2021年3月,美國哈德遜研究所國防概念與技術中心發布研究報告《實施以決策為中心的戰爭:提升指揮與控制以獲得選擇優勢》,提出以決策為中心的戰爭將使美軍做出更快、更有效的決策,從而賦予美軍更大的競爭優勢。
自冷戰結束以來,美國國防部(DoD)針對來自主要對手(如中國、俄羅斯和朝鮮等)的巨大軍事沖突發展了相應理論和能力。這些最壞的情況是為了確保美軍也能應對“較少的情況”。然而,這種方法偏重于為大規模、高強度軍事沖突設計的概念和系統,美國的智能對手不太可能向美軍挑起對抗,而國防部可以在力量投射或精確打擊等任務中發揮其優勢。
美國的對手在過去十年中已經發展出了抵消美國軍事優勢的方法,如中國和俄羅斯的灰色地帶或混合行動,這些方法以較低的成本和升級——盡管比傳統的軍事作戰時間更長——獲得目標。因此,國防部應修訂其規劃,提高新方案的優先級,這些方案以不同于戰區范圍內高強度作戰的方式給美軍施加壓力,如通過延長時間、不同程度的升級和規模,以及使用代理和準軍事力量。
中國的“系統破壞戰”概念和俄羅斯軍方的“新一代戰爭”概念是針對美國及其盟友的新方法的代表。雖然它們的制勝理論和方法大相徑庭,但這兩種概念都有一個共同點,即把信息和決策作為未來沖突的主戰場。它們從電子和物理上直接攻擊對手的戰斗網絡,以降低其獲取準確信息的能力,同時引入虛假信息,削弱對手的定向能力。同時,軍事和準軍事力量將通過孤立或攻擊目標的方式向對手提出難題,以中和對手的戰斗潛力,控制沖突的升級。
美國海軍如何重新平衡實施 "馬賽克戰 "部隊的例子
以決策為中心的概念,如系統破壞戰和新一代戰爭,很可能成為未來沖突的重要形式,甚至是主要形式。在冷戰后期,美軍革命性的精確打擊戰方式利用了當時的通信數據鏈、隱身和制導武器等新技術。同樣,以決策為中心的戰爭可能是軍事上利用人工智能(AI)和自主系統的最有效方式,這些技術可以說是當今最突出的技術。
以決策為中心的戰爭的一個例子是國防高級研究計劃局(DARPA)的馬賽克戰爭概念。馬賽克戰爭概念的中心思想是,由人類指揮指導的、具有人工智能功能的機器控制的分列式有人和自主單位可以利用它們的適應性和明顯的復雜性來延遲或阻止對手實現目標,同時破壞敵人的重心以排除進一步的侵略。這種方法與機動戰一致,不同于第二次世界大戰期間盟軍采用的基于損耗的戰略,也不同于冷戰后美軍在科索沃、伊拉克和利比亞沖突中采用的戰略。雖然馬賽克戰爭采用損耗作為給敵人制造困境的一部分,但其實現成功的主要機制是拒絕、拖延或破壞對手的行動,而不是削弱對手的軍事實力,使其無法再有效作戰。因此,馬賽克戰爭非常適合作為現狀軍事大國(如美國)尋求遏制侵略的概念。
在近期兵棋推演中,馬賽克部隊與傳統軍事部隊在任務完成情況的比較
馬賽克戰爭提出了一種部隊設計和指揮控制(C2)程序,與今天的美軍相比,它將使美軍能夠執行更多、更多樣化的行動方案(COA)。馬賽克部隊的分解結構和使用人類指揮與機器控制,將使對手的決策復雜化,縮小其選擇范圍,并施加一系列可能無法解決的困境。通過增加美軍指揮官的選擇權,減少敵方的選擇權,馬賽克戰法將尋求獲得“選擇權優勢”,使美軍能夠做出更快、更有效的決策。
選擇性戰略與以預測為中心的規劃方法形成鮮明對比,在這種規劃方法中,選擇最有可能導致成功的作戰行動方案并迅速實施,通過將與未選擇的作戰行動方案相關的系統和兵力要素分配給其他任務來提高效率。在以預測為中心的模式中,資源的早期承諾必然會限制指揮官今后的選擇空間。
與今天的美軍相比,馬賽克部隊的設計和C2過程可以在選擇權競爭中提供更大的優勢,因為隨著對抗或競爭的進展,可以緩解由于損失或敵方態勢感知的改善而導致的選擇權減少的自然趨勢。例如,“馬賽克”部隊可以更容易地隱藏具有反ISR能力的平臺或編隊,并在以后暴露出來,以實現新的選擇;利用數量更多、規模更小、成本更低的增援部隊;或依靠決策支持工具,允許繼續使用與高級指揮官物理或電子隔離的部隊。
圖:以網絡為中心的戰役空間架構與基于情境的戰役空間架構的特點比較
一支馬賽克部隊也將比今天的美軍更有能力進行縮小對手選擇范圍的行動。通過同時發起許多行動并加速其決策,一支使用人類指揮和機器控制的分布式部隊可以給對手造成足夠的困境,從而排除與作戰相關的數量的《作戰協議》。此外,馬賽克部隊還可以利用諸如分配、佯攻和探測等欺騙技術以及反ISR系統來補充其更大的規模和決策速度,這些技術可以使對手相信某些選擇不可行或不可能成功。
雖然國防部的C3結構,如混合和聯合全域指揮和控制(CJADC2)開始納入決策支持工具,為特派團整合效應鏈,但其目前和近期的實例旨在支持有效的火力投送,而不是持續的可選性。此外,與CJADC2相關的C2和通信(C3)舉措,如高級戰役管理系統(ABMS),需要提前確定架構和組件系統。因此,CJADC2在其能夠提供的可選性方面將受到固有的限制。
圖:C2實施方法的比較
第一步是壓縮空間的表征,重點放在時間的表征上。以一個作戰人員在短時間內的行動為例,在這個例子中,一個作戰人員的任務是收集指定地點的圖像。這在操作上是不現實的情況,只是用一個簡單的案例來說明這個概念。
在C3組合中,國防部已經在通信復原力方面進行了大量投資。因此,大部分新的努力和資源應該應用于C2能力。盡管美國軍方投資于所謂的C2系統,但這些項目主要是操作中心和軟件堆棧,作為在部隊中傳遞數據、信息、命令或權限的基體。盡管對管理部隊來說是必要的,但目前國防部的C2系統——將C2看作是連接——并不是決策支持系統,后者將C2看作是一個過程。
圖:在馬賽克C2方法中采用OODA循環
用于以決策為中心的戰爭的C3能力需要做的不僅僅是實現連接。例如,C2工具將需要生成能創造和維持可選擇性的COA,以提高適應性,并將復雜性強加給對手。為了幫助初級領導人執行任務指揮,C2工具還需要了解哪些單位在通信中,他們在潛在的COAs中的作用,并配置網絡以確保所需單位與適當的指揮官保持一致。為了評估這些要求和以決策為中心的C3的其他要求,本研究采用了多種視角,如下所述。
圖:以預測為中心和以決策為中心的選擇空間隨時間變化的比較
網絡視角:要實現可選擇性和實施以決策為中心的戰爭,就需要有能力使C2結構與現有通信保持一致,而不是試圖建立一個在面對敵方協同干擾和物理攻擊時仍能生存的網絡。這些需求導致了一種混合架構,這種架構將網絡方式與分層方式結合起來,可以被定性為 "異構"。這種拓撲結構將使指揮權與合格的人類操作者占據的節點中具有最高程度的節點相一致。
解決問題的視角:與從頭開始處理每個新情況相比,使用類比推理的問題解決過程可以更迅速地評估潛在的備選方案,由此產生的決策空間的增加可以使指揮官將限制其備選方案的作戰行動協議推遲到最后一刻。此外,如果使用人工智能支持的算法在沒有監督的情況下建立COA,對手可以通過佯攻和探測來影響算法的學習,使系統認為COA是成功的,如果不是對手的行動,實際上會失敗。
圖:來自DARPA PROTEUS計劃的分析和用戶界面,AI輔助規劃
時間視角:可選性的概念適用于多個時間尺度,從戰略到工業能力發展和部隊的戰術行動。C3架構的能力應該有助于擴大每個時間尺度上的努力所帶來的決策空間,而不是僅僅在任務期間。
組織視角:國防部的C3架構不是在真空中存在的。各組織的人員必須通過戰略、工業、作戰和戰術時空的流程來運用這些架構。可選性是在以決策為中心的戰爭中獲得優勢的關鍵,但如果僅僅是派出一支更分散的部隊和使用它的工具,如果這支部隊的使用方式很狹窄,為每個單獨的行動提供最高的成功概率,那么只能稍微增加美軍的復雜性和適應性。需要決策組織和程序,盡可能長時間地擴大指揮官的選擇空間。
今天的戰斗指揮官(CCDR)參謀部缺乏組織和程序,無法為即將到來的任務以各種不同的配置組合部隊。為了能夠在任務時間內組成部隊,國防部可以采用類似于將計算機程序編譯成可執行代碼的方法。軟件指令是用較高層次的計算機語言編寫的,但在軟件被計算機處理器執行之前,需要將其轉換成二進制形式。這種方法將從決策支持系統的COA開始,然后組合適當的單位來支持行動。雖然部隊構成主要是以硬件為中心,但也需要在技術棧的信息層和網絡層進行部隊包的軟件構成。
圖:從人工構成到決策中心戰的任務整合浪潮
美軍將需要采用新的部隊設計和C2流程,以實現以決策為中心的戰爭,但如果不與工具和組織結合起來,以充分利用使用人類指揮和機器控制的更分散的部隊中可能存在的可選性,這些努力將付諸東流。
目前國防部通過CJADC2和相關的作戰概念努力使美軍向更分散的組織和更分散的能力發展,這是實現更以決策為中心的軍事行動方法的重要一步。高級戰斗管理系統(ABMS)和DARPA的幾個項目正在開發C2工具和流程,這些工具和流程將增加指揮官使用這些更分布式部隊的可選性。國防部的部隊設計變革或C3舉措將需要更進一步,以便美軍在面對已經躍升到以決策為中心的戰爭并擁有主場優勢的同行對手時保持可選擇性優勢。
也許更重要的是,將需要新的組織和程序,使CCDR能夠在戰區組成和整合分散的部隊,并改變國防部定義需求和發展新能力的方式。如果不對國防部的需求和部隊發展程序進行重大改革,美軍就有可能在爭奪決策優勢的競爭中落后于對手,從而威脅到其保護美國利益和盟友免受大國侵略的能力。
(參考來源:軍事文摘作者:張傳良)
在 2020 年,空中力量(制空權)辯論越來越多地關注新興技術對國防創新和未來戰爭特征的影響。人工智能 (AI) 系統、機器人技術、增材制造(或 3D 打印)、量子計算、定向能量和其他“顛覆性”技術等先進新技術的融合,第四次工業革命 (4IR)為國防應用提供了新的和潛在的重大機會,進而提高了對潛在競爭對手的軍事優勢。當前的大部分辯論可以說將“下一個前沿”技術描述為“不連續”或“破壞性”軍事創新的代名詞——從“工業時代”到“信息時代戰爭”和現在越來越傾向于“自動化時代的戰爭”(Raska,2021 年)。例如,高光譜圖像、計算攝影和緊湊型傳感器設計等先進傳感器技術旨在提高目標檢測、識別和跟蹤能力,并克服傳統的視線干擾(Freitas 等人,2018 年)。具有自適應特性的復合材料、陶瓷和納米材料等先進材料將使軍事裝備更輕,但更適應于復雜環境(Burnett 等人,2018 年)。新興光子技術,包括高功率激光器和光電設備,可能會提供基于量子計算和量子密碼學新級別的安全通信(IISS,2019 年)。
新興技術的融合——即機器人技術、人工智能和機器學習、具有先進傳感器技術的模塊化平臺、新型材料和保護系統、網絡防御和模糊物理、網絡和生物領域之間界限的技術,被廣泛認為對人類的特征具有深遠的影響。未來的戰爭,在空中力量的背景下,有望將新的機器學習算法應用于高速進行信息處理、有人/無人武器平臺和監視系統的混合自動化,以及最終指揮和控制 (C2) 決策(Horowitz,2018;Cummings,2017)。
大型軍工產品不再是技術創新的唯一驅動力;取而代之的是,具有雙重用途潛力的先進技術正在商業領域開發,然后“轉而”用于軍事應用。
然而,盡管戰略背景各不相同,但這些新興技術的傳播也引發了類似于過去 40 年提出的理論和政策規定性問題:新興技術的傳播是否真的意味著戰爭中的“破壞性”轉變?這僅僅是進化上的變化嗎?如果新興技術規定了戰爭的顛覆性變化,那么國防資源分配的必要性是什么,包括部隊結構和武器采購要求?包括空軍在內的軍事組織如何利用新興技術為自己謀利?此外,新興技術在應對 21 世紀以不確定性、復雜性和模糊性為特征的安全威脅和挑戰方面的效果如何?
在受信息技術飛躍的推動下,“顛覆性”軍事創新敘事和辯論的軌跡已在 IT 驅動的軍事革命 (IT-RMA) 的背景下定義,該革命已通過至少五個階段:(1)1980年代初期蘇聯戰略思想家對軍事技術革命的初步概念發現,(2)1990年代初期美國戰略思想的概念適應、修改和整合,(3)1990 年代中后期對技術的 RMA 辯論,(4) 轉向更廣泛的“防御轉型”,并在 2000 年代初期進行部分實證調查,以及 (5) 從 2005 年起質疑顛覆性敘事的批判性逆轉(格雷,2006 年)。然而,自 2010 年代中期以來,隨著人工智能和自主系統等新技術的加速傳播,人們可能會爭辯說,新的 AI-RMA 或第六次 RMA 浪潮已經出現(Raska,2021 年)。
然而,回想起來,在過去的 40 年里,IT-RMA 的實施也可以說是遵循了一條明顯低于革命性或破壞性的道路,包括對現有能力的漸進式、通常近乎持續的改進(Ross,2010 年)。雖然國防技術、組織和理論方面的重大、大規模和同步的軍事創新是一種罕見的現象,但軍事組織在很大程度上是通過一系列持續的軍事創新取得進展,從小規模創新到大規模創新,這些創新塑造了他們的戰爭行為(Goldman,1999)。雖然這個時代的許多軍事創新,例如網絡中心戰的概念已經成熟,但關于即將到來的“破壞性軍事轉型”的敘事幾乎總是超過了現有的技術、組織和預算能力。此外,不同的概念、技術、組織和作戰創新主要集中在將數字信息技術集成到現有的傳統平臺和系統中(Raska,2016 年)。
國家和非國家行為者都可能使用這種所謂的對抗性機器學習來欺騙對方,使用不正確的數據得出錯誤的結論,并在此過程中改變決策過程。
例如,在美國的戰略思想中,顛覆性軍事創新的敘事從 2005 年開始隨著伊拉克和阿富汗戰爭中的作戰挑戰和經驗逐漸淡化。更多批評聲音指向“破壞性”防御轉型的未兌現承諾。 “新思維方式和新戰斗方式”的基本原理幾乎證明了每項防御倡議或提議的合理性,這表明迷失方向而不是明確的戰略(弗里德曼,2006 年)。國防轉型懷疑論者還警告說,通過技術解決復雜戰略挑戰的邏輯有缺陷,同時放棄了潛在敵人或競爭對手的適應能力。簡而言之,由于預算要求和不切實際的能力組合而不是實際的戰略和作戰邏輯,即將發生的國防轉型的破壞性敘事已經變成了一個模棱兩可的想法(雷諾茲,2006 年)。
然而,新的“支持人工智能”的國防創新浪潮在幾個方面與過去以 IT 為主導的浪潮不同。首先,人工智能支持的軍事創新的傳播速度要快得多,通過多個維度,特別是通過大國之間加速的地緣戰略競爭——美國、中國和較小程度的俄羅斯。大國之間的戰略競爭并不新鮮。它們深深植根于歷史——從公元前三世紀伯羅奔尼撒戰爭期間的雅典和斯巴達大戰略,到二十世紀下半葉冷戰的兩極分化。然而,新興戰略競爭的性質不同于以往戰略競爭的類比。進入 21 世紀,戰略競爭的路徑和模式更加復雜多樣,反映了在不同或重疊規則下的多重競爭,長期的經濟相互依存與核心戰略挑戰并存(Lee,2017)。然而,在爭奪未來霸權的競爭中,技術創新被描述為國際影響力和國家力量的核心來源——產生經濟競爭力、政治合法性和軍事力量(Mahnken,2012 年)。具體來說,美國幾十年來第一次面對一個戰略性的同行競爭對手中國,中國有能力追求和實施自己的 AI-RMA。因此,主要問題不是 AI-RMA 浪潮是否會在戰爭中帶來根本性的不連續性,如果是,如何以及為什么?相反,美國的 AI-RMA 是否可以被相應的中國或俄羅斯 AI-RMA 取消或至少削弱?換言之,技術優勢的差距正在有效縮小,這有效地加速了新技術作為軍事優勢來源的戰略必要性。
新興技術的融合——即機器人技術、人工智能和機器學習、具有先進傳感器技術的模塊化平臺、新型材料和保護系統、網絡防御和模糊物理、網絡和生物領域之間界限的技術,被廣泛認為對未來的戰爭具有深遠的影響。
其次,與前幾十年利用一些軍民兩用技術開發主要武器平臺和系統不同,當前的人工智能浪潮在商業技術創新作為軍事創新來源的規模和影響方面有所不同。大型軍工產品不再是技術創新的唯一驅動力;取而代之的是,具有雙重用途潛力的先進技術正在商業領域開發,然后“轉而”用于軍事應用。在這種情況下,新興技術的傳播,包括增材制造(3D 打印)、納米技術、空間和類空間的能力、人工智能和無人機,并不僅限于大國(Hammes,2016 年)。人工智能傳感器和自主武器系統的擴散也在新加坡、韓國、以色列等先進小國和中等強國的防御軌跡上。這些國家現在有潛力開發利基新興技術,以提高其防御能力和經濟競爭力、政治影響力和在國際舞臺上的地位(Barsade 和 Horowitz,2018 年)。
第三,自主和支持人工智能的自主武器系統的擴散,加上新穎的作戰結構和部隊結構,挑戰了人類參與未來戰爭的方向和特征——其中算法可能會影響人類的決策,并設想在未來的戰斗中使用致命自主武器系統(LAWS)。包括空軍在內的先進軍隊正在試驗各種依靠數據分析和戰爭自動化的人機技術。這些技術越來越多地滲透到未來的戰爭實驗和能力發展計劃中(Jensen 和 Pashkewitz,2019 年)。在美國,選定的優先研發領域側重于在各種人機協作中開發人工智能系統和自主武器——例如,支持人工智能的預警系統和指揮與控制網絡,空間和電子戰系統、網絡能力、致命的自主武器系統等。
人工智能系統將越來越有能力在John Boyd的觀察-定向-決策-行動 (OODA) 循環的每一步中簡化 C2 和決策過程。
戰略競爭、雙重用途新興技術創新和戰爭中人機交互特征的變化,這三個驅動因素的融合推動了一系列定義 AI-RMA 浪潮的新條件。它的擴散軌跡在本質上也對戰略穩定性、聯盟關系、軍備控制、道德和治理以及最終的作戰行動提出了新的挑戰和問題(Stanley-Lockman,2021a)。例如,關于人工智能系統在使用武力中的作用的國際規范辯論越來越關注法律的傳播和遵守國際人道法原則的能力。隨著技術進步從科幻領域轉向技術現實,各國對引入 LAWS 是否會違反或加強國際法律原則也有不同的看法。面對軍事人工智能應用的法律和道德影響,軍事機構越來越認識到需要解決與安全、道德和治理相關的問題,這對于建立對新能力的信任、管理風險升級和重振軍備控制至關重要。盡管如此,國防部和軍隊在倫理道德方面的努力是狹隘地關注法律還是更廣泛地關注人工智能系統的范圍之間仍然存在緊張關系。因此,包括空軍在內的軍隊需要跟蹤關于人工智能和自主性的不斷演變的觀點,并就對 2020 年代及以后的戰略和作戰環境的影響進行辯論(Stanley-Lockman,2021b)。
在作戰層面,空軍旨在加速整合各種人工智能相關系統和技術,例如多域作戰云系統,從各種來源收集大數據,創建實時作戰圖,本質上是自動化和加速指揮和控制 (C2) 流程(Robinson,2021 年)。在這樣做的過程中,啟用人工智能的作戰云可以識別目標并將它們分配給任何領域中最相關的“射手”,無論是空中、水面還是水下——一些空軍將其概念化為聯合全域指揮與控制 (JADC2) 。部分空軍也在試驗人工智能算法作為“虛擬后座”,它可以有效控制飛機的傳感器和導航,尋找對手,并以此減少機組人員的工作量(Everstine,2020)。在這種情況下,關鍵論點是人工智能系統的進步——可以感知、推理、行動和適應的廣泛程序,包括機器學習 (ML) 系統——其性能隨著時間的推移、數據交互的增加而提高算法性能,以及深度學習( DL)系統——其中多層神經網絡從大量數據中學習——具有“改變空戰行動以及空中力量的構思和使用方式”的潛力(Davis,2021 年)。
具體來說,根據蘭德公司最近的一項研究(Lingel 等人,2020),目前有六類 AI/ML 應用研發,其會對包括空中力量在內的未來戰爭有影響:
(1)計算機視覺——圖像識別——檢測對視覺世界中可用于處理多源智能和數據融合的對象進行分類;
(2) 自然語言處理 (NLP) — 成功理解人類語音和文本識別模式(包括翻譯)的能力,可用于從語音和文本中提取情報,但也可以監控友好通信并引導相關信息以提醒個人或單位;
(3) 專家系統或基于規則的系統——收集大量數據以推薦特定行動以實現作戰和戰術目標;
(4) 規劃系統——使用數據解決調度和資源分配問題,可以針對目標協調選定的空中、太空和網絡資產,并生成建議的分時行動;
(5) 機器學習系統——從與環境的數據交互中獲取知識,可與其他類別的人工智能結合使用,即使 C2 系統在專家知識不可用或最佳策略、技術和程序 (TTP) 未知時學習如何執行任務;
(6) 機器人和自主系統——結合所有或選擇先前類別的 AI/ML 方法,使無人系統與其環境交互;
這些與人工智能相關的類別幾乎適用于空中力量的各個方面,可能會塑造新形式的自動化戰爭:從 C2 決策支持和規劃,人工智能/機器學習可以在日益受限的時期提供推薦的選項或建議;通過數據挖掘能力支持 ISR;后勤和預測性維護,以確保部隊的安全以及平臺和單位的可用性;訓練和模擬;網絡空間行動以檢測和應對先進的網絡攻擊;機器人和自主系統,如無人機,用于從 ISR 到矛尖任務的各種任務,如壓制敵方防空和協同作戰,在空中和陸地打擊行動中整合不同的有人和無人平臺。換句話說,這里的論點是人工智能系統將越來越有能力在John Boyd的觀察-定向-決策-行動 (OODA) 循環的每個步驟中簡化 C2 和決策過程:收集、處理并將數據轉換為統一的態勢感知視圖,同時為推薦的行動方案提供選項,并最終幫助人類采取行動(Fawkes 和 Menzel,2018 年)。
然而,將人工智能系統集成到空中力量平臺、系統和組織中,以將計算機從工具轉變為解決問題的“思考”機器,將繼續帶來一系列復雜的技術、組織和運營挑戰(Raska 等人,2021 年)。其中可能包括開發算法,使這些系統能夠更好地適應環境的變化,從意想不到的戰術中學習并將其應用于戰場。它還要求為這些思考機器設??計道德規范和保障措施。另一個挑戰是技術進步,特別是在軍事系統中,是一個持續的、動態的過程。突破總是在發生,它們對軍事效力和比較優勢的影響可能是巨大的,而且在初期階段很難預測。
然而,最重要的是,關鍵問題是我們可以在多大程度上信任人工智能系統,尤其是在安全關鍵系統領域?正如 Cummings所警告的那樣,“歷史上充斥著類似的戰備承諾如何以代價高昂的系統故障告終的例子,這些案例應該作為一個警示故事”(Cummings,2021 年)。此外,越來越多的研究領域集中在如何通過生成虛假數據來欺騙人工智能系統做出錯誤的預測。國家和非國家行為者都可能使用這種所謂的對抗性機器學習來欺騙對方,使用不正確的數據得出錯誤的結論,并在此過程中改變決策過程。對抗性機器學習的整體戰略影響可能比技術本身更具破壞性(Knight, 2019; Danks, 2020)。
啟用人工智能作戰云用于識別目標并將其分配給任何領域中最相關的“射手”,無論是空中、水面還是水下——一些空軍將其概念化為聯合全域指揮與控制 (JADC2)。
從戰術和操作的角度來看,這些復雜的人工智能系統也需要連接在一起——不僅在技術上,而且在組織和操作上。對于許多空軍來說,這是一個持續的挑戰——他們必須能夠有效地(實時)在各種服務和平臺之間集成啟用人工智能的傳感器到射擊者的循環和數據流。這意味著有效地連接多樣化的空軍、陸軍、海軍和網絡戰斗管理; C2,通信和網絡;情監偵;電子戰;定位、導航和授時;使用精確彈藥。雖然選擇的 AI/ML 系統可能會緩解一些挑戰,但相同的系統會產生另一組與確保可信 AI 相關的新問題。因此,有人可能會爭辯說,未來空中力量中人工智能軌跡的方向和特征將取決于相應的戰略、組織和作戰敏捷性,特別是這些技術如何與當前和新興的作戰結構和部隊結構相互作用。
在這種情況下,人類在未來戰爭中的參與程度、改變傳統部隊結構和招募模式的必要性以及將在哪些領域使用武力都是新技術挑戰的問題。空軍正在為這些問題開發自己的而且往往是多樣化的解決方案。與過去一樣,它們的有效性將取決于與戰略持久原則相關的許多因素——將可用的國防資源“轉化”為新軍事能力的目的、方式和手段,并在此過程中創造和維持具有空中作戰能力的部隊來應對各種突發事件。成功實施的主要因素不是技術創新本身,而是持續資金、組織專業知識(即大規模和有效的軍事和商業研發基地)和實施國防創新機構的敏捷性綜合效應(Cheung,2021)。對于空中力量的未來,這意味著擁有能夠提供創新解決方案的人員、流程和系統,同時保持現有的核心能力,從而在日益復雜的戰略環境中提供可行的策略選擇。
Michael Raska 博士是新加坡南洋理工大學 S. Rajaratnam 國際研究學院軍事轉型項目的助理教授和協調員。他的研究興趣集中在東亞的國防和軍事創新、戰略競爭和賽博戰。他是《軍事創新和小國:創造反向不對稱》(Routledge,2016 年)的作者,也是《國防創新和第四次工業革命:安全挑戰、新興技術和軍事影響》(Routledge,2022 年)的共同主編。他擁有密蘇里南方州立大學國際研究學士學位、延世大學國際關系碩士學位和新加坡國立大學李光耀公共政策學院博士學位,并獲得新加坡國立大學校長研究生學位獎學金。
美國的空中優勢是美國威懾力的基石,正受到競爭對手的挑戰。機器學習 (ML) 的普及只會加劇這種威脅。應對這一挑戰的一種潛在方法是更有效地使用自動化來實現任務規劃的新方法。
本報告展示了概念驗證人工智能 (AI) 系統的原型,以幫助開發和評估空中領域的新作戰概念。該原型平臺集成了開源深度學習框架、當代算法以及用于模擬、集成和建模的高級框架——美國國防部標準的戰斗模擬工具。目標是利用人工智能系統通過大規模回放學習、從經驗中概括和改進重復的能力,以加速和豐富作戰概念的發展。
在本報告中,作者討論了人工智能智能體在高度簡化的壓制敵方防空任務版本中精心策劃的協作行為。初步研究結果突出了強化學習 (RL) 解決復雜、協作的空中任務規劃問題的潛力,以及這種方法面臨的一些重大挑戰。
RL 可以解決復雜的規劃問題,但仍有局限性,而且這種方法仍然存在挑戰
同步使用針對所有社會職能中的特定漏洞而定制的多種權力工具,以實現協同效應。混合作戰入侵者將尋求利用目標國家的弱點。每一個混合戰爭入侵者可能有獨特的能力,可用于打擊目標國家。戰爭的“奇襲”原則可能是混合攻擊成功的最大因素。
幾十年來,政治科學家和國家層面的軍方政策制定者一直在戰略層面使用博弈論,但對其在作戰層面的使用幾乎沒有評論。傳統上,三個主要挑戰阻礙了規劃人員和分析人員在作戰層面使用博弈論,即復雜的作戰環境、參與者的動態交互以及大多數陸軍參謀人員不具備使用復雜數學技能。
這本專著表明,這些挑戰是可以克服的,博弈論可以在規劃過程中提供新穎的見解。美陸軍參謀部規劃人員可以在作戰層面有效地使用基本博弈論和簡單的數學來了解作戰環境、了解行動者及其動機,并在軍事決策過程中比較行動方案。本專著展示了如何避免高級博弈論用于解決理論問題的繁瑣數學程序,而是專注于使用基本博弈論在規劃過程中提供價值。它通過回顧博弈論在戰略層面的應用、教授基本博弈論和涵蓋一些基本博弈概念來展示博弈論的實用性。然后,它考察了一場歷史性的行動,以展示博弈論的使用將如何達到另一個推薦行動方案和結果,也許會改變歷史進程。最后,它通過將博弈論應用于軍事決策過程、任務分析和行動制定過程的兩個步驟的練習,提供了使用博弈論的指南。
幾十年來,戰略規劃者和政策制定者在戰略層面有效地應用了博弈論,但軍事從業者往往不在作戰層面使用它。當約翰·馮·諾依曼和奧斯卡·摩根斯坦在 1940 年代初在蘭德公司工作期間發展博弈論時,他們尋求一種數學方法來為沖突領域,特別是經濟沖突提供解決方案。他們于 1944 年發表了開創性的著作《博弈論與經濟行為》
博弈論允許通過將場景建模為簡化的博弈來分析決策。博弈論試圖定義參與者、策略——或可供他們選擇的選項——以及博弈結果的預期回報。它試圖澄清由于參與者的選擇而導致的不確定性。它的主要用途是它認識到結果是通過多個參與者的互動共同決定的,而不僅僅是一個人自己決定的結果,它允許分析對手可能會做什么。由于這些原因,政策制定者和戰略家使用博弈論來理解戰略問題,例如核對手、貿易慣例、內戰解決和裁軍以及缺乏國際合作,從而制定政策建議以幫助解決這些問題
作戰層面的規劃者是否可以有效地應用博弈論仍然是一個懸而未決的問題。在作戰層面使用博弈論的批評者強調了動態交互的復雜性。他們指出,培訓軍官了解博弈論的基本概念并將操作層面問題的復雜性提煉成基本博弈需要大量時間。
本專著認為博弈論提供了一個有價值的框架,最適用于在軍事決策過程的任務分析和行動發展步驟過程中理解環境中的參與者。博弈論旨在提供對情況的理解。這需要了解參與者及其潛在計劃或戰略動機。博弈論提供了一種理性的方法來研究行動者如何制定他們的策略和他們的動機基礎。由此,指揮官和參謀人員可以獲得理解,然后疊加其他因素,包括行動方案和潛在結果。它提供了一種合理而直接的方法來簡化復雜的問題。因此,博弈論為作戰規劃者提供了另一種工具,可用于了解作戰環境。
本專著重點介紹博弈論在戰略層面的歷史應用、當前的規劃過程學說和相關框架,以回答作戰規劃者能否在作戰層面有效地使用博弈論。這本專著主要通過囚徒困境分析博弈論在戰略層面的應用,將其應用于冷戰、國際貿易和價格戰期間的降價。 1777 年的新澤西戰役為應用博弈論和理解喬治華盛頓將軍和查爾斯康沃利斯將軍之間的競爭環境提供了一個歷史例子。最后,它演示了如何以及在何處將博弈論工具實施到美國陸軍當前使用的規劃過程中。所使用的博弈論是一種基本的應用方法,而不是過于復雜和無用的高級學術博弈論。簡單的博弈可以使復雜的操作情況變得清晰。該研究回顧了陸軍規劃學說,以專注于了解作戰環境和問題。任務分析旨在了解環境中的參與者以及他們之間沖突的根源。這 3 項研究的重點是深入了解對抗性和中立的參與者、激勵措施、潛在的行動方案和回報。該專著追溯了博弈論的戰略應用和作戰應用之間的差異,以了解哪些要素是一致的,同時說明了差異。最后,它將討論如何克服實施中的潛在挑戰。
規劃人員可以在軍事決策過程中使用博弈論工具,特別是在任務分析期間,以不同的視角理解作戰環境和行動發展過程,以檢查未發現的假設。博弈論工具不是替代軍事決策過程中現有的步驟和工具,而是對其進行補充。戰地手冊 6-0 解釋說,指揮官和參謀人員使用任務分析來更好地了解作戰環境和部隊面臨的問題。接下來,規劃人員使用任務分析來制定假設以填補知識空白。最后,考慮到博弈論理解競爭的本質,任務分析也有助于理解友軍和敵軍如何互動。行動方案制定過程提供了一種客觀的方式來看待多個潛在計劃。在上面的歷史例子中,華盛頓將軍和康沃利斯將軍需要了解他們的潛在行動以及他們認為 30 名敵方指揮官可能會做什么。在某種程度上,歷史例子中的將軍們可以在他們的行動發展過程中使用博弈論來檢查他們的假設。開發從敘述性或定性評估開始,然后轉向帶有每個計劃的加權分數的可量化評估。博弈論允許另一種觀點來評估潛在的計劃。以下思想實驗提供了一個示例,說明工作人員如何在任務規劃期間使用一些博弈論工具。
演習如下:美國討論在一個靠近對手的友好國家增加軍事存在,這旨在阻止對手入侵友好國家。軍團工作人員了解國家決策者關于在一個地區增加軍事存在的辯論。此外,他們知道如果國家領導層追求升級,軍團是升級的一個因素。工作人員致力于了解作戰環境并了解國家層面的優先事項和激勵措施,以便他們可以就選項提出更高的建議并為預期的行動方案做好準備。其次,他們努力了解敵人的動機和行動計劃。敵人還面臨著增加其在該地區的軍事存在或維持現狀的前景。兩國都擁有核武器,都不想進行全面戰爭。最后,兩個大國都可以遷移的地區的人口不希望被外國勢力占領。國家決策者面臨的戰略決策具有操作層面的影響。
如上所述,任務分析提供了對情況和問題的理解。在任務分析過程中,工作人員開始對行動者的動機和動機有所了解。戰場情報準備是任務分析的關鍵步驟。參謀人員對友軍和敵軍如何在環境中相互作用做出假設。由此,工作人員開發了每個參與者在即將到來的操作中可以使用的潛在選項。此外,情報準備步驟確定了指揮官和參謀人員的知識差距。這些差距導致了獲取信息的情報需求的發展。正如文獻回顧中所述,人們根據他們擁有的信息做出決策,并預測競爭對手的行為。這些步驟不會取代或否定軍事決策過程的任何步驟,它們只是關于如何以及在何處實施博弈論工具的建議。
鑒于這種情況,參謀人員開始制定敵人的行動方案。當應用于博弈矩陣時,這些行動方案成為敵人的策略。敵人可以用他們的一個師或軍將該地區軍事化,也可以選擇不軍事化。是否軍事化的選擇為敵人創造了兩種不同的戰略。第二步著眼于每個策略的結果。如果雙方都軍事化,那么他們將面臨戰爭。如果雙方都沒有軍事化,那么他們就維持現狀。如果一個國家軍事化而另一個國家不軍事化,那么軍事化的國家就會在沒有爭議的環境中這樣做。表11顯示了這種情況的結果。
表11:定性結果
第三步要求參謀人員查看敵人的動機,然后對他們的選擇進行定性分析。敵人想在美國不決定將該地區軍事化的情況下將該地區軍事化。這為他們創造了一個無可爭議的環境。其次,他們既不看重自己也不看重美國將該地區軍事化,這是現狀。第三個可取的結果是美國軍事化,而敵人沒有,這意味著美國擁有無可爭議的軍事化。最后,如果美國也進行軍事化,敵人不想升級為戰爭,也不想將該地區軍事化。工作人員現在可以根據偏好對敵人的行動路線進行排序。作戰和情報人員可以利用收集資產并制定收集計劃,以確定有關敵人計劃的任何指標,例如在該地區集結部隊。信息收集計劃有助于回答信息需求并協助進行有效規劃。
工作人員現在進入行動開發過程。生成選項步驟概述了指揮官和參謀人員可用的選項。工作人員制定了可以切實擊敗敵人行動方案的選項,然后確定它們的優先級。工作人員還產生了兩個廣泛的選項。他們可以軍事化,也可以不軍事化。由于每個參與者的策略,工作人員現在可以對他們的行動方案進行排序。指揮官和參謀更愿意維持現狀。如果美國采取行動將該地區軍事化,它可能會擾亂地方、國家政府和民眾。因此,美國對該地區的軍事化和一個不軍事化的敵人是次要的選擇。這種選擇意味著美國擁有無可爭議的軍事化,但正如所述,當地政府感到不安。第三,排名是美國不軍事化,但敵人軍事化,給了他們無可爭議的優勢。最后,美國不希望發生戰爭,如果美國和敵人都進行軍事化,就會發生戰爭。
接下來,工作人員將博弈發展為矩陣或戰略形式。首先,他們進行定性分析,說明每次交戰的可能結果,見表 12。然后參謀人員從每個指揮官的角度對結果進行排序,以生成定量分析和回報,如表 13 所示。該表顯示了回報敵方第一,美國第二。使用倒序排列,最低數字的收益表示排后的選項,數字越大,表示首選的選項。每個戰斗人員都是近鄰,因此參謀人員認為交戰將有利于主動一方。
表12 :定性分析
表13:定量結果
這兩種的價值在于員工進行分析以掌握對潛在未來結果的理解。它提供了一個簡潔的可交付產品,參謀計劃人員可以在一張紙上將其交給指揮官或參謀長,以供將來參考或思考,因為指揮官和參謀人員開始在軍事決策過程的未來步驟中權衡選項。這種分析為員工提供了一個思考他們正在做什么以及他們的計劃可能產生什么結果。這是舍恩所說的實踐中反思的一個例子。正如他所說,它允許人們在執行任務時思考他們正在做什么,然后塑造他們所做的事情。
下一步要求參謀人員將可用選項縮小到只有指揮官可用的可信選項。參謀部尋找指揮官永遠不會使用任何主導策略。敵方指揮官沒有任何主導策略,并且兩種策略都可供他使用。但美國永遠不會在博弈中選擇軍事化,因為無論敵人選擇什么,不軍事化都會主導博弈。表 14 以粗體突出顯示哪個選項在美國占主導地位。例如,如果敵人決定軍事化,如果它決定軍事化,美國將獲得 1 的回報,否則將獲得 2 的回報。因此,在這種情況下,美國會選擇不進行軍事化。同樣,如果敵人不軍事化,那么如果它軍事化,美國將獲得三倍的回報,如果它不軍事化,美國將獲得四倍的回報,美國將再次選擇不進行軍事化。因此,工作人員將其排除在外。
表14:以粗體突出顯示的美國的收益
既然參謀人員了解美國沒有軍事化的動機,它就可以看看敵人可能會采取什么行動作為回應。敵人知道美國不想軍事化,并尋求使其結果最大化。因此,敵人選擇軍事化,因為這比不軍事化帶來更好的回報。這達到了納什均衡,即敵人軍事化并獲得四分之二的回報,而美國不軍事化并獲得三分之二的回報。表 15 顯示了圈出的所得納什均衡。
表15:軍事化為主
但現實生活中的情況并不總是一致的。一方通常首先采取行動,迫使另一方做出決定。在上述情況下,美國正在努力應對將該地區軍事化的決定。然后他們的決定迫使敵人做出決定。下一步著眼于在順序移動游戲中情況如何展開,以及納什均衡在決策分析中是否發生變化。順序博弈見表 16。該表首先顯示了敵人的收益,其次是美國的收益。
表16:順序多次博弈
參與者對每個結果的選擇和回報保持不變。唯一的區別是美國先行動,敵人必須做出反應。工作人員必須使用子博弈分析來分析這個博弈及其結果。敵人有第二步,因此分析從他們的預期步驟開始。這兩個參與者都知道,如果美國選擇軍事化,敵人將選擇不軍事化,因為兩個人的回報比一個人要好。如果美國選擇不軍事化,敵人會想要軍事化,因為四比三好。鑒于美國的選擇,上面的表 16 通過圈出每個敵人的首選選擇來表明這種行為。既然美國知道敵人會根據美國的選擇做出哪些選擇,他們就會在兩者之間做出選擇。美國選擇軍事化,知道敵人不會軍事化,從而為美國帶來三倍的回報。美國軍事化總比不軍事化并獲得兩個回報要好,因為知道敵人會選擇軍事化。因此,納什均衡變成了美國軍事化和敵人不軍事化,敵方兩分,美國三分,見表 17。
表17:納什均衡
序列博弈導致的納什均衡與同步博弈不同,為什么?每場比賽都會導致一方軍事化,而另一方不軍事化。在同步博弈中,敵人通過軍事化獲得了最有利的回報,美國知道這一點,因此選擇不軍事化。然而,在順序博弈中,美國先決勝負。如果他們不軍事化,他們將獲得最高的回報,而敵人也選擇不軍事化。兩國都不會軍事化,因為如果美國不軍事化,敵人就有動機進行軍事化。美國意識到這一點,因此認為他們的下一個最佳選擇是軍事化,因為它知道敵人不會軍事化,因為這會迫使兩個參與者之間發生戰爭。這個游戲提供了一個先發優勢的例子。如果敵人先選擇,他們也會有軍事化的動機
序列多次博弈反映了更現實的情況。但是運行這兩種類型的博弈為工作人員了解動機和潛在行動提供了分析價值。工作人員可以看到排序操作如何改變結果。如上所述,使用這種方法的價值在于分析。工作人員可以按照矩陣形式對每個結果進行簡要說明。然后他們可以看到他們的選擇之一不是一個可行的選擇。然后,他們查看了定量評估并確定可以使用平衡結果。所進行的定性分析重申了 Thomas Schelling 的觀點,即博弈論的數學并不總能解決沖突,不應過度依賴數學。而是對問題的思考增加了價值。
博弈論提供了一種分析工具來看待競爭情況。它使分析師能夠了解潛在的行動計劃、激勵措施以及回報或結果。此外,它可以突出信息差距和需要進一步理解的領域。在 20 世紀中葉,戰略層面的規劃者用它來更好地了解美國和蘇聯之間在使用核武器和原子戰方面的競爭。國防部以外的分析師使用它來了解競爭公司之間的貿易爭端和降價。
在作戰層面,博弈論允許對潛在計劃、激勵和結果進行相同類型的分析和理解。這本專著審視了博弈論的歷史并探索了基本的博弈論,確立了博弈論在分析沖突情況方面的有用性。文獻回顧揭示了博弈論的優勢和劣勢,這為如何最好地利用它以最大限度地發揮其潛力提供了信息。檢查諸如核局勢和國際貿易等戰略層面的決策為以前的努力如何有效地應用博弈論提供了背景。博弈論在特倫頓和普林斯頓的美國獨立戰爭中的應用與指揮官們所追求的不同,展示了使用博弈論如何提供獨特的見解,這對于像康沃利斯這樣經驗豐富的將軍來說并不明顯。最后,該專著展示了軍團級別的參謀人員如何使用博弈論來理解戰略級別的決策如何影響作戰級別的行動,比較了同步博弈和序列博弈的實用性。最后一部分提供了一個基本框架,工作人員可以通過將博弈論應用于任務分析和行動開發過程來解決操作問題。
博弈論的使用不僅限于軍事決策過程。博弈論非常適合國防部和美國陸軍目前使用的現有規劃流程。規劃人員可以在聯合作戰設計過程和陸軍設計方法中使用博弈論工具。具體來說,在聯合設計期間,博弈論工具最適合理解戰略指導和理解作戰環境。在軍隊設計期間,它最適合構建作戰環境和理解問題。博弈論是參謀人員或計劃團隊的工具包中的另一個有用工具。當通過軍事決策過程或設計過程應用時,博弈論分析與其他工具很好地結合在一起,可以更好地了解作戰環境。
關鍵詞:
決策、軍事裝備、軍事戰略、軍事戰術、戰備、戰爭和軍事行動
?
【摘 要】
美國國防部(DoD)需要能夠評估非致命武器(NLWs)的戰術、作戰和戰略影響,以指導這些系統的開發,如何和何時使用它們,以及將它們整合到國防部的整體能力中。NLWs的例子包括:聲波器、激光眩眼器、閃光彈、鈍器彈藥(如橡膠子彈)、泰瑟槍、胡椒彈、主動拒絕系統(ADS),它能發射毫米波能量,造成暫時的加熱感覺,使車輛和船只癱瘓的微波發射技術,還有使螺旋槳糾纏不清的停船技術。NLWs是中間力量能力(IFCs)的一個子集。IFC是一個非理論術語,包括NLWs和各種造成非致命影響的技術。通過在不施加致命武力的情況下限制其他各方的行動路線,核武器可以幫助實現軍事目的,同時避免附帶損害。
本報告描述了如何通過將NLWs執行的活動與直接產出、更高層次的結果和部門范圍的戰略目標聯系起來,來描述NLWs的戰術、操作和戰略影響。它還提供了一組度量標準,可用于評估這些活動、輸出和結果。這些指標的識別和表征也為數據收集奠定了基礎,這些數據收集可用于進一步評估NLWs在多個層面的影響,進而可以以增強其對國防部效能貢獻的方式影響NLWs的使用。基于訪談的關于NLWs的見解還可以影響如何使用這些信息來影響這些系統的未來開發和使用。
【研究問題】
NLW 如何為國防部的總體目標做出貢獻?
如何評估 NLW 的潛在戰術、操作和戰略影響?
【主要發現】
1. NLW 的產出和成果與戰略目標密切相關;憑借其相關的指標,它們可用于有效地描述 NLW 對整個國防部的影響
關鍵的 NLW 輸出包括創建額外的選項、限制其他方的選項、延長決策時間表以及在減輕多種風險的同時采取有效的行動。
主要成果包括改進的灰色地帶能力、在否則風險太大的環境中運作的能力,以及增強對美軍的認識。
2. 對 13 個小插曲的探索證明了 NLW 的實用性超出了它們經常被歸類的執法和人群控制的用途 NLW 是聲學系統和激光眩目器,它們可以招呼、欺騙、分散注意力、迷失方向或迷惑,而 ADS 則提供集中效果以在戰術上威懾、拒絕進入或誘導離開。
NLW 可以使美軍在管理升級的同時表現出決心。
戰略影響包括提高武裝沖突水平以下的能力和主動擴大競爭空間。
3. 關于 NLW 的四個關鍵主題來自對不同專家組和利益相關者的采訪
文化和資源問題是采用 NLW 的最大挑戰。有限的 NLW 可用性和相互競爭的培訓需求常常迫使部隊不重視 NLW,即使它們可能有用。
NLW 通常被認為是繁重的,以至于由于后勤問題和限制,它們沒有被納入作戰行動。
額外使用 NLW 的機會并未得到廣泛認可。
上述挑戰相互加強。
【建 議】
NLW 活動、產出、成果和國防部范圍的戰略目標之間的聯系應在各種論壇(包括與高級領導人)中展示和討論,以傳達 NLW 如何為這些戰略目標做出貢獻。
應與服務部門協調工作,通過提供指標值來收集可用于評估 NLW 影響的數據。
工作應與服務部門協調,以確保政策和行動概念一致且清晰易懂。
應與參謀長聯席會議 J7 就有關 NLW 的聯合訓練標準化進行合作,以確保各軍種與 NLW 一起提供全面的部隊訓練,并確保 NLW 與部隊的戰術、技術和程序緊密結合。
軍隊內部應該通過將活動、產出、結果和戰略目標聯系起來的解釋,以及對小插曲的探索、實況演習和兵棋推演中的演示,以及使用數據集來衡量 NLW 的影響,一旦這些變得可用。
應該從一開始就設計未來的 NLW,以盡量減少它們對感知和實際負擔的貢獻最大的方面。
當前的流程和網絡限制迫使軍隊員工在物理上聚集在一起進行操作。Metaverse 提供了一種潛在的解決方案,可以在通過分發操作使指揮所更易于生存的同時啟用操作
共同的操作畫面
“我需要理解”也許是任務指揮技術背后的主要驅動力。制定和維護共同作戰圖的基本概念是增強態勢感知,實現態勢理解并促進所有梯隊的共同理解。通過連接數字系統以在 2D 和 3D 地圖上顯示信息或通過在紙質地圖上手動跟蹤友軍和敵方信息的復雜應用程序編程接口執行,該過程在過去 30 年中沒有太大發展。這項工作需要大型、繁瑣的指揮所,配備集中的人員和技術,以執行作戰過程并最終生成通用的作戰畫面,指揮官和參謀人員可以利用該畫面做出最及時、最準確的決策。 不幸的是,隨著運營變得越來越復雜,數據越來越多,各單位一直在努力有效地進行信息和知識管理。指揮所的規模和范圍已經擴大以滿足需要。人員數量的增加和對網絡的依賴使今天的指揮所容易受到敵人的攻擊,沒有足夠的機動性和生存能力。元宇宙提供了一種潛在的解決方案,可以使操作過程成為可能,同時通過分布操作固有地使指揮所更具生存能力,以及減少物理和電磁足跡。
在 元宇宙中與我會面:在未來,士兵們可以“進入”虛擬環境,在執行任務之前進行任務規劃。盡管“軍事虛擬世界”仍然只是一個概念,但整個美國陸軍的研究人員和科學家正在探索潛在的應用
什么是元宇宙?
由尼爾斯蒂芬森在他 1992 年的小說“Snow Crash” 中創造為了描述用戶在虛擬空間中交互的在線世界,元宇宙已經通過大型多人在線游戲和虛擬世界(如 Second Life、Roblox 或 Minecraft)變得熟悉。正如移動設備在過去 10 年中改變了互聯網的消費方式一樣,新一代技術——在這種情況下是虛擬和增強現實耳機——正在為我們如何消費內容提供新的視角。這些頭顯不再受平面屏幕的限制,讓用戶能夠感知在物理世界之上或代替物理世界呈現的 3D 對象和媒體并與之交互。隨著大流行驅動的遠程工作加速,這一概念變得更加流行。Facebook 甚至將其未來寄托在這一轉變上。
風險基金合伙人和受人尊敬的商業作家馬修·鮑爾( Matthew Ball )將元宇宙最徹底的探索之一寫成了一個由九部分組成的博客系列。Ball 的入門書著重于元宇宙的八個方面:
硬件:用于訪問、交互或開發元宇宙的物理技術和設備的銷售和支持。這包括但不限于面向消費者的硬件(例如 VR 耳機、手機和觸覺手套)以及企業硬件(例如用于操作或創建虛擬或基于 AR 的環境的硬件,例如工業相機、投影和跟蹤系統以及掃描傳感器)。此類別不包括特定于計算的硬件,例如 GPU 芯片和服務器,以及特定于網絡的硬件,例如光纖電纜或無線芯片組。
網絡:由骨干提供商、網絡、交換中心和在它們之間路由的服務以及管理“最后一英里”數據給消費者的服務提供持久、實時的連接、高帶寬和分散的數據傳輸。
計算:支持元宇宙的計算能力的啟用和供應,支持物理計算、渲染、數據協調和同步、人工智能、投影、動作捕捉和翻譯等多樣化和高要求的功能。
虛擬平臺:沉浸式數字和通常是 3D 模擬、環境和世界的開發和運營,用戶和企業可以在其中探索、創造、社交和參與各種體驗(例如賽車、繪畫、上課,聽音樂),從事經濟活動。這些業務與傳統在線體驗和多人視頻游戲的區別在于,存在一個由開發人員和內容創建者組成的大型生態系統,這些生態系統在底層平臺上生成大部分內容和/或收集大部分收入。
交換工具和標準:工具、協議、格式、服務和引擎,它們充當互操作性的實際或事實上的標準,并支持元宇宙的創建、操作和持續改進。這些標準支持渲染、物理和 AI 等活動,以及資產格式及其從體驗到體驗的導入/導出、前向兼容性管理和更新、工具和創作活動以及信息管理。
支付:支持數字支付流程、平臺和運營,包括法定入口(一種數字貨幣兌換形式)到純數字貨幣和金融服務,包括比特幣和以太幣等加密貨幣以及其他區塊鏈技術。
元宇宙內容、服務和資產:與用戶數據和身份相關的數字資產(例如虛擬商品和貨幣)的設計/創建、銷售、轉售、存儲、安全保護和財務管理。這包含所有“建立在”元宇宙之上和/或“服務于”元宇宙的所有業務和服務,并且沒有被平臺所有者垂直整合到虛擬平臺中,包括專門為元宇宙構建的、獨立于虛擬界的內容平臺。
用戶行為:消費者和商業行為(包括花費和投資、時間和注意力、決策和能力)的可觀察變化,這些變化要么與元宇宙直接相關,要么以其他方式促成或反映其原則和理念。這些行為在最初出現時幾乎總是看起來像“趨勢”(或者,更貶義地,“時尚”),但后來顯示出持久的全球社會意義。
他討論了每個領域的進展,以及充分啟用和采用元宇宙作為移動互聯網繼任者的方法。
從虛擬到現實:隨著大型指揮所分解其物理足跡并依賴數字環境,諸如元宇宙之類的概念可以幫助參謀人員對現實世界的行動進行規劃
聯網
帶寬是當今戰場上的稀缺資源,需要技術突破才能完全啟用虛擬世界。然而,許多戰術場景可以受益于不是特別密集的信息,因此需要較少的帶寬來傳輸,例如地理空間位置、單位狀態摘要、當前目標等。此外,更密集的信息,例如用于訓練輔助目標識別算法的作戰區域3D 地形模型或未知敵方車輛的視頻,無需通過網絡實時發送。這將要求陸軍利用云服務,云服務不僅能高效地移動和處理信息,而且由情報部門控制,這些情報部門了解客戶請求或可能請求的數據和服務的信息價值。
關乎生死的一個關鍵問題是信息延遲。友方單位位置的潛在變化可能會導致整個元宇宙的決策瀑布式變化,并改變任務狀態的視角。為了做出更好的決策,陸軍必須創建一個超高效的網絡,只傳輸正確的相關信息。這種實時信息更新的概念是在虛擬世界中沉浸式硬件的關鍵組成部分,因為“數字孿生”士兵的表示和動作必須在連接到其共享空間的所有其他設備上同步。與商業世界不同,元宇宙戰場涉及戰斗人員試圖摧毀對手的網絡。
微軟飛行模擬器
流行的 Microsoft Flight Simulator 視頻游戲系列包括地球的“數字孿生”,結合地圖和衛星圖像,可以對天氣和空中交通、建筑物甚至樹木實時渲染。這是一個巨大的模型,對于戰術邊緣的受限帶寬來說是不切實際的,但是這個模型和其他類似的模型可以允許在更高的、云連接的梯隊或在本站上對車輛和武器效果進行超現實建模。NVIDIA 的 Omniverse等世界構建工具包有助于渲染新對象,其中包括材質、紋理和運動構建塊。甚至這些基于世界的模型的低分辨率版本也可用于概念演練或任務演練,無論單位是否位于同一地點。
想象一下:今天使用的沉浸式硬件幾乎完全掩蓋了用戶對現實世界的看法;最終,顯示器將需要在現實之上渲染內容或用合成內容替換所有內容之間進行動態調整。(由任務指揮戰斗實驗室提供)
虛擬平臺
整合軍用數字訓練、戰斗和企業級系統的精簡平臺不足以實現元宇宙。元宇宙要求士兵的數字存在超越不同的訓練平臺,并無縫集成到其他作戰工具中。這些工具還必須使用戶能夠從不同的角度與戰場數據進行交互,無論是在傳統的 2D 顯示器上還是從沉浸式共享虛擬空間。這將需要能夠使來自現實世界或模擬的數據在各種顯示媒體上無縫呈現的架構,無論它們是如何部署的。商業游戲世界一直在適應這一挑戰,支持在不同類型的硬件(如 PC 和游戲機)之間交叉玩同一游戲。
雖然化身的出現對我們的士兵來說可能不是那么優先,但數字資產可以以其他方式使用,這可能是有用的--例如,包括在一個人的身份系統偏好或自定義語言模型中,即使在用戶登錄一個新系統時也可以幫助人機合作。此外,一些游戲使一部分用戶能夠戴著虛擬現實設備從神一樣的俯視角度進行游戲,而其他玩家則化身為化身,從地面上以第一人稱觀看世界。像這樣的游戲概念似乎很適合在不同的梯隊中使用這種能力,在那里不同類型的數據和互動是必要的。
從戰術的角度來看,陸軍必須建立具有共同視野和感受的系統,無論系統是的佩戴方式或交互方式如何。士兵應該能夠以相同的配置文件使用他們的頭戴式顯示器、他們的手持系統和他們的桌面系統,并在這些系統間能夠以相同的角色輕松地切換。
硬件
Android Tactical Assault Kit (ATAK)等系統是一款裝在堅固外殼中的手持平板電腦或手機,可為作戰人員提供其作戰環境的數字化視角。ATAK 可以可視化 2D 和 3D 地圖,以及一系列圖形控制措施來表示友軍和敵軍的位置。雖然不像民用領域的消費類智能手機那樣無處不在,但這些設備代表了將物理和數字領域融合到一個手持套件中的首次嘗試之一。
然而,增強現實系統中的當前硬件限制了全息內容的視野質量。虛擬現實頭戴式顯示器提供高質量的視覺效果,但代價是幾乎完全遮擋了用戶對自然世界的看法。雖然陸軍開始評估在指揮所等不太致命的環境中使用虛擬現實,但沉浸式硬件的未來最終將融合到一個頭戴式顯示器中,該顯示器可以在現實之上的渲染內容或替換所有內容之間動態調整合成內容。這對于在未來的戰場環境中完全實現元宇宙是必要的。
結論
盡管推動了未來的發展,但我們也必須承認目前的技術仍然面臨著局限性--例如,訪問問題、延遲。這些問題不會因為升級到元宇宙而得到解決,必須隨著元宇宙的發展而得到解決。在規劃、準備、執行和評估行動方面轉向元宇宙模式,將使分散的工作人員能夠在一個協作的虛擬節點內更有效地同步作戰功能,這將與現有的實體指揮所相媲美。臨時會議可以超越簡單的電話和視頻會議,允許用戶占據一個包含所有相關數據的虛擬規劃空間來做出決定:一個顯示友軍和敵軍位置、情報產品、相對戰斗力、維持估計等的交互式三維共同作戰圖。
與人工智能一樣,元宇宙技術為解決戰場上的問題帶來了一套新的工具,包括當前和預期的問題。也像人工智能一樣,如果沒有標準和基礎設施來啟用這些工具,其結果將是零碎的和令人沮喪的。重要的是,陸軍要向前傾斜并認識到新技術的潛力,不僅因為它們在物資方面帶來了什么,而且還因為它們對我們未來的戰斗方式的影響。
高超音速武器正在為戰爭的步伐增添一個新的維度,并將以極快的速度推動戰場上的交戰。這將要求軍事指揮官比對手可用的先進武器和自動化流程更快地采取行動。在這種作戰環境中獲得決策優勢必須從支撐所有軍事行動的情報活動開始。
及時準確的情報提供了支持決策周期的信息優勢。將自動化應用于情報周期的各個方面,并在這些過程中建立信任,將使傳感器到射手的結構成為攔截先進武器和滿足日益增長的及時性作戰需求所必不可少的。不能滿足對及時情報的需求將導致戰場上的決策優勢喪失,隨后喪失戰斗中的作戰主動權,并可能導致戰斗。
基于人工智能 (AI) 的解決方案將在戰場和整個情報周期中提供各種優勢。當與彈性情報、監視和偵察 (ISR) 以及高級分析相結合時,它將為作戰部隊提供前所未有的能力。然而,僅靠人工智能并不能完全解決這一挑戰。我們必須為消費者和整個情報社區 (IC) 建立對源自 AI 流程的情報的信任。信任是啟用它們的關鍵,因此我們有能力從自動化中獲得全部好處。