美國的空中優勢是美國威懾力的基石,正受到競爭對手的挑戰。機器學習 (ML) 的普及只會加劇這種威脅。應對這一挑戰的一種潛在方法是更有效地使用自動化來實現任務規劃的新方法。
本報告展示了概念驗證人工智能 (AI) 系統的原型,以幫助開發和評估空中領域的新作戰概念。該原型平臺集成了開源深度學習框架、當代算法以及用于模擬、集成和建模的高級框架——美國國防部標準的戰斗模擬工具。目標是利用人工智能系統通過大規模回放學習、從經驗中概括和改進重復的能力,以加速和豐富作戰概念的發展。
在本報告中,作者討論了人工智能智能體在高度簡化的壓制敵方防空任務版本中精心策劃的協作行為。初步研究結果突出了強化學習 (RL) 解決復雜、協作的空中任務規劃問題的潛力,以及這種方法面臨的一些重大挑戰。
RL 可以解決復雜的規劃問題,但仍有局限性,而且這種方法仍然存在挑戰
2021年3月,美國哈德遜研究所國防概念與技術中心發布研究報告《實施以決策為中心的戰爭:提升指揮與控制以獲得選擇優勢》,提出以決策為中心的戰爭將使美軍做出更快、更有效的決策,從而賦予美軍更大的競爭優勢。
自冷戰結束以來,美國國防部(DoD)針對來自主要對手(如中國、俄羅斯和朝鮮等)的巨大軍事沖突發展了相應理論和能力。這些最壞的情況是為了確保美軍也能應對“較少的情況”。然而,這種方法偏重于為大規模、高強度軍事沖突設計的概念和系統,美國的智能對手不太可能向美軍挑起對抗,而國防部可以在力量投射或精確打擊等任務中發揮其優勢。
美國的對手在過去十年中已經發展出了抵消美國軍事優勢的方法,如中國和俄羅斯的灰色地帶或混合行動,這些方法以較低的成本和升級——盡管比傳統的軍事作戰時間更長——獲得目標。因此,國防部應修訂其規劃,提高新方案的優先級,這些方案以不同于戰區范圍內高強度作戰的方式給美軍施加壓力,如通過延長時間、不同程度的升級和規模,以及使用代理和準軍事力量。
中國的“系統破壞戰”概念和俄羅斯軍方的“新一代戰爭”概念是針對美國及其盟友的新方法的代表。雖然它們的制勝理論和方法大相徑庭,但這兩種概念都有一個共同點,即把信息和決策作為未來沖突的主戰場。它們從電子和物理上直接攻擊對手的戰斗網絡,以降低其獲取準確信息的能力,同時引入虛假信息,削弱對手的定向能力。同時,軍事和準軍事力量將通過孤立或攻擊目標的方式向對手提出難題,以中和對手的戰斗潛力,控制沖突的升級。
美國海軍如何重新平衡實施 "馬賽克戰 "部隊的例子
以決策為中心的概念,如系統破壞戰和新一代戰爭,很可能成為未來沖突的重要形式,甚至是主要形式。在冷戰后期,美軍革命性的精確打擊戰方式利用了當時的通信數據鏈、隱身和制導武器等新技術。同樣,以決策為中心的戰爭可能是軍事上利用人工智能(AI)和自主系統的最有效方式,這些技術可以說是當今最突出的技術。
以決策為中心的戰爭的一個例子是國防高級研究計劃局(DARPA)的馬賽克戰爭概念。馬賽克戰爭概念的中心思想是,由人類指揮指導的、具有人工智能功能的機器控制的分列式有人和自主單位可以利用它們的適應性和明顯的復雜性來延遲或阻止對手實現目標,同時破壞敵人的重心以排除進一步的侵略。這種方法與機動戰一致,不同于第二次世界大戰期間盟軍采用的基于損耗的戰略,也不同于冷戰后美軍在科索沃、伊拉克和利比亞沖突中采用的戰略。雖然馬賽克戰爭采用損耗作為給敵人制造困境的一部分,但其實現成功的主要機制是拒絕、拖延或破壞對手的行動,而不是削弱對手的軍事實力,使其無法再有效作戰。因此,馬賽克戰爭非常適合作為現狀軍事大國(如美國)尋求遏制侵略的概念。
在近期兵棋推演中,馬賽克部隊與傳統軍事部隊在任務完成情況的比較
馬賽克戰爭提出了一種部隊設計和指揮控制(C2)程序,與今天的美軍相比,它將使美軍能夠執行更多、更多樣化的行動方案(COA)。馬賽克部隊的分解結構和使用人類指揮與機器控制,將使對手的決策復雜化,縮小其選擇范圍,并施加一系列可能無法解決的困境。通過增加美軍指揮官的選擇權,減少敵方的選擇權,馬賽克戰法將尋求獲得“選擇權優勢”,使美軍能夠做出更快、更有效的決策。
選擇性戰略與以預測為中心的規劃方法形成鮮明對比,在這種規劃方法中,選擇最有可能導致成功的作戰行動方案并迅速實施,通過將與未選擇的作戰行動方案相關的系統和兵力要素分配給其他任務來提高效率。在以預測為中心的模式中,資源的早期承諾必然會限制指揮官今后的選擇空間。
與今天的美軍相比,馬賽克部隊的設計和C2過程可以在選擇權競爭中提供更大的優勢,因為隨著對抗或競爭的進展,可以緩解由于損失或敵方態勢感知的改善而導致的選擇權減少的自然趨勢。例如,“馬賽克”部隊可以更容易地隱藏具有反ISR能力的平臺或編隊,并在以后暴露出來,以實現新的選擇;利用數量更多、規模更小、成本更低的增援部隊;或依靠決策支持工具,允許繼續使用與高級指揮官物理或電子隔離的部隊。
圖:以網絡為中心的戰役空間架構與基于情境的戰役空間架構的特點比較
一支馬賽克部隊也將比今天的美軍更有能力進行縮小對手選擇范圍的行動。通過同時發起許多行動并加速其決策,一支使用人類指揮和機器控制的分布式部隊可以給對手造成足夠的困境,從而排除與作戰相關的數量的《作戰協議》。此外,馬賽克部隊還可以利用諸如分配、佯攻和探測等欺騙技術以及反ISR系統來補充其更大的規模和決策速度,這些技術可以使對手相信某些選擇不可行或不可能成功。
雖然國防部的C3結構,如混合和聯合全域指揮和控制(CJADC2)開始納入決策支持工具,為特派團整合效應鏈,但其目前和近期的實例旨在支持有效的火力投送,而不是持續的可選性。此外,與CJADC2相關的C2和通信(C3)舉措,如高級戰役管理系統(ABMS),需要提前確定架構和組件系統。因此,CJADC2在其能夠提供的可選性方面將受到固有的限制。
圖:C2實施方法的比較
第一步是壓縮空間的表征,重點放在時間的表征上。以一個作戰人員在短時間內的行動為例,在這個例子中,一個作戰人員的任務是收集指定地點的圖像。這在操作上是不現實的情況,只是用一個簡單的案例來說明這個概念。
在C3組合中,國防部已經在通信復原力方面進行了大量投資。因此,大部分新的努力和資源應該應用于C2能力。盡管美國軍方投資于所謂的C2系統,但這些項目主要是操作中心和軟件堆棧,作為在部隊中傳遞數據、信息、命令或權限的基體。盡管對管理部隊來說是必要的,但目前國防部的C2系統——將C2看作是連接——并不是決策支持系統,后者將C2看作是一個過程。
圖:在馬賽克C2方法中采用OODA循環
用于以決策為中心的戰爭的C3能力需要做的不僅僅是實現連接。例如,C2工具將需要生成能創造和維持可選擇性的COA,以提高適應性,并將復雜性強加給對手。為了幫助初級領導人執行任務指揮,C2工具還需要了解哪些單位在通信中,他們在潛在的COAs中的作用,并配置網絡以確保所需單位與適當的指揮官保持一致。為了評估這些要求和以決策為中心的C3的其他要求,本研究采用了多種視角,如下所述。
圖:以預測為中心和以決策為中心的選擇空間隨時間變化的比較
網絡視角:要實現可選擇性和實施以決策為中心的戰爭,就需要有能力使C2結構與現有通信保持一致,而不是試圖建立一個在面對敵方協同干擾和物理攻擊時仍能生存的網絡。這些需求導致了一種混合架構,這種架構將網絡方式與分層方式結合起來,可以被定性為 "異構"。這種拓撲結構將使指揮權與合格的人類操作者占據的節點中具有最高程度的節點相一致。
解決問題的視角:與從頭開始處理每個新情況相比,使用類比推理的問題解決過程可以更迅速地評估潛在的備選方案,由此產生的決策空間的增加可以使指揮官將限制其備選方案的作戰行動協議推遲到最后一刻。此外,如果使用人工智能支持的算法在沒有監督的情況下建立COA,對手可以通過佯攻和探測來影響算法的學習,使系統認為COA是成功的,如果不是對手的行動,實際上會失敗。
圖:來自DARPA PROTEUS計劃的分析和用戶界面,AI輔助規劃
時間視角:可選性的概念適用于多個時間尺度,從戰略到工業能力發展和部隊的戰術行動。C3架構的能力應該有助于擴大每個時間尺度上的努力所帶來的決策空間,而不是僅僅在任務期間。
組織視角:國防部的C3架構不是在真空中存在的。各組織的人員必須通過戰略、工業、作戰和戰術時空的流程來運用這些架構。可選性是在以決策為中心的戰爭中獲得優勢的關鍵,但如果僅僅是派出一支更分散的部隊和使用它的工具,如果這支部隊的使用方式很狹窄,為每個單獨的行動提供最高的成功概率,那么只能稍微增加美軍的復雜性和適應性。需要決策組織和程序,盡可能長時間地擴大指揮官的選擇空間。
今天的戰斗指揮官(CCDR)參謀部缺乏組織和程序,無法為即將到來的任務以各種不同的配置組合部隊。為了能夠在任務時間內組成部隊,國防部可以采用類似于將計算機程序編譯成可執行代碼的方法。軟件指令是用較高層次的計算機語言編寫的,但在軟件被計算機處理器執行之前,需要將其轉換成二進制形式。這種方法將從決策支持系統的COA開始,然后組合適當的單位來支持行動。雖然部隊構成主要是以硬件為中心,但也需要在技術棧的信息層和網絡層進行部隊包的軟件構成。
圖:從人工構成到決策中心戰的任務整合浪潮
美軍將需要采用新的部隊設計和C2流程,以實現以決策為中心的戰爭,但如果不與工具和組織結合起來,以充分利用使用人類指揮和機器控制的更分散的部隊中可能存在的可選性,這些努力將付諸東流。
目前國防部通過CJADC2和相關的作戰概念努力使美軍向更分散的組織和更分散的能力發展,這是實現更以決策為中心的軍事行動方法的重要一步。高級戰斗管理系統(ABMS)和DARPA的幾個項目正在開發C2工具和流程,這些工具和流程將增加指揮官使用這些更分布式部隊的可選性。國防部的部隊設計變革或C3舉措將需要更進一步,以便美軍在面對已經躍升到以決策為中心的戰爭并擁有主場優勢的同行對手時保持可選擇性優勢。
也許更重要的是,將需要新的組織和程序,使CCDR能夠在戰區組成和整合分散的部隊,并改變國防部定義需求和發展新能力的方式。如果不對國防部的需求和部隊發展程序進行重大改革,美軍就有可能在爭奪決策優勢的競爭中落后于對手,從而威脅到其保護美國利益和盟友免受大國侵略的能力。
(參考來源:軍事文摘作者:張傳良)
?
對于群體智能中的人類操作員來說,關鍵情況下的決策支持至關重要。自主系統共享的大量數據很容易使人類決策者不堪重負,因此需要支持以智能方式分析數據。為此,使用了用于評估情況和指示可疑行為或統計異常值的自主系統。這增強了他們的態勢感知能力并減少了工作量。因此,在這項工作中,強調為檢測監視任務中的異常而開發的數據融合服務,例如在海事領域,可以適應支持集群智能的運營商。此外,為了使人類操作員能夠理解群體的行為和數據融合服務的結果,引入了可解釋的人工智能 (XAI) 概念。通過為某些決策提供解釋,這使得自主系統的行為更容易被人類理解。
作者解決了由于自主系統共享大量數據而導致的信息過載問題。為了緩解這個問題,他們建議通過兩種智能數據分析方式來幫助人類操作員。第一種方法是自動異常檢測,這可能會加強人類操作員的 態勢感知SA 并減少他們的工作量。第二種方法是可解釋的人工智能 (XAI) 概念;它們有可能使群體行為以及異常檢測結果更易于理解。
作者認為,控制一群無人機仍然具有挑戰性。一方面,(半自動化)群體代理“必須決定行動方案”;另一方面,人類操作員必須決定他們的行動,例如與群體互動。提出的建議力求改善人在循環中。考慮到海上監視的應用,使用非固定代理的動態方法具有幾個優點。首先,某些場景只能使用動態方法進行管理;其次,與固定監視傳感器相比,代理更便宜;第三,在多個地點靈活使用代理可以減少操作群體所需的人員數量。然而,情況評估仍然需要知情的操作員。
作者認為,在海洋領域用于船舶分析的異常檢測算法可能適用于引入以下場景的群體。“假設我們有一個群體來支持海上船只,這些船只不僅會收集它們自己的傳感器系統可用的數據,還會收集所有資產的數據。所有來源收集的信息都需要融合成一幅連貫的畫面。這不應僅限于 JDL 數據融合的第一級,而應包括更高級別的數據融合過程,以獲取有關附近所有對象的可用信息。” 數據驅動的方法能夠應對這種情況。文獻提供了三種檢測位置和運動異常的方法:統計解釋為與正常行為相比的異常值;聚類分析聚類相似的軌跡和確切的路線;用于建模正常移動模式的深度學習方法。為了應對更復雜的場景,包括船舶周圍環境(基礎設施、地理、天氣等)在內的算法是必要的。在某些復雜異常的情況下,區分正常和異常行為需要基于規則、基于模糊、多智能體或基于概率圖形模型的算法。對于所有提到的算法類別,作者都指出了大量的示例算法。
一些算法是黑盒模型,因此,它們的解釋對于人類操作員來說是復雜的。XAI 概念可以幫助緩解這個問題。XAI 概念旨在“提供道德、隱私、信心、信任和安全”,并努力在“它已經做了什么、現在正在做什么以及接下來會發生什么”中明確決策。,從而提高了人工操作員的 SA。考慮到 XAI 模型,模型特定方法(僅限于某些數學模型)可以與模型無關(適用于任何類型的模型)方法區分開來。
在目前的貢獻中,重點是與模型無關的方法。考慮到這些,局部解釋方法(解釋整個模型的單個預測結果)可以與全局解釋方法(解釋整個模型的行為,例如以規則列表的形式)區分開來。此外,作者使用特征屬性、路徑屬性和關聯規則挖掘來區分方法。通過特征屬性,“用戶將能夠了解他們的網絡依賴于哪些特征”;方法示例是提供全局和局部可解釋性的 Shapley Additive Explanations (SHAP) 和指示“模型在進行預測時考慮的輸入特征” 的局部可解釋模型無關解釋 (LIME)。路徑集成梯度(PIG,使用局部解釋)等路徑屬性提供了對模型預測貢獻最大的特征,從而深入了解導致決策的推理。關聯規則挖掘(ARM)是另一種使用全局解釋的方法,發現大型數據集中特征之間的相關性和共現。ARM 方法使用簡單的 if-then 規則,因此被認為是最可解釋的預測模型。可伸縮貝葉斯規則列表 (SBRL)、基尼正則化 (GiniReg) 和規則正則化 (RuleReg) 技術被認為適用于監視任務。
作者認為,使用這樣的 XAI 概念,人類操作員(決策者)可以更好地理解、更好地控制和更好地與一群自主代理進行通信,尤其是在具有挑戰性的環境中。總而言之,將異常檢測和 XAI 概念這兩種方法應用于人類在環、用戶對群體智能的理解和信任可能會得到改善。
低速、慢速和小型 (LSS) 飛行平臺的普及給國防和安全機構帶來了新的快速增長的威脅。因此,必須設計防御系統以應對此類威脅。現代作戰準備基于在高保真模擬器上進行的適當人員培訓。本報告的目的是考慮到各種商用 LSS 飛行器,并從不同的角度定義 LSS 模型,以便模型可用于LSS 系統相關的分析和設計方面,及用于抵制LSS系統(包括探測和中和)、作戰訓練。在北約成員國之間提升 LSS 能力并將 LSS 擴展到現有分類的能力被認為是有用和有益的。
【報告概要】
在安全受到威脅的背景下考慮小型無人機系統 (sUAS)(通常稱為無人機)時,從物理和動態的角度進行建模和仿真遇到了一些獨特的挑戰和機遇。
無人機的參數化定義包括以下幾類:
描述無人機飛行動力學的分析模型在數學上應該是合理的,因為任務能力在很大程度上取決于車輛配置和行為。
考慮到剛體在空間中的運動動力學需要一個固定在剛體本身的參考系來進行合適的力學描述,并做出一些假設(例如,剛體模型、靜止大氣和無擾動、對稱機身和作用力在重心處),可以為 sUAV 的飛行動力學開發牛頓-歐拉方程。
在檢測 sUAS 時,必須考慮幾個現象,例如可見波范圍內外的反射、射頻、聲學以及相關技術,如被動和主動成像和檢測。
由于需要多個傳感器檢測 sUAS,因此有必要考慮識別的參數以便針對不同類型的檢測器對特征進行建模。此外,對多個傳感器的依賴還需要在信息融合和集成學習方面取得進步,以確保從完整的態勢感知中獲得可操作的情報。
無人機可探測性專家會議表明了對雷達特征以及不同無人機、雷達和場景的聲學特征進行建模的可能性,以補充實驗數據并幫助開發跟蹤、分類和態勢感知算法。此外,雷達場景模擬的適用性及其在目標建模和特征提取中的潛在用途已得到證實。
然而,由于市場上無人機的復雜性和可變性以及它們的不斷增強,就其物理和動態特性對無人機簽名進行清晰的建模似乎并不容易。
sUAS 特性的復雜性和可變性使得很難完成定義適合在仿真系統中使用的模型的任務。這是由于無人機本身的幾個參數,以及考慮到無人機的所有機動能力和特性所需的飛行動力學方程的復雜性。
此外,sUAS 特性的復雜性和可變性不允許定義用于評估相關特征的參數模型。
圖1 無人機類別與其他類別/參數的關系(part 1)
圖2 無人機類別與其他類別/參數的關系(part 2)
圖3 參考坐標系
【報告目錄】
?以消費者和企業為中心的新技術的爆炸式增長已成為美國民眾體驗醫療保健和福祉的顛覆性力量。這些技術——統稱為“數字健康”——有可能改變個人、家庭和社區管理他們的醫療保健和福祉的方式。
美國機構和其他利益相關者正在對新工具進行大量投資;獲取、提供和使用數據的方法;以及提供衛生服務的創新方式。然而,對于指導眾多創新實現共同目標、協作工作和高優先級成果的國家優先事項集,并沒有達成一致意見。需要一個包括協作治理流程在內的戰略框架,以建立一個值得信賴、透明和公平的數字健康生態系統。
被統稱為“數字健康”的技術正在擾亂美國乃至世界各地的醫療保健和福祉現狀。在這方面,COVID-19大流行似乎是一個分水嶺。環境促使遠程保健的使用激增,在這一過程中產生了關于遠程保健的交付、影響、價值和可持續性方面的數據和潛在教訓。大流行可能產生對個人、家庭和社區產生積極影響的轉變。替代方案——在當前系統之上簡單地分層數字技術——將不僅僅維持現狀。這將使那些在連通性、數字素養和獲得護理方面已經落后的人的處境更加糟糕,并將進一步為濫用、欺詐和浪費打開大門。在一個如此富有和創新能力的國家,這樣的結果是不可接受的。國家需要采取戰略性行動,充分考慮數字衛生帶來的獨特挑戰和機遇。
該戰略為指導美國數字健康生態系統的發展提供了一個框架。該戰略包括六個目標,每個目標都有建議的行動。總的來說,這些目標旨在實現數字健康生態系統推動的改善國民健康和福祉的愿景。
本文檔旨在為領導者提供實施變革的框架。其中涉及的變化范圍很廣——不僅是技術上的,還有政治、社會和文化上的。這里的想法的實施需要大量的時間、金錢、資源的投資,最重要的是領導能力。其他國家也在國家規劃的指導下進行這些投資。美國必須采取明智的行動,但不能拖延,以實現數字衛生生態系統的愿景。
戰略的最后一個組成部分是治理。我們需要對支離破碎且過時的治理結構進行廣泛改革。避免重復、協調努力并代表全國做法的戰略投資將受益于數字衛生。該策略詳細說明了所需治理結構的關鍵組成部分,并建議了實現有效治理機制的步驟。
空軍專業 (AFS) 初始技能培訓 (IST) 的最新趨勢表明,美國空軍 (USAF) 入伍人員重新分類為其他職業專業的人數近年來有所增加,并且在財政年度之間出現了穩步增長2013 年和 2017 年。職業領域重新分類可能會導致廣泛的負面結果,包括成本增加、人員配備延遲、培訓計劃挑戰和士氣下降。為了理解和解決 IST 重新分類的挑戰,作者考慮了改進流程的選項,以對 IST 的現役非在職飛行員進行分類和重新分類。在本報告中,他們概述了 2019 年一項研究的主要發現,該研究采用了定性和定量分析,包括機器學習 (ML) 模型、評估 IST 成功(和失敗)的預測因素。他們還描述了他們對優化模型的測試,該模型旨在確定修改重新分類決策的機會,以便不僅減少重新分類飛行員的數量,而且提高飛行員的工作滿意度和生產力,并提高美國空軍的保留率。
01 研究問題
02 主要發現
2.1 IST 分類旨在優化訓練成功,但不優化其他重要結果
2.2 增加相關變量的數量可以提高 ML 預測的準確性
2.3 重新分類是一個手動過程,可以進行優化以實現不同的結果
2.4 與 IST 飛行員就選定的 AFS 進行的焦點小組討論確定了促成 IST 成功和挑戰的因素,并確定了改進建議
飛行員的特征(例如,動機)和先前的經驗(例如,教育)、支持性教官和學習小組有助于 IST 的成功。
IST 挑戰涉及飛行員特征和訓練基地環境。
改進涵蓋了諸如 AFS 的先驗知識以及對 IST 的期望、課程設計、非 IST 要求和宿舍安排等領域。
03 建議
通過保留有關 IST 資格和結果的數據庫,要求新兵完成職業評估和招聘人員提供有關 IST 和 AFS 的信息,系統地收集有關工作要求的信息,開發生物數據工具,從而擴展 USAF 入伍分類中使用的預測變量集。由所有入伍新兵完成,并使用同行和教官對飛行員的個性進行評分。
通過定義和系統地測量與 IST 成功相關的結果以及通過監控專業畢業的移動平均值來擴展 USAF 入伍分類中使用的結果集。
提高數據質量、全面性和可訪問性,以便 ML 模型能夠提供準確且有用的預測。
更新分類和重新分類流程以優化 IST 的成功和工作匹配,從而提高績效和職業滿意度。
在實施任何 ML 模型之前,應對道德和隱私、ML 模型的可解釋性和模型性能等領域的挑戰。
04 報告目錄
第一章
簡介和背景
第二章
空軍分類和重新分類過程
第三章
可用于預測空軍訓練和職業成果的數據
第四章
預測成功的模型
第五章
重新分類訓練消除的優化模型
第六章
飛行員在選擇專業的初始技能培訓中的經驗
第七章
結論和建議
附錄 A
定義和衡量人員選拔的成功
附錄 B
描述性統計和分析建模結果
附錄 C
優化模型方法論
附錄 D
焦點小組方法論
美國國防部(DOD)報告稱,人工智能(AI)是一項革命性的技術,有望改變未來的戰場和美國面臨的威脅的速度。人工智能能力將使機器能夠執行通常需要人類智能的任務,如得出結論和做出預測此外,人工智能機器可以以人類操作員無法企及的速度操縱和改變戰術。由于AI具有廣泛用途的潛力,國防部將其指定為頂級現代化領域,并投入大量精力和資金開發和獲取AI工具和能力,以支持作戰人員。在2022財年,國防部為科學和技術項目申請了147億美元,以及8.74億美元用于直接支持其人工智能努力。根據國防部2018年的人工智能戰略,未能將人工智能能力納入武器系統可能會阻礙戰士保護我們的國家抵御近同行對手的能力其他國家正在這一領域進行大量投資,這可能會削弱美國的軍事技術和作戰優勢。
美國國防部(DOD)正在積極追求人工智能(AI)能力。人工智能指的是旨在復制一系列人類功能,并不斷在分配的任務上做得更好的計算機系統。GAO之前確定了三種AI類型,如下圖所示。
國防部認識到開發和使用人工智能不同于傳統軟件。傳統軟件的編程是根據靜態指令執行任務,而人工智能的編程則是學習如何改進給定的任務。這需要大量的數據集、計算能力和持續監控,以確保功能按預期執行。支持國防部作戰任務的大部分人工智能能力仍在開發中。這些能力主要集中在分析情報,增強武器系統平臺,如不需要人工操作的飛機和艦船,并在戰場上提供建議(如將部隊轉移到哪里)。
當獲取依賴于復雜軟件的新能力時,國防部一直面臨著挑戰,例如長時間的獲取過程和熟練工人的短缺。GAO發現,它繼續面臨這些挑戰,同時還面臨人工智能特有的其他挑戰,包括有可用的數據來訓練人工智能。例如,人工智能探測對手的潛艇需要收集各種潛艇的圖像,并標記它們,這樣人工智能就可以學會自己識別。國防部還面臨著將訓練有素的人工智能集成到非為其設計的現有武器系統中的困難,以及在其人員中建立對人工智能的信任。國防部發起了一系列努力,如為人工智能和人工智能特定培訓建立一個跨服務的數字平臺,以應對這些挑戰,并支持其對人工智能的追求,但現在評估有效性還為時過早