亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在決定是否減輕或接受網絡攻擊對武器系統的風險時,最重要的考慮因素是它如何影響作戰任務——也稱為任務影響。然而,對整個空軍的每個系統和所有任務進行全面評估是不切實際的,因為每個系統都很復雜,有大量潛在的漏洞需要檢查,每個漏洞都有自己復雜的威脅環境。

進入網絡任務線程分析框架。為了分析任務影響,作者提出了這種旨在同時實現幾個目標的新方法:足夠全面,可以在美國空軍的每個任務的規模上執行,但信息量足以指導決定接受或接受減輕特定風險。此外,該方法非常簡單,可以在不超過幾個月的時間內執行,并且可以根據需要進行更新。

該框架遵循自上而下的方法,從捕獲所有關鍵任務元素的整個任務的“線程”(映射)開始,然后是支持其執行的系統。雖然作者并未將網絡安全風險評估問題簡化為交鑰匙解決方案,但他們提出了有用的方法來分類與任務成功最相關的領域,同時將對漏洞和威脅的詳細調查限制在最關鍵的領域。他們的框架旨在大規模完成,適用于各種場景,并明確其工作方式。

00 報告研究的問題

  • 評估整個空軍的任務影響或網絡安全風險有哪些挑戰?
  • 網絡攻擊的風險與其他任務風險有何不同?
  • 從任務影響的角度來看,網絡問題的哪些方面提出了必須解決的獨特挑戰?

01 主要發現

1.1 在合理的資源支出下分析大規模的任務影響是一個主要的挑戰

  • 即使是狹義的任務也需要大量的系統,而且每個系統都可能相當復雜。
  • 在美國空軍的每項任務中增加一項任務的復雜性,要評估的系統數量變得不可行。

1.2 隨著新系統的引入、舊系統的修改以及戰術、技術和程序的發展,執行任務的方式發生了變化

  • 對系統的更改會導致系統漏洞的更改,同時威脅也會演變。
  • 隨著任務、漏洞和威脅的變化,必須重新檢查風險評估。

1.3 網絡空間的特點之一是冗余無效

  • 冗余并不能提供抵御網絡攻擊的穩健性。
  • 冗余組件具有共同的網絡攻擊漏洞。

1.4 失去指揮和控制可能會在沒有任何系統或組件故障的情況下損害任務

  • 對手操縱指揮和控制的脆弱性是另一種特殊的網絡效應。
  • 這種類型的網絡效應通常不會在系統工程中用于安全的技術中捕獲。

1.5 當決策者不了解分析的工作原理時,他們通常會恢復直覺和判斷

  • 分析工具越不透明,就越被視為“黑匣子”,越不可信。
  • 這種反應提出了透明的動機,以便可以信任該方法來指導決策。

02 建議

  • 要大規模執行任務影響評估并節省工作量,請使用系統工程熟悉的方法和可用于分類的任務關鍵性標準組合。

  • 定義任務時,不要包含任何系統。在分析的后期介紹特定系統的作用。

  • 將隨著時間推移相對穩定的工作與需要在系統生命周期中更新的分析分開。

  • 盡可能使用現有的和經過驗證的技術以保持透明,以便決策者了解分析的工作原理及其局限性,并信任它來指導決策。

  • 應用網絡分離的概念來解決冗余問題。

  • 在任務和系統級別合并功能流程圖,以解決對手指揮和控制分析問題。

  • 為了全面驗證和驗證網絡任務線程分析框架,空軍應該在各種不同的任務中應用和測試它。

03 報告目錄

第一章

評估武器系統網絡安全風險的一些注意事項

第二章

評估任務影響的原型框架

第三章

框架的討論

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

摘要

網絡空間是當前軍隊必須應對的威脅環境之一。特別是,社交網絡已經成為一個重要的影響場景,用戶在其中也透露了大量的心理信息。本文的目的是確定對社交網絡中行為的分析是否可以被確立為對用戶個性的有效間接測量,以及找出這是否可以成為軍隊的有用工具。為此,我們對5個數據庫(PsycInfo、Web of Science、Scopus、Psicodoc和PubMed)中存在的研究進行了系統回顧,選擇了那些基于大五模型的文章。在找到的194篇文章中,共對過去10年中發表的36篇論文進行了深入分析,這些論文對應于20個國家。結果顯示,社交網絡中呈現的行為與用戶自我報告的個性相吻合。此外,某些與 "大五模型 "中的因素相關的在線行為模式可以被識別出來。這種分析技術已經證明了它的可靠性和有效性,揭示了它能夠補充和擴展傳統的自我報告或熟人報告措施。它也可能構成軍隊感興趣的工具,旨在提高部隊的可操作性。

引言

2014年,劍橋大學心理學教授Aleksandr Kogan開發了一款名為 "這是你的數字生活 "的應用程序。通過Facebook,這個應用程序為用戶提供了完成一系列問題的可能性,目的是確定他們的個性。據估計,科根教授發起的這個項目總共獲得了超過7800萬社交網絡用戶的個人信息(Hindman, 2018)。

這些數據被劍橋分析公司購買,后來得知,這些數據被用來影響2016年美國總統選舉的投票意向,(Sampedro, 2021)。就該公司當時的首席執行官亞歷山大-菲克斯而言,了解選民的個性使他們在某種程度上能夠預測他們的行為,并以此設計一系列的信息,以操縱態度和改變投票行為(Hindman,2018)。

拋開這些數據的濫用所引起的爭議,很明顯,我們正處于人類行為研究的變革時期。對傳統環境的經典觀察現在正在向互聯網和新技術領域轉移,也提供了新的可能性,而且正如在劍橋分析公司的案例中所看到的,對社會現象產生了強大的影響。

圖一
付費5元查看完整內容

2021年3月,美國哈德遜研究所國防概念與技術中心發布研究報告《實施以決策為中心的戰爭:提升指揮與控制以獲得選擇優勢》,提出以決策為中心的戰爭將使美軍做出更快、更有效的決策,從而賦予美軍更大的競爭優勢

序言

自冷戰結束以來,美國國防部(DoD)針對來自主要對手(如中國、俄羅斯和朝鮮等)的巨大軍事沖突發展了相應理論和能力。這些最壞的情況是為了確保美軍也能應對“較少的情況”。然而,這種方法偏重于為大規模、高強度軍事沖突設計的概念和系統,美國的智能對手不太可能向美軍挑起對抗,而國防部可以在力量投射或精確打擊等任務中發揮其優勢。

美國的對手在過去十年中已經發展出了抵消美國軍事優勢的方法,如中國和俄羅斯的灰色地帶或混合行動,這些方法以較低的成本和升級——盡管比傳統的軍事作戰時間更長——獲得目標。因此,國防部應修訂其規劃,提高新方案的優先級,這些方案以不同于戰區范圍內高強度作戰的方式給美軍施加壓力,如通過延長時間、不同程度的升級和規模,以及使用代理和準軍事力量。

中國的“系統破壞戰”概念和俄羅斯軍方的“新一代戰爭”概念是針對美國及其盟友的新方法的代表。雖然它們的制勝理論和方法大相徑庭,但這兩種概念都有一個共同點,即把信息和決策作為未來沖突的主戰場。它們從電子和物理上直接攻擊對手的戰斗網絡,以降低其獲取準確信息的能力,同時引入虛假信息,削弱對手的定向能力。同時,軍事和準軍事力量將通過孤立或攻擊目標的方式向對手提出難題,以中和對手的戰斗潛力,控制沖突的升級。

美國海軍如何重新平衡實施 "馬賽克戰 "部隊的例子

決策中心戰的興起

以決策為中心的概念,如系統破壞戰和新一代戰爭,很可能成為未來沖突的重要形式,甚至是主要形式。在冷戰后期,美軍革命性的精確打擊戰方式利用了當時的通信數據鏈、隱身和制導武器等新技術。同樣,以決策為中心的戰爭可能是軍事上利用人工智能(AI)和自主系統的最有效方式,這些技術可以說是當今最突出的技術。

以決策為中心的戰爭的一個例子是國防高級研究計劃局(DARPA)的馬賽克戰爭概念。馬賽克戰爭概念的中心思想是,由人類指揮指導的、具有人工智能功能的機器控制的分列式有人和自主單位可以利用它們的適應性和明顯的復雜性來延遲或阻止對手實現目標,同時破壞敵人的重心以排除進一步的侵略。這種方法與機動戰一致,不同于第二次世界大戰期間盟軍采用的基于損耗的戰略,也不同于冷戰后美軍在科索沃、伊拉克和利比亞沖突中采用的戰略。雖然馬賽克戰爭采用損耗作為給敵人制造困境的一部分,但其實現成功的主要機制是拒絕、拖延或破壞對手的行動,而不是削弱對手的軍事實力,使其無法再有效作戰。因此,馬賽克戰爭非常適合作為現狀軍事大國(如美國)尋求遏制侵略的概念。

在近期兵棋推演中,馬賽克部隊與傳統軍事部隊在任務完成情況的比較

馬賽克戰爭提出了一種部隊設計和指揮控制(C2)程序,與今天的美軍相比,它將使美軍能夠執行更多、更多樣化的行動方案(COA)。馬賽克部隊的分解結構和使用人類指揮與機器控制,將使對手的決策復雜化,縮小其選擇范圍,并施加一系列可能無法解決的困境。通過增加美軍指揮官的選擇權,減少敵方的選擇權,馬賽克戰法將尋求獲得“選擇權優勢”,使美軍能夠做出更快、更有效的決策。

選擇性戰略與以預測為中心的規劃方法形成鮮明對比,在這種規劃方法中,選擇最有可能導致成功的作戰行動方案并迅速實施,通過將與未選擇的作戰行動方案相關的系統和兵力要素分配給其他任務來提高效率。在以預測為中心的模式中,資源的早期承諾必然會限制指揮官今后的選擇空間。

與今天的美軍相比,馬賽克部隊的設計和C2過程可以在選擇權競爭中提供更大的優勢,因為隨著對抗或競爭的進展,可以緩解由于損失或敵方態勢感知的改善而導致的選擇權減少的自然趨勢。例如,“馬賽克”部隊可以更容易地隱藏具有反ISR能力的平臺或編隊,并在以后暴露出來,以實現新的選擇;利用數量更多、規模更小、成本更低的增援部隊;或依靠決策支持工具,允許繼續使用與高級指揮官物理或電子隔離的部隊。

圖:以網絡為中心的戰役空間架構與基于情境的戰役空間架構的特點比較

一支馬賽克部隊也將比今天的美軍更有能力進行縮小對手選擇范圍的行動。通過同時發起許多行動并加速其決策,一支使用人類指揮和機器控制的分布式部隊可以給對手造成足夠的困境,從而排除與作戰相關的數量的《作戰協議》。此外,馬賽克部隊還可以利用諸如分配、佯攻和探測等欺騙技術以及反ISR系統來補充其更大的規模和決策速度,這些技術可以使對手相信某些選擇不可行或不可能成功。

雖然國防部的C3結構,如混合和聯合全域指揮和控制(CJADC2)開始納入決策支持工具,為特派團整合效應鏈,但其目前和近期的實例旨在支持有效的火力投送,而不是持續的可選性。此外,與CJADC2相關的C2和通信(C3)舉措,如高級戰役管理系統(ABMS),需要提前確定架構和組件系統。因此,CJADC2在其能夠提供的可選性方面將受到固有的限制。

圖:C2實施方法的比較

通過C3實現選擇權

第一步是壓縮空間的表征,重點放在時間的表征上。以一個作戰人員在短時間內的行動為例,在這個例子中,一個作戰人員的任務是收集指定地點的圖像。這在操作上是不現實的情況,只是用一個簡單的案例來說明這個概念。

在C3組合中,國防部已經在通信復原力方面進行了大量投資。因此,大部分新的努力和資源應該應用于C2能力。盡管美國軍方投資于所謂的C2系統,但這些項目主要是操作中心和軟件堆棧,作為在部隊中傳遞數據、信息、命令或權限的基體。盡管對管理部隊來說是必要的,但目前國防部的C2系統——將C2看作是連接——并不是決策支持系統,后者將C2看作是一個過程。

圖:在馬賽克C2方法中采用OODA循環

用于以決策為中心的戰爭的C3能力需要做的不僅僅是實現連接。例如,C2工具將需要生成能創造和維持可選擇性的COA,以提高適應性,并將復雜性強加給對手。為了幫助初級領導人執行任務指揮,C2工具還需要了解哪些單位在通信中,他們在潛在的COAs中的作用,并配置網絡以確保所需單位與適當的指揮官保持一致。為了評估這些要求和以決策為中心的C3的其他要求,本研究采用了多種視角,如下所述。

  • 棧式視角:與互聯網一樣,以決策為中心的C3架構需要有物理媒介來進行數據移動;需要網絡結構來管理指揮官、傳感器和效應器之間的數據移動;需要信息架構來將數據組織成有意義的形式;需要評估信息的應用程序,如決策支持工具。目前的技術可以滿足這些需求,但無法在追求選擇優勢的同時,在對抗性環境中實現部隊和網絡的動態組成和重新配置。

圖:以預測為中心和以決策為中心的選擇空間隨時間變化的比較

  • 網絡視角:要實現可選擇性和實施以決策為中心的戰爭,就需要有能力使C2結構與現有通信保持一致,而不是試圖建立一個在面對敵方協同干擾和物理攻擊時仍能生存的網絡。這些需求導致了一種混合架構,這種架構將網絡方式與分層方式結合起來,可以被定性為 "異構"。這種拓撲結構將使指揮權與合格的人類操作者占據的節點中具有最高程度的節點相一致。

  • 解決問題的視角:與從頭開始處理每個新情況相比,使用類比推理的問題解決過程可以更迅速地評估潛在的備選方案,由此產生的決策空間的增加可以使指揮官將限制其備選方案的作戰行動協議推遲到最后一刻。此外,如果使用人工智能支持的算法在沒有監督的情況下建立COA,對手可以通過佯攻和探測來影響算法的學習,使系統認為COA是成功的,如果不是對手的行動,實際上會失敗。

圖:來自DARPA PROTEUS計劃的分析和用戶界面,AI輔助規劃

  • 時間視角:可選性的概念適用于多個時間尺度,從戰略到工業能力發展和部隊的戰術行動。C3架構的能力應該有助于擴大每個時間尺度上的努力所帶來的決策空間,而不是僅僅在任務期間。

  • 組織視角:國防部的C3架構不是在真空中存在的。各組織的人員必須通過戰略、工業、作戰和戰術時空的流程來運用這些架構。可選性是在以決策為中心的戰爭中獲得優勢的關鍵,但如果僅僅是派出一支更分散的部隊和使用它的工具,如果這支部隊的使用方式很狹窄,為每個單獨的行動提供最高的成功概率,那么只能稍微增加美軍的復雜性和適應性。需要決策組織和程序,盡可能長時間地擴大指揮官的選擇空間。

今天的戰斗指揮官(CCDR)參謀部缺乏組織和程序,無法為即將到來的任務以各種不同的配置組合部隊。為了能夠在任務時間內組成部隊,國防部可以采用類似于將計算機程序編譯成可執行代碼的方法。軟件指令是用較高層次的計算機語言編寫的,但在軟件被計算機處理器執行之前,需要將其轉換成二進制形式。這種方法將從決策支持系統的COA開始,然后組合適當的單位來支持行動。雖然部隊構成主要是以硬件為中心,但也需要在技術棧的信息層和網絡層進行部隊包的軟件構成。

圖:從人工構成到決策中心戰的任務整合浪潮

結語

美軍將需要采用新的部隊設計和C2流程,以實現以決策為中心的戰爭,但如果不與工具和組織結合起來,以充分利用使用人類指揮和機器控制的更分散的部隊中可能存在的可選性,這些努力將付諸東流。

目前國防部通過CJADC2和相關的作戰概念努力使美軍向更分散的組織和更分散的能力發展,這是實現更以決策為中心的軍事行動方法的重要一步。高級戰斗管理系統(ABMS)和DARPA的幾個項目正在開發C2工具和流程,這些工具和流程將增加指揮官使用這些更分布式部隊的可選性。國防部的部隊設計變革或C3舉措將需要更進一步,以便美軍在面對已經躍升到以決策為中心的戰爭并擁有主場優勢的同行對手時保持可選擇性優勢。

也許更重要的是,將需要新的組織和程序,使CCDR能夠在戰區組成和整合分散的部隊,并改變國防部定義需求和發展新能力的方式。如果不對國防部的需求和部隊發展程序進行重大改革,美軍就有可能在爭奪決策優勢的競爭中落后于對手,從而威脅到其保護美國利益和盟友免受大國侵略的能力。

(參考來源:軍事文摘作者:張傳良)

付費5元查看完整內容

摘要

現代戰爭的特點是復雜性越來越高,敵手聰明且技術優良。為了解決現代戰爭的一些復雜性,基于機器學習(ML)的技術最近為戰場上的自動化任務提供了合適的手段。然而,配備了ML技術的聰明敵人不僅在戰場上參與公平競爭,而且還利用欺騙和隱蔽攻擊等策略,制造惡意方法來破壞ML算法,獲得不公平的優勢。為了應對這些威脅,自動化戰場系統上使用的ML技術必須能夠強大地抵御敵方的攻擊。

我們在一種稱為“示范學習”(LfD)的強化學習算法的背景下,分析了競爭場景中的對抗學習問題。在LfD中,學習智能體觀察由專家完成的操作演示,以學習快速有效地執行任務。LfD已成功應用于軍事行動,如使用機器人團隊進行自主搜索和偵察,或自主抓取拆除簡易爆炸裝置。然而,惡意的敵人可以通過植入敵對的專家來利用LfD,這些專家要么給出不正確的演示,要么修改合法的演示,從而使學習智能體在任務中失敗。為了解決這個問題,我們首先分析了在LfD框架內對抗專家可以使用的不同的演示修改策略,根據對手的修改成本和修改學習代理對任務性能的影響。然后,我們提出了一個新的概念,利用對手和學習智能體之間的博弈,學習智能體可以使用LfD從潛在的對手專家演示中戰略性地學習,而不顯著降低其任務性能。在AI-Gym環境中,我們對提出的魯棒學習技術進行了評估,該技術通過對雅達利類游戲“LunarLander”中的專家演示進行對抗性修改。

圖1所示。(左)使用LfD學習自動駕駛設置時敵對軌跡對策略的影響。(右)在我們提出的方法中,干凈(綠色)和對抗(紅色)軌跡首先是等分的。然后,在使用選項(金虛線)接受或拒絕軌跡部分后,對每個分區學習策略,或對未分區的軌跡使用傳統的強化學習(藍虛線)。

對抗性專家演示框架

我們考慮這樣一個場景,學習智能體必須通過從專家給出的任務演示(LfD)中進行強化學習來在環境中執行任務。一些專家可能是敵對的,并修改軌跡演示的意圖,使學習智能體不能正確執行任務,而遵循修改的演示。在本文的其余部分中,為了便于閱讀,我們將對抗性專家稱為專家。LfD框架采用馬爾可夫決策過程(MDP)[12]進行形式化。LfD算法的輸出是一個策略,該策略為執行任務提供狀態到動作映射。RL通過一個叫做訓練的過程學習策略,在這個過程中,它探索環境,觀察在探索過程中收到的狀態-行為-獎勵配對,最后選擇一系列導致更高期望獎勵的狀態-行為-獎勵配對作為它的策略。

專家們的演示以被稱為軌跡的狀態-行動-獎勵元組序列的形式給出。專家軌跡可能是良性的,也可能是敵對的。良性和敵對的專家軌跡分別展示了完成任務的正確和不正確的方式,并幫助或阻礙了學習智能體學習執行任務。專家演示被整合到智能體的學習中,使用名為DAGGER[1]的LfD算法執行任務。DAGGER使用來自專家演示軌跡的監督學習來學習策略,但添加了一個權重參數β,該參數表示學習主體在將軌跡納入其學習策略時的權重或信任度。

算法1。學習器用來接受或拒絕軌跡演示的算法。

算法2。由專家用來修改干凈軌跡的算法。

付費5元查看完整內容

當前的海軍作戰要求水手們根據動態作戰環境中的不確定態勢信息做出時間緊迫和高風險的決策。最近的悲慘事件導致了不必要的傷亡,海軍行動中涉及決策復雜性,并特別突出了 OODA 循環(觀察、定向、決策和評估)中的挑戰。涉及使用武器系統的殺傷鏈決策是 OODA 循環中一個特別緊張的類別——具有難以確定的意外威脅、縮短的決策反應時間和致命的后果。有效的殺傷鏈需要正確設置和使用船上傳感器;未知接觸者的識別和分類;基于運動學和智能的接觸意圖分析;環境意識;以及決策分析和資源選擇。

該項目探索了使用自動化和人工智能 (AI) 來改進海軍殺傷鏈決策。該團隊研究了海軍殺傷鏈功能,并為每個功能制定了特定的評估標準,以確定特定 AI 方法的功效。該團隊確定并研究了 AI 方法,并應用評估標準將特定的 AI 方法映射到特定的殺傷鏈功能

圖:利用人工智能改進海軍殺傷鏈的作戰概念

總結

當前的海軍行動通常是快節奏的、關鍵的,并且需要做出高風險的決策,這些決策有時基于非常動態的戰區中的不確定信息。許多例子強調了提高決策效率的必要性以及減輕觀察團隊負擔的必要性。缺乏上述情況的例子包括 2017 年的菲茨杰拉德號航空母艦 (DDG 62) 和 MV ACX Crystal相撞,以及 2009 年皇家港口號航空母艦 (CG 73) 的擱淺。一些根本原因是相關人員缺乏經驗、疲勞和壓力.

上述事故展示了軍事行動的難度,并展示了 OODA(觀察、定向、決策和評估)循環中的挑戰(Jones 等人,2020 年)。人為錯誤、人的認知限制和海軍作戰固有的決策復雜性導致了 OODA 循環中的挑戰,更具體地說,是殺傷鏈過程中的挑戰。

現代戰斗空間由來自常規陸地、空中和海洋等多個領域以及來自太空和網絡空間的大量數據組成。決策者需要考慮許多因素,包括交戰規則 (ROE)、要使用的武器、傳感器和意圖評估。發現、修復、跟蹤、瞄準、參與、評估 (F2T2EA) 殺傷鏈模型緩解了該過程的一些困難(參謀長聯席會議,2013 年)。人工智能 (AI) 和機器學習 (ML) 可以通過分析備選方案和使用評估標準將 AI 方法映射到殺傷鏈功能,從而幫助海軍在戰術領域做出殺傷鏈決策。這是在本報告的五個章節中分三個階段完成的。

本報告利用了數百個資源,主要利用了美海軍研究生院 AI-OODA 團隊在其 Capstone 報告(2020 年)中進行的先前研究,“利用人工智能 (AI) 進行空中和導彈防御 (AMD):以結果為導向的決策援助。”他們將他們的工作與 John Boyd 的觀察、定向、決定和行動決策框架相結合。作為他們分析的初步步驟,AI-OODA 團隊將特定的 OODA 功能明確且緊密地耦合到特定的 F2T2EA 功能。然而,本報告斷言 OODA 循環是一個決策循環,它嵌套在殺傷鏈的每個功能中,而不是在高壓力或低壓力情況下專門映射到一個或多個殺傷鏈功能。團隊基于 F2T2EA 模型開發了一組 28 個殺傷鏈功能。

在制定將 AI 方法映射到殺傷鏈的評估標準時,很難確定一個好的決策,這對于決策評估至關重要。在評估決策時,必須考慮選擇行動時的知識意識狀態以及解釋能力。使用了幾種對決策進行評分的方法,從定義和優先考慮感興趣的“武器-目標”到制定評分標準和報告評估結果,以供其他人審查。

目前,人工智能的狀態非常廣泛,必須對其進行解釋,以了解人工智能對殺傷鏈中功能的適用性。本報告討論了所選 AI 方法的高級概述,并突出顯示了部分最流行的方法。首先,沒有普遍接受的定義,這很難定義人工智能。其次,人工智能與機器學習 (ML) 存在差異。 ML 允許在準確性和可預測性方面取得增量收益; AI 接收數據并通過算法提供輸出。人工智能的歷史從 1940 年代艾倫·圖靈 (Alan Turing) 的加密機器到 1980 年代美國政府在戰略計算計劃中的使用,再到今天在聯合人工智能中心 (JAIC) 中的人工智能戰略五個支柱,從領先的人工智能人力到安全和倫理。美國國防高級研究計劃局 (DARPA) 在 3-wave 框架中描述了 AI 的發展方向,分為手工知識 (Wave 1)、統計學習 (Wave 2) 和上下文推理 (Wave 3) 在 1-4 個維度內情報參數的屬性(Launchbury 2017)。這些屬性包括感知、推理、抽象和學習。

人工智能涉及可以根據輸入值預測結果的監督學習。有幾種使用監督學習進行學習的技術。包括線性回歸和分類。此外,許多數值方法可以分析發生的學習有效性,例如 F-score 和 Accuracy score。人工智能還可以使用無監督學習,它使用算法來發現未標記數據集中的數據模式或分組。在分析未知(y)響應以揭示標記(x)數據中的模式時,無監督學習是有益的。數據分析界的一個著名例子是鳶尾花(Iris flower)數據集。僅使用標記的數據,可以看到響應聚集在一起,并且可以確定響應中存在模式(花的種類)。無監督學習的方法包括聚類和 K-means,但還有其他方法。強化學習有一個代理能夠接收來自環境的反饋并理解基本目標。此外,正如 Sutton 和 Barto 在(2018 年)中解釋的那樣,探索和開發之間存在權衡。最后,生成對抗網絡 (GAN) 利用無監督學習和強化學習,通常用于神經網絡 (NN)。神經網絡是機器學習算法的極好來源,它有大量的輸入,而這些輸入又會產生大量的計算。 NN 非常適合用于模擬、自然語言處理、博弈論和計算機視覺。 NN 只是一種將輸入映射到輸出的簡單方法,可以在此過程中進行學習。然而,NN 可以被描述為一種“黑盒”學習技術,因為很難解釋正在發生的事情,并且通常需要一種可解釋的 AI (XAI) 技術。 XAI 的三個主要組成部分是可解釋模型、解釋界面和解釋心理學(Gunning 2019)。數據安全必須與“大數據”一起考慮,“大數據”是指非結構化、復雜和大型數據集,具有五個 v 特征:數量、速度(數據量隨時間變化的增加)、多樣性、真實性和價值。其他理論包括決策理論、模糊邏輯和效用函數

使用上述文獻綜述,該團隊開發了一個框架,用于將 AI/ML 映射到 AMD(空中導彈防御)殺傷鏈。采取了四個步驟:1) 建立模型框架,2) 確定決策點,3) 應用 AI/ML 方法,以及 4) 分析結果。該團隊確定了以下用于殺傷鏈映射分析的 AI/ML 方法:線性回歸、邏輯回歸、聚類、關聯、隨機森林、神經網絡、GAN 和樸素貝葉斯。評估標準被稱為“決策點”并提出四個問題:(1)所需輸出的類型是什么,(2)所需的學習類型是什么,(3)可解釋性(XAI)是什么水平需要,以及 (4) 需要多少個預測變量?該團隊通過基于一組決策點和評分過程評估每個殺傷鏈功能的每種方法來執行映射。對于被認為非常適合某項任務的方法,得分為+1,如果該方法適合但次優,則為0,如果該方法不適合該任務,則為–1。

該團隊進行了映射分析,根據與殺傷鏈的 28 個功能中的每一個功能相關的評估標準(決策點)分析 AI 方法。該團隊使用評分方法來確定每個殺傷鏈功能的最佳整體 AI/ML 分數。團隊的映射顯示為 0。

該團隊的 AI/ML 映射到殺傷鏈功能為國防部和海軍提供了兩個關鍵好處。首先,映射本身是設計和開發支持殺傷鏈決策的人工智能戰術決策輔助工具的重要起點和基礎。其次,該團隊將 AI 方法映射到殺傷鏈的分析過程可用于了解 AI 在許多其他軍事和非軍事領域的應用。識別適當的人工智能方法、制定評估標準和評分過程以及制定過程功能以進行分析映射的過程對于支持許多不同人工智能系統的工程具有深遠的潛力。

表1:AI/ML方法到殺傷鏈的映射

付費5元查看完整內容

美國軍方和情報界對開發和部署人工智能 (AI) 系統以支持情報分析表現出興趣,這既是利用新技術的機會,也是應對不斷激增的數據過剩的解決方案。然而,在國家安全背景下部署人工智能系統需要能夠衡量這些系統在其任務背景下的表現。

為了解決這個問題,作者首先介紹了人工智能系統在支持智能方面可以發揮的作用的分類法——即自動分析、收集支持、評估支持和信息優先級——并提供了對人工智能影響驅動因素的定性分析。每個類別的系統性能。

然后,作者挑選出信息優先系統,這些系統將情報分析師的注意力引導到有用的信息上,并允許他們忽略對他們無用的信息,以進行定量分析。作者開發了一個簡單的數學模型來捕捉此類系統的錯誤后果,表明它們的功效不僅取決于系統的屬性,還取決于系統的使用方式。通過這個練習,作者展示了人工智能系統的計算影響和用于預測它的指標如何用于描述系統的性能,以幫助決策者了解其對情報任務的實際價值。

報告指出,目前存在多種描述人工智能系統性能的標準方法,包括通常被稱為“精確度”、“召回率”和“準確率”等指標,但這些標準并未提及該系統對其所支持任務的影響。在準確率與情報任務成功之間沒有明確關聯的情況下,只能依據情報任務的完成水平對系統有效性作出臨時判斷。基于此,報告作者將人工智能系統在情報分析過程中可發揮的功能分為四大類,分別評估每項功能的錯誤輸出可能會對結果產生的影響,從而理解“人工智能系統性如何影響情報分析的有效性”。

按照情報周期的組織過程,報告將人工智能系統可在該過程中發揮的作用分為四大“系統功能模塊”,分別是提供評估支持、自動分析、優先信息和收集支持。報告為每個功能模塊設計了函數模型,以詳細推演其在情報過程中的作用。

通過對“從任務到系統”的追溯性推演評估,報告得出兩個一般性結論:首先,在部署人工智能系統前,制定與符合實際情況優先級的情報監測指標十分重要,這一工作應以評估系統部署的實際影響力為指導;其次,系統的有效性不僅取決于系統屬性,還取決于如何使用。

研究問題

  • 人工智能系統的性能衡量指標如何與情報分析的有效性相關聯?
  • 人工智能如何用于支持智能過程,既反映在真實系統的開發中,也反映在可能尚未開發的假設系統中?
  • 研究人員如何對智能過程進行建模,以確定位于該過程中的人工智能系統如何影響它?
  • 存在哪些衡量 AI 系統性能的指標?

主要發現

使用與實際優先級不匹配的指標會掩蓋系統性能并阻礙對最佳系統的明智選擇

  • 度量選擇應該在系統構建之前進行,并以估計系統部署的實際影響為指導。

有效性,以及衡量它的指標,不僅取決于系統屬性,還取決于系統的使用方式

  • 決策者需要考慮的一個關鍵因素是,除了用于構建系統的資源之外,還有多少資源用于任務。

建議

  • 從正確的指標開始。這需要詳細了解 AI 系統的使用方式,并選擇反映該使用成功的指標。
  • 定期重新評估(和重新調整)。由于系統周圍的世界在部署后繼續發展,因此系統評估必須繼續作為定期維護的一部分。
  • 系統設計人員擁有一套完善的衡量 AI 系統性能的指標,熟悉這些傳統指標將在設計新系統或維護現有系統的過程中簡化與專家的溝通。
  • 進一步研究評估人工智能系統有效性的方法。
付費5元查看完整內容

當前的流程和網絡限制迫使軍隊員工在物理上聚集在一起進行操作。Metaverse 提供了一種潛在的解決方案,可以在通過分發操作使指揮所更易于生存的同時啟用操作

共同的操作畫面

“我需要理解”也許是任務指揮技術背后的主要驅動力。制定和維護共同作戰圖的基本概念是增強態勢感知,實現態勢理解并促進所有梯隊的共同理解。通過連接數字系統以在 2D 和 3D 地圖上顯示信息或通過在紙質地圖上手動跟蹤友軍和敵方信息的復雜應用程序編程接口執行,該過程在過去 30 年中沒有太大發展。這項工作需要大型、繁瑣的指揮所,配備集中的人員和技術,以執行作戰過程并最終生成通用的作戰畫面,指揮官和參謀人員可以利用該畫面做出最及時、最準確的決策。 不幸的是,隨著運營變得越來越復雜,數據越來越多,各單位一直在努力有效地進行信息和知識管理。指揮所的規模和范圍已經擴大以滿足需要。人員數量的增加和對網絡的依賴使今天的指揮所容易受到敵人的攻擊,沒有足夠的機動性和生存能力。元宇宙提供了一種潛在的解決方案,可以使操作過程成為可能,同時通過分布操作固有地使指揮所更具生存能力,以及減少物理和電磁足跡。

在 元宇宙中與我會面:在未來,士兵們可以“進入”虛擬環境,在執行任務之前進行任務規劃。盡管“軍事虛擬世界”仍然只是一個概念,但整個美國陸軍的研究人員和科學家正在探索潛在的應用

什么是元宇宙?

由尼爾斯蒂芬森在他 1992 年的小說“Snow Crash” 中創造為了描述用戶在虛擬空間中交互的在線世界,元宇宙已經通過大型多人在線游戲和虛擬世界(如 Second Life、Roblox 或 Minecraft)變得熟悉。正如移動設備在過去 10 年中改變了互聯網的消費方式一樣,新一代技術——在這種情況下是虛擬和增強現實耳機——正在為我們如何消費內容提供新的視角。這些頭顯不再受平面屏幕的限制,讓用戶能夠感知在物理世界之上或代替物理世界呈現的 3D 對象和媒體并與之交互。隨著大流行驅動的遠程工作加速,這一概念變得更加流行。Facebook 甚至將其未來寄托在這一轉變上。

風險基金合伙人和受人尊敬的商業作家馬修·鮑爾( Matthew Ball )將元宇宙最徹底的探索之一寫成了一個由九部分組成的博客系列。Ball 的入門書著重于元宇宙的八個方面:

硬件:用于訪問、交互或開發元宇宙的物理技術和設備的銷售和支持。這包括但不限于面向消費者的硬件(例如 VR 耳機、手機和觸覺手套)以及企業硬件(例如用于操作或創建虛擬或基于 AR 的環境的硬件,例如工業相機、投影和跟蹤系統以及掃描傳感器)。此類別不包括特定于計算的硬件,例如 GPU 芯片和服務器,以及特定于網絡的硬件,例如光纖電纜或無線芯片組。

網絡:由骨干提供商、網絡、交換中心和在它們之間路由的服務以及管理“最后一英里”數據給消費者的服務提供持久、實時的連接、高帶寬和分散的數據傳輸。

計算:支持元宇宙的計算能力的啟用和供應,支持物理計算、渲染、數據協調和同步、人工智能、投影、動作捕捉和翻譯等多樣化和高要求的功能。

虛擬平臺:沉浸式數字和通常是 3D 模擬、環境和世界的開發和運營,用戶和企業可以在其中探索、創造、社交和參與各種體驗(例如賽車、繪畫、上課,聽音樂),從事經濟活動。這些業務與傳統在線體驗和多人視頻游戲的區別在于,存在一個由開發人員和內容創建者組成的大型生態系統,這些生態系統在底層平臺上生成大部分內容和/或收集大部分收入。

交換工具和標準:工具、協議、格式、服務和引擎,它們充當互操作性的實際或事實上的標準,并支持元宇宙的創建、操作和持續改進。這些標準支持渲染、物理和 AI 等活動,以及資產格式及其從體驗到體驗的導入/導出、前向兼容性管理和更新、工具和創作活動以及信息管理。

支付:支持數字支付流程、平臺和運營,包括法定入口(一種數字貨幣兌換形式)到純數字貨幣和金融服務,包括比特幣和以太幣等加密貨幣以及其他區塊鏈技術。

元宇宙內容、服務和資產:與用戶數據和身份相關的數字資產(例如虛擬商品和貨幣)的設計/創建、銷售、轉售、存儲、安全保護和財務管理。這包含所有“建立在”元宇宙之上和/或“服務于”元宇宙的所有業務和服務,并且沒有被平臺所有者垂直整合到虛擬平臺中,包括專門為元宇宙構建的、獨立于虛擬界的內容平臺。

用戶行為:消費者和商業行為(包括花費和投資、時間和注意力、決策和能力)的可觀察變化,這些變化要么與元宇宙直接相關,要么以其他方式促成或反映其原則和理念。這些行為在最初出現時幾乎總是看起來像“趨勢”(或者,更貶義地,“時尚”),但后來顯示出持久的全球社會意義。

他討論了每個領域的進展,以及充分啟用和采用元宇宙作為移動互聯網繼任者的方法。

從虛擬到現實:隨著大型指揮所分解其物理足跡并依賴數字環境,諸如元宇宙之類的概念可以幫助參謀人員對現實世界的行動進行規劃

聯網

帶寬是當今戰場上的稀缺資源,需要技術突破才能完全啟用虛擬世界。然而,許多戰術場景可以受益于不是特別密集的信息,因此需要較少的帶寬來傳輸,例如地理空間位置、單位狀態摘要、當前目標等。此外,更密集的信息,例如用于訓練輔助目標識別算法的作戰區域3D 地形模型或未知敵方車輛的視頻,無需通過網絡實時發送。這將要求陸軍利用云服務,云服務不僅能高效地移動和處理信息,而且由情報部門控制,這些情報部門了解客戶請求或可能請求的數據和服務的信息價值。

關乎生死的一個關鍵問題是信息延遲。友方單位位置的潛在變化可能會導致整個元宇宙的決策瀑布式變化,并改變任務狀態的視角。為了做出更好的決策,陸軍必須創建一個超高效的網絡,只傳輸正確的相關信息。這種實時信息更新的概念是在虛擬世界中沉浸式硬件的關鍵組成部分,因為“數字孿生”士兵的表示和動作必須在連接到其共享空間的所有其他設備上同步。與商業世界不同,元宇宙戰場涉及戰斗人員試圖摧毀對手的網絡。

微軟飛行模擬器

流行的 Microsoft Flight Simulator 視頻游戲系列包括地球的“數字孿生”,結合地圖和衛星圖像,可以對天氣和空中交通、建筑物甚至樹木實時渲染。這是一個巨大的模型,對于戰術邊緣的受限帶寬來說是不切實際的,但是這個模型和其他類似的模型可以允許在更高的、云連接的梯隊或在本站上對車輛和武器效果進行超現實建模。NVIDIA 的 Omniverse等世界構建工具包有助于渲染新對象,其中包括材質、紋理和運動構建塊。甚至這些基于世界的模型的低分辨率版本也可用于概念演練或任務演練,無論單位是否位于同一地點。

想象一下:今天使用的沉浸式硬件幾乎完全掩蓋了用戶對現實世界的看法;最終,顯示器將需要在現實之上渲染內容或用合成內容替換所有內容之間進行動態調整。(由任務指揮戰斗實驗室提供)

虛擬平臺

整合軍用數字訓練、戰斗和企業級系統的精簡平臺不足以實現元宇宙。元宇宙要求士兵的數字存在超越不同的訓練平臺,并無縫集成到其他作戰工具中。這些工具還必須使用戶能夠從不同的角度與戰場數據進行交互,無論是在傳統的 2D 顯示器上還是從沉浸式共享虛擬空間。這將需要能夠使來自現實世界或模擬的數據在各種顯示媒體上無縫呈現的架構,無論它們是如何部署的。商業游戲世界一直在適應這一挑戰,支持在不同類型的硬件(如 PC 和游戲機)之間交叉玩同一游戲。

雖然化身的出現對我們的士兵來說可能不是那么優先,但數字資產可以以其他方式使用,這可能是有用的--例如,包括在一個人的身份系統偏好或自定義語言模型中,即使在用戶登錄一個新系統時也可以幫助人機合作。此外,一些游戲使一部分用戶能夠戴著虛擬現實設備從神一樣的俯視角度進行游戲,而其他玩家則化身為化身,從地面上以第一人稱觀看世界。像這樣的游戲概念似乎很適合在不同的梯隊中使用這種能力,在那里不同類型的數據和互動是必要的。

從戰術的角度來看,陸軍必須建立具有共同視野和感受的系統,無論系統是的佩戴方式或交互方式如何。士兵應該能夠以相同的配置文件使用他們的頭戴式顯示器、他們的手持系統和他們的桌面系統,并在這些系統間能夠以相同的角色輕松地切換。

硬件

Android Tactical Assault Kit (ATAK)等系統是一款裝在堅固外殼中的手持平板電腦或手機,可為作戰人員提供其作戰環境的數字化視角。ATAK 可以可視化 2D 和 3D 地圖,以及一系列圖形控制措施來表示友軍和敵軍的位置。雖然不像民用領域的消費類智能手機那樣無處不在,但這些設備代表了將物理和數字領域融合到一個手持套件中的首次嘗試之一。

然而,增強現實系統中的當前硬件限制了全息內容的視野質量。虛擬現實頭戴式顯示器提供高質量的視覺效果,但代價是幾乎完全遮擋了用戶對自然世界的看法。雖然陸軍開始評估在指揮所等不太致命的環境中使用虛擬現實,但沉浸式硬件的未來最終將融合到一個頭戴式顯示器中,該顯示器可以在現實之上的渲染內容或替換所有內容之間動態調整合成內容。這對于在未來的戰場環境中完全實現元宇宙是必要的。

結論

盡管推動了未來的發展,但我們也必須承認目前的技術仍然面臨著局限性--例如,訪問問題、延遲。這些問題不會因為升級到元宇宙而得到解決,必須隨著元宇宙的發展而得到解決。在規劃、準備、執行和評估行動方面轉向元宇宙模式,將使分散的工作人員能夠在一個協作的虛擬節點內更有效地同步作戰功能,這將與現有的實體指揮所相媲美。臨時會議可以超越簡單的電話和視頻會議,允許用戶占據一個包含所有相關數據的虛擬規劃空間來做出決定:一個顯示友軍和敵軍位置、情報產品、相對戰斗力、維持估計等的交互式三維共同作戰圖。

與人工智能一樣,元宇宙技術為解決戰場上的問題帶來了一套新的工具,包括當前和預期的問題。也像人工智能一樣,如果沒有標準和基礎設施來啟用這些工具,其結果將是零碎的和令人沮喪的。重要的是,陸軍要向前傾斜并認識到新技術的潛力,不僅因為它們在物資方面帶來了什么,而且還因為它們對我們未來的戰斗方式的影響。

付費5元查看完整內容

美國國防部(DOD)報告稱,人工智能(AI)是一項革命性的技術,有望改變未來的戰場和美國面臨的威脅的速度。人工智能能力將使機器能夠執行通常需要人類智能的任務,如得出結論和做出預測此外,人工智能機器可以以人類操作員無法企及的速度操縱和改變戰術。由于AI具有廣泛用途的潛力,國防部將其指定為頂級現代化領域,并投入大量精力和資金開發和獲取AI工具和能力,以支持作戰人員。在2022財年,國防部為科學和技術項目申請了147億美元,以及8.74億美元用于直接支持其人工智能努力。根據國防部2018年的人工智能戰略,未能將人工智能能力納入武器系統可能會阻礙戰士保護我們的國家抵御近同行對手的能力其他國家正在這一領域進行大量投資,這可能會削弱美國的軍事技術和作戰優勢。

美國國防部(DOD)正在積極追求人工智能(AI)能力。人工智能指的是旨在復制一系列人類功能,并不斷在分配的任務上做得更好的計算機系統。GAO之前確定了三種AI類型,如下圖所示

國防部認識到開發和使用人工智能不同于傳統軟件。傳統軟件的編程是根據靜態指令執行任務,而人工智能的編程則是學習如何改進給定的任務。這需要大量的數據集、計算能力和持續監控,以確保功能按預期執行。支持國防部作戰任務的大部分人工智能能力仍在開發中。這些能力主要集中在分析情報,增強武器系統平臺,如不需要人工操作的飛機和艦船,并在戰場上提供建議(如將部隊轉移到哪里)。

當獲取依賴于復雜軟件的新能力時,國防部一直面臨著挑戰,例如長時間的獲取過程和熟練工人的短缺。GAO發現,它繼續面臨這些挑戰,同時還面臨人工智能特有的其他挑戰,包括有可用的數據來訓練人工智能。例如,人工智能探測對手的潛艇需要收集各種潛艇的圖像,并標記它們,這樣人工智能就可以學會自己識別。國防部還面臨著將訓練有素的人工智能集成到非為其設計的現有武器系統中的困難,以及在其人員中建立對人工智能的信任。國防部發起了一系列努力,如為人工智能和人工智能特定培訓建立一個跨服務的數字平臺,以應對這些挑戰,并支持其對人工智能的追求,但現在評估有效性還為時過早

付費5元查看完整內容
北京阿比特科技有限公司