。領導人必須考慮現代戰爭中已經存在的人機合作結構,以獲得設計和整合傳感網格的經驗。對于空軍ISR來說,分析當前和歷史上人類分析員、機載傳感器和戰區決策者的團隊合作是一項有益的工作。機載ISR傳感器的性能衡量通常通過傳感器輸出的響應性和準確性等因素來評估,但了解傳感器數據引發的分析和決策過程也很重要。例如,光譜成像傳感器可以被用作異常檢測器,突出不尋常的物體或活動,供人類分析員審查和報告。報告可以傳播給行動領導人,然后他根據情報做出決定,命令對異常活動的來源進行空襲。如果這一連串的事件在行動過程中習慣性地發生,那么傳感器和人類在循環中的互動可能會開始改變,而傳感器被潛意識地重新歸類為威脅探測器。在這種情況下,傳感器的性能規格并沒有改變,但隨著時間的推移,團隊關系中的人類開始對傳感器的輸出應用不同的價值,這可能是外部激勵因素的影響。雖然大多數分析家都知道,假設所有的異常情況都是威脅是不正確的,也是危險的,但人機協作關系演變為扭曲人類判斷的微妙方式是值得關注的。為了確保人機協作以道德方式進行,領導者必須反思協作結構如何在無意中抑制組織的價值觀。對新作戰技術的準確性和穩健性的要求是合理的,但了解技術煽動的組織行為和習慣對有效和道德地使用是最重要的。
除了在ISR體系內應用現有的人機合作經驗外,人工智能感應網格的設計也應以人為本。雖然在建立一個由人類分析員使用的系統時,這似乎是顯而易見的,但在復雜的系統工程項目中,人因工程和人機協作的考慮往往是一個低優先級的問題。這部分是由于傳統的組織障礙,將軟件工程師和人因專家放在不同的部門,尤其是后者專門研究認知心理學、神經科學和機器人學等學科,這些學科在一些項目中可能發揮有限的作用。未能在復雜系統中適當整合人的因素的后果是可怕的,這在波音公司的737 Max飛機上可以看到,該飛機在2018年和2019年發生了兩起致命事故。兩份事故報告都提到高度自動化的機動特性增強系統(MCAS)軟件是導致飛機失事的一個重要因素。 雖然MCAS被設計為使用傳感器輸入來協助飛行安全,但糟糕的人為因素考慮使得該系統在觸發自動程序后,飛行員很難覆蓋。雖然培訓用戶與新系統合作是入職的自然部分,但由于缺乏人為因素工程而導致的陡峭學習曲線是一種風險,可以通過對人類和機器行為進行建模來減輕,因為它們與手頭的任務相關。 在這種情況下,建模將幫助系統架構師確定在特定的團隊合作關系中造成誤解的溝通差距,也許可以提供關于機器如何在緊急情況發生前向人類操作員充分披露其局限性的洞察力。
當我們推測如何最好地促進人機互動,充分解決與人工智能和自動化相關的安全和倫理問題時,尋求視覺分析專家的咨詢可以提供有價值的設計見解。"視覺分析是一個科學領域,它試圖通過交互式可視化增加人機對話來提高自動化、高容量數據處理的透明度。 為分析師提供一個團隊結構,讓他們選擇如何可視化數據集,可以在自動化、機器輔助的數據精簡和人類判斷之間取得有利的平衡。在傳感網格的可視化分析的最佳應用中,分析師將以高度的信心理解數據集的重要性,這得益于調整基礎分析過程的能力。 理想情況下,可視化分析使用戶能夠通過向系統提出關于數據的假設和問題來利用他們的學科專長,使他們能夠通過對話得出結論。視覺分析中的一種被稱為語義互動的方法也可能是有幫助的,創建的模型可以將分析師與視覺數據的對話轉化為模型的調整,推斷和學習人類伙伴執行常規任務的原因,如突出、復制等。考慮到前面詳述的學科有多新,建立明確的測試和評估標準將是準備將這些和其他團隊技術納入SIAS任務的重要步驟。
美國空軍研究實驗室(AFRL)內的各局無疑面臨著許多挑戰,在這個概念正式確定之前,他們一直致力于建立傳感網格的組成部分。將人工智能整合到智能架構和軟件中的工程師和開發人員主要在羅馬實驗室AFRL信息局(AFRL/RI)工作,分為多個核心技術能力(CTC)團隊。特別是處理和開發(PEX)CTC將深入參與開發實現傳感網的DNN,其任務是"為空軍、國防部和情報界提供快速感知,以提高對形勢的認識和對抗的洞察力"。在PEX CTC中,項目按功能分為特征化、極端計算、理解和預測項目,涵蓋了從數據提取到高級感知的一系列步驟。人因工程方面的專業知識來自位于兩個州外的萊特-帕特森空軍基地的飛行員系統(RH),一個跨學科局。下一步,PEX CTC的項目可能會與AFRL的其他部門(如傳感器(RY)或航空航天系統(RQ))的開發項目相結合,將RI的SIAS部分與新的機載收集傳感器和車輛聯系起來。目前,RI的工程師使用來自實際聯合和國家情報來源的樣本數據流,逐步解決在大量非結構化數據中進行分類的計算挑戰。尋找解決方案以保持物理系統的尺寸、重量和功率要求可控,也是一個持續關注的問題,特別是在像Agile Condor這樣尋求在機載系統上提供高水平邊緣處理的項目。
正如前面的文獻調查所示,在DNN中建立穩健性和安全性,以防止ML中的對抗性干擾,是任何網絡開發者都關心的問題,RI內部的團隊也不例外。DNN已經在實驗室環境中以意想不到的方式學習或失敗,引入與人類感知相矛盾的對抗性輸入,可能會使開發有用工具的進展受挫。如果系統繼續隨著新數據集的發展而發展,那么可能很難確定技術成熟度的基準,在這種情況下,AFRL將維持責任轉移給空軍生命周期管理中心(AFLCMC)是合適的。雖然這一點與建立人工智能傳感網格組件的測試和評估標準的重要性有關,但它也應該引發關于復雜系統在開發和維持組織之間的移交是否適合這種技術的討論。理想的情況是,在DNN上擁有最多專業知識的團隊建立模型,并在其整個生命周期內維護它們。一個更有可能和更少破壞性的行動方案是建立具有可升級底盤和外形尺寸的傳感網組件,允許在可用時用替換設備進行簡化升級。考慮到國家實驗室、DARPA、麻省理工學院、卡內基梅隆大學和其他機構的大量人工智能研究投資,空軍領導人應該考慮如何在研究結果公布后,整合部門的投資回報,以改善感知網的設計和功能。
對于美國防部和空軍領導人來說,為未來傳感網的整合創造條件,還有其他獨特的倫理挑戰需要協調。如果 "傳感網格"及其組件能夠提供該概念所承諾的快速和強大的傳感功能,那么期望所有使用該系統的一線分析員都能理解其工作原理是否合理?在發生災難性錯誤的情況下,初級分析員是否需要了解該技術,以便對涉嫌疏忽的錯誤負責?"將邊緣處理納入傳感網設計也是一個有道德爭議的話題。雖然自動數據處理可以節省SIAS的時間,但分析師如何知道邊緣計算程序是否出現故障,或者他們是否被對手欺騙?從傳感器的邊緣去除人類的認知勞動可以更快地提供數據,但結果的準確性可能會有所不同。那些認識到這些問題,但卻因為要比中國或俄羅斯更快地投入技術的壓力而推遲解決的領導人,應該仔細思考這一立場背后的原因。雖然中國和俄羅斯的政府形式與美國根本不同,但事實是,這兩個國家都有等級制度,對國防事務中的錯誤和不精確性的責任也很重視。以類似于核計劃的方式,美國政府應該領導國際社會與競爭對手分享安全、設計良好的人工智能算法的傳統技術,確保沒有國家因為糟糕的態勢感知工具而引發誤解導致的沖突。最好的國際人工智能軍備控制可能來自于對人工智能研究結果的盡可能透明,并倡導負責任地使用該技術。
盡管完整形式的傳感網格還需要幾年時間才能實現,但最終系統的組成部分可能會在未來十年內逐步投入使用。在為下一代人機協作做好技術、人員和組織的準備方面,還有大量的工作要做。美國防部和空軍ISR領導人不應等到正式的系統首次亮相時才開始倡導在傳感網格技術中采用以人為本的設計,將人工智能的培訓目標納入對一線分析員的指導,并為組織接受該技術和與之合作做好準備。當涉及到設計和構建這個復雜的系統時,物資領導人在考慮采購商業的、現成的軟件以獲得更快的數據匯總解決方案時,應該謹慎行事。在沒有為傳感網格及其系統如何運作建立測試、評估和安全標準的情況下,過早地整合多用途商業軟件可能會給傳感網的人工智能互動帶來不確定性和風險。
此外,找到更快解決方案的愿望不應該先于對人的因素的考慮,因為這對安全和富有成效的人機合作至關重要。美國防部領導人還應該認真審視在整個傳感網中整合邊緣處理的計劃,將其作為一個安全和道德問題,并應仔細思考在哪些地方將人類感知與傳感器輸出分離才是真正合適的。雖然培訓人類分析員是ISR體系可以采取的最明顯的措施之一,以減輕來自外部干預和道德失誤的威脅,但物資領導人也必須考慮他們在采購精心設計的、以人為本的技術方面的作用,作為一個同樣重要的保障。
正如美國國防創新委員會的AI原則。雖然年輕的分析員在快速學習數字應用和程序方面表現出很強的能力,但初級人員也傾向于以令人驚訝的方式信任技術。因此,這些分析員必須繼續接受情報分析基礎知識的培訓,使他們善于識別傳感網格中的算法錯誤和遺漏。空軍領導人在2018年為促進AI和ML素養邁出了務實的第一步,啟動了一項試點計劃,以確定具有計算機語言經驗的空軍人員,希望在各種舉措中利用那些具有編碼專長的人。雖然這項措施將有助于區分具有較高數字熟練度的分析員,但教導勞動力如何運作計算機模型可能是一個更有用的技能組合,以準備在傳感網中進行人機合作。"為傳感網就業準備一線分析員的最壞方法是依靠及時培訓來彌補勞動力對技術知識的差距,從而為SIAS活動引入更大的錯誤率。
為了讓組織準備好接收和整合傳感網格,美國防部和空軍領導人必須首先解決人力需求。盡管像傳感網格這樣的系統被設計成模仿人類的認知勞動,但分析人員的勞動對于質量控制和任務管理仍然是至關重要的,更不用說作為識別DNN內潛在篡改或系統故障的保障。現在還不是為預期的技術進步做出任何急劇的力量結構調整的時候,而這種技術進步離投入使用還有好幾年的時間。此外,到目前為止,關于傳感網將如何整合來自聯合部隊的數據,或者是否允許作戰司令部像今天一樣擁有自己獨特的數據戰略和情報資源的討論很少。如果傳感網由于來自一個服務部門或地理作戰司令部的人為縫隙而無法為分析人員提供更多的情報來源,那么該系統是否真正做到了其設計者所宣傳的?這些問題必須在聯合參謀部層面加以解決和調和。最后,利用來自傳感網的情報的組織必須認識到,當他們與機器合作時,他們很容易受到偏見和捷徑的影響。了解外部壓力和交戰規則如何導致對機器輸出的質疑失敗,對于改善人機伙伴關系,真正使SIAS更加有效至關重要。
美國防部和空軍對人工智能在情報中的應用所進行的研究投資,對于確定部隊應如何準備與傳感網格進行人機合作是至關重要的。對領導人和一線分析人員進行培訓,讓他們了解在自動化、人工智能支持的SIAS中存在的道德難題和對手攻擊的可能性,這對保護組織不傳播錯誤信息至關重要。幸運的是,美國防部和空軍ISR領導人主張在傳感網格系統中采用以人為本的設計和培訓模式還為時不晚,因為AFRL的工程師們正在繼續努力為部隊提供一個安全、務實的解決方案。領導人必須認識到以速度換取精確性的組織傾向,并理解精心設計的系統分階段整合將是值得等待的。
人工智能領域的進展繼續擴大這組技術的潛在軍事應用范圍。本文探討了信任在人機聯合作戰中的關鍵作用,以及依靠人工智能來補充人類認知的潛在影響。如果依靠人工智能來準確處理傳感器數據,操作自主系統和平臺,或通過擬議的作戰概念(如以決策為中心的戰爭)提供有利的決策支持,設想機器智能的中央指揮和控制作用,那么信任機器智能將是未來作戰中的一個關鍵組成部分。鑒于這些技術和理論的發展,信任的概念對于機器智能在戰術和作戰層面的軍事行動中的使用變得高度相關,正確校準的信任水平是安全和有效行動的基礎。在簡要回顧了機器智能的最新進展和對信任概念的探索之后,本文概述了人工智能在戰場上的當前和潛在應用,以及由不充分或不合理的高信任度帶來的挑戰。
縱觀歷史,技術已經擴大了武裝沖突的領域,戰術交戰的節奏,戰場的地理范圍,以及指揮官與部隊溝通的手段。技術創新--包括軍事和民用--改變了軍隊的作戰方式以及國家計劃和進行這些沖突的方式。在21世紀,迄今為止,很少有進步能像統稱為人工智能(AI)的一組技術那樣獲得如此多的關注。人工智能正準備迎來一個新的時代,在這個時代,機器智能和自主性正在為軍事行動的規劃和執行產生明顯的新概念。算法戰爭可能會帶來一些獨特的東西:增強甚至取代人類決策過程的系統,其速度可能超過人類規劃者的認知能力。
新興技術的整合提出了任何數量的基本組織和倫理問題,值得關注。本文將采用定性的社會科學方法,重點討論人類-自治團隊(HAT)的一個重要方面:鼓勵對機器智能的適當信任程度。有大量的學術文獻關注自動化或機器人技術中的信任問題,但有關具體軍事應用的工作較少。當人工智能在聯合作戰中被實際部署時,在信任方面有哪些挑戰和機會?在簡要回顧人工智能和概述機器智能在戰場上的可能應用之后,本文在分析鼓勵適當信任水平的陷阱和潛在解決方案之前,探討了信任和信任校準的概念。
幾十年來,人類一直對賦予機器某種形式的人工智能的可能性著迷,Nils Nilsson將其定義為 "致力于使機器智能化的活動,而智能是使一個實體在其環境中適當運作并具有預見性的品質"。在數字時代的早期,出現了兩種廣泛的人工智能方法。自上而下的專家系統方法使用復雜的預編程規則和邏輯推理來分析一個特定的數據集。對于具有可預測規則的明確定義的環境--諸如分析實驗室結果或下棋等應用--專家系統或 "符號 "人工智能(基于符號邏輯)的性能主要取決于處理速度和算法的質量。另一大類使用自下而上的機器學習方法,模擬人類通過檢測數據中的模式進行學習的方式。神經網絡是一種以人腦為模型的機器學習形式,能夠通過使用多個(因此是 "深")人工神經元層來識別復雜的模式,是被稱為 "深度學習 "的技術的基礎。通過其在數據集中尋找關系的能力,這種技術也被稱為 "連接主義"。
自上而下、基于規則的符號系統和自下而上的機器學習連接主義技術之間的差異是很大的,特別是關于它們的潛在應用范圍和靈活性。深度學習方法的顯著特點是能夠將學習與它所訓練的數據集分開,因此可以應用于其他問題。基于規則的算法可以在狹義的任務中表現得非常好,而深度學習方法能夠迅速找到模式,并在 "蠻力 "專家系統計算方法無效的情況下有效地自學應用。最近的一些人工智能進展顯示了模仿創造力的能力,產生了有效的解決問題的方法,這些方法對人類來說可能是反直覺的。
然而,總的來說,人工智能仍然是狹窄的或 "脆弱的",即它們在特定的應用中功能良好,但在用于其他應用時仍然不靈活。與人類的認知相比,鑒于機器的計算速度遠遠超過人腦,機器智能在將邏輯規則應用于數據集時要優越得多,但在嘗試歸納推理時,它必須對數據集或環境進行一般性的觀察,這就顯得不足。大多數機器學習仍然需要大量的訓練數據集,盡管新的方法(包括生成對抗網絡(GAN)和 "小于一次 "或LO-shot學習)正在出現,需要非常小的數據集。圖像識別算法很容易被混淆,不能像人類那樣立即或直觀地理解情景背景。這種脆性也延伸到了其他問題,比如游戲。雖然人工智能在視頻游戲中經常表現出超人的能力,但他們往往不能將這種專業知識轉移到具有類似規則或玩法的新游戲中。
雖然人工智能技術繼續在變得更加適應方面取得重大進展,但任何接近人類的人工通用智能仍然難以實現。評估人工智能的近期前景因該技術的漸進式進展而變得更加復雜。圍繞著人工智能的炒作--在很大程度上被深度學習方法的成功所推動--既導致了對該技術未來的不切實際的期望,也導致了對其非常大的進展的正常化。正如一份報告所指出的,"人工智能將一項新技術帶入普通人的視野,人們對這項技術習以為常,它不再被認為是人工智能,而出現了更新的技術"。盡管象征性的人工智能和各種形式的機器學習構成了該領域最近的大部分進展,也許除了融合這兩種方法的嘗試之外,未來仍然不確定。一些人猜測,機器學習技術帶來的進展可能會趨于平穩,而另一些人則保持樂觀。相關的技術進步,如短期內的計算機芯片設計和長期內的量子計算,可能會影響進一步進展的速度。
美海軍部門從基于時間的維修到基于條件的維修+ (CBM+)的持續發展表明了提高艦隊武器系統操作可用性(Ao)的重要性。這一頂石采用了數字孿生(DT)與三維(3D)直接金屬激光熔化打印機相結合的數字效率概念,作為水面艦艇上的物理主機。DT為基于模型的系統工程與數字分析相結合提供了一種不可知的渠道,用于實時預測健康監測,同時改善預測維護。由于DT處于優先研發的前沿,3D打印機將增材制造的價值與動態船舶環境中的復雜系統相結合。為了證明DT具有提高物理主機Ao和最終目標任務的并行能力,開發了DT體系結構和高級模型。該模型聚焦于特定的打印機組件(去離子化[DI]水位、去離子化水電導率、空氣過濾器和激光電機驅動系統),以展示DT對CBM+的內在有效性。為了體現打印機適用性和性能的系統分析系統,應該評估更多的組件,并與船舶的環境數據相結合。此外,本文建議使用DTs作為連接更復雜武器系統的紐帶,同時使用更深層的實驗設計。
目前,美國海軍采用了持續或響應式維護戰略,以維持復雜防御系統的可用性(Ao)。特別是,這些維護策略是通過所謂的基于時間的維護(TBM)和糾正性維護來執行的。基于時間的維護需要定期檢查和/或維修部件,以確保故障不會發生在設計的使用壽命之前,這將影響Ao,因為系統停機。此外,糾正性維護是對組件或系統故障的一種反應,由于管理和后勤延遲時間,以及系統停機時間,會影響可用性。該項目的主要目標是為數字孿生(DT)開發一個體系結構和基本模型,在利用現有的預后健康管理技術的同時,探索維護策略從TBM到基于條件的維護+ (CBM+)的轉變。
為了探索在海軍水面艦艇上使用DT的概念,來自海軍研究生院(NPS)的一組學生檢查了當前可用或正在開發的DT能力,以及可能受益于DT使用的系統。該項目的范圍受到保密級別的限制,不超過受控非機密信息(CUI),這排除了對武器、戰斗和雷達系統的強調。此外,在CUI級以下的海軍系統的實際性能數據是不可用的,因此DT操作的概念是基于公開可用信息的研究發展起來的。為了解決分類約束和海軍非常感興趣的一個話題,增材制造(AM),該團隊探索了在水面艦艇上的三維(3D)打印機上應用DT系統。此外,為3D打印機創建一個DT體系結構,可以在海軍作戰獨特的動態環境中提供關于敏感、高精度系統的寶貴見解。該團隊通過創建架構和基本模型,確定了3D打印機的效率受益于DT。
一個操作視圖,或OV-1圖,這是一個高級的操作概念圖,被創建來說明這個頂點項目的操作概念(見圖1)。該圖描述了系統之間的系統交互,包括載人水面艦艇上的3D打印機,船上人員,混合云,衛星通信(SATCOM)和岸上支持,包括供應鏈系統。DT接收來自3D打印機的傳感器輸入,以及船上的環境數據,以預測必要的維護,以及打印部件的質量。包含DT的混合云存儲原始和處理過的數據,以維護歷史文物,并通過SATCOM或有線連接向船舶人員和岸上支持提供警報,當水面船只進入港口時。警報有助于向船舶人員提供有關即將進行的維修的必要信息,或提供岸上支持活動需要準備的部件,從而減少行政和后勤準備時間。
圖1:OV-1高級操作概念圖
該項目將焦點集中在一個特定的3D打印機模型上,以確定對DT架構至關重要的傳感器和數據的類型。該團隊選擇了一種打印機模型,這種模型目前在美國國防部的幾個實驗室使用,通用電氣的M2系列5。這臺打印機使用直接金屬激光熔化(DMLM)來制造打印。DMLM制造過程包括熔化金屬粉末顆粒,以創建超薄池,并在冷卻時固化(GE Additive 2021)。這種工藝生產的部件重量減輕,同時保持強度、耐久性和精度,以滿足海軍對部件的AM要求。DMLM 3D打印機的主要組成部分如圖2所示,包括激光器、焦透鏡、準直器、反射鏡、重拍刀片,以及供粉室、粉床搭建、用粉收集三個粉末室。準直器和焦距透鏡一起工作來聚焦激光。復蓋機刀片用于分散、磨平和壓平層間的金屬粉末。除了這些部件外,打印機在打印過程中還必須有優質的氣流,并保持惰性氣體環境;GE M2接口使用氮氣。該團隊專注于使用DT系統來利用3D打印機的嵌入式傳感器,以及放置在打印機和船艙中的傳感器,以確定影響系統可用性和打印部件質量的因素。
圖2:典型的激光電源床熔印機。
對于這個頂點項目,團隊決定最好遵循一個修改過的系統工程(SE)方法,如圖3所示,該方法包含一個計劃驅動的軟件過程,作為集成敏捷方法的基礎。這種混合過程允許團隊通過使用敏捷方法建立的迭代和協作環境,以及提供用于生成和細化需求的反饋,來增加整個設計和開發階段的靈活性和適應性。為了使這個頂點的重點與美國海軍(DON)建立的數字轉型戰略相一致,該團隊利用基于模型的系統工程(MBSE)方法來分解涉眾需求,制定概念設計,并在模擬操作環境中評估系統性能。MBSE的使用與DON數字轉換策略一致,通過使用標準語言創建相互關聯的模型,以提高系統的可追溯性和管理復雜性。
圖3:混合 SE 流程,計劃驅動的敏捷方法
MagicGrid方法是DT體系結構開發的主要過程。這種方法使用Cameo和系統建模語言(SysML)來定義問題和解決方案領域,概述了建模過程。這個頂點集中在問題領域,包括分解為兩個階段,黑盒透視圖和白盒透視圖,如圖4所示。每個階段都通過不同的透視圖來檢查問題,從而創建各種場景、表和圖來概述DT系統的結構、行為和功能。黑盒透視圖側重于通過創建用例和系統上下文圖對DT進行操作分析,而不需要指定DT系統的內部結構或行為。白盒透視圖通過為DT識別必要的行為和邏輯子系統來確定系統應該如何操作。此外,白盒透視圖建立活動、狀態機、塊定義和內部塊圖。
圖4:MagicGrid 問題域矩陣。
該團隊最初進行了一項利益相關者分析,其中考慮了將DT用于海軍系統的利益相關者。這些利益相關者的需求是基于主要贊助商(海軍水面作戰中心Hueneme港代碼00T)和NPS顧問的指導。利用涉眾的需求,進行了需求分析。基于DT系統的期望功能,分析確定了功能性/非功能性需求,以及外部接口。該團隊將DT系統的功能需求縮小為7個高級需求,如表1所示。
表1:高級功能需求表。
接下來,通過上下文關系圖、用例和場景的開發來說明系統的功能描述。系統上下文關系圖說明了與DT交互的用戶和外部系統。用例描述了DT實現涉眾目標所必需的功能。團隊開發DT體系結構的主要用例是執行DT函數。這個用例涵蓋了DT接收來自環境和3D打印機的傳感器數據,處理該數據,發送原始和處理過的數據進行存儲,并提供預測和警報。此外,還定義了一些有利于DON的有效性措施。這包括提高3D打印機的可維護性,提高打印部件的后勤保障性,以及提高打印部件的成功概率。
在確定系統完成任務所需的資源后,創建了DT系統功能的行為和結構圖。使用SysML圖,系統的動態行為被捕獲為功能分析和分配的一部分。功能分析包括一個自頂向下的過程,將系統級需求轉換為定義DT體系結構,以確保所有所需的系統功能都得到考慮。首先,在描述控制流和數據流程的活動圖中詳細說明了這一點。接下來,使用狀態機圖定義DT系統的各種系統狀態、轉換和事件。系統動作和狀態的確定有助于通過識別對系統執行必要功能至關重要的通用組件來識別邏輯子系統通信。我們創建了一個框圖來建立DT系統的輸入和輸出,其中包括傳感器數據、控制信號和能源。
隨著DT體系結構的開發,該團隊進行了研究,以確定哪些組件將受益于DT系統的應用。通過與利益相關方的互動和對3D打印機維護手冊的審查,確定分析的重點為以下部件/因素:去離子化(DI)水位、去離子水電導率、空氣過濾器和激光電機驅動系統。然后,該團隊創建了一個Excel模型作為基礎,以演示模型概念的證明。模型設計方法是基于所選部件的退化情況,因為3D打印機用于打印部件,比較了定期維護(TBM)和CBM的使用情況。基于Excel模型的結果表明,將DT系統應用于3D打印機,TBM的Ao值從90.56%提高到CBM的96.15%。這種可用性的增加是由于兩年期間預防性維護的數量減少。
在Excel模型的基礎上創建了一個ExtendSim模型,允許對Ao進行檢查,同時允許修改參數,如打印間隔時間和平均修復時間。對比TBM和CBM的結果表明,對于TBM, Ao在每次打印之間的時間間隔較短,這是因為3D打印機的部件更頻繁地出現故障,但仍需要進行定期維護。對于TBM來說,隨著每次打印間隔時間的增加,部件故障的影響似乎逐漸減弱,因為計劃維護的一致性,而每個部件的故障減少。相比之下,在每次打印之間較短的時間內,CBM的Ao大約高出5%,這是因為只有在部件出現故障時才進行維護。此外,隨著每次打印間隔時間的增加,由于無需進行預防性維護,使用CBM的Ao以穩定的速度增加。
在 3D 打印機上實施 DT 系統的效果表明,過渡到 CBM 方法通過減少系統停機時間改進了海軍目前使用的維護方法。從使用 TBM 到使用 DT 系統的 CBM 過渡,通過增強對系統條件和性能的了解,從根本上改變了維護理念從主動到被動。進行成本分析以補充模型并確定通過實施 DT 系統可以實現的成本節約。以維護手冊為指導,確定在兩年的時間里,僅更換空氣過濾器所節省的成本大約減少了 78 小時的人工和 4500 美元的維護成本。
建模和仿真工作與成本分析相結合,確定在3D打印機上實現DT系統,證明了系統可用性的改善,同時降低了與維護相關的成本。本文的研究范圍主要集中在如何利用CBM+改善Ao;因此,小組沒有探討各種主題和傳感器,而是將其確定為DT發展將受益的未來工作領域。進一步的分析證明,需要連接更多的內部和外部傳感器的數據收集計劃。為了充分了解環境因素和3D打印機如何影響性能指標,未來的工作應該包括方差分析(ANOVA)。將數據分析和歷史數據結合到實驗方法的標準設計中,提出了響應變量和關鍵因素,能夠為水面艦艇上的3D打印機提供方差分析。此外,DMLM過程將受益于額外的傳感器和環境數據輸入到DT。DT受益于數據收集的歷史部分,利用歷史性能、實時評估和預測性維護。當這些額外的傳感器與機器學習相結合時,將有助于更好地預測所需的維護、單個打印質量,并幫助任務規劃/性能。未來研究的其他主題包括混合云集成到艦隊和確保數據傳輸安全。
當前的海軍作戰要求水手們根據動態作戰環境中的不確定態勢信息做出時間緊迫和高風險的決策。最近的悲慘事件導致了不必要的傷亡,海軍行動中涉及決策復雜性,并特別突出了 OODA 循環(觀察、定向、決策和評估)中的挑戰。涉及使用武器系統的殺傷鏈決策是 OODA 循環中一個特別緊張的類別——具有難以確定的意外威脅、縮短的決策反應時間和致命的后果。有效的殺傷鏈需要正確設置和使用船上傳感器;未知接觸者的識別和分類;基于運動學和智能的接觸意圖分析;環境意識;以及決策分析和資源選擇。
該項目探索了使用自動化和人工智能 (AI) 來改進海軍殺傷鏈決策。該團隊研究了海軍殺傷鏈功能,并為每個功能制定了特定的評估標準,以確定特定 AI 方法的功效。該團隊確定并研究了 AI 方法,并應用評估標準將特定的 AI 方法映射到特定的殺傷鏈功能。
圖:利用人工智能改進海軍殺傷鏈的作戰概念
當前的海軍行動通常是快節奏的、關鍵的,并且需要做出高風險的決策,這些決策有時基于非常動態的戰區中的不確定信息。許多例子強調了提高決策效率的必要性以及減輕觀察團隊負擔的必要性。缺乏上述情況的例子包括 2017 年的菲茨杰拉德號航空母艦 (DDG 62) 和 MV ACX Crystal相撞,以及 2009 年皇家港口號航空母艦 (CG 73) 的擱淺。一些根本原因是相關人員缺乏經驗、疲勞和壓力.
上述事故展示了軍事行動的難度,并展示了 OODA(觀察、定向、決策和評估)循環中的挑戰(Jones 等人,2020 年)。人為錯誤、人的認知限制和海軍作戰固有的決策復雜性導致了 OODA 循環中的挑戰,更具體地說,是殺傷鏈過程中的挑戰。
現代戰斗空間由來自常規陸地、空中和海洋等多個領域以及來自太空和網絡空間的大量數據組成。決策者需要考慮許多因素,包括交戰規則 (ROE)、要使用的武器、傳感器和意圖評估。發現、修復、跟蹤、瞄準、參與、評估 (F2T2EA) 殺傷鏈模型緩解了該過程的一些困難(參謀長聯席會議,2013 年)。人工智能 (AI) 和機器學習 (ML) 可以通過分析備選方案和使用評估標準將 AI 方法映射到殺傷鏈功能,從而幫助海軍在戰術領域做出殺傷鏈決策。這是在本報告的五個章節中分三個階段完成的。
本報告利用了數百個資源,主要利用了美海軍研究生院 AI-OODA 團隊在其 Capstone 報告(2020 年)中進行的先前研究,“利用人工智能 (AI) 進行空中和導彈防御 (AMD):以結果為導向的決策援助。”他們將他們的工作與 John Boyd 的觀察、定向、決定和行動決策框架相結合。作為他們分析的初步步驟,AI-OODA 團隊將特定的 OODA 功能明確且緊密地耦合到特定的 F2T2EA 功能。然而,本報告斷言 OODA 循環是一個決策循環,它嵌套在殺傷鏈的每個功能中,而不是在高壓力或低壓力情況下專門映射到一個或多個殺傷鏈功能。團隊基于 F2T2EA 模型開發了一組 28 個殺傷鏈功能。
在制定將 AI 方法映射到殺傷鏈的評估標準時,很難確定一個好的決策,這對于決策評估至關重要。在評估決策時,必須考慮選擇行動時的知識意識狀態以及解釋能力。使用了幾種對決策進行評分的方法,從定義和優先考慮感興趣的“武器-目標”到制定評分標準和報告評估結果,以供其他人審查。
目前,人工智能的狀態非常廣泛,必須對其進行解釋,以了解人工智能對殺傷鏈中功能的適用性。本報告討論了所選 AI 方法的高級概述,并突出顯示了部分最流行的方法。首先,沒有普遍接受的定義,這很難定義人工智能。其次,人工智能與機器學習 (ML) 存在差異。 ML 允許在準確性和可預測性方面取得增量收益; AI 接收數據并通過算法提供輸出。人工智能的歷史從 1940 年代艾倫·圖靈 (Alan Turing) 的加密機器到 1980 年代美國政府在戰略計算計劃中的使用,再到今天在聯合人工智能中心 (JAIC) 中的人工智能戰略五個支柱,從領先的人工智能人力到安全和倫理。美國國防高級研究計劃局 (DARPA) 在 3-wave 框架中描述了 AI 的發展方向,分為手工知識 (Wave 1)、統計學習 (Wave 2) 和上下文推理 (Wave 3) 在 1-4 個維度內情報參數的屬性(Launchbury 2017)。這些屬性包括感知、推理、抽象和學習。
人工智能涉及可以根據輸入值預測結果的監督學習。有幾種使用監督學習進行學習的技術。包括線性回歸和分類。此外,許多數值方法可以分析發生的學習有效性,例如 F-score 和 Accuracy score。人工智能還可以使用無監督學習,它使用算法來發現未標記數據集中的數據模式或分組。在分析未知(y)響應以揭示標記(x)數據中的模式時,無監督學習是有益的。數據分析界的一個著名例子是鳶尾花(Iris flower)數據集。僅使用標記的數據,可以看到響應聚集在一起,并且可以確定響應中存在模式(花的種類)。無監督學習的方法包括聚類和 K-means,但還有其他方法。強化學習有一個代理能夠接收來自環境的反饋并理解基本目標。此外,正如 Sutton 和 Barto 在(2018 年)中解釋的那樣,探索和開發之間存在權衡。最后,生成對抗網絡 (GAN) 利用無監督學習和強化學習,通常用于神經網絡 (NN)。神經網絡是機器學習算法的極好來源,它有大量的輸入,而這些輸入又會產生大量的計算。 NN 非常適合用于模擬、自然語言處理、博弈論和計算機視覺。 NN 只是一種將輸入映射到輸出的簡單方法,可以在此過程中進行學習。然而,NN 可以被描述為一種“黑盒”學習技術,因為很難解釋正在發生的事情,并且通常需要一種可解釋的 AI (XAI) 技術。 XAI 的三個主要組成部分是可解釋模型、解釋界面和解釋心理學(Gunning 2019)。數據安全必須與“大數據”一起考慮,“大數據”是指非結構化、復雜和大型數據集,具有五個 v 特征:數量、速度(數據量隨時間變化的增加)、多樣性、真實性和價值。其他理論包括決策理論、模糊邏輯和效用函數
使用上述文獻綜述,該團隊開發了一個框架,用于將 AI/ML 映射到 AMD(空中導彈防御)殺傷鏈。采取了四個步驟:1) 建立模型框架,2) 確定決策點,3) 應用 AI/ML 方法,以及 4) 分析結果。該團隊確定了以下用于殺傷鏈映射分析的 AI/ML 方法:線性回歸、邏輯回歸、聚類、關聯、隨機森林、神經網絡、GAN 和樸素貝葉斯。評估標準被稱為“決策點”并提出四個問題:(1)所需輸出的類型是什么,(2)所需的學習類型是什么,(3)可解釋性(XAI)是什么水平需要,以及 (4) 需要多少個預測變量?該團隊通過基于一組決策點和評分過程評估每個殺傷鏈功能的每種方法來執行映射。對于被認為非常適合某項任務的方法,得分為+1,如果該方法適合但次優,則為0,如果該方法不適合該任務,則為–1。
該團隊進行了映射分析,根據與殺傷鏈的 28 個功能中的每一個功能相關的評估標準(決策點)分析 AI 方法。該團隊使用評分方法來確定每個殺傷鏈功能的最佳整體 AI/ML 分數。團隊的映射顯示為 0。
該團隊的 AI/ML 映射到殺傷鏈功能為國防部和海軍提供了兩個關鍵好處。首先,映射本身是設計和開發支持殺傷鏈決策的人工智能戰術決策輔助工具的重要起點和基礎。其次,該團隊將 AI 方法映射到殺傷鏈的分析過程可用于了解 AI 在許多其他軍事和非軍事領域的應用。識別適當的人工智能方法、制定評估標準和評分過程以及制定過程功能以進行分析映射的過程對于支持許多不同人工智能系統的工程具有深遠的潛力。
表1:AI/ML方法到殺傷鏈的映射