當前的海軍作戰要求水手們根據動態作戰環境中的不確定態勢信息做出時間緊迫和高風險的決策。最近的悲慘事件導致了不必要的傷亡,海軍行動中涉及決策復雜性,并特別突出了 OODA 循環(觀察、定向、決策和評估)中的挑戰。涉及使用武器系統的殺傷鏈決策是 OODA 循環中一個特別緊張的類別——具有難以確定的意外威脅、縮短的決策反應時間和致命的后果。有效的殺傷鏈需要正確設置和使用船上傳感器;未知接觸者的識別和分類;基于運動學和智能的接觸意圖分析;環境意識;以及決策分析和資源選擇。
該項目探索了使用自動化和人工智能 (AI) 來改進海軍殺傷鏈決策。該團隊研究了海軍殺傷鏈功能,并為每個功能制定了特定的評估標準,以確定特定 AI 方法的功效。該團隊確定并研究了 AI 方法,并應用評估標準將特定的 AI 方法映射到特定的殺傷鏈功能。
圖:利用人工智能改進海軍殺傷鏈的作戰概念
當前的海軍行動通常是快節奏的、關鍵的,并且需要做出高風險的決策,這些決策有時基于非常動態的戰區中的不確定信息。許多例子強調了提高決策效率的必要性以及減輕觀察團隊負擔的必要性。缺乏上述情況的例子包括 2017 年的菲茨杰拉德號航空母艦 (DDG 62) 和 MV ACX Crystal相撞,以及 2009 年皇家港口號航空母艦 (CG 73) 的擱淺。一些根本原因是相關人員缺乏經驗、疲勞和壓力.
上述事故展示了軍事行動的難度,并展示了 OODA(觀察、定向、決策和評估)循環中的挑戰(Jones 等人,2020 年)。人為錯誤、人的認知限制和海軍作戰固有的決策復雜性導致了 OODA 循環中的挑戰,更具體地說,是殺傷鏈過程中的挑戰。
現代戰斗空間由來自常規陸地、空中和海洋等多個領域以及來自太空和網絡空間的大量數據組成。決策者需要考慮許多因素,包括交戰規則 (ROE)、要使用的武器、傳感器和意圖評估。發現、修復、跟蹤、瞄準、參與、評估 (F2T2EA) 殺傷鏈模型緩解了該過程的一些困難(參謀長聯席會議,2013 年)。人工智能 (AI) 和機器學習 (ML) 可以通過分析備選方案和使用評估標準將 AI 方法映射到殺傷鏈功能,從而幫助海軍在戰術領域做出殺傷鏈決策。這是在本報告的五個章節中分三個階段完成的。
本報告利用了數百個資源,主要利用了美海軍研究生院 AI-OODA 團隊在其 Capstone 報告(2020 年)中進行的先前研究,“利用人工智能 (AI) 進行空中和導彈防御 (AMD):以結果為導向的決策援助。”他們將他們的工作與 John Boyd 的觀察、定向、決定和行動決策框架相結合。作為他們分析的初步步驟,AI-OODA 團隊將特定的 OODA 功能明確且緊密地耦合到特定的 F2T2EA 功能。然而,本報告斷言 OODA 循環是一個決策循環,它嵌套在殺傷鏈的每個功能中,而不是在高壓力或低壓力情況下專門映射到一個或多個殺傷鏈功能。團隊基于 F2T2EA 模型開發了一組 28 個殺傷鏈功能。
在制定將 AI 方法映射到殺傷鏈的評估標準時,很難確定一個好的決策,這對于決策評估至關重要。在評估決策時,必須考慮選擇行動時的知識意識狀態以及解釋能力。使用了幾種對決策進行評分的方法,從定義和優先考慮感興趣的“武器-目標”到制定評分標準和報告評估結果,以供其他人審查。
目前,人工智能的狀態非常廣泛,必須對其進行解釋,以了解人工智能對殺傷鏈中功能的適用性。本報告討論了所選 AI 方法的高級概述,并突出顯示了部分最流行的方法。首先,沒有普遍接受的定義,這很難定義人工智能。其次,人工智能與機器學習 (ML) 存在差異。 ML 允許在準確性和可預測性方面取得增量收益; AI 接收數據并通過算法提供輸出。人工智能的歷史從 1940 年代艾倫·圖靈 (Alan Turing) 的加密機器到 1980 年代美國政府在戰略計算計劃中的使用,再到今天在聯合人工智能中心 (JAIC) 中的人工智能戰略五個支柱,從領先的人工智能人力到安全和倫理。美國國防高級研究計劃局 (DARPA) 在 3-wave 框架中描述了 AI 的發展方向,分為手工知識 (Wave 1)、統計學習 (Wave 2) 和上下文推理 (Wave 3) 在 1-4 個維度內情報參數的屬性(Launchbury 2017)。這些屬性包括感知、推理、抽象和學習。
人工智能涉及可以根據輸入值預測結果的監督學習。有幾種使用監督學習進行學習的技術。包括線性回歸和分類。此外,許多數值方法可以分析發生的學習有效性,例如 F-score 和 Accuracy score。人工智能還可以使用無監督學習,它使用算法來發現未標記數據集中的數據模式或分組。在分析未知(y)響應以揭示標記(x)數據中的模式時,無監督學習是有益的。數據分析界的一個著名例子是鳶尾花(Iris flower)數據集。僅使用標記的數據,可以看到響應聚集在一起,并且可以確定響應中存在模式(花的種類)。無監督學習的方法包括聚類和 K-means,但還有其他方法。強化學習有一個代理能夠接收來自環境的反饋并理解基本目標。此外,正如 Sutton 和 Barto 在(2018 年)中解釋的那樣,探索和開發之間存在權衡。最后,生成對抗網絡 (GAN) 利用無監督學習和強化學習,通常用于神經網絡 (NN)。神經網絡是機器學習算法的極好來源,它有大量的輸入,而這些輸入又會產生大量的計算。 NN 非常適合用于模擬、自然語言處理、博弈論和計算機視覺。 NN 只是一種將輸入映射到輸出的簡單方法,可以在此過程中進行學習。然而,NN 可以被描述為一種“黑盒”學習技術,因為很難解釋正在發生的事情,并且通常需要一種可解釋的 AI (XAI) 技術。 XAI 的三個主要組成部分是可解釋模型、解釋界面和解釋心理學(Gunning 2019)。數據安全必須與“大數據”一起考慮,“大數據”是指非結構化、復雜和大型數據集,具有五個 v 特征:數量、速度(數據量隨時間變化的增加)、多樣性、真實性和價值。其他理論包括決策理論、模糊邏輯和效用函數
使用上述文獻綜述,該團隊開發了一個框架,用于將 AI/ML 映射到 AMD(空中導彈防御)殺傷鏈。采取了四個步驟:1) 建立模型框架,2) 確定決策點,3) 應用 AI/ML 方法,以及 4) 分析結果。該團隊確定了以下用于殺傷鏈映射分析的 AI/ML 方法:線性回歸、邏輯回歸、聚類、關聯、隨機森林、神經網絡、GAN 和樸素貝葉斯。評估標準被稱為“決策點”并提出四個問題:(1)所需輸出的類型是什么,(2)所需的學習類型是什么,(3)可解釋性(XAI)是什么水平需要,以及 (4) 需要多少個預測變量?該團隊通過基于一組決策點和評分過程評估每個殺傷鏈功能的每種方法來執行映射。對于被認為非常適合某項任務的方法,得分為+1,如果該方法適合但次優,則為0,如果該方法不適合該任務,則為–1。
該團隊進行了映射分析,根據與殺傷鏈的 28 個功能中的每一個功能相關的評估標準(決策點)分析 AI 方法。該團隊使用評分方法來確定每個殺傷鏈功能的最佳整體 AI/ML 分數。團隊的映射顯示為 0。
該團隊的 AI/ML 映射到殺傷鏈功能為國防部和海軍提供了兩個關鍵好處。首先,映射本身是設計和開發支持殺傷鏈決策的人工智能戰術決策輔助工具的重要起點和基礎。其次,該團隊將 AI 方法映射到殺傷鏈的分析過程可用于了解 AI 在許多其他軍事和非軍事領域的應用。識別適當的人工智能方法、制定評估標準和評分過程以及制定過程功能以進行分析映射的過程對于支持許多不同人工智能系統的工程具有深遠的潛力。
表1:AI/ML方法到殺傷鏈的映射
如今,隨著技術飛速發展和威脅環境變得更加復雜,在信息爆炸的局面下,作戰人員面臨著具有挑戰性的決策空間。人工智能(AI)和機器學習(ML)可以減輕作戰人員負荷。人工智能系統具有深遠的好處——提高態勢感知能力,檢測威脅,理解對手的能力和意圖;確定和評估可能的戰術行動方針;并提供方法來預測行動決策的結果和影響。人工智能系統是理解和解決高度復雜的戰術情況的關鍵。
人工智能系統為作戰人員提供了優勢,但前提是這些系統被正確設計和實施,并且以減輕作戰人員的認知負荷的方式。為國防應用實施人工智能系統帶來了獨特的挑戰。本文確定了四個獨特的挑戰,并描述了它們如何影響戰術作戰人員、工程設計界和國防。本文通過國防采辦和系統工程計劃,為解決這些獨特的挑戰提供了解決方案。
Bonnie Johnson——在海軍工程研發方面擁有超過 25 年的領導和系統工程經驗。她曾是 SAIC 和諾斯羅普·格魯曼公司的高級系統工程師,研究用于海戰系統和導彈防御能力的自動決策輔助。她于 2011 年加入美國海軍研究生院 (NPS) 系統工程系。她擁有 NPS 系統工程博士學位、約翰霍普金斯大學系統工程碩士學位和弗吉尼亞理工大學物理學學士學位。
人工智能是一個包含許多不同方法的領域,其目標是創造具有智能的機器(Mitchell,2019)。圖 1 顯示了一個簡單的維恩圖,其中機器學習 (ML) 作為 AI 的子集,而 AI 作為更廣泛的自動化類別的子集。自動化系統以最少的人工輸入運行,并且經常根據命令和規則執行重復性任務。人工智能系統執行模仿人類智能的功能。他們將從過去的經驗中學到的知識與收到的新信息結合起來,以做出決策并得出結論。
圖 1. 自動化、人工智能和機器學習的維恩圖
如圖 2 所示,有兩種主要類型的 AI 系統。第一種類型是明確編程的,也稱為手工知識系統。 Allen (2020) 將手工知識系統描述為“使用傳統的、基于規則的軟件,將人類專家的主題知識編碼為一長串編程的‘如果給定 x 輸入,則提供 y 輸出’規則的人工智能”(第3頁)。這些系統使用傳統的或普通的編程語言。第二種類型是從大量數據集訓練而來的機器學習系統。 ML 系統從訓練過的數據集中“學習”,然后在操作上使用“訓練過的”系統在給定新的操作數據的情況下產生預測結果。
圖 2. 兩種類型的人工智能:顯式編程和學習系統
自動化、人工智能和機器學習系統,包括手工知識系統和學習系統,為美國國防部 (DoD) 提供了巨大的潛力,在大多數任務領域具有多種應用。這些智能系統可以擴展國防部理解復雜和不確定情況、制定和權衡選項、預測行動成功和評估后果的能力。它們提供了在戰略、規劃和戰術領域支持國防部的潛力。人工智能系統可以減輕作戰人員的負擔,但前提是這些系統的設計和實施正確,并且以減輕作戰人員認知負擔的方式。這為國防應用實施人工智能系統提出了獨特的挑戰。本文確定了四個獨特的挑戰,并描述了它們如何影響戰術作戰人員、工程設計界和國防。
第一個為國防應用實施人工智能系統的獨特挑戰是戰術戰爭呈現高度復雜的情況。戰術復雜性可能涉及信息超載、需要處理的多個并發任務、具有可怕后果的時間關鍵決策、態勢感知的未知/不準確/不完整,以及因各種分布式戰爭能力所需的互操作性而產生的工程挑戰。將人工智能系統添加到這個已經很復雜的環境中是一項必要但極具挑戰性的工作。
第二個獨特的挑戰是人工智能系統需要大量數據來訓練。所開發的人工智能系統的質量很大程度上取決于訓練數據集的質量和數量。軍事領域的數據尤其難以獲得。軍事數據可能涉及分類問題、網絡漏洞、數據驗證挑戰,并且根據艦隊演習和兵棋推演的需要,收集起來可能非常昂貴且耗時。
第三個獨特的挑戰是人工智能系統為系統工程提出了一個新的前沿。在傳統系統中,行為是固定的,因此是可預測的:給定輸入和條件,系統將產生可預測的輸出。一些人工智能解決方案可能涉及本身就很復雜的系統——適應和學習——因此會產生無法預料的輸出和行為。事實上,一些人工智能系統的目的就是為了做到這一點——與人類決策者合作,承擔一些認知負荷并產生智能建議。需要系統工程方法來設計智能系統,并確保它們對人類操作員來說是可解釋的、可信賴的和安全的。
第四個獨特的挑戰是,對于國防應用,總是需要考慮潛在的對手。在人工智能系統方面,采購界必須注意同行競爭對手國家,他們在人工智能進步方面取得了自己的進步。美國國防系統也必須在這場人工智能競賽中取得進步。網絡攻擊在防御系統中總是有可能發生的。隨著防御能力增加對自動化和人工智能系統的依賴,這可能會造成更多的網絡漏洞。最后,技術正在迅速發展,對抗性威脅空間正在發生變化。國防采購和系統工程界必須確保人工智能系統不斷發展和適應,以應對威脅環境的變化,并以可信賴和安全的方式做到這一點。
第一個獨特的挑戰是許多防御領域呈現出復雜的決策空間。因此,設計和實施適當的人工智能系統來解決這種復雜性將是極具挑戰性的。圖 3 突出顯示了導致戰術領域決策復雜性的許多因素。例如,海軍打擊部隊的行動可以迅速從和平狀態轉變為一種巨大的危險——需要對威脅保持警惕并采取適當的反應行動——所有這些都在高度壓縮的決策時間線上。戰術威脅可能來自水下、水面、空中、陸地、太空,甚至是虛擬的,因此需要處理多個時間緊迫的任務。在船舶、潛艇、飛機、陸地和太空中擁有海軍和國防資產;戰術決策空間必須解決這些分散和多樣化資源的最佳協作使用問題。制定有效的戰術行動方案也必須發生在高度動態的作戰環境中,只有部分和不確定的態勢知識。決策空間還必須考慮指揮權、交戰規則和戰術條令施加的限制。人類作為戰術決策者的角色增加了決策空間的復雜性——面臨信息過載、操作員錯誤、人工智能信任以及人工智能模糊性和可解釋性問題等挑戰。最后,戰術決策及其可能后果的風險可能非常高。
圖 3. 導致戰術決策空間復雜性的因素
解決高度復雜的決策空間是美國國防部面臨的挑戰。人工智能提供了解決這種復雜性的潛在解決方案——通過處理大量數據、處理不確定性、理解復雜情況、開發和評估決策替代方案以及了解風險水平和決策后果。人工智能解決方案可以應用于國防部的戰略、規劃和戰術層面。海軍研究生院 (NPS) 開發了一種工程框架和理論,用于解決高度復雜的問題空間,這些問題空間需要使用智能和分布式 AI 系統來獲得態勢感知并做出適應動態情況的協作行動決策(Johnson, 2019)。模擬了一個復雜的戰術場景,以演示使用 AI 來驗證該方法(Johnson,2020a)。 NPS 已經開發了一種預測分析能力的概念設計,該設計將被實施為一個自動化的實時戰爭游戲系統,該系統探索不同的可能戰術行動方案及其預測效果和紅軍反應(Johnson,2020b)。 NPS 研究已經確定了在戰術行動中描述復雜性水平的必要性,并實施自適應人機協作安排以做出戰術決策,其中自動化水平根據情境復雜性水平進行調整。正在進行的 NPS 研究正在研究這些概念工程方法在各種防御用例應用中的應用,包括防空和導彈防御、超視距打擊、船舶自衛、無人機操作和激光武器系統。
復雜的決策空間為 AI 系統嘗試和解決創造了具有挑戰性的問題。表 1 根據決策空間的復雜性比較了不同的 AI 應用領域。該表包含 10 個表征決策空間復雜性的因素:認知不確定性(對情境知識的不確定性數量)、情境動態、決策時間線(做出決策的時間量)、決策的復雜性決策過程中的人機交互、資源復雜性(數量、類型、它們之間的距離以及它們的動態程度)、是否涉及多個任務、對手(競爭對手、黑客或打算摧毀的徹底敵人)的存在,允許誤差的幅度(多少決策錯誤是可以接受的),以及決策后果的嚴重性。
表 1. 不同 AI 應用的決策復雜度比較
人工智能應用程序涉及的決策空間用于廣告(根據特定用戶的購買習慣或互聯網搜索確定將哪些廣告流式傳輸)、貸款批準(根據貸款金額和信用評分確定貸款資格)和醫療(根據診斷確定關于患者癥狀)相對簡單。存在大量訓練數據,決策過程中的計算和人為交互簡單,情況相對穩定。不良廣告的后果是微乎其微的。可以審計不良貸款批準決定。糟糕的醫學診斷可能會產生更嚴重的后果,但通常有足夠的時間在治療前尋求更多的評估和意見。為自動駕駛汽車確定最佳運輸路線和工程 AI 系統是更復雜的工作。這些應用程序是動態變化的,需要更短的時間來做出決策。運輸路線在可能路線的數量上會很復雜——這可能會導致許多可能的選擇。但是,存在運輸錯誤的空間,并且后果通常不會太嚴重。對于自動駕駛汽車來說,決策錯誤的余地非常小。此應用程序中的錯誤決定可能導致嚴重事故。
然而,軍事戰術領域在決策空間的所有領域都呈現出極端的復雜性:不確定性和有限的知識/意識、高度動態的情況、非常有限的時間線、復雜的人機交互、大量和類型的資源、多個任務、昂貴和困難- 獲取訓練數據集、極小的允許誤差范圍以及行動(或不行動)的生死攸關的后果。
第二個獨特的挑戰是 AI/ML 系統需要大量相關且高質量的數據用于訓練和開發,而這些數據在軍事領域可能很難獲得。明確編程的手工知識系統在開發過程中需要數據進行評估和驗證。 ML 系統在開發過程中對數據的依賴性更大。如圖 4 所示,ML 系統從代表操作條件和事件的數據集中“學習”。 ML系統學習的過程也稱為被訓練,開發階段使用的數據稱為訓練數據集。有幾種類型的 ML 學習或訓練——它們是有監督的、無監督的和強化的。所有三種類型的 ML 學習都需要訓練數據集。 ML 系統在部署后或運營階段繼續需要數據。圖 4 顯示,在運營期間,ML 系統或“模型”接收運營實時數據,并通過使用其“訓練過的”算法處理運營數據來確定預測或決策結果。因此,在整個系統工程和采集生命周期中,ML 系統與數據密切相關。 ML 系統從訓練數據集的學習過程中“出現”。機器學習系統是數據質量、充分性和代表性的產物。他們完全依賴于他們的訓練數據集。
圖 4. 開發和實施機器學習系統
隨著許多領域(戰爭、供應鏈、安全、物流等)的更多 AI 開發人員正在了解 AI 解決方案的潛在優勢并開始著手 AI 系統開發,DoD 開始認識到對這些數據集的需求。在某些情況下,數據存在并準備好支持 AI 系統開發。在其他情況下,數據存在但不保存和存儲。最后,在其他情況下,數據不存在,需要模擬或在艦隊演習或戰爭游戲中收集。圖 5 說明了收集、獲取和在某些情況下開發用于開發和訓練 AI 和 ML 系統的數據時需要考慮的過程。
圖 5. 人工智能和機器學習系統訓練數據集的開發
軍事領域對開發訓練數據集提出了一些獨特的挑戰——數據可能被分類,數據可能存在網絡漏洞(它可能被攻擊并被對手故意破壞),如果數據不存在,它可能需要從軍事/艦隊演習或兵棋推演中獲得。數據驗證也是一項具有挑戰性的工作。
NPS 正在為海軍的數據管理系統執行需求分析和概念設計,該系統將收集數據并向海軍內部許多正在開發 AI/ML 系統的不同組織提供數據(French 等人,2021 年)。圖 6 是海軍中央人工智能庫 (CAIL) 的上下文圖,它被設想為一個數據管理系統和流程,用于識別數據集并提供索引、驗證、審計和對 AI 可以使用的數據的安全訪問。從事海軍應用的機器學習開發人員。 CAIL 將不是一個數據存儲庫或數據庫,而是一個中央組織,使 AI/ML 開發人員能夠訪問經過驗證和保護的海軍數據——以幫助識別數據集的存在,啟用授權訪問,并幫助支持開發人員所需的數據尚不存在,需要獲得——可能通過艦隊演習或兵棋推演。
圖 6. 概念性中央人工智能庫
第三個獨特的挑戰是開發人工智能系統為系統工程提出了一個新的前沿。系統工程方法已被開發用于設計可能非常復雜但也具有確定性的傳統系統(Calvano & John,2004)。傳統系統具有可預測的行為:對于給定的輸入和條件,它們將產生可預測的輸出。圖 7 說明了對傳統 SE 方法(如 SE Vee 過程)進行更改的必要性,以便設計復雜且不確定的 AI 系統。特別是,需要新的方法來定義隨時間適應的學習系統的要求,并且系統驗證過程可能需要在操作過程中不斷發展和繼續,以確保安全和期望的行為。對于具有高風險后果的軍事系統,幾乎沒有出錯的余地,因此需要實施一個可以確保 AI 系統安全和預期操作的系統工程流程。
圖7. 人工智能:系統工程的新前沿
國際系統工程師理事會 (INCOSE) 最近的一項倡議已經開始探索需要對系統工程方法進行哪些改變才能有效地開發人工智能系統。圖 8 是作為該計劃的一部分創建的,旨在強調在 SE 過程中需要考慮的 AI 系統的五個方面。除了不確定性和不斷發展的行為之外,人工智能系統可能會出現新類型的故障模式,這些故障模式可能會突然發生,并且可能難以辨別其根本原因。穩健的設計——或確保人工智能系統能夠處理和適應未來的場景——是另一個系統工程設計考慮因素。最后,對于涉及更多人機交互的 AI 系統,必須特別注意設計系統,使其值得信賴、可解釋并最終對人類決策者有用。
圖 8. 人工智能系統工程中的挑戰
NPS 正在研究可以支持復雜、自適應和智能 AI 系統的設計和開發的系統工程方法。已經開發了一個系統工程框架和方法來設計系統解決方案的復雜自適應系統(Johnson,2019)。該方法支持系統系統的開發,通過使用人工智能,可以協作以產生所需的緊急行為。當前的一個研究項目正在研究可以在設計過程中設計到 AI 系統中的安全措施,以確保操作期間的安全(Cruz 等人,2021 年)。 NPS 正在研究一種稱為元認知的設計解決方案,作為 AI 系統識別內部錯誤的一種方法(Johnson,2021 年)。當前的另一個 NPS 論文項目正在研究如何將“信任”設計到 AI 系統中,以確保有效的人機協作安排(Hui,2021)。幾個 NPS 項目研究使用稱為協同設計的 SE 設計方法,來確定人類操作員與 AI 系統之間的相互依賴關系(Blickley 等人,2021;Sanchez,2021)。
第四個獨特的挑戰是對手在防御應用中的存在和作用。國防部必須與對手競爭以提升人工智能能力,人工智能系統必須免受網絡攻擊,人工智能系統必須適應不斷變化的威脅環境演變。圖 9 突出顯示了對手的存在給國防部正在開發的 AI 系統帶來的一系列獨特挑戰。
圖9. 敵手的挑戰
競爭對手國家之間開發人工智能能力的競賽最終是為了進入對手的決策周期,以比對手更快的速度做出決定和采取行動(Rosenberg,2010 年)。人工智能系統提供了提高決策質量和速度的潛力,因此對于獲得決策優勢至關重要。隨著國防部探索人工智能解決方案,同行競爭對手國家也在做同樣的事情。最終,實現將 AI 用于 DoD 的目標不僅僅取決于 AI 研究。它需要適當的數據收集和管理、有效的系統工程和采集方法,以及仔細考慮人類與人工智能系統的交互。國防部必須確保它能夠應對實施人工智能系統所涉及的所有挑戰,才能贏得比賽。NPS 研究計劃正在研究如何應用 AI 和博弈論來進入對手的戰術決策周期(Johnson,2020b)。該項目正在開發一個概念,用于創建戰術態勢模型、對手的位置和能力,以及預測對手對形勢的了解。然后,概念系統將進行實時“兵棋推演”,根據預測的對抗反應和二階和三階效應分析戰術決策選項。這是一個研究未來戰術戰爭可能是什么樣子的一個例子,它為藍軍和紅軍提供了增強的知識和決策輔助。為 AI 競賽準備國防部的其他 NPS 舉措包括研究新的 SE 方法和獲取實踐以開發 AI 能力、研究海軍和國防部的數據管理需求(French 等人,2021 年)以及研究 AI 系統安全風險開發確保安全 AI 能力的工程實踐(Cruz 等人,2021 年;Johnson,2021 年)。
賽博戰是國防部必須成功參與的另一場競賽,以保持領先于黑客攻擊的持續攻擊。隨著國防部實施更多的自動化,它自然會導致更多的網絡漏洞。使用本質上依賴于訓練數據和操作數據的人工智能系統,為黑客在開發階段和操作階段用損壞的數據毒害系統提供了機會。如果對手控制了一個可操作的人工智能系統,他們可能造成的傷害將取決于應用程序領域。對于支持武器控制決策的自動化,后果可能是致命的。在最近一項關于汽車網絡安全的研究中,一家汽車公司在網上發布了一個假汽車電子控制單元,在不到 3 天的時間里,進行了 25,000 次違規嘗試(Taub,2021 年)。國防部必須注意人工智能系統開發過程中出現的特定網絡漏洞。必須為每個新的人工智能系統實施仔細的網絡風險分析和網絡防御策略。 NPS 正在研究數據安全要求,以確保 ML 訓練數據集不受黑客攻擊,并且需要安全授權才能訪問(French 等人,2021 年)。 NPS 正在研究使用元認知作為 AI 系統執行自我評估的一種方法,以識別網絡入侵、篡改或任何異常行為(Johnson,2020b)。 NPS 還在研究使用 ML 來識別惡意欺騙和篡改全球定位系統 (GPS; Kennedy, 2020)。
威脅環境的演變是國防部在開發人工智能系統時的第三次對抗性競賽。由于對抗性威脅空間隨著時間的推移而不斷變化,擁有更快、更致命的武器、更多的自主權、更大的監視資產、更先進的對抗措施和更多的隱身性,這對國防部能夠預測和識別新威脅并進行應對提出了挑戰戰場上的未知數。 NPS 研究的重點是在作戰過程中不斷適應和學習的工程系統,以檢測和識別戰場中的未知未知,并通過創新的行動方案快速響應新威脅(Grooms,2019;Jones 等人,2020;Wood,2019 )。 NPS 正在研究通過研究特定區域隨時間變化的數據來識別異常變化的機器學習方法(Zhao et al., 2016)。一個例子是研究商用飛機飛行模式并根據異常飛行模式識別可疑飛機。隨著時間的推移,可以監視地面行動,以識別可能意味著軍事行動的新的和不尋常的建設項目。
人工智能系統為國防部在實現和保持知識和決策優勢方面提供了重大進展。然而,為國防應用實施人工智能系統提出了獨特的挑戰。軍事戰術領域在決策空間的所有領域都呈現出極端的復雜性:不確定性和有限的知識、高度動態的情況、非常有限的時間線、復雜的人機交互、大量和類型的資源、多個任務、昂貴且難以獲得訓練數據集、極小的允許誤差范圍以及行動(或不行動)的生死攸關的后果。 AI 系統,尤其是 ML 系統,需要有代表性、足夠、安全和經過驗證的數據集來進行開發。為國防應用收集合適的數據具有處理分類數據集和確保數據安全和免受網絡攻擊的額外挑戰;這也將是收集代表戰術行動的真實數據的一項重大努力。將需要新的系統工程方法來有效地指定、設計和評估人工智能系統,這些系統通過其不確定性、新型人機協作挑戰以及難以預測和預防的新安全故障模式而呈現出新的復雜性.最后,軍事領域中對手的存在呈現出三種形式的 AI 競賽:與對手一樣快地開發 AI 系統的競賽、保持領先于可能的網絡攻擊的競賽以及訓練能夠應對的 AI/ML 系統的競賽隨著不斷發展的對抗性威脅空間。
NPS 正在通過一系列正在進行的研究計劃來解決四個獨特的挑戰領域。 NPS 研究人員正在研究人工智能系統在海軍戰術作戰領域的實施,對軍事數據集進行需求分析和需求開發,研究開發復雜人工智能系統的系統工程方法,以及開發安全、可信賴的人工智能系統工程方法,并注意潛在對手的作用。 NPS 正在為軍官和平民學生提供人工智能研究和教育機會。 NPS 歡迎與國防部和海軍組織合作,繼續研究用于國防應用的人工智能系統,并繼續探索解決方案戰略和方法,以克服開發和實施人工智能能力的挑戰。
作為一個多國聯盟,當北約的成員國能夠在短時間內自信地將他們的部隊聚集在一起時,北約是最有效的。因此,一個關鍵的信息要求是了解其國家部隊的互操作性程度。為了有效地傳達這種理解,需要統一的、可重復的、可靠的和結構化的方法和框架。成立SAS-156的目的是為互操作性數據的測量、收集和評估制定一個北約標準。信息時代的要求對不同單位快速、方便、安全地連接和共享信息的能力提出了挑戰,但人和程序的因素仍然同樣重要。作者將介紹他們根據在加拿大聯合作戰司令部的工作經驗,對參與國的現有評估框架進行綜合和擴展的工作。加拿大武裝部隊的經驗特別相關,因為它是北約在拉脫維亞的多國增強型前沿存在戰斗小組的框架國家,并且輪流領導北約常設海上小組。
聯盟和伙伴關系一直是上個世紀成功的大規模作戰行動的一個關鍵組成部分。互操作性--為實現戰術、作戰和戰略目標而一致、有效和高效地共同行動的能力--是取得成功的關鍵。北約國家和合作伙伴了解互操作性的重要性,并且已經和正在收集關于行動和演習及活動的大量數據,以評估多國聯盟能夠實現互操作性的程度。然而,諸如缺乏標準術語等障礙仍然存在,而且可靠和有效的數據收集方法仍然難以找到。為了彌補這一缺陷,向系統分析和研究(SAS)小組提出的技術活動建議在2019年獲得批準,由此產生的后續活動,即北約任務組SAS-156 "制定評估多國互操作性的標準方法",正在追求這些明確的研究和利用目標:
幫助北約實現互操作性數據定義、收集和管理的標準。
讓軍事規劃人員更好地了解他們與合作伙伴的互操作性狀況,并在他們之間以共同的方式討論這些評估。
為追求自身互操作性目標的各個國家的資源配置決策提供依據。
由于軍事戰場日益復雜,國防部門正在尋找最先進的解決方案,為操作人員提供工具,以實現比對手更快和更有效的決策過程。這些工具通常被稱為決策支持系統(DSS),在過去幾十年里一直在使用。人工智能技術通常被應用在決策支持系統中,以確保與個人行為相比,錯誤率更低,決策更快。在決策支持系統中,這種實現的有效性在很大程度上取決于操作者對人工智能提供的建議的理解能力,以及由此產生的信任。可解釋的人工智能(XAI)允許用戶通過在DSS的用戶界面(UI)中可視化的過程來了解系統是如何得出關于某個決策的建議的。然而,這也帶來了一個固有的問題,即:在用戶超載、降低操作者的決策性能之前,應該向用戶展示多少過程?
在這項研究中,一個人工智能驅動的應用程序已經被開發出來,它可以幫助操作員規劃一個軍用直升機任務。在這個場景中,操作者需要為直升機上的士兵找到兩個合適的著陸區域(LZs),以便接近一個小城市地區的恐怖分子營地。DSS支持選擇合適的降落區域的過程,考慮到各個方面,例如到目標區域的距離、光斑大小、表面類型和坡度。為了評估達到信任和任務績效的最佳水平需要多少透明度,我們定義了四個可解釋性級別,每個級別都增加了信息透明度和控制級別。對于這四個關卡中的每一個,都需要在測試階段設計、開發和評估獨特的ui。結果表明,第三和第四UI設計的性能有所提高(決策制定的時間更少,LZ決策的正確百分比更高,提交的LZ反映了良好的人機交互,感知和實際得分之間的偏差較低),這比前兩層提供了更多的信息和更多的互動可能性。結果還表明,用戶更喜歡個性化他們的UI,以滿足他們的角色、體驗水平和個人偏好。
這項工作的目的是深入了解人工智能 (AI) 工具以及如何將它們應用于空中目標威脅評估。人工智能工具是包含人工智能元素的軟件產品。關于人工智能有多種不同的思想流派,并且可以在同一個工具中使用不同的方法。許多現代人工智能方法都涉及機器學習 (ML)。本參考文檔將涵蓋不同類型的 AI 和 ML 以及如何將它們應用于威脅評估。這項工作將介紹所有 ML 模型共有的元素,例如數據收集、數據準備和數據清理。該報告還將討論選擇適合不同問題的最佳人工智能類型。
此外,這項工作將描述處理缺失數據或數據不確定性的方法。將提出實用的解決方案,包括通過數據插補填充缺失數據或修改人工智能工具的架構。
最后,該報告將檢查人工智能工具的輸出與現有基礎設施的集成。將結合威脅評估過程及其可以改進的元素來描述 AI 工具。還將討論 AI 工具系統的通用架構。
威脅評估對于維護國家安全利益和維護各國主權具有重要意義。空中威脅評估對于一個有大片國土需要保護的國家(例如加拿大)很有價值。人工智能和機器學習都可以應用于威脅評估的研究領域。通過學習構建人工智能驅動的工具,加拿大的國防和安全將通過獲得持續的前沿研究得到改善。無論哪個國家開發出最有效和最可靠的威脅評估工具,在決策和威脅反應方面都將獲得優勢。通過利用前面提到的快速擴張的領域,加拿大可以獲得決定性的優勢。
評估所有領域(如空中、網絡、陸地、海洋、太空)的威脅是維護任何國家安全的一個重要方面。威脅分析包括查看敵人過去、現在和預期的行動,以及這些行動對友軍資產或單位的影響。威脅評估還考慮了為減少、避免或消除風險而可能采取的任何防御措施[1]。在防空的背景下,空中目標威脅評估的任務需要識別、確定空中目標和優先排序,并管理任何必要的資源以應對威脅[2,3]。
當前的空中目標威脅評估任務由操作室中的一組高技能和經驗豐富的人員執行[3,4]。該任務涉及考慮先驗信息(例如,情報報告和評估標準)和獲取的信息(例如,從傳感器系統動態收集的運動學信息),以確定目標對某個感興趣點/區域(POI/AOI)。此信息(運動學和非運動學)稱為提示。這些信息的心理整合需要相當水平的戰術專業知識,包括有關威脅類型、軍事條令和基于經驗的評估啟發式的知識[4]。人工智能(AI)將允許根據防空作戰員(ADO)可用的線索以及他們的威脅評估決策[5]或專業知識來創建工具。
本報告全面概述了AI工具及其構建。這些方法是尖端的并且非常有效。本報告將清晰地展示人工智能工具的開發方式。它將展示哪些組件是必要的,如何獲取數據并使其對機器學習(ML)模型有用,以及AI工具如何與更廣泛的威脅評估環境進行交互。
本節將介紹人工智能的概念和許多現代人工智能算法。它將包含有關AI和ML主要主題的背景知識。它還將描述AI工具中經常出現的組件。
從一個非常廣泛的角度來看,人工智能是人工系統“執行與智能生物相關的任務”的能力[6]。然而,這是一個非常寬泛的術語,涵蓋了許多系統。例如,它不區分人工智能系統、智能系統和自動化系統。關于什么構成人工智能,文獻和文化中有許多定義。本報告中使用的“人工智能系統”的定義是文獻和文化中各種來源的觀點的結合。
人工智能系統是一種具有以下能力的人工系統:
1.執行“有趣的”[7]任務,這些任務“通常與智能生物相關”[6]
2.“自學成才”[7,8]
早期的AI開發人員研究的問題在智力上對我們來說很困難,但對計算機來說卻相對簡單。這些問題可以用一組形式和數學規則來描述[9]。例如,國際象棋游戲由一組有限且嚴格的規則定義,這些規則可以編程到人工智能中。然而,人工智能很難處理使用人類直覺而不是使用一組正式的規則來處理的任務,例如圖像識別。人工智能的一種方法是基于知識的方法,它涉及嘗試設計形式語言和手工制作的邏輯推理規則,以使機器能夠推理和解決問題。另一種方法是讓計算機從經驗中收集知識,而不是讓人類對程序的行為進行硬編碼。
機器學習是通過從數據中發現模式來獲取知識的能力。因此,這些數據的表示會顯著影響機器學習算法的性能。換句話說,提供給機器的信息(即特征)會影響它解決問題的能力。然而,手工設計的特征受到人類知識的限制。讓機器發現哪種表示最好稱為表示學習。學習到的表示通常比手工設計的表現要好得多。本報告在2.3小節中探討了人工智能的機器學習方法。
AI 工具的最終目標是通過減少操作員的認知和體力工作量來改善操作員的決策過程。為此,人工智能工具通過提供協作環境來補充操作員的角色。人工智能工具處理可用信息,從數據中獲得洞察力,并以有利于操作員體驗的方式呈現信息和洞察力。圖1顯示了AI工具流程的概覽。該模型基于[3]中提出的決策支持系統(DSS)架構。
1.操作員是與工具交互和監控工具、根據工具輸出做出決策并根據這些決策向相關個人報告的人。輸入工具的信息可以是靜態的或動態的。靜態信息(例如配置文件和靜態操作員首選項)在操作期間不會更改。動態信息,例如數據輸入和設備操作,在整個操作過程中不一定保持不變[3]。將操作員與咨詢能力聯系起來的箭頭強調了該工具的協作方面。
2.咨詢能力負責管理操作員和系統之間的交互。這包括管理操作員輸入(即靜態和動態信息),管理環境輸入(例如,約束和環境信息),促進操作員交互(例如,人機交互,人機界面)和顯示信息。要顯示的關鍵信息包括算法的結果和當前的操作限制。
3.領域知識由用于評估的規則和關系組成。例如,領域知識可能包括操作員對信息變化影響的意見。
4.算法組負責處理數據和執行評估或預測任務。可以考慮許多不同的算法和功能來實現算法組。該組將提供應用程序中的大部分AI功能,并且可以選擇或組合不同的AI或ML應用程序。
5.環境為人工智能工具提供操作約束。更具體地說,環境由檢測和測量目標的傳感器系統以及來自更高級別個人的任務概覽和命令組成。
雖然[3]對圖1中的大多數組件進行了詳細解釋,重點是咨詢能力部分,但本報告側重于架構的算法部分。
圖1:操作員、環境和人工智能工具的交互
上面介紹的AI工具被認為是基于第 2.1 節中介紹的定義的AI系統。評估的復雜性和重要性使其成為一項不容易解決的任務。人工智能工具的學習和適應方面可以通過機器學習方法來完成,這將在2.3小節中進行描述。
本節將討論機器學習和人工智能的結合。有許多不同類型的AI算法,ML是這些算法的一個子集。本節將描述使用ML從數據中學習的算法類型,以及這對AI工具有何用處。作者還在他們之前的工作中定義了機器學習中的許多基本概念[5]。
根據柯林斯詞典,機器是“使用電力或發動機來完成特定工作的設備”[10]。在機器學習的背景下,機器就是計算機。更具體地說,是計算機中的程序完成了這項工作。正如[11]中所定義的那樣,“如果計算機程序在T中的任務(由P衡量)上的性能隨著經驗E提高,則可以說計算機程序從經驗E中學習某類任務T和性能度量P。”這個定義提出了機器學習問題的三個主要組成部分:任務T、性能度量P和經驗E。
1.任務是要解決的問題。例如,分類任務涉及確定某個輸入屬于哪個類別(例如,對象分類)。其他任務示例是回歸(例如,成本預測)、異常檢測(例如,欺詐檢測)和去噪(例如,信號處理)。
2.性能度量是用于評估ML算法性能的指標。例如,準確度是一種可用于分類任務的性能度量。準確率是模型正確分類的示例的分數。“示例”被定義為特征的集合,通常表示為向量,其中n為特征個數,每個元素
為一個特征[9]。數據集是一組例子的集合。
3.經驗是指模型在學習過程中所接受的訓練類型。在無監督學習中,模型所體驗的數據集僅包含特征,并且由模型來學習數據的特征。例如,學習描述數據的概率分布可能很有用。聚類也可以使用無監督學習算法來執行。在監督學習中,模型體驗的數據集不僅包含特征,還包含與每個示例相關聯的標簽。無監督學習模型觀察幾個例子,而監督學習模型觀察幾個例子及其標簽。但是,在某些情況下,有監督和無監督之間沒有明確的區別。例如,半監督學習涉及從包含標記和未標記數據的數據集中學習。在強化學習中,模型不是從固定的數據集中體驗,而是模型與環境交互并從交互中學習。
為了了解模型在處理現實世界中的新數據時的表現如何,通常會分離出一部分數據集,以便僅在完成所有訓練后才能使用。這被稱為測試集,由于模型之前沒有看到測試集中的數據,因此測試集上的性能可以作為模型真實性能的指標。文獻提供了機器學習算法和模型的許多不同分類(例如,[12]提出了機器學習的五種范式:連接主義(例如,神經網絡、象征主義、進化論、貝葉斯和類比)。本報告并不是對機器學習中在空中目標威脅評估領域有用的不同方法的詳盡回顧。本報告重點關注三類特定的方法:監督機器學習、無監督機器學習和強化學習。
在監督機器學習中,可以使用一組標記的訓練示例(即訓練集)。該模型的目標是能夠為示例分配正確的標簽,其中正確的標簽是與特定示例對應的標簽。通過基于一組標記的訓練數據最小化某個損失函數來調整模型。具體來說,迭代調整模型的參數,以減少訓練誤差。
1.模型:模型是根據樣本特征輸出標簽的算法。
2.參數:模型的參數根據選擇的模型而有所不同。例如,在神經網絡中,參數包括神經元的權重和偏差。
3.誤差:也稱為損失,誤差用于衡量模型的執行情況。可以針對特定應用設計和修改損失函數。
4.迭代調整:在訓練過程中,采用一定的方案來改變每次迭代的參數。具體來說,迭代調整模型的參數,以減少訓練誤差。一個例子是普通梯度下降法[13]:
其中θ是模型的參數,α是學習率(決定每次迭代調整多少參數的超參數),J(θ) 是模型在整個訓練集上的損失函數, 是相對于θ的梯度。可以使用各種修改來改進普通梯度下降算法,例如動量[13]。這種改進產生的算法包括Adagrad[14]和Adam[15]。
由于機器學習,許多研究和應用領域都取得了許多成功。圖像理解(例如,檢測[16]、分類[17])和自動化物理系統(例如,自動駕駛汽車[18])只是成功的兩個例子。這些成功的很大一部分歸功于監督學習和強化學習的使用。然而,這兩種范式都僅限于人類輸入和經驗:監督學習的訓練信號是目標標簽,而在強化學習中,信號是期望行為的獎勵[19]。使用人類設計的標簽和獎勵的一個弱點是由于訓練信號的稀疏性而導致的信息丟失。例如,盡管用于訓練監督學習和強化學習模型的數據通常具有豐富的特征(例如,圖像),但目標和獎勵通常非常稀疏(例如,表示圖片標簽的單個向量)[19]。無監督學習的動機是更好地利用可用數據來更好地理解數據。因此,無監督學習范式“旨在通過獎勵智能體(即計算機程序)來創建自主智能,以學習他們在不考慮特定任務的情況下觀察到的數據。換句話說,智能體“為了學習而學習”[19]。無監督學習算法的強大之處在于它能夠發現標簽無法完全表達的數據的潛在模式和結構。
強化學習(RL)的思想是學習采取什么行動來獲得最大的回報。這種范式背后的一個共同動機是智能體與環境之間的交互(圖2)。根據對環境的觀察,智能體執行影響環境的動作。作為響應,會生成新的觀察結果,并且智能體會收到獎勵或懲罰。
圖 2:智能體-環境交互
RL的兩個重要區別特征是試錯搜索和延遲獎勵。與程序員指定輸出應該是什么的監督學習不同,RL智能體必須進行實驗以發現導致最高獎勵的動作。此外,行動可能會產生長期影響。因此,較早采取的行動可能會導致稍后的獎勵或懲罰。
在監督學習中,該模型嘗試從訓練示例中學習以泛化并在新示例上表現良好。雖然功能強大,但在處理涉及交互的問題時,監督學習是不夠的。例如,在未知環境中學習時,獲得包含代表智能體在所有可能情況下應采取的行動方式的示例的訓練集可能是不切實際的。在這些情況下,智能體必須使用自己的經驗和與環境的交互來學習。
RL系統[20]有四個主要組成部分:
1.策略:策略根據智能體的感知狀態定義智能體的行為。換句話說,它決定了當智能體處于當前狀態時要采取什么行動(或行動的什么分布)。
2.獎勵信號:獎勵信號表明智能體在某個時刻的表現如何。獎勵的概念是RL問題的核心概念,因為從長遠來看最大化獎勵數量是智能體的最終目標。獎勵的類型是特定于問題的。例如,在訓練RL智能體玩游戲時,它可能會因獲勝而獲得正獎勵,而因失敗而獲得負獎勵。結果,通過監控獎勵信號來學習策略。例如,如果當前策略給出的某個動作導致了懲罰,那么該策略可能會以某種方式改變,以便在情況再次出現時避免該動作。
3.價值函數:價值函數表示如果遵循當前策略,智能體在未來的預期表現如何。雖然獎勵被視為即時指標,但價值函數是長期指標。例如,在當前狀態下投資獲得負回報可能會導致總回報為正。價值函數引入了延遲獎勵的方面:某個狀態的價值是預期在長期內獲得的總折扣獎勵,其中每個收到的獎勵都根據最近收到的時間進行折扣。
4.環境模型:環境模型存在于基于模型的RL問題中。它指示環境如何根據智能體在特定狀態下的行為做出反應。然而,環境模型并不總是可用的。無模型方法解決了這一挑戰。
正式表示完全可觀察的環境(即智能體的觀察完全描述當前環境狀態的環境)以進行強化學習的流行方法之一是使用馬爾可夫決策過程(MDPs)。馬爾可夫過程是服從馬爾可夫性質的一系列隨機狀態S:在給定當前狀態的情況下,未來狀態獨立于過去狀態。
其中是第
時間步的狀態,t是當前時間步,
是
發生的概率。MDPs是馬爾可夫過程的擴展:除了表征馬爾可夫過程的狀態集S和狀態轉換集P之外,還有可能的動作集A和獎勵集R。
本節將把空中威脅評估的任務與人工智能工具的能力聯系起來。 AI 能力將映射到威脅評估的每個階段,并將展示如何將其集成到現有能力中或改進現有能力。
如第 1 節所述,ADOs等操作人員面臨認知和身體挑戰,這些挑戰不利于其做出可靠決策的能力。人工智能工具將通過提供以下兩個主要好處來應對這些挑戰:
1.減少認知和身體負荷量:人工智能工具為操作員提供的支持和顯示將緩解導致操作員總壓力的眾多因素。這種好處是通過使用決策支持系統(DSS)的設計原則來提供的。
2.利用最先進的方法:人工智能的機器學習方法是一個非常受歡迎的研究領域,因此在方法的開發和改進方面做了大量工作。通過使用AI支持空中目標決策,該系統可以使用和利用最先進的方法。
如2.2小節所述,通用AI工具中有多個組件可以專門用于評估。威脅評估AI工具中的組件及其專業化如下:
1.操作員(Operator)是評估過程中的ADO。操作員將負責確保提供給AI工具的信息盡可能準確。然后,ADO將與該工具交互,以充分了解威脅情況,并獲得AI生成的威脅評估。
2.咨詢能力(Advisory?Capability)負責與ADO以及各種傳感器和數據庫系統進行交互。這將涉及從雷達和其他傳感器收集數據,以及解釋從情報報告中獲得的數據。咨詢能力還負責確保ADO可以有效地與計算機界面一起工作。更新界面可能涉及一個可以結合機器學習的動態過程。
3.領域知識(Domain Knowledge)將包括ADO的經驗以及他們用來進行準確評估的任何規則。在空中威脅評估中,這可能包括常見的高度、異常的飛行模式或敵軍作戰節奏的變化。
4.算法組(Algorithms)負責目標數據的處理和威脅評估。這將包括處理軌跡數據以獲得提示數據,并使用提示數據和領域知識來評估目標的威脅。可能的評估算法包括基于規則的方法[3、4]、貝葉斯方法[3]和本報告[5]中提供的AI技術。
5.環境(Environment)為人工智能工具提供操作限制和目標數據。更具體地說,環境包括檢測和測量目標的傳感器系統以及來自更高軍事指揮鏈的任務概覽和命令。
由于機器學習方法的種類和成功率眾多且不斷增加,機器學習在威脅評估中的應用數量僅限于研究人員的知識和經驗。本報告將概述如何將三種主要機器學習范式應用于人工智能工具進行威脅評估的示例。
通過一組標記的過去目標示例,其中每個示例包含有關歷史目標及其相應威脅值標簽的信息,監督機器學習可用于將威脅值分配給目標。在[21]中,監督學習被用于構建多標準決策(MCDM)方法(EMCDM)的集成,以根據當時的線索值推斷目標在某個時間點的威脅值。EMCDM技術由各種MCDM方法組成,它們的輸出組合成一個單一的威脅值。MCDM方法的輸出基于作為輸入的提示值。用于訓練EMCDM技術的監督學習技術取決于集成技術的類型。例如,在加權組合EMCDM技術中,MCDM方法是使用監督學習調整的組合權重。在所有的EMCDM訓練中,示例集由標記的目標實例組成,其中目標實例被定義為目標在某個時間點的提示數據。
可以從目標中提取各種信息。因此,對于某個目標,可以為系統提供關于目標的大量線索,作為威脅評估的基礎。無監督學習可用于分析提示數據,以深入了解底層結構和模式。例如,無監督學習的一種用法是降維。通過降低提示數據的維數,系統可以處理更緊湊和簡潔的目標描述。換句話說,目標是以數據可以提供關于目標的大致相同信息但使用較少資源的方式轉換數據(例如,使用10個提示而不是50個提示)。
實現降維的一種方法是主成分分析(PCA)[23]。PCA旨在通過學習最大化新子空間中數據方差的線性變換,來表達低維子空間中的數據。最大化數據方差背后的直覺是假設更高的方差意味著更多的信息量。數據原本會有一定量的方差/信息。PCA嘗試使用低維子空間來近似數據,同時盡可能多地保留原始方差。PCA的結果之一是檢測和去除數據中的冗余,從而在沒有不必要的線索的情況下描述目標。然后可以將這些PCA生成的線索視為要使用的新的各種線索。然而,在應用過程中需要考慮基于PCA的假設(例如,方差足以描述信息量,主成分是正交的)。
自動編碼器[9]是經過訓練以將輸入重新創建為其輸出的神經網絡。自動編碼器通常由兩部分組成:編碼器和解碼器。編碼器網絡生成低維潛在特征。然后將潛在特征輸入到解碼器網絡中,該解碼器網絡嘗試輸出最初輸入到編碼器中的內容。通常存在約束和限制,以防止自動編碼器能夠完美地重新創建輸出(即,它只能提供近似值)。結果,模型被訓練為優先使用最有用的數據特征。因此,與PCA類似,自動編碼器可用于使目標提示數據更加簡潔,并且僅包含足以描述目標的提示數據。自動編碼器的其他用法也存在。例如,自動編碼器可用于去噪[24]應用程序。這在威脅評估中特別有用,因為目標數據(例如,傳感器數據、提示)本質上是含噪的。
除了降維之外,無監督學習的另一個用途是聚類。文獻中有大量關于用于聚類的無監督學習算法的工作,所有這些算法都用于威脅評估。在不關注特定算法的情況下,聚類的一種用途是將感興趣的目標與歷史目標進行聚類。這樣做的目的是發現感興趣的目標是否與歷史目標相似。如果有關于如何處理過去目標的知識,操作員可以在決定對當前感興趣的目標采取何種行動時考慮這些信息。
可以將威脅評估過程建模為強化學習問題。例如,咨詢能力可以在操作期間使用RL來了解操作員希望如何顯示信息。這類似于社交網站知道在首頁上顯示哪些項目的方式。例如,如果RL模型有一個獎勵處理速度的策略,它可以測量從ADO開始評估到ADO提交威脅評估所花費的時間。這將允許模型因導致更短的威脅評估過程的行動而獲得獎勵,從而鼓勵更有效的交互選擇。如果某個深度為兩級的菜單項(即,它需要兩次單擊才能訪問)被頻繁使用,則模型可以將該菜單項放置為第一級深度項。如果該項目被非常頻繁地使用,則該項目應該在主屏幕上被賦予一個突出的按鈕位置。在空中威脅評估應用程序界面上工作的強化學習算法將能夠進行這些和其他更改,以檢查威脅評估的時間是否正在減少,在這種情況下,它將獲得獎勵。
有大量研究和許多資源可用于解決MDPs,這使得使用MDPs解決RL問題成為一個不錯的選擇[25]。
人工智能工具的結構需要考慮多種因素。該工具將在流程管道中運行,從數據收集和準備開始,到模型訓練,然后到模型預測,最后為用戶顯示結果。在AI工作流程中,可以更容易地將結構視為流程工作流[26]。一旦AI工具經過訓練,它就會不斷返回到周期的第一階段,并使用新數據和新見解進行重新訓練。這個過程使人工智能工具非常強大,可以隨著時間的推移保持準確性和有效性。
人工智能工具開發的第一階段是收集高質量數據。這些數據將存放在一個或多個可供AI工具訪問的數據庫中。人工智能工具將首先在數據庫中的現有數據上進行訓練,然后在生產時,它將主動監控任何操作數據庫中的最新數據,以便提供威脅評估。
除了收集數據,還必須確定最有效的機器學習或人工智能模型。該決定需要考慮可用數據的類型、數據的數量及其質量。與最終用戶面談也很重要,以確保所選模型將以對他們有用的格式輸出信息。這可能是一個要求,例如最終威脅評估值必須呈現為分類問題(例如,高、中、低)或回歸問題(例如,1.4、2.9、9.0)。要求也可能更嚴格,例如人工智能工具的推理必須能夠被人類操作員解釋。像這樣的要求可能會使現代機器學習研究的整個分支沒有吸引力,而是需要不同的模型。由于所選AI模型對整個工具的影響很大,因此必須在模型開發之前的早期階段收集最終用戶的需求。
一旦選擇了一個或多個模型類型,就必須對其進行訓練。在這個階段,由于上一步的需求分析,一些AI模型可能已經被淘汰。在此步驟中,將淘汰更多模型。在對數據進行訓練之前,通常很難判斷哪個機器學習平臺最有效。這意味著應該對多個模型進行數據訓練,并使用某種準確度指標進行比較。一旦確定了最準確的模型,該模型將被完全訓練并準備好在生產中使用。
下一階段是將模型部署到生產應用中。ADO獲得了一個功能性AI工具,可以連接到操作數據庫并協助威脅評估過程。輸出到ADO的最終值都將被處理和清理,最終格式將被確定。然后,隨著所有ADO將其威脅評估以及可用的線索提交給訓練數據庫,該工具將得到持續訓練。這將使該工具能夠與新出現的威脅和新情況保持同步。ADO還可以就AI工具提供的評估進行反饋。例如,如果AI工具提供“高”威脅評估,而ADO認為它應該是“中”,則ADO可以提供反饋信號,表明該工具不正確并且威脅等級太高。這將存儲在數據中并用于在線訓練,使其能夠不斷地向經驗豐富的ADO學習,也可以自學成型。
AI工具流程的最后階段是將工具轉移到精度維護。在這個階段,需要對工具進行監控,以確保準確性不會下降。該工具也將在此階段接收反饋并從ADO評估中學習。最后,人工智能工具的開發并沒有停留在這個最后階段;相反,它必須隨著威脅的演變、環境和要求的變化以及新的和更相關的數據變得可用,而相應地更新和改進。
圖3: AI工具中的模塊及其交互
圖 3 提供了AI工具中以下模塊的可視化表示:
1.數據庫組件
2.數據訪問和存儲模塊
3.數據預處理模塊
4.ML 模型組件
5.數據后處理模塊
6.可視化/操作員交互模塊
將ML組件集成到更大的AI工具中需要兩條不同的管道。第一個管道將是訓練管道,這是進行模型選擇、測試和訓練的地方。一旦確定了合適的ML模型,并且該模型已經針對所有當前可用的數據進行了訓練,它將在稱為推理管道的第二個管道中使用。
圖4顯示了訓練管道的可視化。第一步需要收集歷史威脅評估數據以及ADO威脅標簽(如果所需的ML模型使用監督學習算法)。接下來,這些數據將通過數據預處理模塊合并為格式良好的數據集。然后,這個大型數據集將被分成三個不同的集合:
1.訓練數據集:該數據集將是ML模型在訓練時唯一看到的數據集。它也將是三個數據集中最大的一個。通常在本節中描述的三組之間決定百分比分配。這取決于系統設計者的判斷。常見的比率是80/20或90/10,具體取決于可用訓練點的數量。這些點將用于訓練模型,但重要的是保留一個保留數據集,以確保您的模型不會過度擬合訓練數據(即,無法泛化到新的未見數據點)。
2.驗證數據集:這將在訓練進行時用作測試集。這些數據不會用于訓練模型,而是在訓練的非常時期結束時,將在這個小集合上測試模型。這對于確定模型何時得到充分訓練很有用。即使模型在訓練數據集上的損失可能會繼續減少,但如果驗證集上的損失已經趨于穩定,那么模型可能會過度擬合訓練數據集,應該停止訓練。
3.測試數據集:該數據集將為所有候選 ML 模型提供最終評估指標。它不會用于訓練,并且模型設計者也必須不要檢查此數據集。這將確保模型超參數不會根據此測試數據集進行調整。測試數據集的價值在于發現ML模型是否可以泛化到來自類似于訓練示例分布的看不見的數據點。如果測試數據集的損失遠高于訓練集和驗證集,則模型很可能對其訓練數據進行過擬合。如果有多個候選ML模型,則可以使用測試數據集上的損失和準確率來確定選擇哪個模型。
在模型訓練期間將使用訓練和驗證數據集,在模型評估期間將使用測試數據集。
圖4 :ML 模型訓練管道
一旦最佳候選ML模型經過訓練和選擇,它將用于AI工具的生產版本。該模型將用于實時提供在線推理/預測。候選模型的訓練和測試可以繼續進行,也可以納入新模型或研究。這將確保AI工具始終使用性能最佳的ML模型。
一旦經過訓練的模型展示了所需水平的能力,就該使用推理管道了。推理管道是ML組件,將在操作中使用的實際AI工具中使用。該管道的示意圖如圖5所示。
圖5:ML 模型推理管道
人工智能工具將被要求不斷監控傳感器和操作員的情報,以獲得最準確的現實畫面。該數據將組合成與每個空中目標相關的提示數據集。一旦一組提示數據可用,它將被提供給ML模型,以便進行預測。然后,該預測將通過本工作前面討論的AI工具的其他組件提供給ADO。一旦投入生產,該模型還將通過運行來自新威脅評估情況的示例和迄今為止ADO對預測的反饋來保持最新狀態。這種訓練可以以在線方式(即連續)完成,也可以通過批量訓練(即以設定的時間間隔一次對所有示例進行訓練)完成。該模型還將對其性能進行監控,以確保準確性和損失不會隨著操作現實的變化而隨著時間的推移而降低。如果檢測到性能下降,則人工干預和糾正可以使系統恢復到以前的性能水平。
本小節將解釋威脅評估過程的背景以及傳統上它是如何完成的。它還將標志著傳統流程中的挑戰和通過智能決策支持系統(DSS)改進的機會。還將介紹AI工具及其與傳統DSS威脅評估的關系。
有關因素信息和分類的描述,請參見[21]。出于 AI 目的,因素數據應構造為包含m個因素的向量,其中m是觀察中的因素數量,每個條目是一個因素值。每個完整的向量都是一個樣本,如果有足夠大的樣本訓練數據集,就可以進行機器學習。
對于空中威脅評估,已經確定了16個因素來構成關于目標的最有價值的信息[4]。這些見表 1。
表 1:用于目標威脅評估的因素。
威脅評估過程絕非易事。這是一項壓力極大的任務,需要做出復雜的決策。該過程的認知和物理性質是由于各種原因造成的,當它們結合起來時,會對操作員的決策過程產生不利影響。
操作員不僅必須處理來自各種來源的大量和類型的信息,而且還要同時管理多個任務。例如,操作員管理可能來自眾多媒體、顯示器和人員的音頻、口頭和視覺信息[4]。除此之外,他們還必須執行其他任務,例如監控指定監視區域內的空中目標、了解可用資源以及準備情況報告[4]。這種高度的多任務處理和信息過載給威脅評估任務帶來了認知復雜性和身體壓力。
除了大量數據之外,運營商還面臨著信息中固有的不確定性。運營商必須考慮到數據源的不完善性以及人類行為的不可預測性[3]。不確定性量化和感知在威脅評估過程(和戰術軍事行動一般[3],因為運營商依賴決策過程中的數據來獲取環境(和對手)的感知。
在時間限制下操作人員的工作也造成了相當大的壓力。需要時間來收集信息、處理信息并最大限度地減少不確定性。但是,空中目標正在高速移動,因此必須根據可用的融合做出決策此外,用于信息收集/處理和不確定性最小化的時間越多,制定后續決策和行動的時間就越少,對手收集/處理信息和行動的時間就越多。最后,錯誤決定的后果是嚴重的,甚至可能是災難性的。飛機的錯誤分類1988年造成290名平民死亡的事件[27]就是決策失誤的一個例子。操作員工作的重要性和不正確執行的后果增加了任務的壓力。
運營商在威脅評估過程中面臨的挑戰促使人們研究如何在不影響威脅評估可靠性的情況下減輕認知和物理工作量。更具體地說,有機會開發用于空中目標威脅評估的決策支持系統(DSS)[4]。圍繞DSS的設計原則(即DSS 所包含的內容)有許多著作。
DSS的關鍵要求之一是它不能取代運營商;相反,DSS是對運營商的補充。[3]將此要求描述為DSS充當“決策支持而非決策自動化”。這方面允許在威脅評估過程中操作員和系統之間的協作。讓人參與決策過程是至關重要的:人在環方面確保每個決策都有責任。軍事行動的合法性要求問責是其行動的組成部分,問責包括明確的合法性和道德標準。如果在這個過程中沒有操作者,那么誰應該為錯誤決策的后果負責的模糊性就會帶來法律和道德上的分歧。
除了確保操作員始終參與決策之外,文獻中還介紹了其他設計原則。[2]根據文獻及其實地工作,詳細列出了設計威脅評估系統的規則。顯著的設計特點包括:
1.透明度:DSS應該能夠證明其計算和后續建議的合理性[3,4]。因此,DSS應向操作員提供導致最終值[2]的中間計算以及每個提示對最終威脅值[4]的影響。消除DSS的黑盒特性的重要性在于建立對系統的信心和信任[3]。如果不知道決策/建議是如何生成的,人類不太可能接受自動化系統的決策/建議[29]。理解上的不透明為誤用和錯誤創造了機會[12]。由于使用機器學習方法來構建AI工具,因此這是這項工作的一個重要考慮因素。機器學習方法不限于人類定義的決策規則,因此可以表現出黑盒性質。因此,與傳統DSS相比,AI工具的透明度更為重要。
2.處理不確定性:DSS決策所依據的數據中有許多不確定性來源(例如,傳感器數據、威脅值計算中的參數)[2]。處理不確定性也是DSS的一個重要設計特征,因為它允許運營商調整他們對系統的信任級別。在[2]中,這個設計方面是通過使用提示數據的區間表示來實現的。
3.信息的有效和交互式顯示:使用圖形格式顯示信息很重要,因為威脅是一個模糊的概念[4]。應傳達給操作員的重要信息是威脅等級、威脅歷史、線索列表[4],以及與建議相關的不確定性[3]。除了顯示信息之外,系統還必須能夠提供操作員可以與之交互的媒介。這可確保操作員留在威脅評估過程中[3]。
本報告中提出的人工智能工具可作為空中目標威脅評估的DSS。人工智能工具的人工智能方面在于系統的運行方式。更具體地說,人工智能工具將把人工智能概念(例如,機器學習、適應)納入其操作中。
AI工具將能夠集成到空中威脅評估的所有階段。本小節將描述威脅評估的每個階段與AI工具的能力之間的關系。
空中威脅評估的階段如下[4]:
1.掃描并選擇提示。
2.比較、調整適合和適應。
3.計算威脅等級。
4.繼續處理。
關于1(掃描并選擇提示),AI工具將能夠使用所有可用的提示。這與人類操作員不同,后者僅審查18個可用于評估飛機的線索中的6到13個[4]。這些信息將通過各種傳感器從環境中收集,然后通過通常的情報報告或傳感器讀數方式進行報告。這些數據將被編譯到一個數據庫中,供AI工具訪問以從中進行學習和預測。
關于2(比較、調整擬合和適應),AI工具將對數據庫中可用的線索進行計算。該數據可以與ADO專家提供的感知數據(例如預期海拔)進行比較,并檢查實際數據是否一致。如果數據與預期不一致,人工智能工具會將差異與歷史示例進行比較,以提供對差異的解釋或調整。如果數據無法協調,則可能需要調整模型的擬合度,人工智能工具可以選擇將飛機作為不同類型(即軍用、民用)進行處理。
關于3(計算威脅評級),人工智能工具將使用可用的線索,如果它增強預測,可能還會使用這些線索的子集,來預測目標的威脅評級。 Liebhaber、Kobus 和 Smith 在[30]中發現威脅等級獨立于檢查的線索數量。
關于4(繼續處理),如果所有提示數據都可以充分解釋,人工智能工具將完成分析,或者它將繼續搜索和處理新的提示。這個過程將一直持續到模型通過基于解釋的輸出獲得ADO的批準,或者直到所有可用的線索都被處理并且模型擬合得到盡可能好的調整。
第3.5.2節概述的關于操作員對DSS的信任的關鍵點之一是用于生成威脅評估結果的模型的透明度。操作員很難對沒有提供理由和解釋的機器輔助預測有信心[4]。出于這個原因,已經創建了許多在計算和標準加權方面具有透明度的DSS方法。例如,許多MCDM方法可以為每個單獨屬性的權重以及它們如何對最終威脅評估做出貢獻提供充分的理由。這是MCDM DSS工具的優勢之一。不幸的是,這種透明性可能會導致工具缺乏復雜性和表現力。相反,機器學習工具可以同時基于所有數據點之間的非常深的聯系做出假設,這可能是以人類不會的方式。這種增加的復雜性往往會降低工具的透明度和可解釋性。
某些機器學習方法的結果仍然是透明的,并且以與自學的MCDM方法相似的方式工作。例如,線性回歸模型可以提供每個線索如何影響最終威脅評估評估的完整理由。該模型既受益于透明度,也受益于無需人類專家參與的自學。
其他一些機器學習模型并沒有從透明度中受益。最先進的機器學習模型之一是神經網絡。這是一個擁有大量研究的大領域,也是深度學習分支的新爆炸。這些方法不那么透明。在[31]中發現的2020年文獻調查探索了許多現有的試圖使神經網絡和深度神經網絡推理對最終用戶可解釋的工作,但是,局限性仍然存在。
現實世界的威脅評估變量通常包括決策過程各個級別的不確定性。對威脅評估準確性的最大影響之一來自根本沒有獲取的數據。這種丟失的數據可能是由于無法收集、傳感器故障、傳感器誤報或許多其他原因造成的。當數據完全丟失時,就很難就目標所擁有的威脅做出明智的決定。幸運的是,機器擅長執行計算,可以估計、替換或忽略丟失的數據。
在[22]中,探索了為每個決策結構預先計算不同查找表的選項。這將涉及根據每種可能的信息缺乏狀態訓練許多不同的模型,并將它們與完整狀態相關聯。這假設對于訓練有大量完整的示例可供借鑒。不幸的是,“為所有可能的輸入組合訓練網絡的天真的策略在復雜性上呈爆炸式增長,并且需要為所有相關案例提供足夠的數據”[32]。相反,[32]建議定義一個可以被認為是真實的基礎模型,然后將所有數據與該模型相關聯。
在許多可能的情況下,在訓練時沒有或只有很少的完整示例可用。在這種情況下,必須確定是僅使用完整數據進行訓練,還是以某種方式合并不完整的示例。在[32]中,發現用均值代替缺失輸入會導致比僅基于完整示例訓練網絡更差的性能。因此,尋求改變神經網絡架構或訓練方法的方法,以有效地合并(可能大量)不完整的數據示例。
使用不完整數據進行訓練的最有效方法之一來自[33]。本文證實,在訓練神經網絡中使用原始不完整數據可能是比在學習開始之前填充缺失屬性更好的方法。所采用的方法涉及對神經網絡架構的輕微改變,但應該與大多數現有架構兼容。該方法通過將第一個隱藏層中典型神經元的響應替換為其期望值來工作。高斯混合模型在每個神經元的輸出上進行訓練,以學習概率密度函數和期望值。這消除了通過單個值對任何缺失屬性進行直接插補的需要。 “隱藏層不是計算單個數據點的激活函數(對于完整的數據點),而是計算神經元的預期激活”[33]。該方法還取得了與其他現有方法可比的結果,這些方法可以從不完整的數據中進行預測,但需要完整的數據進行訓練。
另一種方法可以通過提高缺失數據插補的準確性來采取。[34]研究了文獻中許多可能的數據插補解決方案。它還指出,一些無監督學習聚類算法,如分類和回歸樹(CART)和K-means,已適用于缺失數據的問題。缺失數據插補的優點是不需要對實際的機器學習模型或平臺進行任何更改。當前存在或將來構建的任何基于完整數據提供準確預測的方法都將有效地處理通過插補生成的數據。數據插補的目標是以盡可能接近現有真實數據分布的方式填充缺失值。如果成功完成,則可以對新完成的數據使用現有的統計分析和機器學習工具。
在本節中,將討論AI工具的潛在架構。將涵蓋從面向操作員的界面到AI組件組合的設計。所提出的AI工具的整體架構可以在參考文獻[35]中看到,它需要三個主要組件,如圖6所示。
圖6:AI 工具的概念框架
未來的人工智能工具可能會將舊的基于模型或自上而下的方法與新的數據驅動的自下而上的方法結合起來。這種類型的系統允許人工智能工具擁有一個由數百或數千個專家派生規則以及數百萬條特定領域知識(如歷史傳感器數據)組成的知識庫[36]。一種可以結合領域專業知識和數據驅動學習的人工智能系統是回歸樹。圍繞回歸或分類樹構建用于空中威脅評估的AI工具將是一個不錯的選擇。回歸樹的另一個好處是它們的輸出可以被人類操作員解釋,并且可以解釋它的選擇。整個模型基于一系列決策或規則,這些決策或規則可以在操作員界面中作為理由提供。這使ADOs可以對AI工具提供的評估充滿信心,或者質疑為什么某個值的解釋與他們的解釋不同。
AI工具的前端組件將是所有ADO交互發生的地方。它將顯示可用信息和AI工具獲得的見解。它還將允許ADO與信息交互并形成自己的結論。此前端將需要分析ADO工作流程。在[4]中已經對美國海軍ADOs進行了采訪,并提出了許多不同的圖形顯示建議。前端應顯示計算出的軌道威脅等級,并為該評估提供證據和解釋。還應提供原始數據,以便ADOs可以確認AI工具的假設。盡可能以圖形方式呈現給用戶的概率,因為這會減少冒險行為[37]。前端還將通過使用強化學習來利用AI功能。應制定一項獎勵快速完成ADO活動的政策,例如將資源分配到目標軌道以保護資產。此RL算法將能夠決定用戶界面(UI)元素的放置位置以及UI上顯示的內容。如果將常見動作從菜單移動到主顯示屏增加了RL功能獲得的獎勵,那么ADO完成任務所用的時間將會減少。這確保了前端最終變得最優,并適合實際ADOs的工作流程。
人工智能工具后端的兩個不同元素之間存在區別。在AI中,該工具可以是正在學習的,也可以是經過全面訓練并準備好執行的。首先將檢查學習后端。無論是第一次訓練AI工具還是處于持續學習狀態,它都會利用學習后端。學習后端連接到包含歷史數據的知識數據庫,可用于提供數百萬對自下而上的人工智能技術有用的數據點。這是機器學習和決策樹將特別有效的地方。如果實施決策樹學習算法,它將能夠創建有助于根據歷史數據和決策對新目標進行分類的規則。這些規則還允許AI工具向ADOs解釋其輸出。
當工具準備好用于生產并與前端交互時,將使用正在執行的后端。這種執行就緒狀態將存儲自上而下或基于模型的人工智能的人類專家規則。該組件將是一個由學習后端輔助的專家系統。通過對ADOs的專業知識和對目標線索重要性的看法的采訪中獲得的數千條規則將使其成為AI組件。同時,通過將這些人工規則與通過機器學習在學習后端找到的規則相結合,可以優化值和預測。
一些功能性和非功能性需求可以從目前已知的用于威脅評估的AI工具中指定。更高級的要求應通過與未來ADO 客戶的面談來制定。
1.當傳感器或智能數據更新時,人工智能工具應攝取數據并進行訓練或預測。
2.AI 工具應為 ADO 定義的感興趣區域內的所有目標提供評估預測。
3.界面應提供評估說明并允許 ADO 交互。
4.AI 工具應提供自動模型訓練或新數據的重新訓練。
5.AI 工具應與 ADO 請求時可用的任何數據子集一起使用,并在新數據可用時合并它。
1.AI 工具應在數據可用后 100 毫秒內提取數據。
2.AI 工具必須處理每個實例和感興趣區域的數百個目標。
3.AI 工具應在 2 秒內提供 ADO 要求的特定威脅評估。
4.界面必須符合 ADO 偏好,并允許在 3 次點擊內訪問所有常用命令。
5.人工智能工具必須對缺失的數據做出強有力的反應,并繼續進行評估和學習。
本報告之后的下一步將是開發供ADOs用于空中威脅評估的AI工具。為完成此目標應采取的一系列步驟如下:
1.需求分析:人工智能工具開發人員應在威脅評估過程的每個階段與關鍵決策者坐下來。應采訪ADOs,以確保該工具滿足其工作模式和預期結果的所有要求。還應與流程早期的關鍵人員進行面談,以確保系統兼容性。這將包括傳感器和其他資產經理,他們可以確認系統輸出將如何格式化并提供給AI工具。人工智能工具完成分析后,需要以有用的格式輸出和存儲,因此依賴人工智能工具輸出的系統中的決策者應該分析他們的需求。
2.確定AI工具所需的組件:完成需求分析后,開發人員應決定哪些通用AI工具組件將需要,哪些可以省略(如果有的話)。可能還需要開發某些專門的組件來支持威脅評估和軍事環境所面臨的獨特挑戰。應該開發工具的架構,并為每個組件分配明確的職責。該架構還將受益于每個組件之間的嚴格輸入和輸出合同,以便數據可用于現有系統。
3.AI和ML組件的選擇和評估:架構和需求確定后,應該明確哪些類型的AI和ML適合該問題。每個可能涉及AI或ML的組件都需要提出和訓練多個候選人。然后將比較這些候選者,以確定哪個最有效地解決了獨特的要求。一旦選擇了最佳模型并選擇了正確的AI類型,所有模型將被移入生產環境并準備連接到AI工具中的其他組件。
4.文檔和培訓:一旦開發了最終的AI工具并通過代碼注釋和其他文檔工具正確記錄了文檔,就該開發外部文檔了。該文檔應傳達AI工具的實用性以及如何有效使用它及其功能。審查ADO要求將有助于為受眾塑造文檔。一旦開發了該工具,培訓會和從ADOs收集反饋將很有用。
5.集成到生產系統:人工智能工具將投入生產,以協助ADOs進行空中威脅評估。需要檢查智能管道中較早的系統和管道中較晚的系統之間的所有連接以確認兼容性。
6.監控和維護:隨著時間的推移,隨著新威脅或新情況的發現,人工智能工具將能夠得到更新和改進。無論是通過人工還是自動系統,持續監控AI工具以確保預測質量不會隨著時間的推移而降低,這一點很重要。通過使用新版本更新舊模型,也可以納入AI和ML研究的新改進。
人工智能工具是執行通常由人類處理的復雜任務的最先進方法。這為提高人類操作員的效率和有效性提供了許多可能性,例如執行高腦力任務的ADOs。威脅評估就是這樣一項非常適合人工智能協助的任務。重要的是要承認,人工智能工具不會取代操作員做出關鍵決策:相反,它們將為決策者提供更準確的數據,以有效地做出關鍵和及時的決策。
將ML集成到AI工具中可以帶來許多過去只能通過人類設計才能實現的新可能性。ML可以讓AI工具在沒有人類教授或者面對不斷變化的情境要求或敵人能力的情況下,從數據中學習。它可以重新設計AI工具交互,使其對 ADOs盡可能有用。它可以幫助將新目標與歷史示例進行聚類,從而為ADOs提供更好的威脅心理模型。可以自動檢測異常數據或空中目標并向操作員報告。
熟練和經驗豐富的ADOs與AI工具的結合將實現更快、更準確和更強大的空中威脅評估。通過讓人工操作員參與進來,該工具將保持ADO的責任和專業知識,同時提高生產力和效率。結合處理不完整數據狀態的現代方法也將使該工具對數據不準確或不可用具有魯棒性。
因此,該工具應該有助于國防和威脅評估過程。
人工智能領域的進展繼續擴大這組技術的潛在軍事應用范圍。本文探討了信任在人機聯合作戰中的關鍵作用,以及依靠人工智能來補充人類認知的潛在影響。如果依靠人工智能來準確處理傳感器數據,操作自主系統和平臺,或通過擬議的作戰概念(如以決策為中心的戰爭)提供有利的決策支持,設想機器智能的中央指揮和控制作用,那么信任機器智能將是未來作戰中的一個關鍵組成部分。鑒于這些技術和理論的發展,信任的概念對于機器智能在戰術和作戰層面的軍事行動中的使用變得高度相關,正確校準的信任水平是安全和有效行動的基礎。在簡要回顧了機器智能的最新進展和對信任概念的探索之后,本文概述了人工智能在戰場上的當前和潛在應用,以及由不充分或不合理的高信任度帶來的挑戰。
縱觀歷史,技術已經擴大了武裝沖突的領域,戰術交戰的節奏,戰場的地理范圍,以及指揮官與部隊溝通的手段。技術創新--包括軍事和民用--改變了軍隊的作戰方式以及國家計劃和進行這些沖突的方式。在21世紀,迄今為止,很少有進步能像統稱為人工智能(AI)的一組技術那樣獲得如此多的關注。人工智能正準備迎來一個新的時代,在這個時代,機器智能和自主性正在為軍事行動的規劃和執行產生明顯的新概念。算法戰爭可能會帶來一些獨特的東西:增強甚至取代人類決策過程的系統,其速度可能超過人類規劃者的認知能力。
新興技術的整合提出了任何數量的基本組織和倫理問題,值得關注。本文將采用定性的社會科學方法,重點討論人類-自治團隊(HAT)的一個重要方面:鼓勵對機器智能的適當信任程度。有大量的學術文獻關注自動化或機器人技術中的信任問題,但有關具體軍事應用的工作較少。當人工智能在聯合作戰中被實際部署時,在信任方面有哪些挑戰和機會?在簡要回顧人工智能和概述機器智能在戰場上的可能應用之后,本文在分析鼓勵適當信任水平的陷阱和潛在解決方案之前,探討了信任和信任校準的概念。
幾十年來,人類一直對賦予機器某種形式的人工智能的可能性著迷,Nils Nilsson將其定義為 "致力于使機器智能化的活動,而智能是使一個實體在其環境中適當運作并具有預見性的品質"。在數字時代的早期,出現了兩種廣泛的人工智能方法。自上而下的專家系統方法使用復雜的預編程規則和邏輯推理來分析一個特定的數據集。對于具有可預測規則的明確定義的環境--諸如分析實驗室結果或下棋等應用--專家系統或 "符號 "人工智能(基于符號邏輯)的性能主要取決于處理速度和算法的質量。另一大類使用自下而上的機器學習方法,模擬人類通過檢測數據中的模式進行學習的方式。神經網絡是一種以人腦為模型的機器學習形式,能夠通過使用多個(因此是 "深")人工神經元層來識別復雜的模式,是被稱為 "深度學習 "的技術的基礎。通過其在數據集中尋找關系的能力,這種技術也被稱為 "連接主義"。
自上而下、基于規則的符號系統和自下而上的機器學習連接主義技術之間的差異是很大的,特別是關于它們的潛在應用范圍和靈活性。深度學習方法的顯著特點是能夠將學習與它所訓練的數據集分開,因此可以應用于其他問題。基于規則的算法可以在狹義的任務中表現得非常好,而深度學習方法能夠迅速找到模式,并在 "蠻力 "專家系統計算方法無效的情況下有效地自學應用。最近的一些人工智能進展顯示了模仿創造力的能力,產生了有效的解決問題的方法,這些方法對人類來說可能是反直覺的。
然而,總的來說,人工智能仍然是狹窄的或 "脆弱的",即它們在特定的應用中功能良好,但在用于其他應用時仍然不靈活。與人類的認知相比,鑒于機器的計算速度遠遠超過人腦,機器智能在將邏輯規則應用于數據集時要優越得多,但在嘗試歸納推理時,它必須對數據集或環境進行一般性的觀察,這就顯得不足。大多數機器學習仍然需要大量的訓練數據集,盡管新的方法(包括生成對抗網絡(GAN)和 "小于一次 "或LO-shot學習)正在出現,需要非常小的數據集。圖像識別算法很容易被混淆,不能像人類那樣立即或直觀地理解情景背景。這種脆性也延伸到了其他問題,比如游戲。雖然人工智能在視頻游戲中經常表現出超人的能力,但他們往往不能將這種專業知識轉移到具有類似規則或玩法的新游戲中。
雖然人工智能技術繼續在變得更加適應方面取得重大進展,但任何接近人類的人工通用智能仍然難以實現。評估人工智能的近期前景因該技術的漸進式進展而變得更加復雜。圍繞著人工智能的炒作--在很大程度上被深度學習方法的成功所推動--既導致了對該技術未來的不切實際的期望,也導致了對其非常大的進展的正常化。正如一份報告所指出的,"人工智能將一項新技術帶入普通人的視野,人們對這項技術習以為常,它不再被認為是人工智能,而出現了更新的技術"。盡管象征性的人工智能和各種形式的機器學習構成了該領域最近的大部分進展,也許除了融合這兩種方法的嘗試之外,未來仍然不確定。一些人猜測,機器學習技術帶來的進展可能會趨于平穩,而另一些人則保持樂觀。相關的技術進步,如短期內的計算機芯片設計和長期內的量子計算,可能會影響進一步進展的速度。
美海軍部門從基于時間的維修到基于條件的維修+ (CBM+)的持續發展表明了提高艦隊武器系統操作可用性(Ao)的重要性。這一頂石采用了數字孿生(DT)與三維(3D)直接金屬激光熔化打印機相結合的數字效率概念,作為水面艦艇上的物理主機。DT為基于模型的系統工程與數字分析相結合提供了一種不可知的渠道,用于實時預測健康監測,同時改善預測維護。由于DT處于優先研發的前沿,3D打印機將增材制造的價值與動態船舶環境中的復雜系統相結合。為了證明DT具有提高物理主機Ao和最終目標任務的并行能力,開發了DT體系結構和高級模型。該模型聚焦于特定的打印機組件(去離子化[DI]水位、去離子化水電導率、空氣過濾器和激光電機驅動系統),以展示DT對CBM+的內在有效性。為了體現打印機適用性和性能的系統分析系統,應該評估更多的組件,并與船舶的環境數據相結合。此外,本文建議使用DTs作為連接更復雜武器系統的紐帶,同時使用更深層的實驗設計。
目前,美國海軍采用了持續或響應式維護戰略,以維持復雜防御系統的可用性(Ao)。特別是,這些維護策略是通過所謂的基于時間的維護(TBM)和糾正性維護來執行的。基于時間的維護需要定期檢查和/或維修部件,以確保故障不會發生在設計的使用壽命之前,這將影響Ao,因為系統停機。此外,糾正性維護是對組件或系統故障的一種反應,由于管理和后勤延遲時間,以及系統停機時間,會影響可用性。該項目的主要目標是為數字孿生(DT)開發一個體系結構和基本模型,在利用現有的預后健康管理技術的同時,探索維護策略從TBM到基于條件的維護+ (CBM+)的轉變。
為了探索在海軍水面艦艇上使用DT的概念,來自海軍研究生院(NPS)的一組學生檢查了當前可用或正在開發的DT能力,以及可能受益于DT使用的系統。該項目的范圍受到保密級別的限制,不超過受控非機密信息(CUI),這排除了對武器、戰斗和雷達系統的強調。此外,在CUI級以下的海軍系統的實際性能數據是不可用的,因此DT操作的概念是基于公開可用信息的研究發展起來的。為了解決分類約束和海軍非常感興趣的一個話題,增材制造(AM),該團隊探索了在水面艦艇上的三維(3D)打印機上應用DT系統。此外,為3D打印機創建一個DT體系結構,可以在海軍作戰獨特的動態環境中提供關于敏感、高精度系統的寶貴見解。該團隊通過創建架構和基本模型,確定了3D打印機的效率受益于DT。
一個操作視圖,或OV-1圖,這是一個高級的操作概念圖,被創建來說明這個頂點項目的操作概念(見圖1)。該圖描述了系統之間的系統交互,包括載人水面艦艇上的3D打印機,船上人員,混合云,衛星通信(SATCOM)和岸上支持,包括供應鏈系統。DT接收來自3D打印機的傳感器輸入,以及船上的環境數據,以預測必要的維護,以及打印部件的質量。包含DT的混合云存儲原始和處理過的數據,以維護歷史文物,并通過SATCOM或有線連接向船舶人員和岸上支持提供警報,當水面船只進入港口時。警報有助于向船舶人員提供有關即將進行的維修的必要信息,或提供岸上支持活動需要準備的部件,從而減少行政和后勤準備時間。
圖1:OV-1高級操作概念圖
該項目將焦點集中在一個特定的3D打印機模型上,以確定對DT架構至關重要的傳感器和數據的類型。該團隊選擇了一種打印機模型,這種模型目前在美國國防部的幾個實驗室使用,通用電氣的M2系列5。這臺打印機使用直接金屬激光熔化(DMLM)來制造打印。DMLM制造過程包括熔化金屬粉末顆粒,以創建超薄池,并在冷卻時固化(GE Additive 2021)。這種工藝生產的部件重量減輕,同時保持強度、耐久性和精度,以滿足海軍對部件的AM要求。DMLM 3D打印機的主要組成部分如圖2所示,包括激光器、焦透鏡、準直器、反射鏡、重拍刀片,以及供粉室、粉床搭建、用粉收集三個粉末室。準直器和焦距透鏡一起工作來聚焦激光。復蓋機刀片用于分散、磨平和壓平層間的金屬粉末。除了這些部件外,打印機在打印過程中還必須有優質的氣流,并保持惰性氣體環境;GE M2接口使用氮氣。該團隊專注于使用DT系統來利用3D打印機的嵌入式傳感器,以及放置在打印機和船艙中的傳感器,以確定影響系統可用性和打印部件質量的因素。
圖2:典型的激光電源床熔印機。
對于這個頂點項目,團隊決定最好遵循一個修改過的系統工程(SE)方法,如圖3所示,該方法包含一個計劃驅動的軟件過程,作為集成敏捷方法的基礎。這種混合過程允許團隊通過使用敏捷方法建立的迭代和協作環境,以及提供用于生成和細化需求的反饋,來增加整個設計和開發階段的靈活性和適應性。為了使這個頂點的重點與美國海軍(DON)建立的數字轉型戰略相一致,該團隊利用基于模型的系統工程(MBSE)方法來分解涉眾需求,制定概念設計,并在模擬操作環境中評估系統性能。MBSE的使用與DON數字轉換策略一致,通過使用標準語言創建相互關聯的模型,以提高系統的可追溯性和管理復雜性。
圖3:混合 SE 流程,計劃驅動的敏捷方法
MagicGrid方法是DT體系結構開發的主要過程。這種方法使用Cameo和系統建模語言(SysML)來定義問題和解決方案領域,概述了建模過程。這個頂點集中在問題領域,包括分解為兩個階段,黑盒透視圖和白盒透視圖,如圖4所示。每個階段都通過不同的透視圖來檢查問題,從而創建各種場景、表和圖來概述DT系統的結構、行為和功能。黑盒透視圖側重于通過創建用例和系統上下文圖對DT進行操作分析,而不需要指定DT系統的內部結構或行為。白盒透視圖通過為DT識別必要的行為和邏輯子系統來確定系統應該如何操作。此外,白盒透視圖建立活動、狀態機、塊定義和內部塊圖。
圖4:MagicGrid 問題域矩陣。
該團隊最初進行了一項利益相關者分析,其中考慮了將DT用于海軍系統的利益相關者。這些利益相關者的需求是基于主要贊助商(海軍水面作戰中心Hueneme港代碼00T)和NPS顧問的指導。利用涉眾的需求,進行了需求分析。基于DT系統的期望功能,分析確定了功能性/非功能性需求,以及外部接口。該團隊將DT系統的功能需求縮小為7個高級需求,如表1所示。
表1:高級功能需求表。
接下來,通過上下文關系圖、用例和場景的開發來說明系統的功能描述。系統上下文關系圖說明了與DT交互的用戶和外部系統。用例描述了DT實現涉眾目標所必需的功能。團隊開發DT體系結構的主要用例是執行DT函數。這個用例涵蓋了DT接收來自環境和3D打印機的傳感器數據,處理該數據,發送原始和處理過的數據進行存儲,并提供預測和警報。此外,還定義了一些有利于DON的有效性措施。這包括提高3D打印機的可維護性,提高打印部件的后勤保障性,以及提高打印部件的成功概率。
在確定系統完成任務所需的資源后,創建了DT系統功能的行為和結構圖。使用SysML圖,系統的動態行為被捕獲為功能分析和分配的一部分。功能分析包括一個自頂向下的過程,將系統級需求轉換為定義DT體系結構,以確保所有所需的系統功能都得到考慮。首先,在描述控制流和數據流程的活動圖中詳細說明了這一點。接下來,使用狀態機圖定義DT系統的各種系統狀態、轉換和事件。系統動作和狀態的確定有助于通過識別對系統執行必要功能至關重要的通用組件來識別邏輯子系統通信。我們創建了一個框圖來建立DT系統的輸入和輸出,其中包括傳感器數據、控制信號和能源。
隨著DT體系結構的開發,該團隊進行了研究,以確定哪些組件將受益于DT系統的應用。通過與利益相關方的互動和對3D打印機維護手冊的審查,確定分析的重點為以下部件/因素:去離子化(DI)水位、去離子水電導率、空氣過濾器和激光電機驅動系統。然后,該團隊創建了一個Excel模型作為基礎,以演示模型概念的證明。模型設計方法是基于所選部件的退化情況,因為3D打印機用于打印部件,比較了定期維護(TBM)和CBM的使用情況。基于Excel模型的結果表明,將DT系統應用于3D打印機,TBM的Ao值從90.56%提高到CBM的96.15%。這種可用性的增加是由于兩年期間預防性維護的數量減少。
在Excel模型的基礎上創建了一個ExtendSim模型,允許對Ao進行檢查,同時允許修改參數,如打印間隔時間和平均修復時間。對比TBM和CBM的結果表明,對于TBM, Ao在每次打印之間的時間間隔較短,這是因為3D打印機的部件更頻繁地出現故障,但仍需要進行定期維護。對于TBM來說,隨著每次打印間隔時間的增加,部件故障的影響似乎逐漸減弱,因為計劃維護的一致性,而每個部件的故障減少。相比之下,在每次打印之間較短的時間內,CBM的Ao大約高出5%,這是因為只有在部件出現故障時才進行維護。此外,隨著每次打印間隔時間的增加,由于無需進行預防性維護,使用CBM的Ao以穩定的速度增加。
在 3D 打印機上實施 DT 系統的效果表明,過渡到 CBM 方法通過減少系統停機時間改進了海軍目前使用的維護方法。從使用 TBM 到使用 DT 系統的 CBM 過渡,通過增強對系統條件和性能的了解,從根本上改變了維護理念從主動到被動。進行成本分析以補充模型并確定通過實施 DT 系統可以實現的成本節約。以維護手冊為指導,確定在兩年的時間里,僅更換空氣過濾器所節省的成本大約減少了 78 小時的人工和 4500 美元的維護成本。
建模和仿真工作與成本分析相結合,確定在3D打印機上實現DT系統,證明了系統可用性的改善,同時降低了與維護相關的成本。本文的研究范圍主要集中在如何利用CBM+改善Ao;因此,小組沒有探討各種主題和傳感器,而是將其確定為DT發展將受益的未來工作領域。進一步的分析證明,需要連接更多的內部和外部傳感器的數據收集計劃。為了充分了解環境因素和3D打印機如何影響性能指標,未來的工作應該包括方差分析(ANOVA)。將數據分析和歷史數據結合到實驗方法的標準設計中,提出了響應變量和關鍵因素,能夠為水面艦艇上的3D打印機提供方差分析。此外,DMLM過程將受益于額外的傳感器和環境數據輸入到DT。DT受益于數據收集的歷史部分,利用歷史性能、實時評估和預測性維護。當這些額外的傳感器與機器學習相結合時,將有助于更好地預測所需的維護、單個打印質量,并幫助任務規劃/性能。未來研究的其他主題包括混合云集成到艦隊和確保數據傳輸安全。
將多個領域的軍事能力融合以提高效能的學說預示著國防的新時代,其特點是能夠承受更高的作戰規模和節奏,這得益于戰場自動化和協作水平的提高。然而,要獲得這些技術進步的潛在好處,前提是要找到應對無數挑戰的成功解決方案,以便在競爭環境中實現智能、異構、交互資源的更高效和可擴展的操作。換句話說,提高防御能力的自動化和協作需要更智能的“戰場操作系統”——一個在排除人類參與時間尺度上管理復雜自動化任務的系統,同時賦予作戰人員足夠的控制權。我們將此操作系統稱為戰場物聯網 (IoBT)。
在本文中,我們將重點關注維護 IoBT 所依據的三個優勢原則(在現代沖突中)所面臨的挑戰。即,
(i) 時間是武器;贏家是那些將傳感器和行動者之間的延遲最小化的人
(ii) IoBT 是一個戰斗網絡;所有功能都必須經受住主動、堅定和技術成熟的對手
(iii) 需要機器智能;需要一種新型的 AI 解決方案,可以快速預測到需要的點,在那里它們可以在嚴酷的現場操作環境中生存,而不是將 AI 限制運行在更高級別數據中心的解決方案中。
戰場物聯網協作研究聯盟(由政府和學術界研究機構組成的聯盟,由美國陸軍作戰能力發展司令部資助,稱為 DEVCOM,陸軍研究實驗室 (ARL))針對上述挑戰制定的解決方案是討論了:
我們特別關注涉及機器自動化和危害人工智能本身的威脅。雖然國防科學在研究保護有形資源的解決方案方面有著悠久的歷史,但一旦自動化進入循環并被依賴作為手動操作的優越替代方案,自動化或人工智能 (AI) 就需要同樣強調保護,因為它對作戰優勢至關重要。因此,戰場物聯網解決的一個關鍵挑戰是保護 IoBT 本身的效率、功效和完整性。
圖1:多域作戰(MDO)效應循環圖
圖2:分布式虛擬試驗場(DVPG)的概念架構
?
對于群體智能中的人類操作員來說,關鍵情況下的決策支持至關重要。自主系統共享的大量數據很容易使人類決策者不堪重負,因此需要支持以智能方式分析數據。為此,使用了用于評估情況和指示可疑行為或統計異常值的自主系統。這增強了他們的態勢感知能力并減少了工作量。因此,在這項工作中,強調為檢測監視任務中的異常而開發的數據融合服務,例如在海事領域,可以適應支持集群智能的運營商。此外,為了使人類操作員能夠理解群體的行為和數據融合服務的結果,引入了可解釋的人工智能 (XAI) 概念。通過為某些決策提供解釋,這使得自主系統的行為更容易被人類理解。
作者解決了由于自主系統共享大量數據而導致的信息過載問題。為了緩解這個問題,他們建議通過兩種智能數據分析方式來幫助人類操作員。第一種方法是自動異常檢測,這可能會加強人類操作員的 態勢感知SA 并減少他們的工作量。第二種方法是可解釋的人工智能 (XAI) 概念;它們有可能使群體行為以及異常檢測結果更易于理解。
作者認為,控制一群無人機仍然具有挑戰性。一方面,(半自動化)群體代理“必須決定行動方案”;另一方面,人類操作員必須決定他們的行動,例如與群體互動。提出的建議力求改善人在循環中。考慮到海上監視的應用,使用非固定代理的動態方法具有幾個優點。首先,某些場景只能使用動態方法進行管理;其次,與固定監視傳感器相比,代理更便宜;第三,在多個地點靈活使用代理可以減少操作群體所需的人員數量。然而,情況評估仍然需要知情的操作員。
作者認為,在海洋領域用于船舶分析的異常檢測算法可能適用于引入以下場景的群體。“假設我們有一個群體來支持海上船只,這些船只不僅會收集它們自己的傳感器系統可用的數據,還會收集所有資產的數據。所有來源收集的信息都需要融合成一幅連貫的畫面。這不應僅限于 JDL 數據融合的第一級,而應包括更高級別的數據融合過程,以獲取有關附近所有對象的可用信息。” 數據驅動的方法能夠應對這種情況。文獻提供了三種檢測位置和運動異常的方法:統計解釋為與正常行為相比的異常值;聚類分析聚類相似的軌跡和確切的路線;用于建模正常移動模式的深度學習方法。為了應對更復雜的場景,包括船舶周圍環境(基礎設施、地理、天氣等)在內的算法是必要的。在某些復雜異常的情況下,區分正常和異常行為需要基于規則、基于模糊、多智能體或基于概率圖形模型的算法。對于所有提到的算法類別,作者都指出了大量的示例算法。
一些算法是黑盒模型,因此,它們的解釋對于人類操作員來說是復雜的。XAI 概念可以幫助緩解這個問題。XAI 概念旨在“提供道德、隱私、信心、信任和安全”,并努力在“它已經做了什么、現在正在做什么以及接下來會發生什么”中明確決策。,從而提高了人工操作員的 SA。考慮到 XAI 模型,模型特定方法(僅限于某些數學模型)可以與模型無關(適用于任何類型的模型)方法區分開來。
在目前的貢獻中,重點是與模型無關的方法。考慮到這些,局部解釋方法(解釋整個模型的單個預測結果)可以與全局解釋方法(解釋整個模型的行為,例如以規則列表的形式)區分開來。此外,作者使用特征屬性、路徑屬性和關聯規則挖掘來區分方法。通過特征屬性,“用戶將能夠了解他們的網絡依賴于哪些特征”;方法示例是提供全局和局部可解釋性的 Shapley Additive Explanations (SHAP) 和指示“模型在進行預測時考慮的輸入特征” 的局部可解釋模型無關解釋 (LIME)。路徑集成梯度(PIG,使用局部解釋)等路徑屬性提供了對模型預測貢獻最大的特征,從而深入了解導致決策的推理。關聯規則挖掘(ARM)是另一種使用全局解釋的方法,發現大型數據集中特征之間的相關性和共現。ARM 方法使用簡單的 if-then 規則,因此被認為是最可解釋的預測模型。可伸縮貝葉斯規則列表 (SBRL)、基尼正則化 (GiniReg) 和規則正則化 (RuleReg) 技術被認為適用于監視任務。
作者認為,使用這樣的 XAI 概念,人類操作員(決策者)可以更好地理解、更好地控制和更好地與一群自主代理進行通信,尤其是在具有挑戰性的環境中。總而言之,將異常檢測和 XAI 概念這兩種方法應用于人類在環、用戶對群體智能的理解和信任可能會得到改善。
在決定是否減輕或接受網絡攻擊對武器系統的風險時,最重要的考慮因素是它如何影響作戰任務——也稱為任務影響。然而,對整個空軍的每個系統和所有任務進行全面評估是不切實際的,因為每個系統都很復雜,有大量潛在的漏洞需要檢查,每個漏洞都有自己復雜的威脅環境。
進入網絡任務線程分析框架。為了分析任務影響,作者提出了這種旨在同時實現幾個目標的新方法:足夠全面,可以在美國空軍的每個任務的規模上執行,但信息量足以指導決定接受或接受減輕特定風險。此外,該方法非常簡單,可以在不超過幾個月的時間內執行,并且可以根據需要進行更新。
該框架遵循自上而下的方法,從捕獲所有關鍵任務元素的整個任務的“線程”(映射)開始,然后是支持其執行的系統。雖然作者并未將網絡安全風險評估問題簡化為交鑰匙解決方案,但他們提出了有用的方法來分類與任務成功最相關的領域,同時將對漏洞和威脅的詳細調查限制在最關鍵的領域。他們的框架旨在大規模完成,適用于各種場景,并明確其工作方式。
00 報告研究的問題
01 主要發現
1.1 在合理的資源支出下分析大規模的任務影響是一個主要的挑戰
1.2 隨著新系統的引入、舊系統的修改以及戰術、技術和程序的發展,執行任務的方式發生了變化
1.3 網絡空間的特點之一是冗余無效
1.4 失去指揮和控制可能會在沒有任何系統或組件故障的情況下損害任務
1.5 當決策者不了解分析的工作原理時,他們通常會恢復直覺和判斷
02 建議
要大規模執行任務影響評估并節省工作量,請使用系統工程熟悉的方法和可用于分類的任務關鍵性標準組合。
定義任務時,不要包含任何系統。在分析的后期介紹特定系統的作用。
將隨著時間推移相對穩定的工作與需要在系統生命周期中更新的分析分開。
盡可能使用現有的和經過驗證的技術以保持透明,以便決策者了解分析的工作原理及其局限性,并信任它來指導決策。
應用網絡分離的概念來解決冗余問題。
在任務和系統級別合并功能流程圖,以解決對手指揮和控制分析問題。
為了全面驗證和驗證網絡任務線程分析框架,空軍應該在各種不同的任務中應用和測試它。
03 報告目錄
第一章
評估武器系統網絡安全風險的一些注意事項
第二章
評估任務影響的原型框架
第三章
框架的討論