亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

摘要

如今,隨著技術飛速發展和威脅環境變得更加復雜,在信息爆炸的局面下,作戰人員面臨著具有挑戰性的決策空間。人工智能(AI)和機器學習(ML)可以減輕作戰人員負荷。人工智能系統具有深遠的好處——提高態勢感知能力,檢測威脅,理解對手的能力和意圖;確定和評估可能的戰術行動方針;并提供方法來預測行動決策的結果和影響。人工智能系統是理解和解決高度復雜的戰術情況的關鍵。

人工智能系統為作戰人員提供了優勢,但前提是這些系統被正確設計和實施,并且以減輕作戰人員的認知負荷的方式。為國防應用實施人工智能系統帶來了獨特的挑戰。本文確定了四個獨特的挑戰,并描述了它們如何影響戰術作戰人員、工程設計界和國防。本文通過國防采辦和系統工程計劃,為解決這些獨特的挑戰提供了解決方案。

作者簡介:

Bonnie Johnson——在海軍工程研發方面擁有超過 25 年的領導和系統工程經驗。她曾是 SAIC 和諾斯羅普·格魯曼公司的高級系統工程師,研究用于海戰系統和導彈防御能力的自動決策輔助。她于 2011 年加入美國海軍研究生院 (NPS) 系統工程系。她擁有 NPS 系統工程博士學位、約翰霍普金斯大學系統工程碩士學位和弗吉尼亞理工大學物理學學士學位。

引言

人工智能是一個包含許多不同方法的領域,其目標是創造具有智能的機器(Mitchell,2019)。圖 1 顯示了一個簡單的維恩圖,其中機器學習 (ML) 作為 AI 的子集,而 AI 作為更廣泛的自動化類別的子集。自動化系統以最少的人工輸入運行,并且經常根據命令和規則執行重復性任務。人工智能系統執行模仿人類智能的功能。他們將從過去的經驗中學到的知識與收到的新信息結合起來,以做出決策并得出結論。

圖 1. 自動化、人工智能和機器學習的維恩圖

如圖 2 所示,有兩種主要類型的 AI 系統。第一種類型是明確編程的,也稱為手工知識系統。 Allen (2020) 將手工知識系統描述為“使用傳統的、基于規則的軟件,將人類專家的主題知識編碼為一長串編程的‘如果給定 x 輸入,則提供 y 輸出’規則的人工智能”(第3頁)。這些系統使用傳統的或普通的編程語言。第二種類型是從大量數據集訓練而來的機器學習系統。 ML 系統從訓練過的數據集中“學習”,然后在操作上使用“訓練過的”系統在給定新的操作數據的情況下產生預測結果。

圖 2. 兩種類型的人工智能:顯式編程和學習系統

自動化、人工智能和機器學習系統,包括手工知識系統和學習系統,為美國國防部 (DoD) 提供了巨大的潛力,在大多數任務領域具有多種應用。這些智能系統可以擴展國防部理解復雜和不確定情況、制定和權衡選項、預測行動成功和評估后果的能力。它們提供了在戰略、規劃和戰術領域支持國防部的潛力。人工智能系統可以減輕作戰人員的負擔,但前提是這些系統的設計和實施正確,并且以減輕作戰人員認知負擔的方式。這為國防應用實施人工智能系統提出了獨特的挑戰。本文確定了四個獨特的挑戰,并描述了它們如何影響戰術作戰人員、工程設計界和國防。

第一個為國防應用實施人工智能系統的獨特挑戰是戰術戰爭呈現高度復雜的情況。戰術復雜性可能涉及信息超載、需要處理的多個并發任務、具有可怕后果的時間關鍵決策、態勢感知的未知/不準確/不完整,以及因各種分布式戰爭能力所需的互操作性而產生的工程挑戰。將人工智能系統添加到這個已經很復雜的環境中是一項必要但極具挑戰性的工作。

第二個獨特的挑戰是人工智能系統需要大量數據來訓練。所開發的人工智能系統的質量很大程度上取決于訓練數據集的質量和數量。軍事領域的數據尤其難以獲得。軍事數據可能涉及分類問題、網絡漏洞、數據驗證挑戰,并且根據艦隊演習和兵棋推演的需要,收集起來可能非常昂貴且耗時。

第三個獨特的挑戰是人工智能系統為系統工程提出了一個新的前沿。在傳統系統中,行為是固定的,因此是可預測的:給定輸入和條件,系統將產生可預測的輸出。一些人工智能解決方案可能涉及本身就很復雜的系統——適應和學習——因此會產生無法預料的輸出和行為。事實上,一些人工智能系統的目的就是為了做到這一點——與人類決策者合作,承擔一些認知負荷并產生智能建議。需要系統工程方法來設計智能系統,并確保它們對人類操作員來說是可解釋的、可信賴的和安全的。

第四個獨特的挑戰是,對于國防應用,總是需要考慮潛在的對手。在人工智能系統方面,采購界必須注意同行競爭對手國家,他們在人工智能進步方面取得了自己的進步。美國國防系統也必須在這場人工智能競賽中取得進步。網絡攻擊在防御系統中總是有可能發生的。隨著防御能力增加對自動化和人工智能系統的依賴,這可能會造成更多的網絡漏洞。最后,技術正在迅速發展,對抗性威脅空間正在發生變化。國防采購和系統工程界必須確保人工智能系統不斷發展和適應,以應對威脅環境的變化,并以可信賴和安全的方式做到這一點。

挑戰一:復雜的決策空間

第一個獨特的挑戰是許多防御領域呈現出復雜的決策空間。因此,設計和實施適當的人工智能系統來解決這種復雜性將是極具挑戰性的。圖 3 突出顯示了導致戰術領域決策復雜性的許多因素。例如,海軍打擊部隊的行動可以迅速從和平狀態轉變為一種巨大的危險——需要對威脅保持警惕并采取適當的反應行動——所有這些都在高度壓縮的決策時間線上。戰術威脅可能來自水下、水面、空中、陸地、太空,甚至是虛擬的,因此需要處理多個時間緊迫的任務。在船舶、潛艇、飛機、陸地和太空中擁有海軍和國防資產;戰術決策空間必須解決這些分散和多樣化資源的最佳協作使用問題。制定有效的戰術行動方案也必須發生在高度動態的作戰環境中,只有部分和不確定的態勢知識。決策空間還必須考慮指揮權、交戰規則和戰術條令施加的限制。人類作為戰術決策者的角色增加了決策空間的復雜性——面臨信息過載、操作員錯誤、人工智能信任以及人工智能模糊性和可解釋性問題等挑戰。最后,戰術決策及其可能后果的風險可能非常高。

圖 3. 導致戰術決策空間復雜性的因素

解決高度復雜的決策空間是美國國防部面臨的挑戰。人工智能提供了解決這種復雜性的潛在解決方案——通過處理大量數據、處理不確定性、理解復雜情況、開發和評估決策替代方案以及了解風險水平和決策后果。人工智能解決方案可以應用于國防部的戰略、規劃和戰術層面。海軍研究生院 (NPS) 開發了一種工程框架和理論,用于解決高度復雜的問題空間,這些問題空間需要使用智能和分布式 AI 系統來獲得態勢感知并做出適應動態情況的協作行動決策(Johnson, 2019)。模擬了一個復雜的戰術場景,以演示使用 AI 來驗證該方法(Johnson,2020a)。 NPS 已經開發了一種預測分析能力的概念設計,該設計將被實施為一個自動化的實時戰爭游戲系統,該系統探索不同的可能戰術行動方案及其預測效果和紅軍反應(Johnson,2020b)。 NPS 研究已經確定了在戰術行動中描述復雜性水平的必要性,并實施自適應人機協作安排以做出戰術決策,其中自動化水平根據情境復雜性水平進行調整。正在進行的 NPS 研究正在研究這些概念工程方法在各種防御用例應用中的應用,包括防空和導彈防御、超視距打擊、船舶自衛、無人機操作和激光武器系統。

復雜的決策空間為 AI 系統嘗試和解決創造了具有挑戰性的問題。表 1 根據決策空間的復雜性比較了不同的 AI 應用領域。該表包含 10 個表征決策空間復雜性的因素:認知不確定性(對情境知識的不確定性數量)、情境動態、決策時間線(做出決策的時間量)、決策的復雜性決策過程中的人機交互、資源復雜性(數量、類型、它們之間的距離以及它們的動態程度)、是否涉及多個任務、對手(競爭對手、黑客或打算摧毀的徹底敵人)的存在,允許誤差的幅度(多少決策錯誤是可以接受的),以及決策后果的嚴重性。

表 1. 不同 AI 應用的決策復雜度比較

人工智能應用程序涉及的決策空間用于廣告(根據特定用戶的購買習慣或互聯網搜索確定將哪些廣告流式傳輸)、貸款批準(根據貸款金額和信用評分確定貸款資格)和醫療(根據診斷確定關于患者癥狀)相對簡單。存在大量訓練數據,決策過程中的計算和人為交互簡單,情況相對穩定。不良廣告的后果是微乎其微的。可以審計不良貸款批準決定。糟糕的醫學診斷可能會產生更嚴重的后果,但通常有足夠的時間在治療前尋求更多的評估和意見。為自動駕駛汽車確定最佳運輸路線和工程 AI 系統是更復雜的工作。這些應用程序是動態變化的,需要更短的時間來做出決策。運輸路線在可能路線的數量上會很復雜——這可能會導致許多可能的選擇。但是,存在運輸錯誤的空間,并且后果通常不會太嚴重。對于自動駕駛汽車來說,決策錯誤的余地非常小。此應用程序中的錯誤決定可能導致嚴重事故。

然而,軍事戰術領域在決策空間的所有領域都呈現出極端的復雜性:不確定性和有限的知識/意識、高度動態的情況、非常有限的時間線、復雜的人機交互、大量和類型的資源、多個任務、昂貴和困難- 獲取訓練數據集、極小的允許誤差范圍以及行動(或不行動)的生死攸關的后果。

挑戰二: 數據很難獲取

第二個獨特的挑戰是 AI/ML 系統需要大量相關且高質量的數據用于訓練和開發,而這些數據在軍事領域可能很難獲得。明確編程的手工知識系統在開發過程中需要數據進行評估和驗證。 ML 系統在開發過程中對數據的依賴性更大。如圖 4 所示,ML 系統從代表操作條件和事件的數據集中“學習”。 ML系統學習的過程也稱為被訓練,開發階段使用的數據稱為訓練數據集。有幾種類型的 ML 學習或訓練——它們是有監督的、無監督的和強化的。所有三種類型的 ML 學習都需要訓練數據集。 ML 系統在部署后或運營階段繼續需要數據。圖 4 顯示,在運營期間,ML 系統或“模型”接收運營實時數據,并通過使用其“訓練過的”算法處理運營數據來確定預測或決策結果。因此,在整個系統工程和采集生命周期中,ML 系統與數據密切相關。 ML 系統從訓練數據集的學習過程中“出現”。機器學習系統是數據質量、充分性和代表性的產物。他們完全依賴于他們的訓練數據集。

圖 4. 開發和實施機器學習系統

隨著許多領域(戰爭、供應鏈、安全、物流等)的更多 AI 開發人員正在了解 AI 解決方案的潛在優勢并開始著手 AI 系統開發,DoD 開始認識到對這些數據集的需求。在某些情況下,數據存在并準備好支持 AI 系統開發。在其他情況下,數據存在但不保存和存儲。最后,在其他情況下,數據不存在,需要模擬或在艦隊演習或戰爭游戲中收集。圖 5 說明了收集、獲取和在某些情況下開發用于開發和訓練 AI 和 ML 系統的數據時需要考慮的過程。

圖 5. 人工智能和機器學習系統訓練數據集的開發

軍事領域對開發訓練數據集提出了一些獨特的挑戰——數據可能被分類,數據可能存在網絡漏洞(它可能被攻擊并被對手故意破壞),如果數據不存在,它可能需要從軍事/艦隊演習或兵棋推演中獲得。數據驗證也是一項具有挑戰性的工作。

NPS 正在為海軍的數據管理系統執行需求分析和概念設計,該系統將收集數據并向海軍內部許多正在開發 AI/ML 系統的不同組織提供數據(French 等人,2021 年)。圖 6 是海軍中央人工智能庫 (CAIL) 的上下文圖,它被設想為一個數據管理系統和流程,用于識別數據集并提供索引、驗證、審計和對 AI 可以使用的數據的安全訪問。從事海軍應用的機器學習開發人員。 CAIL 將不是一個數據存儲庫或數據庫,而是一個中央組織,使 AI/ML 開發人員能夠訪問經過驗證和保護的海軍數據——以幫助識別數據集的存在,啟用授權訪問,并幫助支持開發人員所需的數據尚不存在,需要獲得——可能通過艦隊演習或兵棋推演。

圖 6. 概念性中央人工智能庫

挑戰三:人工智能為系統工程開辟了新領域

第三個獨特的挑戰是開發人工智能系統為系統工程提出了一個新的前沿。系統工程方法已被開發用于設計可能非常復雜但也具有確定性的傳統系統(Calvano & John,2004)。傳統系統具有可預測的行為:對于給定的輸入和條件,它們將產生可預測的輸出。圖 7 說明了對傳統 SE 方法(如 SE Vee 過程)進行更改的必要性,以便設計復雜且不確定的 AI 系統。特別是,需要新的方法來定義隨時間適應的學習系統的要求,并且系統驗證過程可能需要在操作過程中不斷發展和繼續,以確保安全和期望的行為。對于具有高風險后果的軍事系統,幾乎沒有出錯的余地,因此需要實施一個可以確保 AI 系統安全和預期操作的系統工程流程。

圖7. 人工智能:系統工程的新前沿

國際系統工程師理事會 (INCOSE) 最近的一項倡議已經開始探索需要對系統工程方法進行哪些改變才能有效地開發人工智能系統。圖 8 是作為該計劃的一部分創建的,旨在強調在 SE 過程中需要考慮的 AI 系統的五個方面。除了不確定性和不斷發展的行為之外,人工智能系統可能會出現新類型的故障模式,這些故障模式可能會突然發生,并且可能難以辨別其根本原因。穩健的設計——或確保人工智能系統能夠處理和適應未來的場景——是另一個系統工程設計考慮因素。最后,對于涉及更多人機交互的 AI 系統,必須特別注意設計系統,使其值得信賴、可解釋并最終對人類決策者有用。

圖 8. 人工智能系統工程中的挑戰

NPS 正在研究可以支持復雜、自適應和智能 AI 系統的設計和開發的系統工程方法。已經開發了一個系統工程框架和方法來設計系統解決方案的復雜自適應系統(Johnson,2019)。該方法支持系統系統的開發,通過使用人工智能,可以協作以產生所需的緊急行為。當前的一個研究項目正在研究可以在設計過程中設計到 AI 系統中的安全措施,以確保操作期間的安全(Cruz 等人,2021 年)。 NPS 正在研究一種稱為元認知的設計解決方案,作為 AI 系統識別內部錯誤的一種方法(Johnson,2021 年)。當前的另一個 NPS 論文項目正在研究如何將“信任”設計到 AI 系統中,以確保有效的人機協作安排(Hui,2021)。幾個 NPS 項目研究使用稱為協同設計的 SE 設計方法,來確定人類操作員與 AI 系統之間的相互依賴關系(Blickley 等人,2021;Sanchez,2021)。

挑戰四: 敵手

第四個獨特的挑戰是對手在防御應用中的存在和作用。國防部必須與對手競爭以提升人工智能能力,人工智能系統必須免受網絡攻擊,人工智能系統必須適應不斷變化的威脅環境演變。圖 9 突出顯示了對手的存在給國防部正在開發的 AI 系統帶來的一系列獨特挑戰。

圖9. 敵手的挑戰

競爭對手國家之間開發人工智能能力的競賽最終是為了進入對手的決策周期,以比對手更快的速度做出決定和采取行動(Rosenberg,2010 年)。人工智能系統提供了提高決策質量和速度的潛力,因此對于獲得決策優勢至關重要。隨著國防部探索人工智能解決方案,同行競爭對手國家也在做同樣的事情。最終,實現將 AI 用于 DoD 的目標不僅僅取決于 AI 研究。它需要適當的數據收集和管理、有效的系統工程和采集方法,以及仔細考慮人類與人工智能系統的交互。國防部必須確保它能夠應對實施人工智能系統所涉及的所有挑戰,才能贏得比賽。NPS 研究計劃正在研究如何應用 AI 和博弈論來進入對手的戰術決策周期(Johnson,2020b)。該項目正在開發一個概念,用于創建戰術態勢模型、對手的位置和能力,以及預測對手對形勢的了解。然后,概念系統將進行實時“兵棋推演”,根據預測的對抗反應和二階和三階效應分析戰術決策選項。這是一個研究未來戰術戰爭可能是什么樣子的一個例子,它為藍軍和紅軍提供了增強的知識和決策輔助。為 AI 競賽準備國防部的其他 NPS 舉措包括研究新的 SE 方法和獲取實踐以開發 AI 能力、研究海軍和國防部的數據管理需求(French 等人,2021 年)以及研究 AI 系統安全風險開發確保安全 AI 能力的工程實踐(Cruz 等人,2021 年;Johnson,2021 年)。

賽博戰是國防部必須成功參與的另一場競賽,以保持領先于黑客攻擊的持續攻擊。隨著國防部實施更多的自動化,它自然會導致更多的網絡漏洞。使用本質上依賴于訓練數據和操作數據的人工智能系統,為黑客在開發階段和操作階段用損壞的數據毒害系統提供了機會。如果對手控制了一個可操作的人工智能系統,他們可能造成的傷害將取決于應用程序領域。對于支持武器控制決策的自動化,后果可能是致命的。在最近一項關于汽車網絡安全的研究中,一家汽車公司在網上發布了一個假汽車電子控制單元,在不到 3 天的時間里,進行了 25,000 次違規嘗試(Taub,2021 年)。國防部必須注意人工智能系統開發過程中出現的特定網絡漏洞。必須為每個新的人工智能系統實施仔細的網絡風險分析和網絡防御策略。 NPS 正在研究數據安全要求,以確保 ML 訓練數據集不受黑客攻擊,并且需要安全授權才能訪問(French 等人,2021 年)。 NPS 正在研究使用元認知作為 AI 系統執行自我評估的一種方法,以識別網絡入侵、篡改或任何異常行為(Johnson,2020b)。 NPS 還在研究使用 ML 來識別惡意欺騙和篡改全球定位系統 (GPS; Kennedy, 2020)。

威脅環境的演變是國防部在開發人工智能系統時的第三次對抗性競賽。由于對抗性威脅空間隨著時間的推移而不斷變化,擁有更快、更致命的武器、更多的自主權、更大的監視資產、更先進的對抗措施和更多的隱身性,這對國防部能夠預測和識別新威脅并進行應對提出了挑戰戰場上的未知數。 NPS 研究的重點是在作戰過程中不斷適應和學習的工程系統,以檢測和識別戰場中的未知未知,并通過創新的行動方案快速響應新威脅(Grooms,2019;Jones 等人,2020;Wood,2019 )。 NPS 正在研究通過研究特定區域隨時間變化的數據來識別異常變化的機器學習方法(Zhao et al., 2016)。一個例子是研究商用飛機飛行模式并根據異常飛行模式識別可疑飛機。隨著時間的推移,可以監視地面行動,以識別可能意味著軍事行動的新的和不尋常的建設項目。

結論

人工智能系統為國防部在實現和保持知識和決策優勢方面提供了重大進展。然而,為國防應用實施人工智能系統提出了獨特的挑戰。軍事戰術領域在決策空間的所有領域都呈現出極端的復雜性:不確定性和有限的知識、高度動態的情況、非常有限的時間線、復雜的人機交互、大量和類型的資源、多個任務、昂貴且難以獲得訓練數據集、極小的允許誤差范圍以及行動(或不行動)的生死攸關的后果。 AI 系統,尤其是 ML 系統,需要有代表性、足夠、安全和經過驗證的數據集來進行開發。為國防應用收集合適的數據具有處理分類數據集和確保數據安全和免受網絡攻擊的額外挑戰;這也將是收集代表戰術行動的真實數據的一項重大努力。將需要新的系統工程方法來有效地指定、設計和評估人工智能系統,這些系統通過其不確定性、新型人機協作挑戰以及難以預測和預防的新安全故障模式而呈現出新的復雜性.最后,軍事領域中對手的存在呈現出三種形式的 AI 競賽:與對手一樣快地開發 AI 系統的競賽、保持領先于可能的網絡攻擊的競賽以及訓練能夠應對的 AI/ML 系統的競賽隨著不斷發展的對抗性威脅空間。

NPS 正在通過一系列正在進行的研究計劃來解決四個獨特的挑戰領域。 NPS 研究人員正在研究人工智能系統在海軍戰術作戰領域的實施,對軍事數據集進行需求分析和需求開發,研究開發復雜人工智能系統的系統工程方法,以及開發安全、可信賴的人工智能系統工程方法,并注意潛在對手的作用。 NPS 正在為軍官和平民學生提供人工智能研究和教育機會。 NPS 歡迎與國防部和海軍組織合作,繼續研究用于國防應用的人工智能系統,并繼續探索解決方案戰略和方法,以克服開發和實施人工智能能力的挑戰。

附解讀PPT:(點擊下載)

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

人工智能(AI)正迅速融入軍事指揮與控制(C2)系統,成為許多國防部隊的戰略重點。人工智能的成功實施有希望預示著通過自動化實現C2靈活性的重大飛躍。然而,需要對人工智能在可預見的未來所能實現的目標設定現實的期望。本文認為,人工智能可能會導致脆弱性陷阱,即把C2功能委托給人工智能會增加C2的脆弱性,導致災難性的戰略失敗。這就要求在C2中建立一個新的人工智能框架以避免這種陷阱。我們將論證,"抗脆弱性 "和敏捷性應該構成人工智能C2系統的核心設計原則。這種雙重性被稱為敏捷、抗脆弱、人工智能驅動的指揮和控制(A3IC2)。一個A3IC2系統通過C2決策周期中的反饋過度補償,不斷提高其在面對沖擊和意外時的表現能力。一個A3IC2系統不僅能夠在復雜的作戰環境中生存,還能茁壯成長,從戰爭中不可避免的沖擊和波動中獲益。

I 引言

許多人認為,將人工智能(AI)納入軍事指揮和控制(C2)是建立軍事力量競爭優勢的一個關鍵因素[1],[2],[3]。人們對人工智能在戰場上能夠實現的目標抱有很高的期望,有些人宣稱它是下一場"軍事事務革命"[4]。人工智能有望在C2中實現復雜功能自動化,從而導致"戰場奇點"的概念,即決策周期自動化帶來的行動速度的增加導致人類的認知無法跟上機器做出決定的速度[3]。在這種對未來戰場的展望中,人被認為是C2系統中的一個薄弱環節[5]。

本文認為,人工智能的整合可能會對尋求機器速度決策的C2系統性能產生意想不到的后果;從戰略上講,一個已經達到 "戰場奇點"的系統在根本上是脆弱的。人工智能的快速發展及其對C2系統明顯的革命性/顛覆性影響在很大程度上是由對戰爭期間對對手的 "響應"程度的關注所引導的,而不是對這種技術可能對C2系統性能的整體影響。文獻中提出了兩個假設:第一,假設人工智能將通過優化系統的各個部分來進一步實現提高敏捷性的目標;第二,由于復雜的人工智能能夠在戰時做出決定,甚至在戰略層面做出決定,未來人工智能支持的C2系統將在盡可能少的人力投入下得到改善[6],[7]。這兩個假設都是錯誤的,因為人工智能帶來了獨特的特性,可能會增加C2系統的脆弱性。

傳統上,C2系統被認為受益于一種戰略,該戰略側重于在復雜的競爭環境中最大限度地提高敏捷性[8],[9],[10],[11]。David Alberts用 "敏捷C2"的概念體現了這一戰略,該概念指出,為了使C2系統有效,它必須能夠在復雜的環境中成功應對、利用和實現變化。C2的有效性是通過系統要素的相互作用來實現的,如適應性、響應性、靈活性、多功能性、創新性和復原力[8]。然而,對"敏捷C2"模式的接受使大多數軍事C2理論和文獻將人工智能技術作為提高C2決策單獨響應性的手段[1],[2],[7],[3],[5],而對C2系統需要響應性以滿足戰略利益這一單純的事實則關注較少。問題的核心就在這里,提高響應能力的人工智能是否能夠做到這一點,同時了解決策對跨多個領域的戰略和大戰略目標的影響。我們認為,盡管人工智能很先進,但由于人工智能系統容易受到具有戰略后果的黑天鵝事件的影響,在作戰環境中的預測從根本上來說是脆弱的[4]。人工智能的優化特性,加上人類責任的減少,可能成為阻礙C2敏捷性的 "脆弱 "方法。

為了否定上述可能導致人工智能C2系統脆弱性的一些問題,需要一個新的設計原則,以增強系統從波動中自我改善的能力,即所謂的 "抗脆弱性"[12],[13]。適當設計的人工智能可以通過在系統級存儲器中積累適當的遭遇和學習經驗來實現抗脆弱系統的發展,但它也可能鼓勵C2決策周期的過度優化。這可能會導致系統無法識別和解釋突發事件,但仍然快速推薦決策,導致負面風險的升級。因此,人工智能的整合支持了一種新模式的發展,擴展了敏捷C2的概念,并包含了抗脆弱性。這將被稱為 "敏捷、抗脆弱、人工智能驅動的指揮與控制"(A3IC2),它是敏捷C2、抗脆弱理論和人工智能用于C2的綜合體,建立在Boyd、Brehmer和Alberts[14],[8]所開發的模型之上。

為了探討A3IC2,本文的結構如下。第二節介紹了文獻回顧,將A3IC2概念與之前的其他概念區分開來。然后在第三節中介紹了人工智能導致脆弱性,接著在第四節中論證了抗脆弱性將使人工智能在C2系統中得到有效利用的原因。第五節討論了擬議的A3IC2功能模型,然后在第六節得出結論。

II 文獻回顧

A. 指揮與控制

就本文而言,軍事C2的定義是負責適當分配部隊以實現軍事目標的戰區級職能。軍事學說將其廣泛定義為 "對所分配的部隊行使權力和進行合法指揮的過程和手段"[1],[2],[15]。這有別于其他被描述為戰術層面的C2系統,如單個車輛或小單位的C2。

軍事C2與戰略決策是密不可分的。它包括一個等級組織,指揮官的意圖來自他們所保衛的國家戰略目標,為下屬的決策和行動提供方向[14]。C2的最高優先事項之一是保持對環境的態勢感知,并以軍事行動做出適當的響應(或不響應),以實現戰略目標。C2不僅要有效地進行作戰,而且還必須知道何時從非作戰行動(OOTW)過渡到作戰[16],反之亦然。因此,軍事C2的適當抽象(或模型)需要承認沖突的全部范圍;從作戰到非作戰行動[15]。它必須考慮到C2系統所處的 "作戰環境 "的動態復雜性;從戰術到戰略層面以及它在大戰略層面產生的影響。簡而言之,有效的C2不僅僅是能夠贏得戰斗,它還必須知道什么時候挑起戰斗是一種相稱的響應[2],[15],[16]。此外,它需要了解其行動對大戰略層面的影響;也就是整個政府的目標。

C2,作為一個系統,在一個非線性和復雜的環境中運作。它被歸類為 "社會技術"系統,是技術和 "社會 "或人類元素的混合體,它們相互作用,并與更廣泛的復雜環境相互作用[17]。一個C2系統表現出動態的、突發的行為,有許多意外的或不可預知的后果。這不僅是因為這些系統依靠人類來理解復雜的環境并制定解決問題的計劃,而且因為它也是一個技術系統,態勢感知依賴于數字系統和傳感器來傳遞信息,而這些信息可能無法準確地代表作戰環境[9],[17],[10],[4]。C2系統必須完成的任務或目標完全取決于未預料到的現實世界的事件,如戰爭、環境災難和其他雜項OTW。這發生在多個領域(物理的和非物理的),并且都是在分歧的作用下。從系統思維的角度來看,C2作戰環境是真正 "超復雜"的[18],[16]。

因此,軍事C2有一個非常困難的任務,即它必須在一個復雜的環境中做出具有重要意義的決策,并保證有幾乎不可能預測或逆轉的二階和三階戰略效應[19],[4]。長期以來,軍事戰略家們一直理解這一點,并在傳統上通過心理模型或啟發式方法來管理,以指導如何理解和應對戰爭的復雜性。這些心智模式現在被固化在戰略研究學科和現代軍事理論中[4]。C2是在戰爭中取得戰略成功的一個重要手段,它被定義為 "確定一種方法,使敵人的組織因無助或混亂而崩潰"[16]。與指導這一結果相關的心智模式(必然)是高度抽象的,反映了對復雜性的理解;戰略與其說是一門科學,不如說是一種藝術。Clausewitz和他的 "分歧"概念,描述了在這種復雜性中操作的困難,它習慣于破壞所有精心策劃的計劃,導致了 "戰爭中一切都很簡單,但最簡單的事情卻很困難 "的看法[20]。自Clausewitz以來,由于信息理論、人工智能、系統思維和控制論方面的重大進展,戰略的啟發式方法已經取得了進展。關于戰爭的心智模式繼續從技術中發展,但戰爭的核心性質卻沒有發展。它在政治中的基礎要求它是一種與人的因素密不可分的活動[4],[15]。將這些心智模式轉化為指導人工智能的具體指標,是一項非同尋常的、可能不可行的任務。這些心智模型的工作原理是對背景、指揮官的意圖以及一個決定可能產生的大戰略后果的整體理解。

科學、技術和信息理論對戰略和C2概念產生了重大影響[21]。John Boyd上校,作為控制論和戰略的學者,在這兩個學科的基礎上,創造了戰略研究領域中最有影響力的功能模型之一--觀察(Observe)-調整(Orient)-決定(Decide)-行動(Act)(OODA)環。OODA環路是一個詳細描述 "贏與輸 "理論的模型,大致描述了一個人如何管理競爭環境和生存[21]。對于一個有效和可生存的C2,Boyd認為,一個系統必須能夠比敵人更快地適應其環境。調整(Orient)的步驟代表了在觀察、分析和心理模型的基礎上做出 "正確的決定",但如果雙方對手的其他條件相同,誰能更快地循環到每個步驟,誰就能獲勝[21]。因此,推動沖突的速度超過對手反應速度的C2系統,將造成'致命的不穩定',從而取得勝利[4]。正是從OODA循環理論的發展中,系統思維C2文獻繼續研究什么是一個卓越的C2系統;這是一個結合了系統思維方法和戰略研究的多學科領域[14],[19],[21]。文獻中有一個廣泛的共識,即戰爭的復雜性要求C2系統必須是動態的或敏捷的,允許人們既取得勝利又避免系統失敗[8],[10],[11],[9],[21],[4]。

然而,盡管OODA環路作為一種輸贏理論是合理的,但它并不是在C2系統中實施敏捷性的充分模型,因為它忽略了特定的功能,如 "指揮概念、規劃、放行準則或系統延遲",導致模型過度強調速度為目的[14],[9],[19]。為了將OODA環作為C2的一個更好的模型,Brehmer開發了動態OODA環(DOODA環)。Brehmer認為,需要具體的細節,如整個決策過程中的延遲,以使該模型在C2背景下具有足夠的描述性[14]。因此,在圖1中看到的DOODA循環允許指揮官和工作人員實際了解C2過程的每個功能。它通過明確每個C2功能,說明了為了提高敏捷性和決策性需要實現什么[14]。出于這個原因,DOODA循環模型將被用作本文后面的A3IC2功能模型的基礎。

從上面的討論中,有一個概念是明確的:C2及其性能的測量與系統運行的戰略背景是不可分割的。C2系統內的動態變化不是在真空中發生的;C2系統的最終結果是控制的影響,或在指揮軍事力量的超復雜環境中做出有效決定的能力,以便生存和獲勝。如果一個高度復雜、高效、響應迅速的人工智能C2系統無法追蹤作戰環境的復雜性、產生的影響以及它們在大戰略層面的后果,那么C2系統將無法在高強度戰爭的動蕩下生存。

圖1. 動態OODA環[14]

B. C2系統定義

在文獻中,對C2系統類型的描述是有問題的,導致與敏捷性、適應性、穩健性和復原力的定義有很大的重疊,這取決于情況或背景[11],[22],[8]。然而,有兩個廣泛的基本生存方法被描述,所有C2系統類型至少有一個方面是相同的:

1)保持形式的力量(在不改變的情況下,在波動中生存的能力)。

2)改變形式以保持力量(通過改變在波動中能生存的能力)。

這兩種生存方法都可以根據情況而有效;因此,一個有用的C2功能模型必須包括這兩種方法。C2文獻大致了解這一點,并試圖在功能模型中結合各種定義來調和兩種方法[11]。"敏捷C2"的概念將彈性和穩健性納入其定義中,背離了人們對敏捷性的通常理解,即僅僅意味著改變形式的 "迅速"。Alberts將敏捷C2定義為 "成功影響、應對或利用環境變化的能力"[8]。這一定義有實現這一目的所需的六個方面[8],[23]:響應性、靈活性、適應性、多變性/穩健性、創新性和復原力/彈性。

所有這些要素的融合有望最大限度地減少與不利影響相關的事件的概率,并最大限度地增加提供機會的事件的概率。如果事件真的發生,這些要素也會努力使成本最小化或收益最大化[8]。需要強調的是,單一目標的優化并不等同于敏捷性;相反,它反映了響應能力高于靈活性和彈性的不平衡。當一個系統的優化依賴于單一目標時,它不一定是高效的,即使這個單一目標是預先確定的不同目標的加權和。然而,我們承認,優化是一個數學概念,可以被調整以實現任何目標。如果目的是平衡響應性、速度、靈活性和彈性,多目標優化是優化理論的一個分支,可以用數學方法處理這個問題,同時優化相互沖突的目標。

敏捷C2的目標是將不利影響最小化,將機會最大化,這與Nassim Taleb的 "凸"系統的想法相似;對波動的有益響應,也就是所謂的抗脆弱性[12]。敏捷性和抗脆弱性有很多相似之處。敏捷性和抗脆弱性都有一個共同的風險觀,即既要減少黑天鵝事件(災難性的、低概率的事件)的負面影響,又要避免在組織內低估其可能性的自滿情緒[8],[12]。其他的相似之處還體現在所列舉的組織如果要成為一個抗脆弱組織應該避免的特性,比如限制使用單目標優化、專業化、預測、標準化和微觀管理[24],[12],[8]。

與敏捷C2一樣,抗脆弱組織關注的是將行動自由(靈活性)最大化的策略和結構。它不鼓勵優化、缺乏多樣性、不容忍風險,關鍵是不切實際的簡化現實模型[8], [24]。然而,抗脆弱性和敏捷C2之間的關鍵區別是 "為了學習和過度補償的目的,有目的地在系統中實施誘導性的小壓力 "或 "非單調性" [25],[26],[12]。這是抗脆弱系統和敏捷或彈性系統之間的關鍵變量。抗脆弱系統積極尋求在其自身系統內注入波動性,以暴露脆弱性。這兩個概念之間的差異是互補的,它將被論證,當兩者結合起來時,可以為人工智能C2系統產生一個強大的功能模型。

C. 抗脆弱性與C2

抗脆弱性是一種系統特性或特征,它不僅能使系統對突如其來的沖擊和壓力具有魯棒性和彈性,而且還能從這些壓力中學習,在下次遇到這些壓力時改進自己[12],[27]。抗脆弱性是脆弱性的反面,因為穩健性和彈性的定義都不'意味著從沖擊中獲得力量'[16],[12]。Taleb指出,抗脆弱性系統'有一種機制,它通過利用而不是遭受隨機事件、不可預測的沖擊、壓力和波動來不斷自我再生'[12]。由此可見,"如果沒有反饋和記憶的機制,抗脆弱性是不可能的"[27]。因此,為了使一個系統走向抗脆弱的系統動力學,它必須能夠從對其系統的沖擊中學習(反饋),并從這種記憶中改善其運作(定向)。必須強調的是,這種反饋可以是內部的,并且是自我產生的,使用內部設計的性能和效果的衡量標準,同時使用內部模擬的外部環境進行情景的角色扮演。作為一個概念,抗脆弱性有以下五個維度[12],[28],[25]:

  1. 從沖擊和傷害中學習的能力:系統有能力從它收到的反饋中儲存其記憶和經驗。

2)利用過度補償進行系統改進:一旦收到反饋,系統就會自我改進,涵蓋未來管理類似沖擊的要求。

  1. 冗余:由于過度補償沖擊的結果,系統將開發多層次的冗余機制。

4)凸性和選擇性("杠鈴戰略"):該系統將以一種使潛在收益最大化但使潛在損失最小化的方式構建自己。換句話說,該系統將是穩健的,但準備運用收益函數。

5)小規模的實驗:承擔風險,以便在犧牲小故障的情況下獲得顯著的性能收益。對系統誘導小的壓力源,以確保非單調性。

將敏捷系統與抗脆弱系統區分開來的三個特征是:注重過度補償,有目的的誘發系統壓力,以及來自波動的記憶/反饋。抗脆弱的系統會改進自己,不僅能夠補償未來類似的壓力,而且能夠補償比所經歷的更嚴酷的沖擊[12]。因此,波動性是非常可取的,因為它允許系統收集信息,并通過從盡可能廣泛的輸入中學習來保護自己的未來。這就產生了對系統進行過度補償適應所需的數據,以管理沖擊。事實上,一個抗脆弱的系統將有目的地嘗試 "風險管理的實驗",以創造過度補償所需的波動性。Taleb明確指出,這包括來自黑天鵝的風險;那些具有高度不可能性和極端影響的事件[25],[28],[8]。黑天鵝對于抗脆弱系統來說具有很高的價值,因為它可以獲得加強系統的稀有信息,只要它們最初是可以生存的[12],因此,復原力和穩健性很重要。抗脆弱系統的設計是為了盡可能地抵御作為本體論現實的混沌,在復雜環境中無法消除或預測[28],[12]。

Alberts[8]討論了敏捷性的概念模型,"環境空間"代表系統的性能水平,取決于各種外部和內部變化。從敏捷C2的角度來看,一個抗脆弱的系統會探索環境空間,以便從盡可能多的生成環境中了解盡可能多的 "可接受的性能區域"。波動性和反饋允許這種探索。有效地使用反饋/記憶,并通過波動性實驗,以便過度補償,從而使敏捷C2系統通過探索越來越多地了解其 "自我模型",通過更多的 "實體可以識別和成功應對的各種情況 "來提高其敏捷性[8] 。此外,該系統對環境、可預期沖擊的背景以及形成環境壓力源的環境約束有了更好的理解。經驗教訓可以采取幾種形式,如經過驗證的作業環境模型、代表環境的人工智能數學函數,以及其他人類/機器產生的數據存儲。這些信息將隨著每次沖擊產生的新信息而更新,使C2系統能夠隨著時間的推移而提高效力。

現在,我們應該清楚,抗脆弱系統并不排除敏捷性作為系統內的一個有利特征;抗脆弱是一個額外的特征--而不是一個替代品[12],[29]。在Taleb對抗脆弱的定義中,Taleb將敏捷性與脆弱性、復原力和抗脆弱從同一范圍中分割出來。為了使A3IC2結構清晰,我們將繼續這樣做。在圖2中看到的是敏捷性和抗脆弱性的覆蓋范圍。兩者的定義分為 "從波動中生存的系統 "和 "系統為生存而進行改進的能力"。這很好地概括了上述系統動力學文獻中的定義[26]。例如,如果沒有系統恢復或適應的能力,就不可能有彈性,也不可能在受到沖擊后恢復到正常水平的性能。不變性也是脆弱的,因為所有系統的功能都來自于無常性;沒有變化,系統最終會失敗[30]。敏捷性是抗脆弱性的助推器,因為對反饋的有效過度補償需要一個敏捷的組織;反之亦然,敏捷的C2需要過度補償來主動創新,并從操作環境的變化中建立復原力。

圖2. 敏捷和抗脆弱范圍[8],[12]。

與彈性和穩健的系統相比,敏捷性與抗脆弱性相結合的好處是對沖擊的響應要好得多[22]。Taleb指出,脆弱性在數學上被定義為 "對有害壓力的加速敏感性:這種反應被繪制成一條凹形曲線,在數學上最終導致隨機事件帶來的傷害多于收益"。一個脆弱的系統將在極端的波動下崩潰,因為它沒有否定凹形響應的屬性。由此可見,抗脆弱性的動力學產生了 "凸型響應,導致更多的利益而不是傷害"[12]。因此,一個有彈性或堅固的系統處于脆弱和抗脆弱之間的中間位置。一個穩健的或有彈性的系統既不會從波動中得到什么,也不會失去什么。抗脆弱性有一些元素,使它不僅能在沖擊后恢復正常功能,而且能從壓力源中學習,以便進行過度補償。因此,要獲得一個抗脆弱和敏捷的C2系統,需要具備表1中所列的以下要素。

從表一中可以看出,這種組合能夠發揮兩種方法的優勢。最下面的三行是抗脆弱性要素,前三行是敏捷C2要素,而中間一行是兩者的必需要素。尋求創新的解決方案以消除脆弱性和提高敏捷性是兩者都需要的過度補償。記憶/反饋、可選擇性和對創新能力的補充,是將敏捷C2與A3IC2分開的新元素。一個C2系統如何實際發展這些元素,需要人工智能、混沌工程和具體組織戰略的交集;這是下一節的主題。

表1. A3ic2系統的要素[8],[12],[26],[22] 。

III. 人工智能和抗脆弱的C2系統工程

在C2系統中實施抗脆弱性需要利用和積累有關系統性能的反饋;最容易實現的是將數據收集作為在系統中保留記憶和學習的永久方法。這允許創建抗脆弱的反饋回路,使其能夠使用過度補償[26],[22]。Jones [31] 將抗脆弱機器描述為一種能夠適應意外環境的機器,因為它的腳本隨著時間的推移在決策、采取行動和觀察結果的過程中變得更加復雜。這種機器必須從它的環境中學習,并適應那些 "在設計時沒有預想過的 "變化[31]。換句話說,要做到真正的抗脆弱,系統所面臨的情景必須是新的,但也要熟悉到可以從以前的經驗中概括或抽象出來,創造出新的知識。機器通過與環境或感知數據的互動,從其經驗中更新其內部狀態的這一過程被稱為 "機器學習"(ML),是人工智能的一個分支。因此,這項技術是在系統內實現抗脆弱動態的基礎[31]。

文獻中對人工智能的定義還沒有達成共識,但為了本文的目的,人工智能被定義為 "為計算機提供認知技能和能力的算法,用于感知和決策"[32]。建立人工智能系統的方法各不相同。傳統的方法是通過 "專家系統 "或 "手工制作的知識",即通過人工編碼并咨詢專家來創建算法[33],[34]。然而,由于模型是手工更新的,這些系統對于不斷變化的環境來說通常是非常脆弱的。ML提供了一種更新系統知識的替代方法,可以從系統直接接收的數據中獲得,也可以通過與環境的互動獲得。先進的ML模型,如深度學習,依賴于大型數據集和專門的算法來學習結構化(表格)和非結構化(圖片、文件)數據中的特定模式;允許創建一個系統的復雜數學表示/模型。這種模型可用于對新數據進行預測,或在以前未見過的情況下采取行動。由于從環境本身的觀察中收集到的數據集的多維模式,人工智能模型在面對復雜的環境時可以表現得更加準確[33]。人工智能有望減少人類決策的許多限制,如注意力集中、有限的記憶、回憶和信息處理[35]。

ML方法試圖在功能上接近空間內的高維拓撲結構[4]。數據源系統通過傳感器提供拓撲結構,而ML算法試圖通過訓練學習這個拓撲結構,然后驗證其性能(即準確性)。當一個新的數據點被提交給受過訓練的人工智能時,它就會被放在這個相同的配置空間中,根據算法形成的近似值,它將對新的數據點進行預測。作為一個例子,圖3是一個ML分類算法的低維結果。它有四個標簽,代表對敵人當前行為的預測,每個標簽都是由人工智能設計師根據以前對數據的理解而指定的。當收到一個新的數據點并在這個狀態空間內進行評估時,該數據點可能被分配到最接近的群組。如果與數據點的歐幾里得距離最接近紅色集群,那么人工智能就會輸出一個 "可能的攻擊 "作為預測,可能會有一個從與紅點的距離與其他集群的距離相比得出的可能性。

圖3. 高度簡化的狀態空間與由ML聚類算法形成的拓撲結構

因此,人工智能是敏捷C2系統的一個有利工具,從根本上可以還原為形成這些適應性的復雜數學函數來模擬一個動態和變化環境的效用。有人認為,這些模型將為大多數C2任務提供比人類更高的精確度,并且盡管超復雜,也能提供快速和值得信賴的自動化[5],[1],[2]。通過精確和適應性的數學函數來取代OODA環路中的每個階段,可以實現卓越的感知和學習,并延伸到快速和卓越的決策[3],[36],[4],[7],[6]。下面將討論這樣做所帶來的風險。

A.脆弱性風險

人工智能伴隨著新形式的風險,需要加以管理。對C2系統影響最大的現象是戰爭的爆發。如果錯過了常規國家間沖突的爆發(一個非常罕見的事件),可能會導致災難性的突然襲擊。事實上,對手將積極尋求一種策略,對C2系統產生盡可能大的沖擊[16]。在這種情況下產生的問題是,通過人工智能算法實現C2決策自動化的好處是否值得承擔災難性失敗的風險?如果準備在人工智能預測有99%的信心,而1%的機會可能導致不可逆轉的戰略后果的情況下,自動做出提供致命武力(或不提供)的決定,那么C2的性能是否得到全面改善?對于C2來說,戰略決策失誤的后果可能是如此的極端,以至于會導致其自身的毀滅,這就需要一個抗脆弱的戰略,作為對抗黑天鵝事件的必要條件。

99%置信度的人工智能預測之所以會導致失敗,是因為在面對動態復雜系統時,人工智能會受到所謂的 "柏拉圖式折疊 "的困擾。柏拉圖式折疊描述了這樣一種情況:復雜環境的模型 "拓撲結構 "或 "狀態空間 "由于 "為了隱藏復雜性 "而省略細節,本質上是錯誤的,或者說是脆弱的[12],[29],[34],[4]。當復雜性被不明智地隱藏時,人工智能所操作的抽象水平比它應該操作的適當抽象水平更簡單。其結果是人工智能狀態空間中沒有體現的突發現象,或者無法區分需要不同決策的不同環境。這些變量可能是隱藏的強化反饋回路,可能導致黑天鵝現象,往往會產生災難性的影響[12],[13],[22],[37],[4]。這給C2操作環境中的自動決策帶來了風險。更糟糕的是,即使人工智能模型正在從環境中學習,如果它不能 "跟上 "拓撲結構的變化,隨著時間的推移發展出更多的隱藏變量,它也會變得很脆弱[29],[38]。忽視或低估這種不確定性影響的模型,作為他們試圖模仿的復雜環境的本體事實,將產生越來越多的脆弱程度,與模型失敗的后果一致[12],[28],[4]。

快速更新一個模型,以防止與人工智能對 "開放 "和復雜系統的理解有關的 "漂移"。Florio[38]認為,通過定期的訓練更新和足夠的獨特數據進行訓練,一個非常復雜的模型/函數可以隨著時間的推移保持對非線性系統的接近。這種方法通常被稱為 "ML管道 "或ML開發過程[33],是一種循環技術,其中一個ML模型正在運行并預測環境,而另一個正在被訓練。環境的變化只會導致新的數據供算法自我更新,改善C2系統的模型庫,以便在其活動適應環境時加以利用。模型的更新和替換速度將對模型準確反映復雜環境的保真度產生相應的影響[38]。

然而,模型快速更新并不能解決決策型人工智能的柏拉圖式折疊問題。一個ML模型可以快速更新一個持續不準確的模型,并且完全沒有意識到數據的退化[4]。人工智能可以迅速形成一個C2系統,對它所訓練的事件具有優化和卓越的決策,其代價是對尚未發生或被系統感知的事件具有脆弱性[4]。然而,如上所述,C2系統認為其最優先的正是這些尚未發生的罕見事件。

人工智能支持的C2的系統故障點是,由于作戰環境的拓撲結構和表征拓撲結構之間的不匹配,人工智能模型做出的快速決定有助于控制的崩潰,導致無助或混亂[4],[16]。作為一個例子,Wallace[4]討論了最近股票市場的 "閃電崩盤"(黑天鵝),認為它類似于C2系統中脆弱的人工智能應該產生的結果。這些崩潰的發生是由于自動化交易算法過于迅速而無法進行人工干預,其根本原因非常復雜,至今仍不為人知。對于C2來說,相當于兩個具有高度自主的人工智能決策的對立軍隊,導致了高強度戰爭的閃電式崩潰;所有這些都來自于以毫秒為單位的穩定性喪失[4]。

B.C2SIM和AI

針對人工智能遺漏罕見與災難性事件的風險,提議的解決方案是通過使用合成(人工構建)數據。合成數據是唯一現實的方法,使ML算法能夠從C2系統高度關注的現象數據中進行訓練,例如C2系統被設計為有效決策的未來常規高強度戰爭[39],[7],[5]。未來的戰爭沒有數據,而過去的戰爭是否有用也是可以爭論的。合成數據的生成過程分為三類[40]。

1)人工開發,通過手工建立的數據集進行策劃。

2)自動調整真實輸入,產生類似的輸入,幫助算法學習更廣泛的規則。

3)通過建模和模擬(M&S)以及仿真自動進行。

使用哪種程序完全取決于人工智能的目的和它試圖進行預測的環境稀缺性。如果人工智能要取代指揮官的決策能力,那么極有可能需要將人工創建的來自情報的數據與戰場模擬模型相結合,來訓練一個人工智能系統。這種方法將C2SIM和人工智能等概念整合在一起,可能使用強化學習算法[5],[41]。

然而,這種方法仍然存在風險。創建一個高度詳細的操作環境模型不僅很難驗證,而且很可能產生欺騙性的結果,因為人工智能將缺乏在不確定性下做出有效決策所需的保真度[37],[5],[41]。

然而,這種方法仍然存在風險。創建一個高度詳細的作戰環境模型不僅很難驗證,而且很可能產生欺騙性的結果,因為人工智能將缺乏在不確定性下做出有效決策所需的保真度[37],[5],[41]。Davis[37]將此描述為 "場景空間 "的減少,意味著人工智能被訓練的選項或靈活性變得狹窄。一個在C2系統中為指揮官制定行動方案的人工智能系統,如果針對特定場景進行了優化,那么作為一個反應式系統,它在高度特定的場景空間中只會有可靠的表現。對模型內變量之間的因果關系或非因果關系的假設,將不可避免地導致脆弱性[37]。

另一方面,一個高度抽象的模型,為一個"戰略層面"的推薦系統而忽略了作戰環境的大部分細節,有其自身的問題。合成數據的使用將與創造它的軍事文化密不可分。對敵人以及他們將如何進行下一場戰爭的假設,將被固化在人工智能所訓練的數據中[4]。如果敵人決定 "改變游戲規則",在戰略層面采取人工智能從未接受過的不對稱行動,任何新的敵人戰略或戰術都不會在發生之初就被準確預測[41]。相反,它們會被預測為完全不同的東西。在戰略層面上,比如戰區,與預測敵人行為相關的變量會有很長的統計 "尾巴",而在人工智能模型中卻沒有體現[4]。這可能會產生嚴重的戰略后果,導致系統不適合戰爭的 "深度不確定性 "或波動性[37],[41]。Zhang[41]指出,將人工智能'用于涉及戰略決策的應用,比如那些模擬甚至沒有物理學作為依托的應用,現實世界和模擬之間的對應關系可能非常小,以至于經過訓練的算法實際上是無用的'。由此可見,人工智能要想保持有用,就必須從對應于C2函數的數據中進行訓練,而C2函數是充分人為復雜的,而不是天生自然復雜的。顯然,為了使人工智能的使用不成為脆弱的風險,需要在對人工智能的信任、預測失敗的風險以及特定人工智能給C2功能帶來的響應能力的好處之間取得平衡。

圖4. 人工智能集成和增長的限制

與人工智能支持的C2系統相關的脆弱性風險,反映了上文圖4中顯示的增長限制的原型。決策性能通過復雜功能的自動化得到改善,從而提高了C2的響應能力。然而,人工智能整合到更復雜的功能(如決策),導致更多的風險被轉移到人工智能模型的準確性和與操作環境相比的差異。這可能會導致低概率但高后果的災難性事件的預測失敗。人工智能取代的需求和判斷來理解復雜環境的功能越多,系統就會變得越脆弱。黑天鵝事件在數學上是不可預測的,對系統也是有影響的。因此,C2系統暴露在重大沖擊下的風險越大,它就越有可能最終遭受災難性的失敗[12],[13],[42],[22]。

IV. 從AI的脆弱性到抗脆弱性

將人工智能整合到敏捷C2系統而不增加脆弱性的方法將需要仔細考慮上文表一中討論的抗脆弱性要素。具體來說,C2系統將需要確保對來自作戰環境的沖擊作出凸形響應。這可以通過兩種方法實現:

1)將人工智能的功能分配到C2系統中,使災難性故障的風險最小化,但使系統的收益最大化。

2)使用實驗來發現系統的脆弱性,產生創新和混沌;這使得過度補償和人工智能模型的不一致。

A. 功能分配

一個AI使能系統需要在其作為敏捷性工具與其存在的脆弱性風險(如果AI不能在復雜環境的極端波動下執行)之間取得平衡。人工智能并不適合所有的決策任務[43],[32],[36]。一個抗脆弱系統將需要特定的邊界,將在戰略/作戰層面上將具有黑天鵝高風險的C2決策功能與其他可以自動化的低風險復雜C2功能分開。明確說明人工智能在C2系統中負責哪些任務,對于避免脆弱性和整體上有利于系統至關重要。

由于C2系統是社會技術性的,那些為C2功能分配使用人工智能的人需要確保對人的替換不會對系統的性能產生風險。Abbass[32],討論了在這樣的系統中分配人工智能的幾種方法。一種 "靜態分配",即在C2系統中賦予人工智能的功能并不改變,可能不適合動態環境。具體的C2功能的需求將根據情況發生變化,特別是考慮到戰爭中對響應能力的需求,這可能需要快速變換功能分配[36]。例如,針對來襲的大規模超音速導彈防御場景將更傾向于速度而不是戰略環境。在這種情況下,什么都不做的后果是如此之大,以至于錯誤的風險可能值得AI完全控制。另一方面,批準超音速攻擊的決定將需要比速度更多的決策背景。因此,一種適應性的方法,或自動分配邏輯(AAL)是必要的[32]。

在戰略決策層面,關鍵事件邏輯最適合于評估脆弱性與自動化的好處。根據對響應能力的需求重要性,以及失敗的后果有多高或多低,C2功能將需要有人類或AI控制的適應性邏輯。圖5展示了一個與C2任務大類相關的潛在后果的例子,從感知到戰區級決策。

圖5. AI使能C2的脆弱性范圍

對于專注于感知型人工智能的系統來說,風險較低,因為來自人類決策者的數據適用于額外的背景[36]。感知型人工智能很可能需要多個專門的算法模塊來解析特定類別的數據,如視頻資料、圖片、文件和其他[33]。因此,這也是一個魯棒的算法系統,如果其中一個算法模塊不能感知關鍵信息,那么這個算法系統其他算法模塊也能捕捉到此信息。當然,風險仍然存在,這將需要通過理解決策中的 "風險轉移 "已經傳遞給人工智能系統的輸入和感知能力來進行評估[32]。

然而,如上所述,人工智能決策與戰爭期間高失敗風險相關聯。失敗的影響將取決于人工智能是支持戰術層面、戰役層面還是戰略層面;與戰略層面的單一失敗相比,戰術層面的單一失敗后果較小;不過,人們必須考慮到從戰術層面到戰略層面可能產生連帶效應。對于抗脆弱系統,Taleb[12]指出,人們應該避免依賴具有高度后果性輸出的系統,因為許多較小的、后果性較小的系統是不太脆弱的。當然,即使戰略層面的人工智能決策者的風險是通過人在環結構來管理的,由于建議依靠人工智能感知器,以及預測對人類決策者的額外影響,風險仍然存在。例如,如果C2系統使用受信任的非人類智能合作者(NIC)來推薦戰略層面的決策,可能會導致軍事指揮官在獲得99%的人工智能預測的情況下增加風險。這是因為NIC會表現得像一個預測者,有證據表明,這可能會增加決策者的風險承擔[12],[44],[45],[16]。

一旦確定了失敗的后果,就需要為每個場景分配適應性人工智能。這是一個 "指揮概念 "的C2功能;在為特定場景分配適應性人工智能功能時,需要考慮指揮官的意圖和國家的戰略目標。這些場景可以通過傳統的兵棋推演方法進行開發和測試,但也可以從創新和混沌生成的抗脆弱性過程中產生。適應性人工智能將需要持續測試脆弱性,以防止凹形響應;這是下一節的主題。

B. 創新和混沌的產生

為了將人工智能作為一種敏捷和抗脆弱的工具,反饋/記憶、小規模實驗和過度補償等元素需要在一個人工智能支持的C2系統結構中結合起來。這可以通過有目的地在系統中注入波動性來實現,并延伸到支持特定C2流程的人工智能功能。通過使用波動性,人工智能系統將發展出一個更廣泛/抽象的決策空間,增加其對更多種類沖擊的通用性。

對于合成數據的生成,可以將一致程度的波動和混沌應用于人工智能所訓練的數據。例如,可以在人工智能系統上測試極端情況,而不僅僅是預期的極端情況。C2組織內的 "混沌小組 "可以嘗試使用極端或極不可能的情況,來暴露人工智能模型的預測失敗。通過暴露失敗,人工智能開發團隊可以確定失敗發生的原因,探索人工智能采取什么行動會更好,然后嘗試重新訓練模型以增加其變異性,以處理未來類似的極端情況。因此,這個過程通過與外界復雜環境相比對自身的理解,加強了系統的能力[12]。這有可能也是由人工智能場景生成器實現的,主要目的是對開發導致人工智能C2系統失敗的場景進行獎勵。無論具體的方法是什么,目的是讓系統的壓力和失敗允許C2系統內的創新能力和發現發生,從而導致過度補償。

這些沖擊不僅僅是對人工智能本身的要求,也是對C2系統整體的要求。應該尋求一種分層的方法,作為一種穩健性的形式[12]。這樣做的一種方法可以在計算紅隊和混沌工程實踐中找到。計算紅隊[46]提供了人工智能所需的計算構件,以設計壓力源來挑戰自己和它所處的環境,并發展新的模型和戰術。類似地,混沌工程通過對計算機網絡或系統中的特定元素注入壓力或故意失敗的實驗來防止組織內部的脆弱性[30]。混沌工程的目的是確保C2 IT系統的所有功能的 "可用性",盡管環境中存在波動。對抗脆弱C2的用處是顯而易見的,因為其混沌工程實驗允許產生作戰環境效應,如網絡攻擊,作為極端波動的輸入。C2信息技術和通信網絡被視為一個單一的復雜系統,通過觀察其在真實世界的輸入或誘發故障后的行為,可以更好地理解它[30]。

將混沌工程、計算紅隊和人工智能結合起來,可以實現復雜的故障狀態生成,以實現抗脆弱性,但C2系統要有能力從自我造成的壓力中學習,以實現過度補償,需要組織文化上的巨大變化。在圖6中看到的是A3IC2系統的系統。在C2組織內建立這樣一個系統,需要改變組織的心智模式、組織規劃、C2結構,以及改變對人類操作人員的培訓方式,以支持抗脆弱的C2系統。A3IC2應該只關注C2操作的系統;作為一個抗脆弱系統成功進行C2的過程。對于一個C2組織來說,作為一個社會技術系統,它需要采取一種整體的方法,結構、系統、流程和文化都具有抗脆弱的特性,以便在壓力和沖擊下生存[25]。

圖6. 抗脆弱C2作為一個體系系統

V. 敏捷抗脆弱的指揮和控制(A3IC2)

通過將抗脆弱性概念與Boyd、Brehmer和Alberts[14]、[21]、[8]開發的功能C2模型相結合,可以開發出一個通過抗脆弱性動態提高C2系統有效性的新框架。這在下面的圖7中可以看到,說明了圖1中傳統C2運行周期與A3IC2結構之間的區別。

圖7描述了由Brehmer創建的相同的DOODA環路,并增加了對所實施的模型的積累的反饋。模型的建立作為系統的方法,在操作過程中從與復雜環境的互動中學習。從所做的決定、計劃、感覺活動和軍事行動的結果中得到的反饋的綜合,都為AI模型/功能提供了背景。開發的模型取決于具體的C2系統。對于一個空中機動/后勤C2單位來說,模型將反映諸如優先權、飛機選擇、選擇的路線和貨物驗證細節等決定。對于一個人工智能C2推薦系統的COA開發,反饋將代表變量,如敵人的位置,藍色的位置,單位的數量,以及許多其他。這些模型是在日常行動中通過與C2決策支持系統的互動和/或通過C2SIM建立的。

圖7. 抗脆弱的動態OODA循環

如上所述,"混沌生成 "功能是迫使系統從反饋中學到的東西進行過度補償的方法。它同時適用于社會技術系統中的人和機器。混沌生成是C2 "紅隊",它有目的地給系統施加壓力,以加強決策周期,提高敏捷性,減少脆弱性。對于人工智能支持的C2系統,混沌生成器包括基于先前經驗的合成數據生成過程,但對其進行修改以加強系統。因此,人工智能將在具有超出先前經驗的更多極端變量的任務中得到訓練和改進;導致過度補償。這些模型在性質上可能是極端的,并應盡可能多地覆蓋可能性空間。如果環境發生重大變化,或出現黑天鵝,可能性空間只會增加,允許系統改進并產生進一步的模型。C2系統的波動性越大,產生的模型就越多,以進行補償。

以前的討論假定,模型和數據需要提前建立,并預期未來結果。最近的趨勢是引入了形成、重新塑造和校準的模型。影子機器的概念[46]有一個專門的控制邏輯,隨著背景的展開學習模型。然而,這些概念假設來自實際環境的實時數據輸入,以持續測量偏差并進行相應的調整。這種方法仍然存在挑戰。關于自我的數據可能比關于敵人的數據多出幾個數量級。這種可供人工智能即時學習模型的數據不平衡,在人工智能界有其自身的挑戰。

VI. 結論

將人工智能整合到C2中,只有通過對其效果的整體理解來實施,才能提高系統的性能。如果一個由人工智能支持的C2功能有可能導致它所保衛的國家戰略目標無法實現,那么就需要認真考慮該人工智能的功效問題。當C2功能被分配給人工智能以避免脆弱性時,那么反饋和過度補償的使用有可能促進對系統波動的凸形響應。使用有目的的混沌生成將有助于C2系統能夠了解其自身的弱點,以便改進。使用A3IC2作為人工智能支持的C2戰略,可以確保人工智能仍然是建立一個抗脆弱系統的工具。最大限度地減少災難性失敗的可能性,同時最大限度地利用系統的好處,這將有助于在極端動蕩的戰爭中生存和制勝。

雖然本文的重點是人工智能所面臨的風險,但當新形勢展開時,人類指揮官仍將面臨類似的問題,特別是當軍事歷史的教訓可能阻礙他們對這些新形勢的思考能力時。如果敵人依靠人工智能產生接近光速的效果,未來的沖突場景將更具挑戰性。這就需要人類-人工智能的人機協作,利用各自的優勢,過度補償各自的弱點,以相關的速度產生效果。

付費5元查看完整內容

總結

美國防部(DOD)正在對其指揮軍事力量的方法進行現代化改造。國防部高級領導人已經表示,現有的指揮和控制架構不足以滿足2018年國防戰略(NDS)要求。全域聯合指揮與控制(JADC2)是國防部的概念,將所有軍種--空軍、陸軍、海軍陸戰隊、海軍和太空部隊的傳感器連接到一個網絡中。

DOD指出,用Uber共享服務來比喻其對JADC2的期望最終狀態。Uber結合了兩個不同的應用程序--一個是乘客,另一個是司機。使用各自的位置,Uber算法根據距離、旅行時間和乘客(以及其他變量)來確定最佳匹配。在JADC2的情況下,這種邏輯將找到攻擊特定目標的最佳武器平臺,或應對新出現威脅的最佳單位。為了使JADC2有效工作,DOD正在追求三種新的或新興的技術:自動化和人工智能、云環境和新的通信方法。

DOD的一些機構和組織參與了與JADC2相關的工作。下面的清單突出了與JADC2開發有關的部分組織和項目:

  • 國防部首席信息官:第五代(5G)信息通信技術。

  • 國防部長辦公室(研究與工程):全網絡化指揮、控制和通信(FNC3)。

  • 國防高級研究計劃局:馬賽克戰爭。

  • 空軍:高級戰斗管理系統(ABMS)。

  • 陸軍:項目融合(Project Convergence)。

  • 海軍:項目超配(Project Overmatch)

隨著國防部開發指揮和控制軍事力量的新方法,國會可能會考慮幾個潛在的問題:

  • 國會如何在驗證需求或成本估算之前考慮JADC2的相關活動?

  • 在沒有正式的計劃或預算申請的情況下,國防部為JADC2的預算是多少?

  • JADC2的支出重點是什么,是否有國防部可能沒有投資的舉措?

  • 國防部如何確保每個軍種和盟國的通信系統之間的互操作性?

  • 國防部應如何優先考慮其未來網絡中相互競爭的通信需求?

  • 人工智能將在未來的指揮和控制決策系統中發揮什么作用?

  • 為了滿足JADC2的要求,有哪些潛在的部隊結構變化是必要的?

  • 國防部應如何管理與JADC2相關的工作?

1 什么是JADC2

全域聯合指揮與控制(JADC2)是美國國防部(DOD)的概念,即把所有軍種--空軍、陸軍、海軍陸戰隊、海軍和太空部隊的傳感器連接成一個網絡。傳統上,每個軍種都開發了自己的戰術網絡,與其他軍種的網絡不兼容(例如,陸軍網絡無法與海軍或空軍網絡連接)。通過JADC2,國防部設想建立一個 "物聯網"網絡,將眾多傳感器與武器系統連接起來,利用人工智能算法幫助改善決策。

DOD官員認為,未來的沖突可能需要領導人在幾小時、幾分鐘或可能幾秒鐘內做出決定,而目前分析作戰環境和發布命令的過程需要數天時間。國防戰略(NDS)委員會報告的非保密概要指出,目前的C2系統與潛在的同行競爭對手相比已經"惡化"。國會可能對JADC2概念感興趣,因為它正被用來制定許多高調的采購計劃,以及確定美國軍隊對潛在對手的有效性和競爭力。

圖 1. JADC2 的概念愿景

JADC2設想為聯合部隊提供一個類似云的環境,以共享情報、監視和偵察數據,在許多通信網絡中傳輸,從而實現更快的決策(見圖1)。JADC2打算通過收集來自眾多傳感器的數據,利用人工智能算法處理數據以識別目標,然后推薦最佳武器--包括動能和非動能武器(如網絡或電子武器)--來打擊目標,從而幫助指揮官做出更好的決策。

DOD指出,用Uber共享服務作為類比來描述其對JADC2的期望最終狀態。使用各自的位置,Uber算法根據距離、旅行時間和乘客(以及其他變量)來確定最佳匹配。然后,該應用程序為司機提供指示,讓他們按照指示將乘客送到目的地。Uber依靠蜂窩和Wi-Fi網絡來傳輸數據,以匹配乘客并提供駕駛指示。

一些分析家對JADC2采取了更加懷疑的態度。他們對JADC2的技術成熟度和可負擔性提出了疑問,以及是否有可能在一個致命的、充滿電子戰的環境中部署一個能夠安全可靠地連接傳感器和射手并支持指揮和控制的網絡。分析人士還詢問誰將擁有跨領域的決策權,因為傳統上,指揮權是在每個領域內而不是從整體戰役的角度下放的。

什么是指揮與控制?C2的維度和人工智能的影響
人們可以通過五個問題來看待指揮和控制:誰、什么、何時、何地和如何。傳統上,國會通過兩個不同但相關的問題來關注指揮與控制:權力("誰")與技術("如何")。
國會傳統上關注的第一個問題反映了指揮官執行行動的權力。這一討論的重點是指揮系統,反映了負責組織、訓練和裝備美國部隊的軍種與有權在國外使用部隊的作戰司令部之間的差異。這個問題可以用一個問題來概括:"誰指揮部隊?"
第二個問題是使指揮官能夠做出這些決定并將其傳遞給戰場的技術方面。指揮、控制、通信(C3)、C3加計算機(C4)以及情報、監視和偵察(ISR)等術語進入了討論。指揮和控制的這一技術問題著眼于指揮官用于決策的數據(和收集方法)(即ISR是促成決策的數據),將數據轉化為信息的處理能力,以及使指揮官將其決策傳達給地理上分布的部隊系統。這種指揮和控制的技術方法可以概括為:"你如何指揮部隊?"
指揮和控制的其他動態回答了其他問題:哪些系統和單位被指揮(什么),時間方面(何時),以及地理方面(何處)。國會在歷史上對這些問題中的每一個都是在具體的,而不是一般的問題上表示了興趣。例如,國會沒有考慮一般用途的部隊,而是關注與核部隊和特種作戰相關的權力問題。與核和網絡戰的快速反應相關的指揮和控制問題,以及在有限的程度上與電磁頻譜戰相關的問題,這些都是及時性問題,引起國會關注的其他領域。
關于 "何時",國會已表示對與核和網絡戰的快速反應有關的指揮和控制感興趣,并在有限的程度上對電磁頻譜戰感興趣。然而,對 "何時"的最大敏感度似乎更側重于戰術(例如,何時讓飛機進入目標,何時開始對建筑物進行攻擊);這些決定往往被授權給指揮官。最后,地理因素對指揮美軍提出了獨特的挑戰;只要行政部門和國會繼續支持全球國家安全戰略,地理決策在很大程度上代表了戰術問題,往往被授權給各個指揮官。
圖2. 指揮與控制的維度和人工智能的影響
圖2描述了這些問題是如何通過引入人工智能(AI)來優化各方面的結果。隨著編隊復雜性的增加--特別是為全域聯合作戰設計的編隊,控制這些部隊有可能超越人類的認知能力,并使用算法來幫助管理這些部隊。美國軍方表示,它打算讓人類參與整個決策過程,但隨著美國軍隊將更多的人工智能技術引入其決策機構,各方面的區別開始變得模糊不清。例如,"誰"和 "如何"開始變得相似,特別是當計算機或算法向指揮官提出建議時,他們可能不了解信息或產生建議的過程。
人工智能還可以影響指揮和控制的其他方面,包括 "什么"、"什么時候 "和 "在哪里"。將 "什么 "和 "哪里 "這兩個要素結合起來,可以挑戰對手尋找和與美國部隊交戰的能力;這樣做也可以挑戰指揮官及其參謀部在沒有系統幫助管理復雜情況下保持對部隊的控制能力。從 "何時 "的角度來看,需要快速決策的行動,特別是電磁頻譜戰或網絡戰,可能超過人類的決策能力。這就提出了一個重要的問題,即指揮官能在多大程度上信任人工智能,以及人類作戰員需要理解人工智能系統為什么建議采取特定行動。

2 為什么要改變當前的 C2 結構?

DOD目前使用戰斗空間的不同部分來執行C2--主要是沿著確定的軍事領域:空中、陸地、海上、太空和網絡空間。這種結構的存在是因為傳統的威脅來自單一系統,如飛機和坦克編隊。作為回應,軍方開發了高度復雜(但昂貴)的傳感器來監視戰斗空間,向集中式指揮中心(如空中作戰中心或陸軍指揮所)提供信息。E-3高級預警和指揮系統(AWACS)和E-8聯合監視目標攻擊雷達系統(JSTARS)等系統經過優化,為這些中央前哨的指揮官提供態勢感知,然后他們可以在那里指揮軍事力量。

2018年國防戰略(NDS)、審查它的 NDS 委員會和其他來源闡述的未來作戰環境描述了潛在對手如何發展復雜的反介入/區域拒止 (A2/AD) 能力(見圖 3)。這些能力包括電子戰、網絡武器、遠程導彈和先進的防空系統。 美國競爭對手將 A2/AD 能力作為對抗美國傳統軍事優勢(例如投射力量的能力)的一種手段,并提高他們贏得快速、決定性交戰的能力。

圖 3. A2/AD 環境的可視化

美國防部高級領導人已經表示,在未來的作戰環境中,獲取信息將是至關重要的。此外,這些領導人還表示,為了挑戰潛在的同等對手,需要采取多領域的方法(美國部隊將使用地面、空中、海上、太空和網絡力量來挑戰對手的目標計算)。因此,全領域聯合作戰的概念為指揮官提供了獲取信息的機會,可以利用突襲進行同步和連續的行動,并在所有領域快速和持續地整合能力,從而獲得物質和心理優勢以及對作戰環境的影響和控制。

空中陸戰概念設想將空軍和陸軍的努力結合在一起,在20世紀80年代對抗蘇聯,自該概念提出以來,技術上的進步使美國防部能夠繼續發展全領域聯合作戰的概念。這些技術進步包括增加了攻擊目標的方法(包括電子和網絡手段),相對低成本的傳感器的擴散,以及將這些傳感器的數據轉化為信息的處理能力的提高。維持對所有領域行動的控制所面臨的挑戰是,美國的軍事C2機構并不是為做出這些類型的決定而組織的,26而且正在使用的技術的復雜性和速度可能超過人類的認知能力。

指揮與控制是如何演變的?
美軍傳統的指揮和控制概念源于德軍的 "任務型命令"(auftragstaktik)。認識到軍事行動中的混亂和 "戰爭迷霧 "是不可避免的,下級指揮官被委托半自主地行動以實現其指揮官的意圖(即任務的總體目標),而不是有預先規定的行動。情報來源和偵察的信息需要很長的時間,甚至可能需要幾天才能到達指揮官手中。為了保持對部隊的控制,指揮官們依靠無線電通訊和紙質信件。有限的信息量使得指揮官可以在兩個方面指揮部隊--使用單一的領域來應對對手的行動。
在冷戰的高峰期,蘇軍給軍事力量提出了一個新的問題:如何對抗一支數量上占優勢的坦克部隊。為了應對這一威脅,陸軍和空軍提出了一種新穎的方法,通過開發新技術來確定增援地點,將空中和陸地力量結合起來。這一概念被稱為 "空地戰"。這種三維方法試圖利用情報、監視和偵察方面的優勢,"深入觀察",將火力集中打擊增援部隊(即 "深入打擊")。為了支持這種利用深度打擊來防止增援部隊的設想,美軍需要改進指揮所,以提高指揮部隊的決策速度,同時仍然保持遵循指揮官意圖的傳統。這種需要導致了新系統的開發,如JSTARS和ATACMS。這些系統使指揮官能夠更快地了解戰斗空間,并提高對敵軍直接開火的反應時間。
在過去的20年里,中國和俄羅斯觀察了美國的戰爭方法,確定了挑戰美國優勢的不對稱方法。中國的軍事現代化尤其注重防止美國建立大量的戰斗力(限制后勤),增加高價值飛機(油輪、間諜飛機、指揮和控制飛機)的風險,并增加其海軍足跡(限制美國的海軍優勢)。為了應對這些新威脅,國防部最初提出了使用多域作戰的想法(后來過渡到全域作戰一詞)。國防部認為,使用一個或甚至兩個維度來攻擊對手是不夠的,因此挑戰對手的目標計算需要更復雜的編隊(額外維度)。國防部認為,不斷增加的復雜性,加上應對新興技術威脅的時間可能減少,需要新的方法來管理部隊。
圖4. 指揮和控制的復雜性的變化

3 JADC2-賦能技術

在國防部發展JADC2概念的過程中,有三類技術在這種指揮和控制軍事力量的方法中起著不可或缺的作用:自動化、云環境和通信。

3.1 自動化與人工智能

許多DOD高級領導人已經明確表示,JADC2是一個概念(或許是一個愿景),而不是任何具體的計劃。在2021年1月的一篇文章中,聯合人工智能中心主任Michael Groen中將說:"JADC2不是一個IT(信息技術)系統,它是一個作戰系統。從歷史上看,你會有一個大型的國防項目,你會花數年時間來完善需求,你會收集大包大包的錢,然后你會去找國防承包商,花更多的時間來建造、測試,然后在多年后最終投入使用"。在這篇文章中,Groen中將描述了人工智能(AI)的作用,以及延伸到數據和數據結構的作用,使這些算法能夠為指揮官提供信息。根據Dennis Crall中將(聯合參謀部指揮、控制、通信和計算機/網絡首席信息官[JS J6]主任)的說法,人工智能和機器學習對于實現JADC2至關重要。Dennis Crall說道:"JADC2是關于將所有這些自動化....。它是關于利用傳感器豐富的環境--查看數據標準等事情;確保我們可以將這些信息轉移到一個我們可以正確處理的區域; 帶來了云;帶來了人工智能、預測分析;然后用一個能夠處理這些的網絡來支撐所有領域和合作伙伴。"

3.2 云環境

DOD表示,擁有多分類的云環境對于實現JADC2是必要的。DOD設想,用戶能夠根據他們的需要和信息要求,在不同的分類下訪問信息。在2021年6月的新聞發布會上,克拉爾中將說,"戰術邊緣 "的云能力是用于數據存儲和處理,實現人工智能算法。作為一個例子,空軍討論了其高級戰斗管理系統(ABMS)項目對云環境的需求--空軍部對JADC2的貢獻,這將在下文討論。根據空軍的預算說明,ABSM將需要一套云系統、應用程序(即軟件)和網絡(包括商業和政府擁有的),這將 "了解環境并應用由人工智能和機器學習輔助的先進算法"。

3.3 通信

根據DOD的說法,開發JADC2將需要新的通信方法。DOD目前的通信網絡已經為中東地區的行動進行了優化。因此,DOD使用衛星作為與海外部隊通信的主要方法。這些系統面臨著延遲(時間延遲)問題,并且在設計上不能在有電子戰的情況下有效運行。這些舊的架構依賴于地球同步軌道上的衛星,這些衛星在地球上空大約22200英里(35800公里)處運行。新的應用,如人工智能,將有可能需要額外的數據速率,而目前的通信網絡可能無法支持--特別是當DOD增加傳感器的數量,以提供額外的數據來改進算法。自主系統的引入,如海軍的大型無人水面和海底航行器,以及陸軍對機器人飛行器越來越感興趣而產生的系統,可能需要安全的通信和短時延來維持對這些系統的控制。

4 目前開展的JADC2相關工作

聯合參謀部是負責制定全域聯合指揮與控制概念戰略的國防部組織。此外,還有一些正在進行的研究和努力與JADC2概念有關。每個軍事部門(陸軍、海軍、空軍)以及國防部機構,如國防高級研究計劃局(DARPA)和負責研究和工程的國防部副部長辦公室(OSD[R&E]),都在開發技術和概念。以下各節簡要介紹一些組織的工作。

4.1 聯合參謀部 J6:JADC2 戰略

國防部負責制定JADC2戰略的領導機構是聯合參謀部J6指揮、控制、通信和計算機/網絡局。JADC2戰略最初的設想是改善聯合部隊的互操作性(例如,確保無線電系統能夠相互通信),后來擴大了這一重點,制定了一種信息共享方法,通過為決策提供數據來實現聯合行動。除了制定戰略,J6還組織了一個JADC2跨職能小組,各軍種和國防部機構通過該小組協調他們的實驗和計劃。這與國防部數據戰略和國防部副部長創造數據優勢的努力相一致。該戰略確定了五條工作路線以實現JADC2框架:

1.數據組織

2.人力組織

3.技術組織

4.核指揮、控制和通信(NC3)

5.任務伙伴信息共享

在2021年6月4日的新聞發布會上,克拉爾中將表示國防部長奧斯汀已經批準了JADC2戰略。

4.2 OUSD研究與工程(R&E):完全網絡化的指揮、控制和通信(FNC3)

根據R&E辦公室的說法,"FNC3確定、啟動和協調指揮、控制和通信關鍵使能技術的研究、開發和降低風險活動。這些活動將包括整個國防企業不同但相互關聯的努力,由FNC3在OUSD(R&E)的工作人員監督和同步進行。" FNC3的主要負責人邁克爾-扎特曼博士描述了FNC3的整體愿景,包括三個層次--物理層、網絡層和應用層--它們為開發指揮、控制和通信系統提供了一種量身定做的方法,與商業部門的最佳實踐相一致。物理層代表無線電和發射器本身,而網絡層則通過開發國防部優化的新興商業軟件定義網絡技術(如網絡切片)來管理應用對物理層的訪問。所有這三層都旨在提高互操作性和彈性(即防止網絡被干擾或中斷的能力),并為每個應用提供適當的服務質量。

根據扎特曼博士的說法,FNC3是JADC2的中長期技術愿景,而每個部門(在以下章節中概述)都有專注于發展近期采購戰略的引人注目的努力。例如,空軍部的先進戰斗管理計劃旨在通過關注成熟技術在未來三年內部署。OUSD R&E利用其投資組合中不太成熟的技術,包括由DARPA、國防創新部門、戰略能力辦公室、各部門和其他部門開發的技術,為實施JADC2提供長期的技術手段。

4.3 DoD CIO:5G技術

國防部提出,5G無線技術的商業進展提供了傳輸更多數據(通常稱為數據吞吐量)和更低延遲的能力。國防部認為,它需要這些能力來處理來自眾多傳感器(如衛星、飛機、船只、地面雷達)的更多數據,并在 "邊緣"(與無線電接收器在同一地點)處理這些信息。5G技術的另一個方面可以實現新的指揮和控制概念,即動態頻譜共享。隨著電磁頻譜變得更加擁擠,聯邦政府已經開始允許多個用戶在同一頻段上運行(稱為頻譜共享)。國防部首席信息官認為,頻譜共享技術允許通信系統在有干擾的情況下傳輸和接收數據。2020年9月,國防部CIO向工業界發出了一個信息請求,即如何對待動態頻譜共享。2021年1月21日,已經公布了67份對信息請求的回應。

4.4 DARPA:馬賽克戰

馬賽克戰爭代表了一系列由DARPA贊助的項目,旨在利用人工智能將傳統上不被設計為互操作的系統和網絡相結合。從概念上講(見圖5),這些項目將能夠利用從衛星上收集的原始情報,并將這些數據轉化為傳遞給 "射手 "的目標信息--在這種情況下,網絡武器、電子干擾器、導彈、飛機或任何其他可能影響預期目標的武器。正如哈德遜研究所的分析家布萊恩-克拉克和丹-帕特所解釋的那樣,"馬賽克戰爭 "試圖將多種重疊的困境強加給敵軍,擾亂他們的行動,從而阻止他們及時到達目標。

圖5:DARPA的馬賽克戰愿景

DARPA的馬賽克計劃之一,稱為異質電子系統的技術集成工具鏈(STITCHES),已被用于空軍和陸軍的實驗。據DARPA稱,STITCHES是一種軟件,旨在通過自主創建允許低延遲和高吞吐量的軟件,快速整合任何領域的通信系統,而無需升級硬件或修改現有的系統軟件。根據空軍的一份新聞稿,該部門已在幾個高級戰斗管理系統的 "上線 "中測試了該技術,并已開始將該計劃從DARPA過渡到空軍部。

4.5 空軍部:高級戰斗管理系統(ABMS)

高級戰斗管理系統最初的設想是取代E-8聯合監視和目標攻擊雷達系統(JSTARS)。空軍在2019年將ABMS項目從開發飛機或雷達之類的東西過渡到 "數字網絡環境,連接所有領域和每個梯隊的作戰能力,以實現全球決策優勢。" 換句話說,空軍從建立一個支持指揮和決策的平臺(如E-8 JSTARS)轉向建立一個安全的、"類似云"的環境,利用人工智能和預測分析為指揮官提供近實時數據。根據空軍的說法,ABMS項目將沿著六條產品線開發能力:傳感器集成、數據、安全處理、連接、應用和效果集成。

空軍已經舉行了三次 "on-ramps"(空軍用來描述演示的術語),以展示其ABMS的方法。2019年12月舉行的第一次on-ramps,展示了該部門從F-22戰斗機使用的安全通信向陸軍和海軍系統傳輸數據的能力。第二次上線使陸軍榴彈炮能夠擊落一枚代用巡航導彈。此外,空軍向美國北方司令部提供了這種 "類似云 "的零信任平板電腦--一種不在設備上存儲敏感數據的安全功能,以協助其在2020年春季應對COVID大流行。

2020年11月,空軍部確定了首席架構師辦公室,負責評估架構上線和整合企業數字架構。同時,空軍確定空軍部快速能力辦公室為ABMS整合項目執行辦公室。快速能力辦公室的工作重點是快速向現場交付項目,它的參與可以被看作是將ABMS從實驗轉向系統開發。

4.6 陸軍部:項目融合(Project Convergence)

根據陸軍的說法,"項目融合是陸軍圍繞一系列連續的、結構化的演示和實驗而組織的新的學習活動",旨在應對JADC2所帶來的挑戰。

1.確保陸軍擁有合適的人員和人才;

2.將當前的陸軍現代化工作與陸軍未來司令部的跨職能團隊聯系起來,并與陸軍現代化的六個優先事項保持一致;

3.擁有合適的指揮和控制,以應對節奏越來越快的威脅;

4.利用人工智能分析和分類信息,并在陸軍網絡中傳輸;

5.在 "最嚴峻的地形 "中測試能力。

項目融合2020在三個軍事設施中使用了大約750名士兵、平民和承包商,最終在亞利桑那州的尤馬試驗場進行了兩次現場頂點演習。在這次演習中,陸軍展示了幾種技術,包括人工智能、自主性和機器人技術,以測試新的方法來指揮和控制地理上分散的部隊。陸軍計劃將空軍和海軍的系統作為2021年項目融合的一部分,并打算在2022年項目融合中納入外國軍隊。這其中有3370萬美元用于運營和維護,以及7310萬美元用于研究、開發、測試和評估,由陸軍撥款。

4.7 海軍部:項目超配(Project Overmatch)

項目超配是海軍為建立一個 "海軍作戰架構",將艦艇與陸軍和空軍資產聯系起來而做出的努力。2020年10月1日,海軍作戰部部長吉爾德伊上將責成一名二星上將領導海軍的"項目超配"工作。在他的備忘錄中,吉爾德伊上將指示 "項目超配"采取類似于海軍發展核動力和AEGIS系統的工程和開發方法。其主要目標是 "使海軍能夠在海上形成集群,從近處和遠處、每個軸線和每個領域提供同步的致命和非致命效果。具體來說,你[斯莫爾海軍司令]要開發網絡、基礎設施、數據架構工具和分析。" 在一個平行的努力中,吉爾德伊上將責成基爾比副上將(負責作戰要求和能力的海軍作戰部副部長)制定一項計劃,將無人系統,包括艦艇和飛機,納入海軍作戰架構。根據新聞聲明,海軍打算在2023年達到初始作戰能力(即有能力部署初始系統)。海軍在2022財政年度為 "項目超配 "申請了三個分類項目元素的資金。

在2021年6月舉行的2021年AFCEA西部會議上,吉爾德伊上將討論了項目超配目前的工作。在這次活動中,吉爾德伊表示,自2020年10月項目啟動以來,項目超配已經完成了三個螺旋式發展周期。吉爾德伊進一步解釋說:"我們實際上正在試驗一種方式,使我們基本上可以將任何網絡上的任何數據傳遞給作戰人員。這是一個軟件定義的通信系統,使我們能夠以一種前所未有的方式拆開我們所有的網絡"。根據新聞報道,吉爾德表示,他預計在2022年底或2023年初將 "項目超配"的測試規模擴大到一個航母打擊群。

5 國會面臨的潛在問題

以下各節討論了國會的潛在問題,包括需求和成本估算、互操作性挑戰、平衡通信能力、人工智能在決策中的角色,以及實施JADC2所需的潛在部隊結構變化。

5.1 需求和成本估算

美國防部已經為JADC2的相關工作申請了幾個財政年度的資金,特別是在概念的早期發展階段。國防部正在積極制定JADC2戰略,預計將在2021年春季發布。國會中的一些人對國防部沒有像傳統采購項目那樣提供成本估算或驗證需求表示關切。因此,各軍種委員會和撥款委員會已經減少了對這些工作,特別是ABMS和5G研究和開發的要求資金。2021財年國防授權法案(NDAA)要求國防部在2021年4月前為JADC2提出要求。

5.2 國防部對JADC2的潛在資助水平

國防部還沒有正式公布關于JADC2的支出預算數據,該項目在各軍種和國防機構的一些項目中都有資金。根據聯合參謀部J6(JS J6)的說法,JADC2不是一個記錄項目,JS J6也不打算過渡到一個記錄項目。因此,除非國會要求國防部提供JADC2資金的詳細概述,否則國防部可能不太可能這樣做。

一些分析家推測了與JADC2有關的所有項目的年度成本。一位分析家估計,國防部在2022財政年度為與JADC2直接相關的項目編列了大約12億美元的預算。Govini估計,自2017財政年度以來,國防部在JADC2上花費了大約225億美元;這平均每年大約為45億美元。Govini的估計包括其他聯邦機構的資金--如國家航空和航天局(NASA)--以及國防部可能認為與JADC2無關的技術,因此可能高估了JADC2獲得的資金總額。

5.3 JADC2支出優先級

根據JS J6,有五條與JADC2相關的工作線:

  • 1.數據組織

  • 2.人力組織

  • 3.技術組織

  • 4.核指揮、控制和通信(NC3)

  • 5.任務伙伴信息共享

以數據為中心的方法側重于國防部系統傳輸所需的數據類型和結構,創建一個共同的數據框架,為數據的發送和接收提供一個商定的標準。換句話說,數據的格式化、組織化和結構化的方式影響著數據從傳感器到決策者再到武器的高效和無縫傳輸。另一方面,網絡中心化和互操作性側重于通信標準,如無線電頻率、波形、通信加密等,以確保一個無線電能與另一個無線電通話。通過采用這種方法,JS J6專注于開發軟件應用,以改善指揮和控制。然而,該戰略可能缺少幾個方面,包括:

  • 通信系統的硬件和軟件的功能,

  • 網絡需要傳輸的數據量,

  • 對手的行動對網絡的影響,

  • 以及指揮和控制部隊的模塊化。

隨著國防部繼續改革其JADC2概念和要求,其他觀察家也注意到,在JADC2戰略中存在一些沒有被認定的領域,國防部應將其支出主要集中在研究和開發方面。一位觀察家認為,國防部應將其研發支出集中在改善網絡互操作性上。這種方法支持優先升級軍事通信系統,以便在整個聯合部隊中傳輸數據。它建議國防部在軟件和硬件方面投入更多資金,以提高所有類型的數據鏈路和網絡(例如,Link 16、多功能高級數據鏈路、態勢感知數據鏈路以及綜合海上網絡和事業服務)的互操作性。網絡互操作性方法的重點是,創建網絡是困難的;但是,利用軟件定義的網絡和通用電子設備(如類似的芯片架構)可以使每個軍種無縫共享信息。換句話說,這種方法更注重通信網絡的構建方式,而不是在這些網絡內發送數據的組織方式。軟件定義的無線電和網絡使無線電可以很容易地被編程,并因此更容易地相互通信。微電子(即物理硬件)最終定義了無線電的物理和軟件能力。

其他分析家認為,JADC2的支出應更多地集中在改變決策方式上。這一論點強調了通過利用人工智能(AI)實現決策過程自動化的必要性,正如國防高級研究計劃局(DARPA)的馬賽克戰爭概念所設想的。在這種方法中,優先利用人工智能系統的支出(如空軍的STiTCHES計劃),可以建立主要集中在需要傳輸的數據和數據結構的特設網絡。這一論點假設人工智能也可以分析情報、監視和偵察(ISR)數據,以確定人類可能錯過的趨勢,從而向軍事指揮官提出潛在的更好的建議。

其他觀察家認為,優先考慮如何使用和管理電磁波譜的決策對于支持JADC2至關重要。這些觀察家認為,像國防信息系統局的電磁戰管理計劃--旨在利用情報方法評估電磁波譜環境,然后自動決定如何使用頻譜來減輕對手的電子戰影響--對于實現全域指揮和控制是必要的。這些觀察家還認為,對手的電子戰效應將需要近乎即時地被緩解,因此需要一個強大的電磁環境部分(以及自動化),以便在對網絡的潛在攻擊中管理國防部網絡。

5.4 互操作性挑戰

由于國防部設想使用JADC2來同時指揮多個領域的部隊,因此連接不同類型部隊的需求也在增加。國防部擁有并運營著許多通信系統,每個系統都使用不同的無線電頻率、標準和數據鏈,這些系統往往不能相互 "交談",因此需要一個網關將一種無線電協議 "翻譯 "成另一種協議。盟友和合作伙伴的加入增加了互操作性的挑戰。前國防部副部長邁克爾-格里芬在2020年3月向眾議院軍事委員會情報、新興威脅和能力小組委員會作證時,指出這個問題是繼續為FNC3進行OSD R&E努力的理由。

使國防部能夠共享來自不同部門和單位的信息的挑戰可以通過三種互操作性的方法來解決:

  • 網關。通信網關(也許稱為 "翻譯器 "更為恰當)可以接收多種協議、安全級別等,并將這些信息轉播給部隊的其他部門。ABMS計劃已經開發了這種網關(見圖6),以實現通信。這種方法允許信息共享,有可能降低開發成本,因為網關可以是飛機/艦艇/地面系統的一個子系統,有可能能夠相對快速地投入使用。這種方法的挑戰是,這種網關可能沒有使用最先進的,因此也是受保護的波形來轉播給部隊。

圖 6:E-11 戰場機載通信節點 (BACN)

  • 新的通信設備。這種方法采用 "自上而下 "的方式(即由OSD或聯合參謀部確定解決方案,然后要求各軍種采用該方案)。使用與聯合戰術無線電系統(JTRS)開發類似的模式,這種方案將購買一個新的通信架構,重點是互操作性。例如,FNC3的努力似乎就是采用這種方法。盡管這種方法可以確保聯合部隊開發的通信系統可以無縫共享信息,而且可能是安全的,但它可能需要大量的投資,并可能遇到時間表的延誤。這種方法的另一個可能的缺點是,隨著系統的投入使用,它們可能對對手的技術不那么有效。

  • 開發軟件來創建網絡。第三種方法是使用軟件,使用戶能夠創建自定義網絡。DARPA的 "馬賽克戰爭 "和ABMS計劃的某些方面就是這種方法的例子。與其他互操作性解決方案相比,這種方法更加模塊化,使為特定行動定制的單位和系統能夠相互通信。這種方法的一個主要風險是技術上的不成熟,特別是用于創建這些網絡的軟件。另一個風險涉及到與不同系統共享的信息量和分類,這些系統經過認證,具有不同的保密級別(例如,可釋放的秘密、不可釋放的秘密、最高機密)。

國防部和國會可以選擇這些方法中的一種或多種。一種特定的方法可能提供短期的好處,而國防部則追求一種長期的方法來解決互操作性的挑戰。

5.5 平衡退化環境下的通信能力

國防部為滿足JADC2的要求而開發通信網絡的方法包括三種相互競爭的能力:

  • 數據吞吐量(即數據傳輸的速度)

  • 延遲(即接收信息/數據的時間延遲)

  • 彈性(在自然或故意中斷的情況下保持通信信號的能力)

軍事作戰新技術的興起,如人工智能、戰術數據鏈(如Link 16和多功能先進數據鏈[MADL])和對手的電子戰能力,為5G和FNC3等未來通信系統平衡這些能力帶來了明顯的挑戰。人工智能和信息戰可能需要大量的數據來實現預測分析,并讓指揮官對戰斗空間有一個準確的了解。與所有可用用戶共享數據的數據鏈并不一定需要高數據速率;然而,數據鏈確實需要低延遲,以確保傳感器能夠證明 "目標級數據",特別是對于像巡航導彈和飛機這樣快速移動的系統。最后,電子干擾器的擴散需要彈性(或抗干擾性能),以便在被主動干擾時保持通信。圖7說明了在開發新的波形時必須平衡這三個相互競爭的要求(無論該波形是為民用還是軍用而設計)。無線電信號能夠提供每一種能力;然而,優先考慮一種要求意味著其他兩種要求可能會受到影響,這可能會給決策者帶來兩難選擇,即在采購中優先考慮哪些能力。

圖7:平衡通信要求

隨著國防部對其通信系統的現代化改造,它可能會考慮技術特點和限制,以選擇在保護其網絡安全的同時推進任務目標的要求。例如,像5G這樣的技術可以提供高數據容量和低延遲,但目前還不清楚這些信號可能受到對手干擾的影響。另一方面,FNC3的設計似乎是為了提供具有高數據率的彈性;但是,由于它依賴于衛星,延遲將增加。

5.6 人工智能在決策中的角色

人工智能是實現JADC2的一個潛在的關鍵組成部分。隨著人工智能被引入軍事決策中,出現了幾個潛在的問題。首先,人工智能在決策中的作用應該達到什么程度?在使用致命武器時,人類的判斷力需要達到什么適當的水平?

第二,國防部如何確保用于人工智能算法協助決策的數據的安全性?盡管國防部把重點放在了數據結構上,但它沒有討論它計劃如何具體確保JADC2的數據有效性和安全性。錯誤的數據可能導致指揮官選擇損害任務目標的選項(如算法推薦可能浪費高價值彈藥的目標)。與此相關的是,國防部打算如何保護云環境中的這些數據,以防止對手操縱它們?這些安全計劃是否足以防止對手的操縱?

5.7 潛在的部隊結構調整

由于JADC2可能需要不同類型的部隊和武器系統,每個軍種都可能尋求改變其訓練、組織和裝備部隊的方式。例如,海軍陸戰隊在其部隊重新設計中宣布,它將取消它認為不符合國防戰略指導的部隊,并將資金重新投入到其他更適合未來作戰環境的項目中。

現役和預備役部隊的能力平衡是部隊結構調整的另一個方面。例如,陸軍在歷史上決定將后勤能力從現役部門轉移到預備役部門。因此,如果美國要開戰,陸軍大概需要啟動預備役部隊來實現行動。當國防部和各軍種準備迎接JADC2帶來的挑戰時,這些組織將如何選擇平衡現役和預備役部隊的能力和部隊結構?

5.8 對JADC2工作的管理

聯合參謀部J6是國防部JADC2工作的主要協調者,每個軍種和一些國防部機構都在進行各種活動。國會中的一些人過去曾表示有興趣建立國防部范圍內的項目辦公室(如F-35聯合項目辦公室)來集中管理大規模的工作。國防部的研究和開發工作將隨著時間的推移而增加,因此,管理這些工作可能會變得更具挑戰性。國會在未來可能會尋求確定或建立一個負責項目管理、網絡架構開發和財務管理的組織。

附錄-聯合互操作性的歷史實例:聯合戰術無線電系統

聯合戰術無線電系統(JTRS)是一個通信項目,旨在通過在所有軍種中部署無線電設備來提高通信的互操作性。該計劃于20世紀90年代中期開始,最終于2011年被前國防部負責采購、技術和后勤的副部長弗蘭克-肯德爾取消。在他的理由中,肯德爾副部長指出,"由于當時技術不成熟,移動特設網絡和可擴展性的技術挑戰沒有得到很好的理解......從JTRS GMR[地面移動無線電]開發計劃中產生的產品不太可能在經濟上滿足各軍種的要求。" 在15年的開發工作中,國防部花費了大約150億美元,在終止時還需要130億美元。

JTRS計劃旨在用可在大部分無線電頻譜上運行的基于軟件的無線電取代軍隊使用的25至30個系列的無線電系統--其中許多系統不能相互通信。根據設想,JTRS將使各軍種與選定的盟國一起,通過各級指揮部的無線語音、視頻和數據通信,包括直接獲取來自機載和戰場傳感器的近實時信息,以 "無縫 "方式運作。被描述為 "軟件定義的無線電",JTRS的功能更像一臺計算機,而不是傳統的無線電;例如,它可以通過添加軟件而不是重新設計硬件來升級和修改,以便與其他通信系統一起運行--這是一個更昂貴和費時的過程。國防部聲稱,"在許多情況下,一個具有多種波形的JTRS無線電臺可以取代許多單獨的無線電臺,簡化了維護工作",而且由于JTRS是 "軟件可編程的,它們也將提供更長的功能壽命",這兩個特點都提供了潛在的長期成本節約。JTRS計劃最初被分成五個 "集群",每個集群都有一個特定的服務 "領導"(見表A-1),并由一個聯合項目辦公室管理整個架構。

注:外形尺寸無線電臺基本上是士兵攜帶的小型化無線電臺,以及重量和功率受限的無線電臺。

正如下文所討論的,JTRS在開發過程中遇到了一些困難。這些問題可能與未來的JADC2開發有關。

尺寸和重量的限制和有限的范圍

根據政府問責局(GAO) 2005年的一份報告: 為了實現寬帶網絡波形的全部功能,包括傳輸范圍,Cluster One無線電需要大量的內存和處理能力,這增加了無線電的尺寸、重量和功耗。增加的尺寸和重量是努力確保無線電中的電子部件不會因額外的內存和處理所需的電力而過熱的結果。到目前為止,該計劃還未能開發出符合尺寸、重量和功率要求的無線電,而且目前預計的傳輸范圍只有三公里--遠遠低于寬帶網絡波形所要求的10公里范圍....。Cluster One無線電的尺寸、重量和峰值功率消耗超過直升機平臺要求的80%之多。

由于無法滿足這些基本的設計和性能標準,人們擔心Cluster One可能無法按計劃容納更多的波形(計劃中Cluster One有4到8個存儲波形),而且它可能過于笨重,無法裝入重量和尺寸都受到嚴格限制的未來戰斗系統(FCS)載人地面車輛(MGVs)以及陸軍的直升機機群。一些觀察家擔心,為了滿足這些物理要求,陸軍將大大 "削弱 "第一組的性能規格。然而,根據陸軍的說法,它在減少Cluster One的重量和尺寸以及增加其傳輸范圍方面取得了進展;然而,將所有需要的波形納入Cluster One證明是困難的。據報道,Cluster Five無線電臺也遇到了類似的尺寸、重量和功率方面的困難;這些困難更加明顯,因為有些Cluster Five版本的重量不超過1磅。

安全

JTRS的安全問題成為發展中的一個重要困難。據一位專家說,該計劃最大的問題之一是安全,"即加密,因為JTRS的加密是基于軟件的,因此容易受到黑客攻擊"。 計算機安全專家普遍認為,用于任何目的的軟件都是脆弱的,因為目前沒有一種計算機安全形式能提供絕對的安全或信息保證。據美國政府問責局稱,JTRS要求應用程序在多個安全級別上運行;為了滿足這一要求,開發人員不僅要考慮傳統的無線電安全措施,還要考慮計算機和網絡安全措施。此外,國家安全局(NSA)對JTRS與美國盟友的無線電系統接口的安全擔憂也帶來了發展上的挑戰。

與傳統無線電系統的互操作性

一些分析家表示擔心,使JTRS與傳統無線電 "向后兼容 "的目標在技術上可能是不可行的。據報道,早期的計劃試圖通過交叉頻段來同步不兼容的傳統無線電信號,這被證明過于復雜。目前陸軍的努力集中在使用寬帶網絡波形來連接傳統的無線電頻率。一份報告指出,雖然寬帶網絡波形可以接收來自傳統無線電的信號,但傳統無線電不能接收來自JTRS的信號。為了糾正這種情況,陸軍考慮使用19種不同的波形來促進JTRS向遺留系統的傳輸。在JTRS無線電中加入如此多的不同波形會大大增加內存和處理能力的要求,這反過來又會增加JTRS的尺寸、重量和功率要求。

作者:John R. Hoehn,軍事能力和計劃分析師

付費5元查看完整內容

引言

本文件是北約 IST-151 研究任務組 (RTG) 活動的最終報告,題為“軍事系統的網絡安全”。該 RTG 專注于研究軍事系統和平臺的網絡安全風險評估方法。 RTG 的目標如下:

? 協作評估軍事系統的網絡安全,并在 RTG 的北約成員國之間共享訪問權限;

? 在 RTG 的北約成員國之間共享風險評估方法和結果;

? 將 RTG 的北約成員國使用的評估方法整合到一個連貫的網絡安全風險評估方法中,以使北約國家受益。

軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。他們大量使用數據總線,如 MIL-STD-1553A/B、CAN/MilCAN、RS-422/RS-485、AFDX 甚至普通以太網,以及戰術通信的舊標準,如 MIL-STD-188C 和 Link 16。此外,捕獲器、傳感器、執行器和許多嵌入式系統是擴展攻擊面的額外無人保護的潛在輸入。結果是增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務的成功和公共安全至關重要。

軍事系統和平臺是網絡攻擊的首選目標,不是因為它們像消費電子產品那樣普遍,而是因為它們潛在的戰略影響。一旦受到影響,就可以實現各種短期和長期影響,從拒絕能力到秘密降低其有效性或效率。因此,軍隊必須在各個層面解決網絡安全問題:戰略層面,同時獲取平臺和系統;作戰層面,同時規劃軍事任務和戰術。

北約國家擁有大量可能面臨網絡攻擊的軍事平臺和系統。因此,北約將受益于利用當前的流程和方法來設計更安全的系統并評估當前系統的網絡安全。

本報告介紹了針對軍事系統和平臺量身定制的網絡安全評估方法,該方法由 RTG 團隊成員合作開發,并建立在他們的經驗和專業知識之上。團隊成員已經使用的流程被共享、分析、集成和擴充,以產生本報告中描述的流程。本報告的目標受眾是愿意評估和減輕其軍事系統的網絡安全風險的決策者。

圖一:網絡安全評估過程的五個主要步驟。

報告結構

第 2 節介紹了 RTG 團隊在其存在的三年中用于開發流程的方法。第 3 節列出了可以應用該過程的系統的一些特征。最后,第 4 節描述了評估流程,而第 5 節總結本報告。

執行總結

軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。這導致增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務和公共安全的成功至關重要。

絕對的網絡安全是不存在的。必須通過迭代風險評估持續管理網絡安全。傳統 IT 系統存在許多網絡安全風險管理框架和流程。然而,在軍事平臺和系統方面,情況遠非如此。本文檔介紹了針對軍事系統量身定制的網絡安全風險評估流程。該流程由北約 IST-151 研究任務組 (RTG) 活動的團隊成員開發,該活動名為“軍事系統的網絡安全”。該過程可以應用于傳統的 IT 和基于固件的嵌入式系統,這些系統在軍事平臺和系統中無處不在。

付費5元查看完整內容

摘要

這項工作的目的是深入了解人工智能 (AI) 工具以及如何將它們應用于空中目標威脅評估。人工智能工具是包含人工智能元素的軟件產品。關于人工智能有多種不同的思想流派,并且可以在同一個工具中使用不同的方法。許多現代人工智能方法都涉及機器學習 (ML)。本參考文檔將涵蓋不同類型的 AI 和 ML 以及如何將它們應用于威脅評估。這項工作將介紹所有 ML 模型共有的元素,例如數據收集、數據準備和數據清理。該報告還將討論選擇適合不同問題的最佳人工智能類型

此外,這項工作將描述處理缺失數據或數據不確定性的方法。將提出實用的解決方案,包括通過數據插補填充缺失數據或修改人工智能工具的架構

最后,該報告將檢查人工智能工具的輸出與現有基礎設施的集成。將結合威脅評估過程及其可以改進的元素來描述 AI 工具。還將討論 AI 工具系統的通用架構

國防與安全的意義

威脅評估對于維護國家安全利益和維護各國主權具有重要意義。空中威脅評估對于一個有大片國土需要保護的國家(例如加拿大)很有價值。人工智能和機器學習都可以應用于威脅評估的研究領域。通過學習構建人工智能驅動的工具,加拿大的國防和安全將通過獲得持續的前沿研究得到改善。無論哪個國家開發出最有效和最可靠的威脅評估工具,在決策和威脅反應方面都將獲得優勢。通過利用前面提到的快速擴張的領域,加拿大可以獲得決定性的優勢

1 簡介

評估所有領域(如空中、網絡、陸地、海洋、太空)的威脅是維護任何國家安全的一個重要方面。威脅分析包括查看敵人過去、現在和預期的行動,以及這些行動對友軍資產或單位的影響。威脅評估還考慮了為減少、避免或消除風險而可能采取的任何防御措施[1]。在防空的背景下,空中目標威脅評估的任務需要識別、確定空中目標和優先排序,并管理任何必要的資源以應對威脅[2,3]。

當前的空中目標威脅評估任務由操作室中的一組高技能和經驗豐富的人員執行[3,4]。該任務涉及考慮先驗信息(例如,情報報告和評估標準)和獲取的信息(例如,從傳感器系統動態收集的運動學信息),以確定目標對某個感興趣點/區域(POI/AOI)。此信息(運動學和非運動學)稱為提示。這些信息的心理整合需要相當水平的戰術專業知識,包括有關威脅類型、軍事條令和基于經驗的評估啟發式的知識[4]。人工智能(AI)將允許根據防空作戰員(ADO)可用的線索以及他們的威脅評估決策[5]或專業知識來創建工具。

本報告全面概述了AI工具及其構建。這些方法是尖端的并且非常有效。本報告將清晰地展示人工智能工具的開發方式。它將展示哪些組件是必要的,如何獲取數據并使其對機器學習(ML)模型有用,以及AI工具如何與更廣泛的威脅評估環境進行交互

2 人工智能

本節將介紹人工智能的概念和許多現代人工智能算法。它將包含有關AI和ML主要主題的背景知識。它還將描述AI工具中經常出現的組件。

2.1 概述

從一個非常廣泛的角度來看,人工智能是人工系統“執行與智能生物相關的任務”的能力[6]。然而,這是一個非常寬泛的術語,涵蓋了許多系統。例如,它不區分人工智能系統、智能系統和自動化系統。關于什么構成人工智能,文獻和文化中有許多定義。本報告中使用的“人工智能系統”的定義是文獻和文化中各種來源的觀點的結合。

人工智能系統是一種具有以下能力的人工系統:

1.執行“有趣的”[7]任務,這些任務“通常與智能生物相關”[6]

2.“自學成才”[7,8]

早期的AI開發人員研究的問題在智力上對我們來說很困難,但對計算機來說卻相對簡單。這些問題可以用一組形式和數學規則來描述[9]。例如,國際象棋游戲由一組有限且嚴格的規則定義,這些規則可以編程到人工智能中。然而,人工智能很難處理使用人類直覺而不是使用一組正式的規則來處理的任務,例如圖像識別。人工智能的一種方法是基于知識的方法,它涉及嘗試設計形式語言和手工制作的邏輯推理規則,以使機器能夠推理和解決問題。另一種方法是讓計算機從經驗中收集知識,而不是讓人類對程序的行為進行硬編碼。

機器學習是通過從數據中發現模式來獲取知識的能力。因此,這些數據的表示會顯著影響機器學習算法的性能。換句話說,提供給機器的信息(即特征)會影響它解決問題的能力。然而,手工設計的特征受到人類知識的限制。讓機器發現哪種表示最好稱為表示學習。學習到的表示通常比手工設計的表現要好得多。本報告在2.3小節中探討了人工智能的機器學習方法。

2.2 AI 工具的組成部分

AI 工具的最終目標是通過減少操作員的認知和體力工作量來改善操作員的決策過程。為此,人工智能工具通過提供協作環境來補充操作員的角色。人工智能工具處理可用信息,從數據中獲得洞察力,并以有利于操作員體驗的方式呈現信息和洞察力。圖1顯示了AI工具流程的概覽。該模型基于[3]中提出的決策支持系統(DSS)架構。

1.操作員是與工具交互和監控工具、根據工具輸出做出決策并根據這些決策向相關個人報告的人。輸入工具的信息可以是靜態的或動態的。靜態信息(例如配置文件和靜態操作員首選項)在操作期間不會更改。動態信息,例如數據輸入和設備操作,在整個操作過程中不一定保持不變[3]。將操作員與咨詢能力聯系起來的箭頭強調了該工具的協作方面。

2.咨詢能力負責管理操作員和系統之間的交互。這包括管理操作員輸入(即靜態和動態信息),管理環境輸入(例如,約束和環境信息),促進操作員交互(例如,人機交互,人機界面)和顯示信息。要顯示的關鍵信息包括算法的結果和當前的操作限制。

3.領域知識由用于評估的規則和關系組成。例如,領域知識可能包括操作員對信息變化影響的意見。

4.算法組負責處理數據和執行評估或預測任務。可以考慮許多不同的算法和功能來實現算法組。該組將提供應用程序中的大部分AI功能,并且可以選擇或組合不同的AI或ML應用程序。

5.環境為人工智能工具提供操作約束。更具體地說,環境由檢測和測量目標的傳感器系統以及來自更高級別個人的任務概覽和命令組成。

雖然[3]對圖1中的大多數組件進行了詳細解釋,重點是咨詢能力部分,但本報告側重于架構的算法部分。

圖1:操作員、環境和人工智能工具的交互

上面介紹的AI工具被認為是基于第 2.1 節中介紹的定義的AI系統。評估的復雜性和重要性使其成為一項不容易解決的任務。人工智能工具的學習和適應方面可以通過機器學習方法來完成,這將在2.3小節中進行描述。

2.3 AI 中的機器學習

本節將討論機器學習和人工智能的結合。有許多不同類型的AI算法,ML是這些算法的一個子集。本節將描述使用ML從數據中學習的算法類型,以及這對AI工具有何用處。作者還在他們之前的工作中定義了機器學習中的許多基本概念[5]。

2.3.1 概述

根據柯林斯詞典,機器是“使用電力或發動機來完成特定工作的設備”[10]。在機器學習的背景下,機器就是計算機。更具體地說,是計算機中的程序完成了這項工作。正如[11]中所定義的那樣,“如果計算機程序在T中的任務(由P衡量)上的性能隨著經驗E提高,則可以說計算機程序從經驗E中學習某類任務T和性能度量P。”這個定義提出了機器學習問題的三個主要組成部分:任務T、性能度量P和經驗E。

1.任務是要解決的問題。例如,分類任務涉及確定某個輸入屬于哪個類別(例如,對象分類)。其他任務示例是回歸(例如,成本預測)、異常檢測(例如,欺詐檢測)和去噪(例如,信號處理)。

2.性能度量是用于評估ML算法性能的指標。例如,準確度是一種可用于分類任務的性能度量。準確率是模型正確分類的示例的分數。“示例”被定義為特征的集合,通常表示為向量,其中n為特征個數,每個元素為一個特征[9]。數據集是一組例子的集合。

3.經驗是指模型在學習過程中所接受的訓練類型。在無監督學習中,模型所體驗的數據集僅包含特征,并且由模型來學習數據的特征。例如,學習描述數據的概率分布可能很有用。聚類也可以使用無監督學習算法來執行。在監督學習中,模型體驗的數據集不僅包含特征,還包含與每個示例相關聯的標簽。無監督學習模型觀察幾個例子,而監督學習模型觀察幾個例子及其標簽。但是,在某些情況下,有監督和無監督之間沒有明確的區別。例如,半監督學習涉及從包含標記和未標記數據的數據集中學習。在強化學習中,模型不是從固定的數據集中體驗,而是模型與環境交互并從交互中學習。

為了了解模型在處理現實世界中的新數據時的表現如何,通常會分離出一部分數據集,以便僅在完成所有訓練后才能使用。這被稱為測試集,由于模型之前沒有看到測試集中的數據,因此測試集上的性能可以作為模型真實性能的指標。文獻提供了機器學習算法和模型的許多不同分類(例如,[12]提出了機器學習的五種范式:連接主義(例如,神經網絡、象征主義、進化論、貝葉斯和類比)。本報告并不是對機器學習中在空中目標威脅評估領域有用的不同方法的詳盡回顧。本報告重點關注三類特定的方法:監督機器學習、無監督機器學習和強化學習。

2.3.2 監督學習

在監督機器學習中,可以使用一組標記的訓練示例(即訓練集)。該模型的目標是能夠為示例分配正確的標簽,其中正確的標簽是與特定示例對應的標簽。通過基于一組標記的訓練數據最小化某個損失函數來調整模型。具體來說,迭代調整模型的參數,以減少訓練誤差。

1.模型:模型是根據樣本特征輸出標簽的算法。

2.參數:模型的參數根據選擇的模型而有所不同。例如,在神經網絡中,參數包括神經元的權重和偏差。

3.誤差:也稱為損失,誤差用于衡量模型的執行情況。可以針對特定應用設計和修改損失函數。

4.迭代調整:在訓練過程中,采用一定的方案來改變每次迭代的參數。具體來說,迭代調整模型的參數,以減少訓練誤差。一個例子是普通梯度下降法[13]:

其中θ是模型的參數,α是學習率(決定每次迭代調整多少參數的超參數),J(θ) 是模型在整個訓練集上的損失函數, 是相對于θ的梯度。可以使用各種修改來改進普通梯度下降算法,例如動量[13]。這種改進產生的算法包括Adagrad[14]和Adam[15]。

2.3.3 無監督學習

由于機器學習,許多研究和應用領域都取得了許多成功。圖像理解(例如,檢測[16]、分類[17])和自動化物理系統(例如,自動駕駛汽車[18])只是成功的兩個例子。這些成功的很大一部分歸功于監督學習和強化學習的使用。然而,這兩種范式都僅限于人類輸入和經驗:監督學習的訓練信號是目標標簽,而在強化學習中,信號是期望行為的獎勵[19]。使用人類設計的標簽和獎勵的一個弱點是由于訓練信號的稀疏性而導致的信息丟失。例如,盡管用于訓練監督學習和強化學習模型的數據通常具有豐富的特征(例如,圖像),但目標和獎勵通常非常稀疏(例如,表示圖片標簽的單個向量)[19]。無監督學習的動機是更好地利用可用數據來更好地理解數據。因此,無監督學習范式“旨在通過獎勵智能體(即計算機程序)來創建自主智能,以學習他們在不考慮特定任務的情況下觀察到的數據。換句話說,智能體“為了學習而學習”[19]。無監督學習算法的強大之處在于它能夠發現標簽無法完全表達的數據的潛在模式和結構。

2.3.4 強化學習

強化學習(RL)的思想是學習采取什么行動來獲得最大的回報。這種范式背后的一個共同動機是智能體與環境之間的交互(圖2)。根據對環境的觀察,智能體執行影響環境的動作。作為響應,會生成新的觀察結果,并且智能體會收到獎勵或懲罰。

圖 2:智能體-環境交互

RL的兩個重要區別特征是試錯搜索和延遲獎勵。與程序員指定輸出應該是什么的監督學習不同,RL智能體必須進行實驗以發現導致最高獎勵的動作。此外,行動可能會產生長期影響。因此,較早采取的行動可能會導致稍后的獎勵或懲罰。

在監督學習中,該模型嘗試從訓練示例中學習以泛化并在新示例上表現良好。雖然功能強大,但在處理涉及交互的問題時,監督學習是不夠的。例如,在未知環境中學習時,獲得包含代表智能體在所有可能情況下應采取的行動方式的示例的訓練集可能是不切實際的。在這些情況下,智能體必須使用自己的經驗和與環境的交互來學習。

RL系統[20]有四個主要組成部分:

1.策略:策略根據智能體的感知狀態定義智能體的行為。換句話說,它決定了當智能體處于當前狀態時要采取什么行動(或行動的什么分布)。

2.獎勵信號:獎勵信號表明智能體在某個時刻的表現如何。獎勵的概念是RL問題的核心概念,因為從長遠來看最大化獎勵數量是智能體的最終目標。獎勵的類型是特定于問題的。例如,在訓練RL智能體玩游戲時,它可能會因獲勝而獲得正獎勵,而因失敗而獲得負獎勵。結果,通過監控獎勵信號來學習策略。例如,如果當前策略給出的某個動作導致了懲罰,那么該策略可能會以某種方式改變,以便在情況再次出現時避免該動作。

3.價值函數:價值函數表示如果遵循當前策略,智能體在未來的預期表現如何。雖然獎勵被視為即時指標,但價值函數是長期指標。例如,在當前狀態下投資獲得負回報可能會導致總回報為正。價值函數引入了延遲獎勵的方面:某個狀態的價值是預期在長期內獲得的總折扣獎勵,其中每個收到的獎勵都根據最近收到的時間進行折扣。

4.環境模型:環境模型存在于基于模型的RL問題中。它指示環境如何根據智能體在特定狀態下的行為做出反應。然而,環境模型并不總是可用的。無模型方法解決了這一挑戰。

正式表示完全可觀察的環境(即智能體的觀察完全描述當前環境狀態的環境)以進行強化學習的流行方法之一是使用馬爾可夫決策過程(MDPs)。馬爾可夫過程是服從馬爾可夫性質的一系列隨機狀態S:在給定當前狀態的情況下,未來狀態獨立于過去狀態。

其中是第時間步的狀態,t是當前時間步,發生的概率。MDPs是馬爾可夫過程的擴展:除了表征馬爾可夫過程的狀態集S和狀態轉換集P之外,還有可能的動作集A和獎勵集R。

3 空中威脅評估——人工智能工具

本節將把空中威脅評估的任務與人工智能工具的能力聯系起來。 AI 能力將映射到威脅評估的每個階段,并將展示如何將其集成到現有能力中或改進現有能力

3.1 AI 工具在威脅評估中的優勢

如第 1 節所述,ADOs等操作人員面臨認知和身體挑戰,這些挑戰不利于其做出可靠決策的能力。人工智能工具將通過提供以下兩個主要好處來應對這些挑戰:

1.減少認知和身體負荷量:人工智能工具為操作員提供的支持和顯示將緩解導致操作員總壓力的眾多因素。這種好處是通過使用決策支持系統(DSS)的設計原則來提供的。

2.利用最先進的方法:人工智能的機器學習方法是一個非常受歡迎的研究領域,因此在方法的開發和改進方面做了大量工作。通過使用AI支持空中目標決策,該系統可以使用和利用最先進的方法。

3.2 威脅評估中的 AI 工具組件

如2.2小節所述,通用AI工具中有多個組件可以專門用于評估。威脅評估AI工具中的組件及其專業化如下:

1.操作員(Operator)是評估過程中的ADO。操作員將負責確保提供給AI工具的信息盡可能準確。然后,ADO將與該工具交互,以充分了解威脅情況,并獲得AI生成的威脅評估。

2.咨詢能力(Advisory?Capability)負責與ADO以及各種傳感器和數據庫系統進行交互。這將涉及從雷達和其他傳感器收集數據,以及解釋從情報報告中獲得的數據。咨詢能力還負責確保ADO可以有效地與計算機界面一起工作。更新界面可能涉及一個可以結合機器學習的動態過程。

3.領域知識(Domain Knowledge)將包括ADO的經驗以及他們用來進行準確評估的任何規則。在空中威脅評估中,這可能包括常見的高度、異常的飛行模式或敵軍作戰節奏的變化。

4.算法組(Algorithms)負責目標數據的處理和威脅評估。這將包括處理軌跡數據以獲得提示數據,并使用提示數據和領域知識來評估目標的威脅。可能的評估算法包括基于規則的方法[3、4]、貝葉斯方法[3]和本報告[5]中提供的AI技術。

5.環境(Environment)為人工智能工具提供操作限制和目標數據。更具體地說,環境包括檢測和測量目標的傳感器系統以及來自更高軍事指揮鏈的任務概覽和命令。

3.3 機器學習在威脅評估中的應用

由于機器學習方法的種類和成功率眾多且不斷增加,機器學習在威脅評估中的應用數量僅限于研究人員的知識和經驗。本報告將概述如何將三種主要機器學習范式應用于人工智能工具進行威脅評估的示例

3.3.1 監督學習

通過一組標記的過去目標示例,其中每個示例包含有關歷史目標及其相應威脅值標簽的信息,監督機器學習可用于將威脅值分配給目標。在[21]中,監督學習被用于構建多標準決策(MCDM)方法(EMCDM)的集成,以根據當時的線索值推斷目標在某個時間點的威脅值。EMCDM技術由各種MCDM方法組成,它們的輸出組合成一個單一的威脅值。MCDM方法的輸出基于作為輸入的提示值。用于訓練EMCDM技術的監督學習技術取決于集成技術的類型。例如,在加權組合EMCDM技術中,MCDM方法是使用監督學習調整的組合權重。在所有的EMCDM訓練中,示例集由標記的目標實例組成,其中目標實例被定義為目標在某個時間點的提示數據。

3.3.2 無監督學習

可以從目標中提取各種信息。因此,對于某個目標,可以為系統提供關于目標的大量線索,作為威脅評估的基礎。無監督學習可用于分析提示數據,以深入了解底層結構和模式。例如,無監督學習的一種用法是降維。通過降低提示數據的維數,系統可以處理更緊湊和簡潔的目標描述。換句話說,目標是以數據可以提供關于目標的大致相同信息但使用較少資源的方式轉換數據(例如,使用10個提示而不是50個提示)。

實現降維的一種方法是主成分分析(PCA)[23]。PCA旨在通過學習最大化新子空間中數據方差的線性變換,來表達低維子空間中的數據。最大化數據方差背后的直覺是假設更高的方差意味著更多的信息量。數據原本會有一定量的方差/信息。PCA嘗試使用低維子空間來近似數據,同時盡可能多地保留原始方差。PCA的結果之一是檢測和去除數據中的冗余,從而在沒有不必要的線索的情況下描述目標。然后可以將這些PCA生成的線索視為要使用的新的各種線索。然而,在應用過程中需要考慮基于PCA的假設(例如,方差足以描述信息量,主成分是正交的)。

自動編碼器[9]是經過訓練以將輸入重新創建為其輸出的神經網絡。自動編碼器通常由兩部分組成:編碼器和解碼器。編碼器網絡生成低維潛在特征。然后將潛在特征輸入到解碼器網絡中,該解碼器網絡嘗試輸出最初輸入到編碼器中的內容。通常存在約束和限制,以防止自動編碼器能夠完美地重新創建輸出(即,它只能提供近似值)。結果,模型被訓練為優先使用最有用的數據特征。因此,與PCA類似,自動編碼器可用于使目標提示數據更加簡潔,并且僅包含足以描述目標的提示數據。自動編碼器的其他用法也存在。例如,自動編碼器可用于去噪[24]應用程序。這在威脅評估中特別有用,因為目標數據(例如,傳感器數據、提示)本質上是含噪的。

除了降維之外,無監督學習的另一個用途是聚類。文獻中有大量關于用于聚類的無監督學習算法的工作,所有這些算法都用于威脅評估。在不關注特定算法的情況下,聚類的一種用途是將感興趣的目標與歷史目標進行聚類。這樣做的目的是發現感興趣的目標是否與歷史目標相似。如果有關于如何處理過去目標的知識,操作員可以在決定對當前感興趣的目標采取何種行動時考慮這些信息。

3.3.3 強化學習

可以將威脅評估過程建模為強化學習問題。例如,咨詢能力可以在操作期間使用RL來了解操作員希望如何顯示信息。這類似于社交網站知道在首頁上顯示哪些項目的方式。例如,如果RL模型有一個獎勵處理速度的策略,它可以測量從ADO開始評估到ADO提交威脅評估所花費的時間。這將允許模型因導致更短的威脅評估過程的行動而獲得獎勵,從而鼓勵更有效的交互選擇。如果某個深度為兩級的菜單項(即,它需要兩次單擊才能訪問)被頻繁使用,則模型可以將該菜單項放置為第一級深度項。如果該項目被非常頻繁地使用,則該項目應該在主屏幕上被賦予一個突出的按鈕位置。在空中威脅評估應用程序界面上工作的強化學習算法將能夠進行這些和其他更改,以檢查威脅評估的時間是否正在減少,在這種情況下,它將獲得獎勵。

有大量研究和許多資源可用于解決MDPs,這使得使用MDPs解決RL問題成為一個不錯的選擇[25]。

3.4 結構與流程

人工智能工具的結構需要考慮多種因素。該工具將在流程管道中運行,從數據收集和準備開始,到模型訓練,然后到模型預測,最后為用戶顯示結果。在AI工作流程中,可以更容易地將結構視為流程工作流[26]。一旦AI工具經過訓練,它就會不斷返回到周期的第一階段,并使用新數據和新見解進行重新訓練。這個過程使人工智能工具非常強大,可以隨著時間的推移保持準確性和有效性。

人工智能工具開發的第一階段是收集高質量數據。這些數據將存放在一個或多個可供AI工具訪問的數據庫中。人工智能工具將首先在數據庫中的現有數據上進行訓練,然后在生產時,它將主動監控任何操作數據庫中的最新數據,以便提供威脅評估。

除了收集數據,還必須確定最有效的機器學習或人工智能模型。該決定需要考慮可用數據的類型、數據的數量及其質量。與最終用戶面談也很重要,以確保所選模型將以對他們有用的格式輸出信息。這可能是一個要求,例如最終威脅評估值必須呈現為分類問題(例如,高、中、低)或回歸問題(例如,1.4、2.9、9.0)。要求也可能更嚴格,例如人工智能工具的推理必須能夠被人類操作員解釋。像這樣的要求可能會使現代機器學習研究的整個分支沒有吸引力,而是需要不同的模型。由于所選AI模型對整個工具的影響很大,因此必須在模型開發之前的早期階段收集最終用戶的需求。

一旦選擇了一個或多個模型類型,就必須對其進行訓練。在這個階段,由于上一步的需求分析,一些AI模型可能已經被淘汰。在此步驟中,將淘汰更多模型。在對數據進行訓練之前,通常很難判斷哪個機器學習平臺最有效。這意味著應該對多個模型進行數據訓練,并使用某種準確度指標進行比較。一旦確定了最準確的模型,該模型將被完全訓練并準備好在生產中使用。

下一階段是將模型部署到生產應用中。ADO獲得了一個功能性AI工具,可以連接到操作數據庫并協助威脅評估過程。輸出到ADO的最終值都將被處理和清理,最終格式將被確定。然后,隨著所有ADO將其威脅評估以及可用的線索提交給訓練數據庫,該工具將得到持續訓練。這將使該工具能夠與新出現的威脅和新情況保持同步。ADO還可以就AI工具提供的評估進行反饋。例如,如果AI工具提供“高”威脅評估,而ADO認為它應該是“中”,則ADO可以提供反饋信號,表明該工具不正確并且威脅等級太高。這將存儲在數據中并用于在線訓練,使其能夠不斷地向經驗豐富的ADO學習,也可以自學成型。

AI工具流程的最后階段是將工具轉移到精度維護。在這個階段,需要對工具進行監控,以確保準確性不會下降。該工具也將在此階段接收反饋并從ADO評估中學習。最后,人工智能工具的開發并沒有停留在這個最后階段;相反,它必須隨著威脅的演變、環境和要求的變化以及新的和更相關的數據變得可用,而相應地更新和改進。

圖3: AI工具中的模塊及其交互

圖 3 提供了AI工具中以下模塊的可視化表示:

1.數據庫組件

  • 存儲傳感器數據、操作員情報和來自歷史數據的人為威脅評估。

2.數據訪問和存儲模塊

  • 與數據庫交互以不斷地保存和讀取來自傳感器或人工操作員的數據。
  • 查詢數據庫以提供關于1個目標的完整信息集,用于預測威脅評估。

3.數據預處理模塊

  • 清理數據,處理缺失值,并正確格式化數據以用于訓練或訓練模型的推理。

4.ML 模型組件

  • 實現機器學習模型的AI組件。這就是將整個工具定義為AI工具的原因。所有其他組件都用于支持該組件。
  • 在訓練管道中,模型仍在開發中,可能會同時測試多個模型。
  • 在推理管道中,已經選擇了一個模型,并由數據預處理模塊提供數據,以便它可以進行預測。

5.數據后處理模塊

  • 在將推理步驟的結果顯示給用戶之前對其進行清理。
  • 可以從零到一之間的預測值映射到更易讀的值或類別評級(例如,低、中、高)。

6.可視化/操作員交互模塊

  • 負責所有操作員交互。提供數據的可視化和讀數,并以最佳方式傳達模型對威脅價值的預測。
  • 獲取操作員對分配的威脅值的反饋(例如,太高、太低、非常準確)。
  • 與數據訪問和存儲模塊通信,將操作員反饋存儲為有用的數據,以供未來訓練使用

3.4.1 人工智能工具集成

將ML組件集成到更大的AI工具中需要兩條不同的管道。第一個管道將是訓練管道,這是進行模型選擇、測試和訓練的地方。一旦確定了合適的ML模型,并且該模型已經針對所有當前可用的數據進行了訓練,它將在稱為推理管道的第二個管道中使用。

圖4顯示了訓練管道的可視化。第一步需要收集歷史威脅評估數據以及ADO威脅標簽(如果所需的ML模型使用監督學習算法)。接下來,這些數據將通過數據預處理模塊合并為格式良好的數據集。然后,這個大型數據集將被分成三個不同的集合:

1.訓練數據集:該數據集將是ML模型在訓練時唯一看到的數據集。它也將是三個數據集中最大的一個。通常在本節中描述的三組之間決定百分比分配。這取決于系統設計者的判斷。常見的比率是80/20或90/10,具體取決于可用訓練點的數量。這些點將用于訓練模型,但重要的是保留一個保留數據集,以確保您的模型不會過度擬合訓練數據(即,無法泛化到新的未見數據點)。

2.驗證數據集:這將在訓練進行時用作測試集。這些數據不會用于訓練模型,而是在訓練的非常時期結束時,將在這個小集合上測試模型。這對于確定模型何時得到充分訓練很有用。即使模型在訓練數據集上的損失可能會繼續減少,但如果驗證集上的損失已經趨于穩定,那么模型可能會過度擬合訓練數據集,應該停止訓練。

3.測試數據集:該數據集將為所有候選 ML 模型提供最終評估指標。它不會用于訓練,并且模型設計者也必須不要檢查此數據集。這將確保模型超參數不會根據此測試數據集進行調整。測試數據集的價值在于發現ML模型是否可以泛化到來自類似于訓練示例分布的看不見的數據點。如果測試數據集的損失遠高于訓練集和驗證集,則模型很可能對其訓練數據進行過擬合。如果有多個候選ML模型,則可以使用測試數據集上的損失和準確率來確定選擇哪個模型。

在模型訓練期間將使用訓練和驗證數據集,在模型評估期間將使用測試數據集。

圖4 :ML 模型訓練管道

一旦最佳候選ML模型經過訓練和選擇,它將用于AI工具的生產版本。該模型將用于實時提供在線推理/預測。候選模型的訓練和測試可以繼續進行,也可以納入新模型或研究。這將確保AI工具始終使用性能最佳的ML模型。

一旦經過訓練的模型展示了所需水平的能力,就該使用推理管道了。推理管道是ML組件,將在操作中使用的實際AI工具中使用。該管道的示意圖如圖5所示。

圖5:ML 模型推理管道

人工智能工具將被要求不斷監控傳感器和操作員的情報,以獲得最準確的現實畫面。該數據將組合成與每個空中目標相關的提示數據集。一旦一組提示數據可用,它將被提供給ML模型,以便進行預測。然后,該預測將通過本工作前面討論的AI工具的其他組件提供給ADO。一旦投入生產,該模型還將通過運行來自新威脅評估情況的示例和迄今為止ADO對預測的反饋來保持最新狀態。這種訓練可以以在線方式(即連續)完成,也可以通過批量訓練(即以設定的時間間隔一次對所有示例進行訓練)完成。該模型還將對其性能進行監控,以確保準確性和損失不會隨著操作現實的變化而隨著時間的推移而降低。如果檢測到性能下降,則人工干預和糾正可以使系統恢復到以前的性能水平。

3.5 威脅評估和人工智能流程

本小節將解釋威脅評估過程的背景以及傳統上它是如何完成的。它還將標志著傳統流程中的挑戰和通過智能決策支持系統(DSS)改進的機會。還將介紹AI工具及其與傳統DSS威脅評估的關系。

3.5.1 用于威脅評估的因素和結構

有關因素信息和分類的描述,請參見[21]。出于 AI 目的,因素數據應構造為包含m個因素的向量,其中m是觀察中的因素數量,每個條目是一個因素值。每個完整的向量都是一個樣本,如果有足夠大的樣本訓練數據集,就可以進行機器學習。

對于空中威脅評估,已經確定了16個因素來構成關于目標的最有價值的信息[4]。這些見表 1。

表 1:用于目標威脅評估的因素。

3.5.2 挑戰和機遇

威脅評估過程絕非易事。這是一項壓力極大的任務,需要做出復雜的決策。該過程的認知和物理性質是由于各種原因造成的,當它們結合起來時,會對操作員的決策過程產生不利影響。

操作員不僅必須處理來自各種來源的大量和類型的信息,而且還要同時管理多個任務。例如,操作員管理可能來自眾多媒體、顯示器和人員的音頻、口頭和視覺信息[4]。除此之外,他們還必須執行其他任務,例如監控指定監視區域內的空中目標、了解可用資源以及準備情況報告[4]。這種高度的多任務處理和信息過載給威脅評估任務帶來了認知復雜性和身體壓力。

除了大量數據之外,運營商還面臨著信息中固有的不確定性。運營商必須考慮到數據源的不完善性以及人類行為的不可預測性[3]。不確定性量化和感知在威脅評估過程(和戰術軍事行動一般[3],因為運營商依賴決策過程中的數據來獲取環境(和對手)的感知。

在時間限制下操作人員的工作也造成了相當大的壓力。需要時間來收集信息、處理信息并最大限度地減少不確定性。但是,空中目標正在高速移動,因此必須根據可用的融合做出決策此外,用于信息收集/處理和不確定性最小化的時間越多,制定后續決策和行動的時間就越少,對手收集/處理信息和行動的時間就越多。最后,錯誤決定的后果是嚴重的,甚至可能是災難性的。飛機的錯誤分類1988年造成290名平民死亡的事件[27]就是決策失誤的一個例子。操作員工作的重要性和不正確執行的后果增加了任務的壓力。

運營商在威脅評估過程中面臨的挑戰促使人們研究如何在不影響威脅評估可靠性的情況下減輕認知和物理工作量。更具體地說,有機會開發用于空中目標威脅評估的決策支持系統(DSS)[4]。圍繞DSS的設計原則(即DSS 所包含的內容)有許多著作。

DSS的關鍵要求之一是它不能取代運營商;相反,DSS是對運營商的補充。[3]將此要求描述為DSS充當“決策支持而非決策自動化”。這方面允許在威脅評估過程中操作員和系統之間的協作。讓人參與決策過程是至關重要的:人在環方面確保每個決策都有責任。軍事行動的合法性要求問責是其行動的組成部分,問責包括明確的合法性和道德標準。如果在這個過程中沒有操作者,那么誰應該為錯誤決策的后果負責的模糊性就會帶來法律和道德上的分歧。

除了確保操作員始終參與決策之外,文獻中還介紹了其他設計原則。[2]根據文獻及其實地工作,詳細列出了設計威脅評估系統的規則。顯著的設計特點包括:

1.透明度:DSS應該能夠證明其計算和后續建議的合理性[3,4]。因此,DSS應向操作員提供導致最終值[2]的中間計算以及每個提示對最終威脅值[4]的影響。消除DSS的黑盒特性的重要性在于建立對系統的信心和信任[3]。如果不知道決策/建議是如何生成的,人類不太可能接受自動化系統的決策/建議[29]。理解上的不透明為誤用和錯誤創造了機會[12]。由于使用機器學習方法來構建AI工具,因此這是這項工作的一個重要考慮因素。機器學習方法不限于人類定義的決策規則,因此可以表現出黑盒性質。因此,與傳統DSS相比,AI工具的透明度更為重要。

2.處理不確定性:DSS決策所依據的數據中有許多不確定性來源(例如,傳感器數據、威脅值計算中的參數)[2]。處理不確定性也是DSS的一個重要設計特征,因為它允許運營商調整他們對系統的信任級別。在[2]中,這個設計方面是通過使用提示數據的區間表示來實現的。

3.信息的有效和交互式顯示:使用圖形格式顯示信息很重要,因為威脅是一個模糊的概念[4]。應傳達給操作員的重要信息是威脅等級、威脅歷史、線索列表[4],以及與建議相關的不確定性[3]。除了顯示信息之外,系統還必須能夠提供操作員可以與之交互的媒介。這可確保操作員留在威脅評估過程中[3]。

本報告中提出的人工智能工具可作為空中目標威脅評估的DSS。人工智能工具的人工智能方面在于系統的運行方式。更具體地說,人工智能工具將把人工智能概念(例如,機器學習、適應)納入其操作中。

3.6 AI 工具

AI工具將能夠集成到空中威脅評估的所有階段。本小節將描述威脅評估的每個階段與AI工具的能力之間的關系。

空中威脅評估的階段如下[4]:

1.掃描并選擇提示。

2.比較、調整適合和適應。

3.計算威脅等級。

4.繼續處理。

關于1(掃描并選擇提示),AI工具將能夠使用所有可用的提示。這與人類操作員不同,后者僅審查18個可用于評估飛機的線索中的6到13個[4]。這些信息將通過各種傳感器從環境中收集,然后通過通常的情報報告或傳感器讀數方式進行報告。這些數據將被編譯到一個數據庫中,供AI工具訪問以從中進行學習和預測。

關于2(比較、調整擬合和適應),AI工具將對數據庫中可用的線索進行計算。該數據可以與ADO專家提供的感知數據(例如預期海拔)進行比較,并檢查實際數據是否一致。如果數據與預期不一致,人工智能工具會將差異與歷史示例進行比較,以提供對差異的解釋或調整。如果數據無法協調,則可能需要調整模型的擬合度,人工智能工具可以選擇將飛機作為不同類型(即軍用、民用)進行處理。

關于3(計算威脅評級),人工智能工具將使用可用的線索,如果它增強預測,可能還會使用這些線索的子集,來預測目標的威脅評級。 Liebhaber、Kobus 和 Smith 在[30]中發現威脅等級獨立于檢查的線索數量。

關于4(繼續處理),如果所有提示數據都可以充分解釋,人工智能工具將完成分析,或者它將繼續搜索和處理新的提示。這個過程將一直持續到模型通過基于解釋的輸出獲得ADO的批準,或者直到所有可用的線索都被處理并且模型擬合得到盡可能好的調整。

3.7 AI 工具在威脅評估中的挑戰

第3.5.2節概述的關于操作員對DSS的信任的關鍵點之一是用于生成威脅評估結果的模型的透明度。操作員很難對沒有提供理由和解釋的機器輔助預測有信心[4]。出于這個原因,已經創建了許多在計算和標準加權方面具有透明度的DSS方法。例如,許多MCDM方法可以為每個單獨屬性的權重以及它們如何對最終威脅評估做出貢獻提供充分的理由。這是MCDM DSS工具的優勢之一。不幸的是,這種透明性可能會導致工具缺乏復雜性和表現力。相反,機器學習工具可以同時基于所有數據點之間的非常深的聯系做出假設,這可能是以人類不會的方式。這種增加的復雜性往往會降低工具的透明度和可解釋性。

某些機器學習方法的結果仍然是透明的,并且以與自學的MCDM方法相似的方式工作。例如,線性回歸模型可以提供每個線索如何影響最終威脅評估評估的完整理由。該模型既受益于透明度,也受益于無需人類專家參與的自學。

其他一些機器學習模型并沒有從透明度中受益。最先進的機器學習模型之一是神經網絡。這是一個擁有大量研究的大領域,也是深度學習分支的新爆炸。這些方法不那么透明。在[31]中發現的2020年文獻調查探索了許多現有的試圖使神經網絡和深度神經網絡推理對最終用戶可解釋的工作,但是,局限性仍然存在。

現實世界的威脅評估變量通常包括決策過程各個級別的不確定性。對威脅評估準確性的最大影響之一來自根本沒有獲取的數據。這種丟失的數據可能是由于無法收集、傳感器故障、傳感器誤報或許多其他原因造成的。當數據完全丟失時,就很難就目標所擁有的威脅做出明智的決定。幸運的是,機器擅長執行計算,可以估計、替換或忽略丟失的數據。

在[22]中,探索了為每個決策結構預先計算不同查找表的選項。這將涉及根據每種可能的信息缺乏狀態訓練許多不同的模型,并將它們與完整狀態相關聯。這假設對于訓練有大量完整的示例可供借鑒。不幸的是,“為所有可能的輸入組合訓練網絡的天真的策略在復雜性上呈爆炸式增長,并且需要為所有相關案例提供足夠的數據”[32]。相反,[32]建議定義一個可以被認為是真實的基礎模型,然后將所有數據與該模型相關聯。

在許多可能的情況下,在訓練時沒有或只有很少的完整示例可用。在這種情況下,必須確定是僅使用完整數據進行訓練,還是以某種方式合并不完整的示例。在[32]中,發現用均值代替缺失輸入會導致比僅基于完整示例訓練網絡更差的性能。因此,尋求改變神經網絡架構或訓練方法的方法,以有效地合并(可能大量)不完整的數據示例。

使用不完整數據進行訓練的最有效方法之一來自[33]。本文證實,在訓練神經網絡中使用原始不完整數據可能是比在學習開始之前填充缺失屬性更好的方法。所采用的方法涉及對神經網絡架構的輕微改變,但應該與大多數現有架構兼容。該方法通過將第一個隱藏層中典型神經元的響應替換為其期望值來工作。高斯混合模型在每個神經元的輸出上進行訓練,以學習概率密度函數和期望值。這消除了通過單個值對任何缺失屬性進行直接插補的需要。 “隱藏層不是計算單個數據點的激活函數(對于完整的數據點),而是計算神經元的預期激活”[33]。該方法還取得了與其他現有方法可比的結果,這些方法可以從不完整的數據中進行預測,但需要完整的數據進行訓練。

另一種方法可以通過提高缺失數據插補的準確性來采取。[34]研究了文獻中許多可能的數據插補解決方案。它還指出,一些無監督學習聚類算法,如分類和回歸樹(CART)和K-means,已適用于缺失數據的問題。缺失數據插補的優點是不需要對實際的機器學習模型或平臺進行任何更改。當前存在或將來構建的任何基于完整數據提供準確預測的方法都將有效地處理通過插補生成的數據。數據插補的目標是以盡可能接近現有真實數據分布的方式填充缺失值。如果成功完成,則可以對新完成的數據使用現有的統計分析和機器學習工具。

4 AI工具的架構

在本節中,將討論AI工具的潛在架構。將涵蓋從面向操作員的界面到AI組件組合的設計。所提出的AI工具的整體架構可以在參考文獻[35]中看到,它需要三個主要組件,如圖6所示。

圖6:AI 工具的概念框架

未來的人工智能工具可能會將舊的基于模型或自上而下的方法與新的數據驅動的自下而上的方法結合起來。這種類型的系統允許人工智能工具擁有一個由數百或數千個專家派生規則以及數百萬條特定領域知識(如歷史傳感器數據)組成的知識庫[36]。一種可以結合領域專業知識和數據驅動學習的人工智能系統是回歸樹。圍繞回歸或分類樹構建用于空中威脅評估的AI工具將是一個不錯的選擇。回歸樹的另一個好處是它們的輸出可以被人類操作員解釋,并且可以解釋它的選擇。整個模型基于一系列決策或規則,這些決策或規則可以在操作員界面中作為理由提供。這使ADOs可以對AI工具提供的評估充滿信心,或者質疑為什么某個值的解釋與他們的解釋不同。

AI工具的前端組件將是所有ADO交互發生的地方。它將顯示可用信息和AI工具獲得的見解。它還將允許ADO與信息交互并形成自己的結論。此前端將需要分析ADO工作流程。在[4]中已經對美國海軍ADOs進行了采訪,并提出了許多不同的圖形顯示建議。前端應顯示計算出的軌道威脅等級,并為該評估提供證據和解釋。還應提供原始數據,以便ADOs可以確認AI工具的假設。盡可能以圖形方式呈現給用戶的概率,因為這會減少冒險行為[37]。前端還將通過使用強化學習來利用AI功能。應制定一項獎勵快速完成ADO活動的政策,例如將資源分配到目標軌道以保護資產。此RL算法將能夠決定用戶界面(UI)元素的放置位置以及UI上顯示的內容。如果將常見動作從菜單移動到主顯示屏增加了RL功能獲得的獎勵,那么ADO完成任務所用的時間將會減少。這確保了前端最終變得最優,并適合實際ADOs的工作流程。

人工智能工具后端的兩個不同元素之間存在區別。在AI中,該工具可以是正在學習的,也可以是經過全面訓練并準備好執行的。首先將檢查學習后端。無論是第一次訓練AI工具還是處于持續學習狀態,它都會利用學習后端。學習后端連接到包含歷史數據的知識數據庫,可用于提供數百萬對自下而上的人工智能技術有用的數據點。這是機器學習和決策樹將特別有效的地方。如果實施決策樹學習算法,它將能夠創建有助于根據歷史數據和決策對新目標進行分類的規則。這些規則還允許AI工具向ADOs解釋其輸出。

當工具準備好用于生產并與前端交互時,將使用正在執行的后端。這種執行就緒狀態將存儲自上而下或基于模型的人工智能的人類專家規則。該組件將是一個由學習后端輔助的專家系統。通過對ADOs的專業知識和對目標線索重要性的看法的采訪中獲得的數千條規則將使其成為AI組件。同時,通過將這些人工規則與通過機器學習在學習后端找到的規則相結合,可以優化值和預測。

一些功能性和非功能性需求可以從目前已知的用于威脅評估的AI工具中指定。更高級的要求應通過與未來ADO 客戶的面談來制定。

4.1 功能需求

1.當傳感器或智能數據更新時,人工智能工具應攝取數據并進行訓練或預測。

2.AI 工具應為 ADO 定義的感興趣區域內的所有目標提供評估預測。

3.界面應提供評估說明并允許 ADO 交互。

4.AI 工具應提供自動模型訓練或新數據的重新訓練。

5.AI 工具應與 ADO 請求時可用的任何數據子集一起使用,并在新數據可用時合并它。

4.2 非功能性要求

1.AI 工具應在數據可用后 100 毫秒內提取數據。

2.AI 工具必須處理每個實例和感興趣區域的數百個目標。

3.AI 工具應在 2 秒內提供 ADO 要求的特定威脅評估。

4.界面必須符合 ADO 偏好,并允許在 3 次點擊內訪問所有常用命令。

5.人工智能工具必須對缺失的數據做出強有力的反應,并繼續進行評估和學習。

4.3 未來步驟

本報告之后的下一步將是開發供ADOs用于空中威脅評估的AI工具。為完成此目標應采取的一系列步驟如下:

1.需求分析:人工智能工具開發人員應在威脅評估過程的每個階段與關鍵決策者坐下來。應采訪ADOs,以確保該工具滿足其工作模式和預期結果的所有要求。還應與流程早期的關鍵人員進行面談,以確保系統兼容性。這將包括傳感器和其他資產經理,他們可以確認系統輸出將如何格式化并提供給AI工具。人工智能工具完成分析后,需要以有用的格式輸出和存儲,因此依賴人工智能工具輸出的系統中的決策者應該分析他們的需求。

2.確定AI工具所需的組件:完成需求分析后,開發人員應決定哪些通用AI工具組件將需要,哪些可以省略(如果有的話)。可能還需要開發某些專門的組件來支持威脅評估和軍事環境所面臨的獨特挑戰。應該開發工具的架構,并為每個組件分配明確的職責。該架構還將受益于每個組件之間的嚴格輸入和輸出合同,以便數據可用于現有系統。

3.AI和ML組件的選擇和評估:架構和需求確定后,應該明確哪些類型的AI和ML適合該問題。每個可能涉及AI或ML的組件都需要提出和訓練多個候選人。然后將比較這些候選者,以確定哪個最有效地解決了獨特的要求。一旦選擇了最佳模型并選擇了正確的AI類型,所有模型將被移入生產環境并準備連接到AI工具中的其他組件。

4.文檔和培訓:一旦開發了最終的AI工具并通過代碼注釋和其他文檔工具正確記錄了文檔,就該開發外部文檔了。該文檔應傳達AI工具的實用性以及如何有效使用它及其功能。審查ADO要求將有助于為受眾塑造文檔。一旦開發了該工具,培訓會和從ADOs收集反饋將很有用。

5.集成到生產系統:人工智能工具將投入生產,以協助ADOs進行空中威脅評估。需要檢查智能管道中較早的系統和管道中較晚的系統之間的所有連接以確認兼容性。

6.監控和維護:隨著時間的推移,隨著新威脅或新情況的發現,人工智能工具將能夠得到更新和改進。無論是通過人工還是自動系統,持續監控AI工具以確保預測質量不會隨著時間的推移而降低,這一點很重要。通過使用新版本更新舊模型,也可以納入AI和ML研究的新改進。

5 結論

人工智能工具是執行通常由人類處理的復雜任務的最先進方法。這為提高人類操作員的效率和有效性提供了許多可能性,例如執行高腦力任務的ADOs。威脅評估就是這樣一項非常適合人工智能協助的任務。重要的是要承認,人工智能工具不會取代操作員做出關鍵決策:相反,它們將為決策者提供更準確的數據,以有效地做出關鍵和及時的決策。

將ML集成到AI工具中可以帶來許多過去只能通過人類設計才能實現的新可能性。ML可以讓AI工具在沒有人類教授或者面對不斷變化的情境要求或敵人能力的情況下,從數據中學習。它可以重新設計AI工具交互,使其對 ADOs盡可能有用。它可以幫助將新目標與歷史示例進行聚類,從而為ADOs提供更好的威脅心理模型。可以自動檢測異常數據或空中目標并向操作員報告。

熟練和經驗豐富的ADOs與AI工具的結合將實現更快、更準確和更強大的空中威脅評估。通過讓人工操作員參與進來,該工具將保持ADO的責任和專業知識,同時提高生產力和效率。結合處理不完整數據狀態的現代方法也將使該工具對數據不準確或不可用具有魯棒性。

因此,該工具應該有助于國防和威脅評估過程。

付費5元查看完整內容

2021年3月,美國哈德遜研究所國防概念與技術中心發布研究報告《實施以決策為中心的戰爭:提升指揮與控制以獲得選擇優勢》,提出以決策為中心的戰爭將使美軍做出更快、更有效的決策,從而賦予美軍更大的競爭優勢

序言

自冷戰結束以來,美國國防部(DoD)針對來自主要對手(如中國、俄羅斯和朝鮮等)的巨大軍事沖突發展了相應理論和能力。這些最壞的情況是為了確保美軍也能應對“較少的情況”。然而,這種方法偏重于為大規模、高強度軍事沖突設計的概念和系統,美國的智能對手不太可能向美軍挑起對抗,而國防部可以在力量投射或精確打擊等任務中發揮其優勢。

美國的對手在過去十年中已經發展出了抵消美國軍事優勢的方法,如中國和俄羅斯的灰色地帶或混合行動,這些方法以較低的成本和升級——盡管比傳統的軍事作戰時間更長——獲得目標。因此,國防部應修訂其規劃,提高新方案的優先級,這些方案以不同于戰區范圍內高強度作戰的方式給美軍施加壓力,如通過延長時間、不同程度的升級和規模,以及使用代理和準軍事力量。

中國的“系統破壞戰”概念和俄羅斯軍方的“新一代戰爭”概念是針對美國及其盟友的新方法的代表。雖然它們的制勝理論和方法大相徑庭,但這兩種概念都有一個共同點,即把信息和決策作為未來沖突的主戰場。它們從電子和物理上直接攻擊對手的戰斗網絡,以降低其獲取準確信息的能力,同時引入虛假信息,削弱對手的定向能力。同時,軍事和準軍事力量將通過孤立或攻擊目標的方式向對手提出難題,以中和對手的戰斗潛力,控制沖突的升級。

美國海軍如何重新平衡實施 "馬賽克戰 "部隊的例子

決策中心戰的興起

以決策為中心的概念,如系統破壞戰和新一代戰爭,很可能成為未來沖突的重要形式,甚至是主要形式。在冷戰后期,美軍革命性的精確打擊戰方式利用了當時的通信數據鏈、隱身和制導武器等新技術。同樣,以決策為中心的戰爭可能是軍事上利用人工智能(AI)和自主系統的最有效方式,這些技術可以說是當今最突出的技術。

以決策為中心的戰爭的一個例子是國防高級研究計劃局(DARPA)的馬賽克戰爭概念。馬賽克戰爭概念的中心思想是,由人類指揮指導的、具有人工智能功能的機器控制的分列式有人和自主單位可以利用它們的適應性和明顯的復雜性來延遲或阻止對手實現目標,同時破壞敵人的重心以排除進一步的侵略。這種方法與機動戰一致,不同于第二次世界大戰期間盟軍采用的基于損耗的戰略,也不同于冷戰后美軍在科索沃、伊拉克和利比亞沖突中采用的戰略。雖然馬賽克戰爭采用損耗作為給敵人制造困境的一部分,但其實現成功的主要機制是拒絕、拖延或破壞對手的行動,而不是削弱對手的軍事實力,使其無法再有效作戰。因此,馬賽克戰爭非常適合作為現狀軍事大國(如美國)尋求遏制侵略的概念。

在近期兵棋推演中,馬賽克部隊與傳統軍事部隊在任務完成情況的比較

馬賽克戰爭提出了一種部隊設計和指揮控制(C2)程序,與今天的美軍相比,它將使美軍能夠執行更多、更多樣化的行動方案(COA)。馬賽克部隊的分解結構和使用人類指揮與機器控制,將使對手的決策復雜化,縮小其選擇范圍,并施加一系列可能無法解決的困境。通過增加美軍指揮官的選擇權,減少敵方的選擇權,馬賽克戰法將尋求獲得“選擇權優勢”,使美軍能夠做出更快、更有效的決策。

選擇性戰略與以預測為中心的規劃方法形成鮮明對比,在這種規劃方法中,選擇最有可能導致成功的作戰行動方案并迅速實施,通過將與未選擇的作戰行動方案相關的系統和兵力要素分配給其他任務來提高效率。在以預測為中心的模式中,資源的早期承諾必然會限制指揮官今后的選擇空間。

與今天的美軍相比,馬賽克部隊的設計和C2過程可以在選擇權競爭中提供更大的優勢,因為隨著對抗或競爭的進展,可以緩解由于損失或敵方態勢感知的改善而導致的選擇權減少的自然趨勢。例如,“馬賽克”部隊可以更容易地隱藏具有反ISR能力的平臺或編隊,并在以后暴露出來,以實現新的選擇;利用數量更多、規模更小、成本更低的增援部隊;或依靠決策支持工具,允許繼續使用與高級指揮官物理或電子隔離的部隊。

圖:以網絡為中心的戰役空間架構與基于情境的戰役空間架構的特點比較

一支馬賽克部隊也將比今天的美軍更有能力進行縮小對手選擇范圍的行動。通過同時發起許多行動并加速其決策,一支使用人類指揮和機器控制的分布式部隊可以給對手造成足夠的困境,從而排除與作戰相關的數量的《作戰協議》。此外,馬賽克部隊還可以利用諸如分配、佯攻和探測等欺騙技術以及反ISR系統來補充其更大的規模和決策速度,這些技術可以使對手相信某些選擇不可行或不可能成功。

雖然國防部的C3結構,如混合和聯合全域指揮和控制(CJADC2)開始納入決策支持工具,為特派團整合效應鏈,但其目前和近期的實例旨在支持有效的火力投送,而不是持續的可選性。此外,與CJADC2相關的C2和通信(C3)舉措,如高級戰役管理系統(ABMS),需要提前確定架構和組件系統。因此,CJADC2在其能夠提供的可選性方面將受到固有的限制。

圖:C2實施方法的比較

通過C3實現選擇權

第一步是壓縮空間的表征,重點放在時間的表征上。以一個作戰人員在短時間內的行動為例,在這個例子中,一個作戰人員的任務是收集指定地點的圖像。這在操作上是不現實的情況,只是用一個簡單的案例來說明這個概念。

在C3組合中,國防部已經在通信復原力方面進行了大量投資。因此,大部分新的努力和資源應該應用于C2能力。盡管美國軍方投資于所謂的C2系統,但這些項目主要是操作中心和軟件堆棧,作為在部隊中傳遞數據、信息、命令或權限的基體。盡管對管理部隊來說是必要的,但目前國防部的C2系統——將C2看作是連接——并不是決策支持系統,后者將C2看作是一個過程。

圖:在馬賽克C2方法中采用OODA循環

用于以決策為中心的戰爭的C3能力需要做的不僅僅是實現連接。例如,C2工具將需要生成能創造和維持可選擇性的COA,以提高適應性,并將復雜性強加給對手。為了幫助初級領導人執行任務指揮,C2工具還需要了解哪些單位在通信中,他們在潛在的COAs中的作用,并配置網絡以確保所需單位與適當的指揮官保持一致。為了評估這些要求和以決策為中心的C3的其他要求,本研究采用了多種視角,如下所述。

  • 棧式視角:與互聯網一樣,以決策為中心的C3架構需要有物理媒介來進行數據移動;需要網絡結構來管理指揮官、傳感器和效應器之間的數據移動;需要信息架構來將數據組織成有意義的形式;需要評估信息的應用程序,如決策支持工具。目前的技術可以滿足這些需求,但無法在追求選擇優勢的同時,在對抗性環境中實現部隊和網絡的動態組成和重新配置。

圖:以預測為中心和以決策為中心的選擇空間隨時間變化的比較

  • 網絡視角:要實現可選擇性和實施以決策為中心的戰爭,就需要有能力使C2結構與現有通信保持一致,而不是試圖建立一個在面對敵方協同干擾和物理攻擊時仍能生存的網絡。這些需求導致了一種混合架構,這種架構將網絡方式與分層方式結合起來,可以被定性為 "異構"。這種拓撲結構將使指揮權與合格的人類操作者占據的節點中具有最高程度的節點相一致。

  • 解決問題的視角:與從頭開始處理每個新情況相比,使用類比推理的問題解決過程可以更迅速地評估潛在的備選方案,由此產生的決策空間的增加可以使指揮官將限制其備選方案的作戰行動協議推遲到最后一刻。此外,如果使用人工智能支持的算法在沒有監督的情況下建立COA,對手可以通過佯攻和探測來影響算法的學習,使系統認為COA是成功的,如果不是對手的行動,實際上會失敗。

圖:來自DARPA PROTEUS計劃的分析和用戶界面,AI輔助規劃

  • 時間視角:可選性的概念適用于多個時間尺度,從戰略到工業能力發展和部隊的戰術行動。C3架構的能力應該有助于擴大每個時間尺度上的努力所帶來的決策空間,而不是僅僅在任務期間。

  • 組織視角:國防部的C3架構不是在真空中存在的。各組織的人員必須通過戰略、工業、作戰和戰術時空的流程來運用這些架構。可選性是在以決策為中心的戰爭中獲得優勢的關鍵,但如果僅僅是派出一支更分散的部隊和使用它的工具,如果這支部隊的使用方式很狹窄,為每個單獨的行動提供最高的成功概率,那么只能稍微增加美軍的復雜性和適應性。需要決策組織和程序,盡可能長時間地擴大指揮官的選擇空間。

今天的戰斗指揮官(CCDR)參謀部缺乏組織和程序,無法為即將到來的任務以各種不同的配置組合部隊。為了能夠在任務時間內組成部隊,國防部可以采用類似于將計算機程序編譯成可執行代碼的方法。軟件指令是用較高層次的計算機語言編寫的,但在軟件被計算機處理器執行之前,需要將其轉換成二進制形式。這種方法將從決策支持系統的COA開始,然后組合適當的單位來支持行動。雖然部隊構成主要是以硬件為中心,但也需要在技術棧的信息層和網絡層進行部隊包的軟件構成。

圖:從人工構成到決策中心戰的任務整合浪潮

結語

美軍將需要采用新的部隊設計和C2流程,以實現以決策為中心的戰爭,但如果不與工具和組織結合起來,以充分利用使用人類指揮和機器控制的更分散的部隊中可能存在的可選性,這些努力將付諸東流。

目前國防部通過CJADC2和相關的作戰概念努力使美軍向更分散的組織和更分散的能力發展,這是實現更以決策為中心的軍事行動方法的重要一步。高級戰斗管理系統(ABMS)和DARPA的幾個項目正在開發C2工具和流程,這些工具和流程將增加指揮官使用這些更分布式部隊的可選性。國防部的部隊設計變革或C3舉措將需要更進一步,以便美軍在面對已經躍升到以決策為中心的戰爭并擁有主場優勢的同行對手時保持可選擇性優勢。

也許更重要的是,將需要新的組織和程序,使CCDR能夠在戰區組成和整合分散的部隊,并改變國防部定義需求和發展新能力的方式。如果不對國防部的需求和部隊發展程序進行重大改革,美軍就有可能在爭奪決策優勢的競爭中落后于對手,從而威脅到其保護美國利益和盟友免受大國侵略的能力。

(參考來源:軍事文摘作者:張傳良)

付費5元查看完整內容

混合作戰定義

同步使用針對所有社會職能中的特定漏洞而定制的多種權力工具,以實現協同效應。混合作戰入侵者將尋求利用目標國家的弱點。每一個混合戰爭入侵者可能有獨特的能力,可用于打擊目標國家。戰爭的“奇襲”原則可能是混合攻擊成功的最大因素。

為什么兵棋推演是一個好的工具關于混合作戰分析?

  • 數學模型的價值值得懷疑:有什么數據可以量化威懾或恢復力?
  • 如果對手的潛在破壞性行動沒有發生,是否阻止了它?怎么知道?
  • 混合戰爭通常會尋求攻擊多個方面,例如:關鍵基礎設施、民眾情緒、經濟;
  • 混合攻擊將要求人類識別攻擊的本質,文職領導人(來自公共和私營部門)和潛在的軍事領導之間的協調與合作可能對減輕攻擊的影響是必要的。
付費5元查看完整內容

【摘 要】

本報告提供了對機器學習 (ML) 技術的基本理解,并回顧了它們在國防和安全領域的應用。其目標是開發ML的內部專業知識,以支持與加拿大皇家海軍(RCN)海上信息戰(MIW)概念和愿景相一致的能力發展。本文進行了文獻回顧以收集有關在軍事和民用場景中實施和使用的 ML算法信息。結果表明,海軍必須適應和接受新技術,以便在所有 RCN的數據驅動決策中有效利用所有信息。這可以包括使用自動化、大數據分析、云計算、人工智能 (AI) 和 ML。這樣做可以減少與繁瑣任務相關的操作工作量,進而最大限度地減少人為錯誤和超負荷。這項研究表明,ML有可能提供新的或增強的能力,以支持 MIW 的概念,以及滿足使用現有和未來信息源的 RCN 的需求。這意味著開發利用這些技術的必要技能將使加拿大武裝部隊(CAF)受益。憑借這些專業知識和這些技術的適當應用,軍方將有能力在必須進行快速數據驅動決策的情況下更有效地利用其信息源。

【對國防和安全的意義】

本報告旨在就如何將人工智能和機器學習技術應用于支持加拿大皇家海軍與海上信息戰相關概念和目標,而建立基本的理解和專業知識。對這些技術及其在國防和安全領域的應用進行了回顧。

1 引言

在過去的十年中,加拿大國防部 (DND) 和加拿大皇家海軍 (RCN) 引入了新的概念和方法,以幫助提升其服務水平。其中許多概念引入了新技術,旨在增強信息空間在作戰級(即作戰職能)和事業級(即管理職能)方面的防御能力。在作戰層面,這些舉措得到了一系列文件的支持,這些文件強調了信息戰的重要性及其在 RCN 內的實施和執行。

2015年,海上信息戰(MIW)的概念被引入[1]。本概念文件概述了在信息環境中運作對 RCN 及其內部可能產生的影響。這一概念的引入清楚地強調了能夠利用該領域中可用信息源的重要性。它討論了信息的影響,基于其廣泛的可用性以及 RCN 的依賴性和使用該信息支持作戰的能力。

采用新的概念和技術進行能力開發并非沒有挑戰。這需要更有效的處理技術來處理在 MIW 的功能區域內收集的大量和各種數據。此外,概念文件還討論了 MIW 與物理、虛擬和認知領域的關系,表明在戰爭中使用所有領域的信息作為 RCN 的寶貴資源的重要性。

2016 年,RCN 發布了一份信息戰戰略文件,重點關注為國家和國際部署開發 MIW 能力 [2]。該戰略文件討論的主題包括有效收集、利用和傳播信息的重要性。該戰略還認識到并傳達了信息戰是RCN可以同時采取防御和進攻行動的地方。

2017年,加拿大國防政策發布[3]。盡管它沒有直接處理信息領域,但它承認信息對 RCN 的重要性,這在 2019 年和 2020 年分別發布的 DND 數據戰略 [4] 和 RCN 數字海軍 [5] 報告中得到了回應。數字海軍支持國防政策創新目標,其中包括適應和接受新技術的能力,而數據戰略涵蓋了如何利用技術在RCN 社區中做出數據驅動的決策。這可以包括使用自動化、大數據分析、云計算、人工智能 (AI) 和機器學習 (ML)。在操作上,期望通過這些技術對更繁瑣任務的自動化實施來減少海軍團隊的日常工作量,進而最大限度地減少人為錯誤和疲勞,提高整體作戰效率。

這些文件中包含的首要主題強調了 RCN 采用新的數字能力成為一個信息組織的重要性,其中信息在戰爭環境中被使用,但也被用作工具。使用和利用信息來支持 RCN 的現代工具、技術和專業知識是能力發展的關鍵。在此之后,我們顯然需要一個強大的、知情的、由信息科學、人工智能和機器學習專家組成的科學團體。

這項工作背后的動機是在 MIW 領域內建立科學專業知識,以支持 RCN 的目標。為實現這一目標,以下報告將回顧可在防御和安全領域中使用的 AI 和 ML 技術。除了這篇綜述之外,本文還將介紹這些與 RCN運作相關的技術的應用,例如艦艇監視、目標檢測以及使用生成建模來支持運作。

這項工作的總體目標是為如何將 AI 和 ML 技術應用于 RCN 挑戰提供科學基礎和理解。建立這些新興技術的專業知識不僅是支持當前運作目標的必要條件,也是對開發和塑造未來能力的投入。這種向算法決策制定的轉變與 MIW 的概念非常吻合,因為它認識到信息在戰爭中的使用至關重要。還提出并討論了 ML 未來的工作和研究主題。

5 機器學習在國防和安全中的應用

2、3、4章節簡要回顧了在計算機科學和數據分析中使用的機器學習技術。這些技術同樣適用于海上防御和安全領域中經常發現的問題。本節概述這些技術及其在這個領域的應用,特別是海上探測和監視有關的任務。此外,還將討論生成對抗ML方法的應用。需要注意的是,這些部分并不是對這個領域中已經完成的研究的全面回顧。相反,本文的目的是概述如何使用這些技術改進和開發與RCN相關的新功能。

5.1 艦艇監視

艦艇行為分析是與海上監視和安全相關的關鍵組成部分。這種分析的結果依賴于捕獲和利用艦艇活動數據的能力。用于海上監視的數據源包括:自動識別系統 (AIS) 數據、天基 AIS、雷達數據等。這種監視形式允許分析師進行船只航跡重建、路徑預測、異常艦艇交通監視,這些在海上領域非常重要,有助于發現恐怖主義、海盜、毒品和武器走私、非法移民和非法捕魚等非法活動。

5.1.1 機器學習應用

各種各樣的機器學習算法和技術可以應用于海事問題并提供有價值的見解。為了支持預測模型的開發,可以使用的技術包括:

? 聚類:無監督聚類方法已用于為海事和艦艇監視提供洞察力。這些聚類算法已應用于 AIS 數據。具體來說,已經報道了基于這些方法對艦艇運動實時預測的可靠性和準確性的研究[25]。還使用應用于基于空間的 AIS21 的 K-means 聚類算法來研究艦艇避撞,以評估航行穩定性和檢測異常行為[26]。研究人員還探索了使用聚類和 AIS 數據流來支持搜索和救援行動[27]。

? 決策樹:使用模糊粗略決策樹算法,研究探索了執行艦艇類型行為學習的能力[28]。對艦艇活動進行可靠和有效的表征可以提高海域態勢感知。這是通過使用包含運動學、靜態和環境信息等軌跡特征的概括向量來實現的,其中軌跡是通過融合 AIS、合成孔徑雷達 (SAR) 和天氣報告來創建的。

? 隨機森林:研究已使用隨機森林算法開發用于艦艇監視和跟蹤的各種目的的模型。由于多種原因,基于 AIS 的艦艇運動往往會丟失數據。例如,這些失誤可能是由于惡劣天氣造成的。為了檢測這些記錄,這些技術已被用于自動識別船只軌跡中缺失的位置記錄[29]。隨機森林也被用于創建預測船只目的地的模型。在艦艇離開特定港口后使用歷史 AIS 數據確定目的地點的能力也已被研究 [30]。這也通過比較當前和歷史軌跡數據進行了研究,以便根據相似性度量來預測最終位置[31]。

? 關聯挖掘:創建關聯規則的模型通常用于購物籃分析場景。然而,當應用于 AIS 數據源時,這種算法為艦艇運動分析提供了有用的見解。使用關聯挖掘進行的研究提供了有助于發現艦艇運動模式的洞察力。此類運動包括:軌跡預測,估計艦艇接下來最有可能訪問的港口[32],并在收到新消息時預測艦艇的位置,并計算有和沒有艦艇位置插值的關聯概率[33]。

? 支持向量機:支持向量機執行回歸和分類任務。支持向量回歸用于研究異常艦艇行為的檢測。當前檢測異常行為的方法是利用艦艇運動的突然變化。然而,與海上事故相關的導航數據可以模擬正常情況。為了解決這個問題,使用 SVR 航道模型及其路線提取方法,開發了一個模型來檢測異常艦艇行為 [34]。該研究的目的是定義“通過將導航數據分配給位置基礎來確定異常行為的可接受的最大值和最小值”[34]。除了SVR研究之外,科學家們還研究了SVM在檢測和分類異常艦艇行為方面的應用。通過從原始AIS數據中提取海上運動模式,對異常艦艇行為的識別和分類提供了新的信息[35]。

? 人工神經網絡:人工神經網絡 (ANN) 已被用于幫助預測北極的船只速度,因為該地理區域氣候變化帶來的交通量增加[36]。 AIS 數據的使用允許模型根據位置、時間、艦艇用途、大小和冰級來預測艦艇的速度。在[37]中,作者使用神經網絡作為一個基于云的web應用程序來預測未來的艦艇行為。它能夠將預測的短期和長期行為疊加到交互式地圖上。除了預測艦艇航線,人工神經網絡也被用于調查異常檢測事件。具體來說,該研究著眼于AIS轉發器中觀察到的有意和非有意的切換,因為這種活動可以用來隱藏可疑或非法活動[38]。

?卷積神經網絡:AIS、雷達、高精度攝像機和電子海圖等信息源為理解海上態勢感知提供了有用的信息。利用這些來源,CNN可以提取艦艇運動模式。在[39]中,作者通過將原始AIS數據轉換成保存艦艇運動模式信息的圖像數據結構,利用歷史AIS重建艦艇軌跡。然而,使用AIS系統的艦艇軌跡重建技術存在原始數據含有噪聲、記錄缺失和其他錯誤。許多研究在進行彎曲軌跡或高損失率的艦艇重建時面臨困難。為了克服這些障礙,[40]的作者使用了一種健壯的CNN架構,稱為“U-net”。這種架構能夠處理不同采樣率的軌跡、丟失的數據記錄和其他噪聲相關問題的軌跡。

? 循環神經網絡:艦艇監測通常依賴于存在許多問題的 AIS 數據。AIS源可以表示大量數據,除了具有不規則的時間戳和丟失的記錄外,這些數據有時可能會非常臟亂。已經進行了研究以幫助解決這些問題。研究 [41] 使用多任務深度學習框架,將 RNN 與潛在變量建模相結合,以幫助在執行軌跡重建、異常檢測和艦艇識別等任務時處理這些問題。 [29]中的作者利用隨機森林來識別丟失的記錄,并使用 LSTM 架構來重建缺少 AIS 記錄的船只軌跡。結合統計分析、數據挖掘和神經網絡方法監測內河艦艇數據[42]。具體來說,LSTM 用于艦艇軌跡修復、發動機轉速建模和燃料消耗預測。在另一項研究 [43]中,由于與設備故障、傳輸延遲和信號丟失有關的問題,需要在分析之前對 AIS 數據進行預處理。作者通過將 LSTM 與變量建模相結合來執行軌跡重建,同時考慮異常軌跡數據和艦艇航行狀態。這一努力將有助于減少艦艇碰撞的風險,并支持其他研究途徑,如艦艇類型分析、風險評估、軌跡預測和航線規劃。

5.1.2 對比分析:為確定艦艇類型而開發的機器學習模型

監視海域中的艦艇行為對于檢測可能表明存在非法活動的異常情況至關重要。收發器用于報告 AIS 數據流,其中包含有關船只及其軌跡的信息。由于從 AIS 數據流收集的信息是自我報告的,因此可能會出現問題。有意或無意地修改此數據或打開/關閉轉發器會導致間歇性消息,這些消息可能不準確或具有誤導性。這種策略可用于掩飾海上的非法行為和活動。

在某一天,有大量船只在海上作業,人類操作員無法監控和檢測這些事件。因此,可以使用 AIS 數據流以及其他來源來訓練 ML 模型,從而為人類操作員提供自動化支持和洞察力。根據行為特征確定船只類型的能力是 ML 提供的眾多能力之一。探索艦艇類型分類的兩項研究是[28]和[44]。

在[28]中,作者開發了一個模糊粗略的決策樹模型,以根據運動學、靜態和環境信息確定艦艇類型。用于模型開發的訓練數據包含來自加拿大東海岸和美國東北部的 AIS 消息。[44]中給出的結果使用具有來自兩個不同地理區域的軌跡信息的 GANN 執行艦艇分類。第一個是歐洲數據集,其中包括來自凱爾特海、海峽和比斯開灣的海上交通。另一個是東南亞數據集,根據在新加坡附近的海峽和港口以及南中國海開放水域的海上交通中船只的預期運動模式,該數據集被分為三組。

在[44]中,作者使用以下性能指標來評估他們的模型:召回率、精度和 F1分數[45]。作者在他們的報告中使用召回指標作為他們的模型準確性。召回率表示正確識別的實際相似性部分,其中準確度是正確預測的數量與預測總數的比率。假設作者使用召回作為準確率,當將其與[28]中報告的性能進行比較時,此分析將把[44]中的召回指標視為模型準確度。兩項研究都將他們的結果與一系列其他 ML 技術進行了比較,以幫助評估性能。然而,與[44]不同的是,[28]報告了具有不確定性的準確性,從而賦予了性能結果意義,并使模糊粗略決策樹模型與其他標準技術相比更容易理解。除此之外,比較這兩篇論文的結果(沒有不確定性測量)表明,大多數機器學習模型的表現都一樣好。例如,k-最近鄰、樸素貝葉斯、隨機森林和支持向量機在[28]中的性能準確度在[44]中使用的四個數據集中的兩個數據集中的相似鄰域內。具體而言,新加坡港口和海峽周圍海上交通的準確率報告在 47% 到 64% 之間,而[28]中報告的準確率為 45% 到 69%。

[28] 中使用的多層感知器取得的結果表明,它以81.5%的整體準確度優于其他模型,略高于模糊粗略決策樹結果 (80.7%)。[44]中報告的四個不同數據集的準確率在41%到56%之間,非常差。在 [28] 中,對各種參數進行了特征選擇過程,并根據分配的加權值選擇了19個特征中的 10 個。特征及其相關權重為:ship_length (1.0)、avg_speed (0.183)、max_speed (0.183)、speed_st_dev (0.183)、course_st_dev (0.100)、heading_st_dev (0.097)、duration (0.082)、end_point lat (0.055)、start_point_lat (0.052) 和 max_lat (0.051)。[44]中使用軌跡特征來執行分類,利用 AIS 消息中包含的時間戳、經度、緯度、對地航向和對地速度。

這些研究之間選擇用于訓練的特征之間的主要區別之一是[28]中權重和影響最大的特征是ship_length,這不是[44]中使用的特征。模型的成功很大程度上取決于所用數據的質量和數量,但在很大程度上取決于特征選擇。在多層感知器模型的情況下,[44]中使用的軌跡信息特征可能不足以生成準確的艦艇類型預測。這表明了解艦艇的長度是進行此類分類的關鍵指標。在比較[28]中選擇的特征時,ship_length 被分配的權重大約是任何其他特征的五倍。這將使模型在進行分類時更加依賴此特定信息。除了特征選擇和可調超參數外,使用的訓練數據也對模型的成功有影響。數據的特征,如記錄數量、代表性內容以避免過度/不足以及數據完整性,都在成功訓練模型以提供高度性能方面發揮作用。

另一個有趣的觀察結果是,[44]中使用的GANN 報告了其分析中使用的數據集從低 80% 到高 96% 的一系列準確度,平均準確度為 87%。這些結果優于 [28]中使用模糊粗略決策樹報告的80.7% 準確度。關于為什么GANN 的表現似乎更好,有一些可能的解釋。GANN模型基于LSTM-RNN,它允許將時間依賴性構建到模型中。包括這個額外的時間維度可以提供預測洞察力,從而實現更高程度的預測準確性。此外,GANN 模型使用對抗性組件進行訓練,該對抗性組件可能迫使網絡實現更大程度的學習以執行其所需任務。

5.2 目標檢測

目標檢測對于防御和安全的海上環境中的監視和態勢感知都至關重要。然而,這是一項艱巨的任務,因為尺寸、方向和目標配置的變化加上環境背景噪聲和使用的各種傳感器的性能差異很大。所有這些事情只會增加這個問題的整體復雜性。傳統的檢測算法缺乏簡單性和可靠的輸出。深度學習領域的最新研究和進展表明,CNN 可以執行與檢測相關的任務,同時提供高速性能和準確性。開發這些能力正在推動促進防御和安全的技術。

5.2.1 機器學習應用

目前使用 CNN 顯示出前景的能力包括:使用SAR圖像進行艦艇識別和分類以監測海洋區域[46][47]、使用探地雷達[48]進行魚類檢測、海冰SAR圖像分類以監測極地地區的變化并檢測可能威脅海上交通的流冰[49],并檢測從SAR [50][51] 和遠程傳感器[52]獲得的圖像中的船只。雖然這不是一個詳盡的應用程序列表,但它確實突出了一些與信息戰領域相關的當前 ML 應用程序。特別是,現在將討論 CNN 的兩個有趣的應用。

? 水下聲納圖像的目標識別和分類:研究[53]的研究重點是深度學習特征提取在水下聲納圖像目標識別和分類中的應用。該方法通過 CNN 使用聲納圖像提取目標特征。然后使用 SVM 進行分類。在現代海上作業期間執行自動目標識別和分類可以幫助當局檢測潛在威脅。自主系統,例如基于調查和戰術信息收集圖像的無人水下航行器,是可以利用這種技術的系統。機器學習的這種應用減少了對具有分類目標專業知識的操作員的需求。因此,隨著效率、速度和成本的提高,這個過程有可能變得更加自動化。該領域的一個活躍研究課題包括使用 ML 更好地檢測聲納數據中的類似地雷的物體[54][55]。

? 使用有限數據進行軍事目標識別和分類:CNN等深度學習算法是用于處理圖像和視頻的強大工具,可支持防御和安全功能。目標識別和分類能力對于監視和態勢感知至關重要。然而,所開發模型的成功取決于能否獲得反映被建模數據的關鍵屬性和特征的良好數據集。許多軍事場景中的訓練數據集的大小可能很少。[56]中的作者使用遷移學習和混合神經網絡層的組合來解決這個問題,以開發可以嵌入的先驗知識,以實現對高精度識別任務的特征提取的改進。這樣的發展自然會進入并改進分類過程。

5.2.2 對比分析:為使用聲納圖像進行目標檢測而開發的機器學習模型

自動目標識別在海上作業中發揮著重要作用。無人水下航行器使用聲學傳感器產生聲納圖像,幫助檢測水下目標和威脅,例如水雷。由于噪聲、低對比度和低分辨率,使用聲納圖像進行目標檢測很困難。ML和DL都提供了可以幫助提取特征和重要信息以進行對象檢測和分類的功能。

探討這個問題的兩篇研究論文包括Zhu等人[53]和Bouzerdoum等人[57]的工作。在[53]中,作者使用稱為AlexNet的預訓練NN來執行特征提取,然后使用SVM將檢測到的對象分為兩類:目標和非目標。然后將性能與以下兩種技術進行比較:局部二進制模式和定向梯度直方圖。在[57]中,作者遵循與[53]類似的方法,其中使用預訓練的網絡進行特征提取,并使用 SVM 對檢測到的對象進行分類。然而,在[57]中,對象被分為三個不同的類別:類水雷對象、非類水雷對象和誤報對象。該研究還開發了一個用于分類目的的小型 CNN,并使用了一個名為 ObjectNet23 的預先開發的 CNN 來執行相同的任務。所有這三種方法都在它們的整體性能方面進行了比較。

兩項研究都測試了用于特征提取的預訓練 CNN 和用于分類的 SVM 的應用。結果表明,[53]和[57]的性能準確率分別為 95.9% 和 76.2%。鑒于這些方法相似,人們不會期望這些結果會有大約 20% 的差異。兩個系統都使用預訓練的網絡進行特征提取。有趣的是,[57]考慮了不同的 CNN 架構,包括 VGG16 和 VGG19。這些網絡是基于 AlexNet 網絡的架構構建的,但經過改進。

奇怪的是,[57]中使用VGG的方法不會勝過[53]中使用 AlexNet 的技術。這樣的結果可以用許多因素來解釋。作者沒有指定用于訓練VGG網絡的數據集。用于訓練的數據質量和數量可能會影響模型的性能,從而使 AlexNet 能夠更好地提取特征。該問題也可能存在于SVM執行的分類中。用于訓練這些系統的數據可以極大地影響預測結果,因為在該領域很難獲得大量標記數據。兩項研究都進行了數據處理并使用增強技術來增加數據集的大小,這不如擁有更多“真實”數據點有效。此外,應注意分類類別的差異。[53]和[57]中檢測到的對象分別分為兩類和三類。擁有額外的類并嘗試檢測特定對象會更加復雜,并且可能會降低這些模型的整體性能準確性。

盡管這些研究使用了類似的方法來實現預訓練的 CNN 和 SVM 來執行目標檢測,但[57]也為此任務開發了一個小型 CNN。小型 CNN 的性能優于預訓練的 CNN + SVM 模型,準確率達到 98.3%。與大型 CNN 不同,較小尺寸的 CNN 需要訓練的參數顯著減少,從而在數據樣本有限時減少過度擬合的機會。這可能是小型 CNN 和預訓練 CNN 之間顯著性能差異的原因+ SVM 模型。

5.3 生成對抗網絡應用

艦艇檢測在軍用和民用環境中發揮著重要作用,各種類型的成像傳感器用于檢測、跟蹤和分類艦艇。因此,DNN 的引入改變了軍隊執行任務的方式。生成網絡提供了生成代表歷史數據記錄的數據或樣本的能力。此功能提供了新的數據樣本,可用于在軍事場景中訓練智能系統,在這些場景中,由于可用性、安全分類和成本,數據通常難以收集。但是,其他國家也可以使用相同的過程來創建對抗性數據,這些數據有可能危及易受此類攻擊的國家系統。因此,GANN 的實現既可以用于進攻性場景,也可以用于防御性場景。這些網絡可用于訓練預測、分類和產生可靠輸出的智能系統,以發展未來的軍事能力。 GANN 還提供了執行對抗性攻擊以欺騙對手系統的能力。

5.3.1 機器學習應用

GANN與國防和安全領域相關的應用包括:

? 對抗性偽裝:偽裝在軍隊中被用作一種策略,以阻止對手在視覺上檢測和分類軍事物體的能力。此類任務傳統上由人類觀察者執行。然而,戰斗空間在不斷發展,自主軍事代理和人工智能在此類任務中的使用也在增加。這一變化促使科學家們研究偽裝是否能有效對抗這些聰明的對手,或者是否有可能設計出能夠迷惑這些人工智能對手的偽裝。2019 年,對這個問題進行了調查,其中NN被訓練來區分和適當分類軍用和民用船只 [58]。這項研究的結果表明,如果 GANN 生成的模式覆蓋在軍艦的某些部分上,則針對此類圖像分類訓練的 NN 可能會混淆這些模式。這種技術被稱為對抗偽裝。進一步的研究 [59]研究了如何使用這種方法來欺騙選擇的幾個NN分類器。通過這樣做,他們能夠將分類的整體準確性降低到被認為不可靠的程度。在研究 [60]中,研究了迷彩圖案的穩健性和通用性。這些模式在研究中被稱為補丁,并且發現通過在補丁生成器的訓練中實施降級過濾器,作者表明他們能夠提高這些補丁的整體魯棒性或有效性。

? 特定發射器識別:[62]中報告了使用GANN開發的半監督特定發射器識別 (SEI)應用程序。此應用程序是針對與基于接收到的波形對發射器進行 SEI 分類相關的問題而開發的。這些波形容易受到可能導致單個發射器表示不準確的因素的影響。SEI在包括無線電和無線網絡安全在內的各種軍事應用中都很重要。

? 時空數據:2020 年,報告了與時空數據一起使用的 GANN 架構以及衡量此類模型性能的常用評估方法 [63]。這些架構已被用于執行軌跡預測和時間序列。盡管在該領域正在進行重要的研究,但執行時空數據預測的能力對研究人員來說是一個持續的挑戰。特別是對于時空應用是一個新領域的GANN。[63]中討論的最近工作強調了與數據生成相關的問題,這些問題會影響研究人員理解數據特征的能力。

5.3.2 對比分析:針對對抗偽裝開發的機器學習模型

對抗性偽裝用于防止軍事資產被發現和分類。傳統上,偽裝是通過使用大網或油漆來幫助隱藏人類觀察者的飛機或船只等資產來實現的。然而,隨著使用智能系統執行傳統上由人類執行的分類任務,戰場空間發生了變化。Adhikari等人[64] 和Aurdal 等人[58]進行的兩項研究,如何使用對抗偽裝來欺騙或誤導這些智能系統執行的自動對象檢測。在[64]中,基于補丁的對抗性攻擊被用來掩飾軍事資產不受無人駕駛空中監視的影響。該研究使用神經網絡創建覆蓋在軍事資產上的各種補丁,以防止自動檢測目標物體。對于這些研究,感興趣的目標對象主要是飛機。[58]中進行的工作訓練了一個可以檢測和分類軍用和民用船只的 NN。對第二個網絡進行了訓練,以生成用于防止對軍艦進行檢測和分類的補丁。

這些研究使用對抗性補丁來防止智能系統檢測或錯誤分類資產。兩項研究都表明,對抗性偽裝既可行又有效,但在現實世界中并不可行。貼片的設計可能相當復雜,因此很難將其復制到飛機或船只的外部。與[58]不同,[64]確實試圖通過將現實世界的適用性構建到損失函數中來解決這個問題。然而,這種方法是否充分并不明顯。

在比較這些作者所采取的方法時,[64] 中防止檢測的目標似乎更可行,部分原因是避免了與國際人道主義法相關的問題。相比之下,作者在 [58] 中的意圖是使用對抗性偽裝來實現將軍用船只錯誤分類為民用,顯然會陷入法律戰爭問題。然而,[64] 中采用的方法對于 [58] 中的船只可能更復雜,因為它們沒有與部署在陸地上的軍事資產相同的多樣化環境。這表明在考慮對抗性偽裝的應用時,能夠避免檢測是兩種方法中更好的方法。

此外,[58] 中使用的數據集由世界各地用戶上傳的圖像組成,這些圖像主要由艦艇輪廓組成。該數據集不太可能包含每艘船的足夠的方面數據。此外,[64] 專注于航拍圖像,而 [58] 則沒有。在海上的任何軍事場景中,用于檢測船只的數據集很可能包含空中數據。擁有完整的數據集將允許模型為這些艦艇的不同方向生成補丁,而不僅僅是輪廓補丁。為實際使用實施對抗性偽裝不僅需要此類數據,還需要適當的技術來實施。

最后,[64] 的訓練數據顯著減少,它使用稱為 YOLO26 的標準預訓練網絡進行目標檢測。該網絡是對語義對象進行分類的通用模型,并未經過專門訓練以檢測空中目標。然而,在[58]中建立并訓練了一個鑒別器網絡來專門檢測和分類艦艇。使用這種專門的鑒別器網絡的目的是提高創建補丁的網絡的整體性能。如果[64]的作者使用專門的鑒別器網絡而不是他們的預訓練網絡,他們將獲得什么性能提升,這將是一件有趣的事情。

6 總結和未來工作

技術進步已經并將繼續改變與現代戰爭相關的所有戰場空間。隨著機器學習、人工智能和自主代理的引入,軍方必須學會調整這些不斷發展的技術并將其整合到他們的系統中。DND和RCN都已主動引入和使用此類技術,目的是提高整體防御和安全性。本節將總結本文的內容,并討論作為文獻回顧的結果將進行的未來工作。

6.1 總結

本報告探討了深度學習和機器學習技術,這些技術可用于開發流程以支持 RCN 實現其既定目標所需的自動化和高效率。例如,回歸是一種進行未來預測的簡單方法,無監督聚類方法通過檢查和分組具有相似特征的數據點來推斷新信息,決策樹和隨機森林允許分析師評估選項并根據準確度估計進行分類,關聯挖掘創建可以檢測行為和模式的規則集,支持向量機允許分析師根據多種核函數選擇在高維空間中進行有效的預測和分類。此外,神經網絡很重要,因為它們可用于開發支持自動化的工具。例如,感知和深度神經網絡提供了人類不容易執行的分析能力;卷積神經網絡可以輕松處理具有網格狀拓撲結構的數據,例如音頻信號、圖像和視頻;遞歸神經網絡可以處理序列數據并處理長期依賴關系;生成建模技術可以執行密度估計和樣本生成,以支持一般的訓練模型或支持防御和進攻行動。

這些學習算法和技術的應用為分析師提供了洞察力并簡化了繁重的任務。在國防和安全的背景下,它們在能力開發周期中的應用顯示出巨大的前景。具體而言,本報告重點介紹了三種此類應用,包括艦艇監視、目標檢測以及對防御和進攻行動的支持。相當多的機器學習重點是艦艇監控,特別是航跡重建、防撞、航跡預測、目的地預測等。該研究領域已經研究并報告了許多機器學習算法的應用。目標檢測對于海上環境中的監視和態勢感知都至關重要。用于物體檢測的卷積神經網絡已被用于對船只進行分類、發現水雷、檢測海冰、使用水下聲納圖像進行分類、檢測具有有限數據的軍事物體等。生成對抗神經網絡可用作支持密集操作的工具和防守。此外,在國防和安全領域,它們已用于樣本生成、生成對抗偽裝、用于支持特定發射器識別,并用于時空數據應用,包括軌跡預測和時間序列插補的事件生成。

這些技術在國防和安全領域的適當應用可以為軍方提供情報,這些情報可以在必須進行快速數據驅動決策的情況下加以利用。本文提供了對 ML 技術應用背后的基礎知識的基本理解,以幫助構建使用符合 RCN 既定目標的新技術支持和構建能力所需的內部專業知識。對發展這種專業知識的任何投資都將有助于塑造應對現代戰場所帶來的挑戰所需的未來能力。這些空間在本質上變得越來越技術化,因此,DND 和 RCN 必須學習如何適應和改變,以便在這些環境中發揮作用。對于 RCN,利用技術援助利用數據和信息對于海上信息戰概念的成功至關重要。

6.2 未來工作

第 5 節中的討論涉及與 MIW 相關的防御和安全領域的各種 ML 應用。當前研究的一個共同主題是對艦艇監視的內在興趣。雖然 AIS 數據流是用于高度研究主題的重要信息來源,包括軌跡重建、路徑預測和船只異常行為識別,但文獻缺乏檢測與數據流本身相關的潛在異常。

在研究艦艇監視領域的異常檢測時,文獻傾向于將“異常”稱為可用于掩蓋非法海上活動的 AIS 應答器的有意和非有意開關。然而,研究這個數據流的特征和這個信息源中可能存在的異常是很重要的。檢測和解釋數據流中的異常有助于建立用戶對使用此信息訓練的 ML 模型的信任。模型提供準確和穩健的預測或分類的能力源于使用可靠和值得信賴的數據。因此,有必要將研究工作集中在 AIS 轉發器數據流上。

AIS數據流為各種船舶提供了大量的數據,這些船舶被法律要求在海上發送AIS信息。但是,船舶并不是操作可以產生AIS信息的AIS技術的必要條件。因此,用戶如何相信他們收到的數據是可靠、準確的,并且來自實際船只?這方面的一個例子是虛擬艦艇的存在。在這種情況下,這些船只正在將 AIS 消息傳輸到數據流中,即使它們實際上并不存在。這種類型的惡意注入可以用來迷惑和影響情報人員和決策者。這些虛擬船只的存在是海事運營中心注意到的數據流中的異常現象。因此,它們需要被識別和解釋,以支持決策過程。

在異常行為的背景下,研究虛擬艦艇的檢測是本研究中同樣重要的課題。這些研究將探索第 3 節和第 4 節中討論的機器學習技術的應用。檢測和確定識別虛擬艦艇的關鍵 AIS 信號特征的能力是這項工作的基礎。此外,從 AIS 數據流中刪除惡意注入的能力將大大有助于使信息更加可靠、準確和值得信賴。

付費5元查看完整內容

美國軍方和情報界對開發和部署人工智能 (AI) 系統以支持情報分析表現出興趣,這既是利用新技術的機會,也是應對不斷激增的數據過剩的解決方案。然而,在國家安全背景下部署人工智能系統需要能夠衡量這些系統在其任務背景下的表現。

為了解決這個問題,作者首先介紹了人工智能系統在支持智能方面可以發揮的作用的分類法——即自動分析、收集支持、評估支持和信息優先級——并提供了對人工智能影響驅動因素的定性分析。每個類別的系統性能。

然后,作者挑選出信息優先系統,這些系統將情報分析師的注意力引導到有用的信息上,并允許他們忽略對他們無用的信息,以進行定量分析。作者開發了一個簡單的數學模型來捕捉此類系統的錯誤后果,表明它們的功效不僅取決于系統的屬性,還取決于系統的使用方式。通過這個練習,作者展示了人工智能系統的計算影響和用于預測它的指標如何用于描述系統的性能,以幫助決策者了解其對情報任務的實際價值。

報告指出,目前存在多種描述人工智能系統性能的標準方法,包括通常被稱為“精確度”、“召回率”和“準確率”等指標,但這些標準并未提及該系統對其所支持任務的影響。在準確率與情報任務成功之間沒有明確關聯的情況下,只能依據情報任務的完成水平對系統有效性作出臨時判斷。基于此,報告作者將人工智能系統在情報分析過程中可發揮的功能分為四大類,分別評估每項功能的錯誤輸出可能會對結果產生的影響,從而理解“人工智能系統性如何影響情報分析的有效性”。

按照情報周期的組織過程,報告將人工智能系統可在該過程中發揮的作用分為四大“系統功能模塊”,分別是提供評估支持、自動分析、優先信息和收集支持。報告為每個功能模塊設計了函數模型,以詳細推演其在情報過程中的作用。

通過對“從任務到系統”的追溯性推演評估,報告得出兩個一般性結論:首先,在部署人工智能系統前,制定與符合實際情況優先級的情報監測指標十分重要,這一工作應以評估系統部署的實際影響力為指導;其次,系統的有效性不僅取決于系統屬性,還取決于如何使用。

研究問題

  • 人工智能系統的性能衡量指標如何與情報分析的有效性相關聯?
  • 人工智能如何用于支持智能過程,既反映在真實系統的開發中,也反映在可能尚未開發的假設系統中?
  • 研究人員如何對智能過程進行建模,以確定位于該過程中的人工智能系統如何影響它?
  • 存在哪些衡量 AI 系統性能的指標?

主要發現

使用與實際優先級不匹配的指標會掩蓋系統性能并阻礙對最佳系統的明智選擇

  • 度量選擇應該在系統構建之前進行,并以估計系統部署的實際影響為指導。

有效性,以及衡量它的指標,不僅取決于系統屬性,還取決于系統的使用方式

  • 決策者需要考慮的一個關鍵因素是,除了用于構建系統的資源之外,還有多少資源用于任務。

建議

  • 從正確的指標開始。這需要詳細了解 AI 系統的使用方式,并選擇反映該使用成功的指標。
  • 定期重新評估(和重新調整)。由于系統周圍的世界在部署后繼續發展,因此系統評估必須繼續作為定期維護的一部分。
  • 系統設計人員擁有一套完善的衡量 AI 系統性能的指標,熟悉這些傳統指標將在設計新系統或維護現有系統的過程中簡化與專家的溝通。
  • 進一步研究評估人工智能系統有效性的方法。
付費5元查看完整內容

本報告描述了北約第一個多領域小組IST-173所取得的成果。與會者包括來自不同小組和團體的科學家,以及來自北約機構和軍事利益攸關方、學術界和工業界的科學家,這為AI和軍事決策大數據這一主題創造了第一個利益共同體。該團隊在實踐中證明了一種新的STO方法的可行性,即任務導向研究,以激發公開對話、自我形成的研究合作和跨小組活動。此外,該方法還有助于為人工智能和軍事決策大數據這兩個主要能力領域聯合開發北約首個科技路線圖,以應對北約在這些領域面臨的作戰挑戰。由于新的組織(軍事利益相關者積極參與的多領域團隊)和這種創新方法的應用,確定了一些經驗教訓,應該支持軍事決策AI和大數據的進一步操作。

付費5元查看完整內容
北京阿比特科技有限公司