本報告提供了對機器學習 (ML) 技術的基本理解,并回顧了它們在國防和安全領域的應用。其目標是開發ML的內部專業知識,以支持與加拿大皇家海軍(RCN)海上信息戰(MIW)概念和愿景相一致的能力發展。本文進行了文獻回顧以收集有關在軍事和民用場景中實施和使用的 ML算法信息。結果表明,海軍必須適應和接受新技術,以便在所有 RCN的數據驅動決策中有效利用所有信息。這可以包括使用自動化、大數據分析、云計算、人工智能 (AI) 和 ML。這樣做可以減少與繁瑣任務相關的操作工作量,進而最大限度地減少人為錯誤和超負荷。這項研究表明,ML有可能提供新的或增強的能力,以支持 MIW 的概念,以及滿足使用現有和未來信息源的 RCN 的需求。這意味著開發利用這些技術的必要技能將使加拿大武裝部隊(CAF)受益。憑借這些專業知識和這些技術的適當應用,軍方將有能力在必須進行快速數據驅動決策的情況下更有效地利用其信息源。
本報告旨在就如何將人工智能和機器學習技術應用于支持加拿大皇家海軍與海上信息戰相關概念和目標,而建立基本的理解和專業知識。對這些技術及其在國防和安全領域的應用進行了回顧。
在過去的十年中,加拿大國防部 (DND) 和加拿大皇家海軍 (RCN) 引入了新的概念和方法,以幫助提升其服務水平。其中許多概念引入了新技術,旨在增強信息空間在作戰級(即作戰職能)和事業級(即管理職能)方面的防御能力。在作戰層面,這些舉措得到了一系列文件的支持,這些文件強調了信息戰的重要性及其在 RCN 內的實施和執行。
2015年,海上信息戰(MIW)的概念被引入[1]。本概念文件概述了在信息環境中運作對 RCN 及其內部可能產生的影響。這一概念的引入清楚地強調了能夠利用該領域中可用信息源的重要性。它討論了信息的影響,基于其廣泛的可用性以及 RCN 的依賴性和使用該信息支持作戰的能力。
采用新的概念和技術進行能力開發并非沒有挑戰。這需要更有效的處理技術來處理在 MIW 的功能區域內收集的大量和各種數據。此外,概念文件還討論了 MIW 與物理、虛擬和認知領域的關系,表明在戰爭中使用所有領域的信息作為 RCN 的寶貴資源的重要性。
2016 年,RCN 發布了一份信息戰戰略文件,重點關注為國家和國際部署開發 MIW 能力 [2]。該戰略文件討論的主題包括有效收集、利用和傳播信息的重要性。該戰略還認識到并傳達了信息戰是RCN可以同時采取防御和進攻行動的地方。
2017年,加拿大國防政策發布[3]。盡管它沒有直接處理信息領域,但它承認信息對 RCN 的重要性,這在 2019 年和 2020 年分別發布的 DND 數據戰略 [4] 和 RCN 數字海軍 [5] 報告中得到了回應。數字海軍支持國防政策創新目標,其中包括適應和接受新技術的能力,而數據戰略涵蓋了如何利用技術在RCN 社區中做出數據驅動的決策。這可以包括使用自動化、大數據分析、云計算、人工智能 (AI) 和機器學習 (ML)。在操作上,期望通過這些技術對更繁瑣任務的自動化實施來減少海軍團隊的日常工作量,進而最大限度地減少人為錯誤和疲勞,提高整體作戰效率。
這些文件中包含的首要主題強調了 RCN 采用新的數字能力成為一個信息組織的重要性,其中信息在戰爭環境中被使用,但也被用作工具。使用和利用信息來支持 RCN 的現代工具、技術和專業知識是能力發展的關鍵。在此之后,我們顯然需要一個強大的、知情的、由信息科學、人工智能和機器學習專家組成的科學團體。
這項工作背后的動機是在 MIW 領域內建立科學專業知識,以支持 RCN 的目標。為實現這一目標,以下報告將回顧可在防御和安全領域中使用的 AI 和 ML 技術。除了這篇綜述之外,本文還將介紹這些與 RCN運作相關的技術的應用,例如艦艇監視、目標檢測以及使用生成建模來支持運作。
這項工作的總體目標是為如何將 AI 和 ML 技術應用于 RCN 挑戰提供科學基礎和理解。建立這些新興技術的專業知識不僅是支持當前運作目標的必要條件,也是對開發和塑造未來能力的投入。這種向算法決策制定的轉變與 MIW 的概念非常吻合,因為它認識到信息在戰爭中的使用至關重要。還提出并討論了 ML 未來的工作和研究主題。
2、3、4章節簡要回顧了在計算機科學和數據分析中使用的機器學習技術。這些技術同樣適用于海上防御和安全領域中經常發現的問題。本節概述這些技術及其在這個領域的應用,特別是海上探測和監視有關的任務。此外,還將討論生成對抗ML方法的應用。需要注意的是,這些部分并不是對這個領域中已經完成的研究的全面回顧。相反,本文的目的是概述如何使用這些技術改進和開發與RCN相關的新功能。
艦艇行為分析是與海上監視和安全相關的關鍵組成部分。這種分析的結果依賴于捕獲和利用艦艇活動數據的能力。用于海上監視的數據源包括:自動識別系統 (AIS) 數據、天基 AIS、雷達數據等。這種監視形式允許分析師進行船只航跡重建、路徑預測、異常艦艇交通監視,這些在海上領域非常重要,有助于發現恐怖主義、海盜、毒品和武器走私、非法移民和非法捕魚等非法活動。
各種各樣的機器學習算法和技術可以應用于海事問題并提供有價值的見解。為了支持預測模型的開發,可以使用的技術包括:
? 聚類:無監督聚類方法已用于為海事和艦艇監視提供洞察力。這些聚類算法已應用于 AIS 數據。具體來說,已經報道了基于這些方法對艦艇運動實時預測的可靠性和準確性的研究[25]。還使用應用于基于空間的 AIS21 的 K-means 聚類算法來研究艦艇避撞,以評估航行穩定性和檢測異常行為[26]。研究人員還探索了使用聚類和 AIS 數據流來支持搜索和救援行動[27]。
? 決策樹:使用模糊粗略決策樹算法,研究探索了執行艦艇類型行為學習的能力[28]。對艦艇活動進行可靠和有效的表征可以提高海域態勢感知。這是通過使用包含運動學、靜態和環境信息等軌跡特征的概括向量來實現的,其中軌跡是通過融合 AIS、合成孔徑雷達 (SAR) 和天氣報告來創建的。
? 隨機森林:研究已使用隨機森林算法開發用于艦艇監視和跟蹤的各種目的的模型。由于多種原因,基于 AIS 的艦艇運動往往會丟失數據。例如,這些失誤可能是由于惡劣天氣造成的。為了檢測這些記錄,這些技術已被用于自動識別船只軌跡中缺失的位置記錄[29]。隨機森林也被用于創建預測船只目的地的模型。在艦艇離開特定港口后使用歷史 AIS 數據確定目的地點的能力也已被研究 [30]。這也通過比較當前和歷史軌跡數據進行了研究,以便根據相似性度量來預測最終位置[31]。
? 關聯挖掘:創建關聯規則的模型通常用于購物籃分析場景。然而,當應用于 AIS 數據源時,這種算法為艦艇運動分析提供了有用的見解。使用關聯挖掘進行的研究提供了有助于發現艦艇運動模式的洞察力。此類運動包括:軌跡預測,估計艦艇接下來最有可能訪問的港口[32],并在收到新消息時預測艦艇的位置,并計算有和沒有艦艇位置插值的關聯概率[33]。
? 支持向量機:支持向量機執行回歸和分類任務。支持向量回歸用于研究異常艦艇行為的檢測。當前檢測異常行為的方法是利用艦艇運動的突然變化。然而,與海上事故相關的導航數據可以模擬正常情況。為了解決這個問題,使用 SVR 航道模型及其路線提取方法,開發了一個模型來檢測異常艦艇行為 [34]。該研究的目的是定義“通過將導航數據分配給位置基礎來確定異常行為的可接受的最大值和最小值”[34]。除了SVR研究之外,科學家們還研究了SVM在檢測和分類異常艦艇行為方面的應用。通過從原始AIS數據中提取海上運動模式,對異常艦艇行為的識別和分類提供了新的信息[35]。
? 人工神經網絡:人工神經網絡 (ANN) 已被用于幫助預測北極的船只速度,因為該地理區域氣候變化帶來的交通量增加[36]。 AIS 數據的使用允許模型根據位置、時間、艦艇用途、大小和冰級來預測艦艇的速度。在[37]中,作者使用神經網絡作為一個基于云的web應用程序來預測未來的艦艇行為。它能夠將預測的短期和長期行為疊加到交互式地圖上。除了預測艦艇航線,人工神經網絡也被用于調查異常檢測事件。具體來說,該研究著眼于AIS轉發器中觀察到的有意和非有意的切換,因為這種活動可以用來隱藏可疑或非法活動[38]。
?卷積神經網絡:AIS、雷達、高精度攝像機和電子海圖等信息源為理解海上態勢感知提供了有用的信息。利用這些來源,CNN可以提取艦艇運動模式。在[39]中,作者通過將原始AIS數據轉換成保存艦艇運動模式信息的圖像數據結構,利用歷史AIS重建艦艇軌跡。然而,使用AIS系統的艦艇軌跡重建技術存在原始數據含有噪聲、記錄缺失和其他錯誤。許多研究在進行彎曲軌跡或高損失率的艦艇重建時面臨困難。為了克服這些障礙,[40]的作者使用了一種健壯的CNN架構,稱為“U-net”。這種架構能夠處理不同采樣率的軌跡、丟失的數據記錄和其他噪聲相關問題的軌跡。
? 循環神經網絡:艦艇監測通常依賴于存在許多問題的 AIS 數據。AIS源可以表示大量數據,除了具有不規則的時間戳和丟失的記錄外,這些數據有時可能會非常臟亂。已經進行了研究以幫助解決這些問題。研究 [41] 使用多任務深度學習框架,將 RNN 與潛在變量建模相結合,以幫助在執行軌跡重建、異常檢測和艦艇識別等任務時處理這些問題。 [29]中的作者利用隨機森林來識別丟失的記錄,并使用 LSTM 架構來重建缺少 AIS 記錄的船只軌跡。結合統計分析、數據挖掘和神經網絡方法監測內河艦艇數據[42]。具體來說,LSTM 用于艦艇軌跡修復、發動機轉速建模和燃料消耗預測。在另一項研究 [43]中,由于與設備故障、傳輸延遲和信號丟失有關的問題,需要在分析之前對 AIS 數據進行預處理。作者通過將 LSTM 與變量建模相結合來執行軌跡重建,同時考慮異常軌跡數據和艦艇航行狀態。這一努力將有助于減少艦艇碰撞的風險,并支持其他研究途徑,如艦艇類型分析、風險評估、軌跡預測和航線規劃。
監視海域中的艦艇行為對于檢測可能表明存在非法活動的異常情況至關重要。收發器用于報告 AIS 數據流,其中包含有關船只及其軌跡的信息。由于從 AIS 數據流收集的信息是自我報告的,因此可能會出現問題。有意或無意地修改此數據或打開/關閉轉發器會導致間歇性消息,這些消息可能不準確或具有誤導性。這種策略可用于掩飾海上的非法行為和活動。
在某一天,有大量船只在海上作業,人類操作員無法監控和檢測這些事件。因此,可以使用 AIS 數據流以及其他來源來訓練 ML 模型,從而為人類操作員提供自動化支持和洞察力。根據行為特征確定船只類型的能力是 ML 提供的眾多能力之一。探索艦艇類型分類的兩項研究是[28]和[44]。
在[28]中,作者開發了一個模糊粗略的決策樹模型,以根據運動學、靜態和環境信息確定艦艇類型。用于模型開發的訓練數據包含來自加拿大東海岸和美國東北部的 AIS 消息。[44]中給出的結果使用具有來自兩個不同地理區域的軌跡信息的 GANN 執行艦艇分類。第一個是歐洲數據集,其中包括來自凱爾特海、海峽和比斯開灣的海上交通。另一個是東南亞數據集,根據在新加坡附近的海峽和港口以及南中國海開放水域的海上交通中船只的預期運動模式,該數據集被分為三組。
在[44]中,作者使用以下性能指標來評估他們的模型:召回率、精度和 F1分數[45]。作者在他們的報告中使用召回指標作為他們的模型準確性。召回率表示正確識別的實際相似性部分,其中準確度是正確預測的數量與預測總數的比率。假設作者使用召回作為準確率,當將其與[28]中報告的性能進行比較時,此分析將把[44]中的召回指標視為模型準確度。兩項研究都將他們的結果與一系列其他 ML 技術進行了比較,以幫助評估性能。然而,與[44]不同的是,[28]報告了具有不確定性的準確性,從而賦予了性能結果意義,并使模糊粗略決策樹模型與其他標準技術相比更容易理解。除此之外,比較這兩篇論文的結果(沒有不確定性測量)表明,大多數機器學習模型的表現都一樣好。例如,k-最近鄰、樸素貝葉斯、隨機森林和支持向量機在[28]中的性能準確度在[44]中使用的四個數據集中的兩個數據集中的相似鄰域內。具體而言,新加坡港口和海峽周圍海上交通的準確率報告在 47% 到 64% 之間,而[28]中報告的準確率為 45% 到 69%。
[28] 中使用的多層感知器取得的結果表明,它以81.5%的整體準確度優于其他模型,略高于模糊粗略決策樹結果 (80.7%)。[44]中報告的四個不同數據集的準確率在41%到56%之間,非常差。在 [28] 中,對各種參數進行了特征選擇過程,并根據分配的加權值選擇了19個特征中的 10 個。特征及其相關權重為:ship_length (1.0)、avg_speed (0.183)、max_speed (0.183)、speed_st_dev (0.183)、course_st_dev (0.100)、heading_st_dev (0.097)、duration (0.082)、end_point lat (0.055)、start_point_lat (0.052) 和 max_lat (0.051)。[44]中使用軌跡特征來執行分類,利用 AIS 消息中包含的時間戳、經度、緯度、對地航向和對地速度。
這些研究之間選擇用于訓練的特征之間的主要區別之一是[28]中權重和影響最大的特征是ship_length,這不是[44]中使用的特征。模型的成功很大程度上取決于所用數據的質量和數量,但在很大程度上取決于特征選擇。在多層感知器模型的情況下,[44]中使用的軌跡信息特征可能不足以生成準確的艦艇類型預測。這表明了解艦艇的長度是進行此類分類的關鍵指標。在比較[28]中選擇的特征時,ship_length 被分配的權重大約是任何其他特征的五倍。這將使模型在進行分類時更加依賴此特定信息。除了特征選擇和可調超參數外,使用的訓練數據也對模型的成功有影響。數據的特征,如記錄數量、代表性內容以避免過度/不足以及數據完整性,都在成功訓練模型以提供高度性能方面發揮作用。
另一個有趣的觀察結果是,[44]中使用的GANN 報告了其分析中使用的數據集從低 80% 到高 96% 的一系列準確度,平均準確度為 87%。這些結果優于 [28]中使用模糊粗略決策樹報告的80.7% 準確度。關于為什么GANN 的表現似乎更好,有一些可能的解釋。GANN模型基于LSTM-RNN,它允許將時間依賴性構建到模型中。包括這個額外的時間維度可以提供預測洞察力,從而實現更高程度的預測準確性。此外,GANN 模型使用對抗性組件進行訓練,該對抗性組件可能迫使網絡實現更大程度的學習以執行其所需任務。
目標檢測對于防御和安全的海上環境中的監視和態勢感知都至關重要。然而,這是一項艱巨的任務,因為尺寸、方向和目標配置的變化加上環境背景噪聲和使用的各種傳感器的性能差異很大。所有這些事情只會增加這個問題的整體復雜性。傳統的檢測算法缺乏簡單性和可靠的輸出。深度學習領域的最新研究和進展表明,CNN 可以執行與檢測相關的任務,同時提供高速性能和準確性。開發這些能力正在推動促進防御和安全的技術。
目前使用 CNN 顯示出前景的能力包括:使用SAR圖像進行艦艇識別和分類以監測海洋區域[46][47]、使用探地雷達[48]進行魚類檢測、海冰SAR圖像分類以監測極地地區的變化并檢測可能威脅海上交通的流冰[49],并檢測從SAR [50][51] 和遠程傳感器[52]獲得的圖像中的船只。雖然這不是一個詳盡的應用程序列表,但它確實突出了一些與信息戰領域相關的當前 ML 應用程序。特別是,現在將討論 CNN 的兩個有趣的應用。
? 水下聲納圖像的目標識別和分類:研究[53]的研究重點是深度學習特征提取在水下聲納圖像目標識別和分類中的應用。該方法通過 CNN 使用聲納圖像提取目標特征。然后使用 SVM 進行分類。在現代海上作業期間執行自動目標識別和分類可以幫助當局檢測潛在威脅。自主系統,例如基于調查和戰術信息收集圖像的無人水下航行器,是可以利用這種技術的系統。機器學習的這種應用減少了對具有分類目標專業知識的操作員的需求。因此,隨著效率、速度和成本的提高,這個過程有可能變得更加自動化。該領域的一個活躍研究課題包括使用 ML 更好地檢測聲納數據中的類似地雷的物體[54][55]。
? 使用有限數據進行軍事目標識別和分類:CNN等深度學習算法是用于處理圖像和視頻的強大工具,可支持防御和安全功能。目標識別和分類能力對于監視和態勢感知至關重要。然而,所開發模型的成功取決于能否獲得反映被建模數據的關鍵屬性和特征的良好數據集。許多軍事場景中的訓練數據集的大小可能很少。[56]中的作者使用遷移學習和混合神經網絡層的組合來解決這個問題,以開發可以嵌入的先驗知識,以實現對高精度識別任務的特征提取的改進。這樣的發展自然會進入并改進分類過程。
自動目標識別在海上作業中發揮著重要作用。無人水下航行器使用聲學傳感器產生聲納圖像,幫助檢測水下目標和威脅,例如水雷。由于噪聲、低對比度和低分辨率,使用聲納圖像進行目標檢測很困難。ML和DL都提供了可以幫助提取特征和重要信息以進行對象檢測和分類的功能。
探討這個問題的兩篇研究論文包括Zhu等人[53]和Bouzerdoum等人[57]的工作。在[53]中,作者使用稱為AlexNet的預訓練NN來執行特征提取,然后使用SVM將檢測到的對象分為兩類:目標和非目標。然后將性能與以下兩種技術進行比較:局部二進制模式和定向梯度直方圖。在[57]中,作者遵循與[53]類似的方法,其中使用預訓練的網絡進行特征提取,并使用 SVM 對檢測到的對象進行分類。然而,在[57]中,對象被分為三個不同的類別:類水雷對象、非類水雷對象和誤報對象。該研究還開發了一個用于分類目的的小型 CNN,并使用了一個名為 ObjectNet23 的預先開發的 CNN 來執行相同的任務。所有這三種方法都在它們的整體性能方面進行了比較。
兩項研究都測試了用于特征提取的預訓練 CNN 和用于分類的 SVM 的應用。結果表明,[53]和[57]的性能準確率分別為 95.9% 和 76.2%。鑒于這些方法相似,人們不會期望這些結果會有大約 20% 的差異。兩個系統都使用預訓練的網絡進行特征提取。有趣的是,[57]考慮了不同的 CNN 架構,包括 VGG16 和 VGG19。這些網絡是基于 AlexNet 網絡的架構構建的,但經過改進。
奇怪的是,[57]中使用VGG的方法不會勝過[53]中使用 AlexNet 的技術。這樣的結果可以用許多因素來解釋。作者沒有指定用于訓練VGG網絡的數據集。用于訓練的數據質量和數量可能會影響模型的性能,從而使 AlexNet 能夠更好地提取特征。該問題也可能存在于SVM執行的分類中。用于訓練這些系統的數據可以極大地影響預測結果,因為在該領域很難獲得大量標記數據。兩項研究都進行了數據處理并使用增強技術來增加數據集的大小,這不如擁有更多“真實”數據點有效。此外,應注意分類類別的差異。[53]和[57]中檢測到的對象分別分為兩類和三類。擁有額外的類并嘗試檢測特定對象會更加復雜,并且可能會降低這些模型的整體性能準確性。
盡管這些研究使用了類似的方法來實現預訓練的 CNN 和 SVM 來執行目標檢測,但[57]也為此任務開發了一個小型 CNN。小型 CNN 的性能優于預訓練的 CNN + SVM 模型,準確率達到 98.3%。與大型 CNN 不同,較小尺寸的 CNN 需要訓練的參數顯著減少,從而在數據樣本有限時減少過度擬合的機會。這可能是小型 CNN 和預訓練 CNN 之間顯著性能差異的原因+ SVM 模型。
艦艇檢測在軍用和民用環境中發揮著重要作用,各種類型的成像傳感器用于檢測、跟蹤和分類艦艇。因此,DNN 的引入改變了軍隊執行任務的方式。生成網絡提供了生成代表歷史數據記錄的數據或樣本的能力。此功能提供了新的數據樣本,可用于在軍事場景中訓練智能系統,在這些場景中,由于可用性、安全分類和成本,數據通常難以收集。但是,其他國家也可以使用相同的過程來創建對抗性數據,這些數據有可能危及易受此類攻擊的國家系統。因此,GANN 的實現既可以用于進攻性場景,也可以用于防御性場景。這些網絡可用于訓練預測、分類和產生可靠輸出的智能系統,以發展未來的軍事能力。 GANN 還提供了執行對抗性攻擊以欺騙對手系統的能力。
GANN與國防和安全領域相關的應用包括:
? 對抗性偽裝:偽裝在軍隊中被用作一種策略,以阻止對手在視覺上檢測和分類軍事物體的能力。此類任務傳統上由人類觀察者執行。然而,戰斗空間在不斷發展,自主軍事代理和人工智能在此類任務中的使用也在增加。這一變化促使科學家們研究偽裝是否能有效對抗這些聰明的對手,或者是否有可能設計出能夠迷惑這些人工智能對手的偽裝。2019 年,對這個問題進行了調查,其中NN被訓練來區分和適當分類軍用和民用船只 [58]。這項研究的結果表明,如果 GANN 生成的模式覆蓋在軍艦的某些部分上,則針對此類圖像分類訓練的 NN 可能會混淆這些模式。這種技術被稱為對抗偽裝。進一步的研究 [59]研究了如何使用這種方法來欺騙選擇的幾個NN分類器。通過這樣做,他們能夠將分類的整體準確性降低到被認為不可靠的程度。在研究 [60]中,研究了迷彩圖案的穩健性和通用性。這些模式在研究中被稱為補丁,并且發現通過在補丁生成器的訓練中實施降級過濾器,作者表明他們能夠提高這些補丁的整體魯棒性或有效性。
? 特定發射器識別:[62]中報告了使用GANN開發的半監督特定發射器識別 (SEI)應用程序。此應用程序是針對與基于接收到的波形對發射器進行 SEI 分類相關的問題而開發的。這些波形容易受到可能導致單個發射器表示不準確的因素的影響。SEI在包括無線電和無線網絡安全在內的各種軍事應用中都很重要。
? 時空數據:2020 年,報告了與時空數據一起使用的 GANN 架構以及衡量此類模型性能的常用評估方法 [63]。這些架構已被用于執行軌跡預測和時間序列。盡管在該領域正在進行重要的研究,但執行時空數據預測的能力對研究人員來說是一個持續的挑戰。特別是對于時空應用是一個新領域的GANN。[63]中討論的最近工作強調了與數據生成相關的問題,這些問題會影響研究人員理解數據特征的能力。
對抗性偽裝用于防止軍事資產被發現和分類。傳統上,偽裝是通過使用大網或油漆來幫助隱藏人類觀察者的飛機或船只等資產來實現的。然而,隨著使用智能系統執行傳統上由人類執行的分類任務,戰場空間發生了變化。Adhikari等人[64] 和Aurdal 等人[58]進行的兩項研究,如何使用對抗偽裝來欺騙或誤導這些智能系統執行的自動對象檢測。在[64]中,基于補丁的對抗性攻擊被用來掩飾軍事資產不受無人駕駛空中監視的影響。該研究使用神經網絡創建覆蓋在軍事資產上的各種補丁,以防止自動檢測目標物體。對于這些研究,感興趣的目標對象主要是飛機。[58]中進行的工作訓練了一個可以檢測和分類軍用和民用船只的 NN。對第二個網絡進行了訓練,以生成用于防止對軍艦進行檢測和分類的補丁。
這些研究使用對抗性補丁來防止智能系統檢測或錯誤分類資產。兩項研究都表明,對抗性偽裝既可行又有效,但在現實世界中并不可行。貼片的設計可能相當復雜,因此很難將其復制到飛機或船只的外部。與[58]不同,[64]確實試圖通過將現實世界的適用性構建到損失函數中來解決這個問題。然而,這種方法是否充分并不明顯。
在比較這些作者所采取的方法時,[64] 中防止檢測的目標似乎更可行,部分原因是避免了與國際人道主義法相關的問題。相比之下,作者在 [58] 中的意圖是使用對抗性偽裝來實現將軍用船只錯誤分類為民用,顯然會陷入法律戰爭問題。然而,[64] 中采用的方法對于 [58] 中的船只可能更復雜,因為它們沒有與部署在陸地上的軍事資產相同的多樣化環境。這表明在考慮對抗性偽裝的應用時,能夠避免檢測是兩種方法中更好的方法。
此外,[58] 中使用的數據集由世界各地用戶上傳的圖像組成,這些圖像主要由艦艇輪廓組成。該數據集不太可能包含每艘船的足夠的方面數據。此外,[64] 專注于航拍圖像,而 [58] 則沒有。在海上的任何軍事場景中,用于檢測船只的數據集很可能包含空中數據。擁有完整的數據集將允許模型為這些艦艇的不同方向生成補丁,而不僅僅是輪廓補丁。為實際使用實施對抗性偽裝不僅需要此類數據,還需要適當的技術來實施。
最后,[64] 的訓練數據顯著減少,它使用稱為 YOLO26 的標準預訓練網絡進行目標檢測。該網絡是對語義對象進行分類的通用模型,并未經過專門訓練以檢測空中目標。然而,在[58]中建立并訓練了一個鑒別器網絡來專門檢測和分類艦艇。使用這種專門的鑒別器網絡的目的是提高創建補丁的網絡的整體性能。如果[64]的作者使用專門的鑒別器網絡而不是他們的預訓練網絡,他們將獲得什么性能提升,這將是一件有趣的事情。
技術進步已經并將繼續改變與現代戰爭相關的所有戰場空間。隨著機器學習、人工智能和自主代理的引入,軍方必須學會調整這些不斷發展的技術并將其整合到他們的系統中。DND和RCN都已主動引入和使用此類技術,目的是提高整體防御和安全性。本節將總結本文的內容,并討論作為文獻回顧的結果將進行的未來工作。
本報告探討了深度學習和機器學習技術,這些技術可用于開發流程以支持 RCN 實現其既定目標所需的自動化和高效率。例如,回歸是一種進行未來預測的簡單方法,無監督聚類方法通過檢查和分組具有相似特征的數據點來推斷新信息,決策樹和隨機森林允許分析師評估選項并根據準確度估計進行分類,關聯挖掘創建可以檢測行為和模式的規則集,支持向量機允許分析師根據多種核函數選擇在高維空間中進行有效的預測和分類。此外,神經網絡很重要,因為它們可用于開發支持自動化的工具。例如,感知和深度神經網絡提供了人類不容易執行的分析能力;卷積神經網絡可以輕松處理具有網格狀拓撲結構的數據,例如音頻信號、圖像和視頻;遞歸神經網絡可以處理序列數據并處理長期依賴關系;生成建模技術可以執行密度估計和樣本生成,以支持一般的訓練模型或支持防御和進攻行動。
這些學習算法和技術的應用為分析師提供了洞察力并簡化了繁重的任務。在國防和安全的背景下,它們在能力開發周期中的應用顯示出巨大的前景。具體而言,本報告重點介紹了三種此類應用,包括艦艇監視、目標檢測以及對防御和進攻行動的支持。相當多的機器學習重點是艦艇監控,特別是航跡重建、防撞、航跡預測、目的地預測等。該研究領域已經研究并報告了許多機器學習算法的應用。目標檢測對于海上環境中的監視和態勢感知都至關重要。用于物體檢測的卷積神經網絡已被用于對船只進行分類、發現水雷、檢測海冰、使用水下聲納圖像進行分類、檢測具有有限數據的軍事物體等。生成對抗神經網絡可用作支持密集操作的工具和防守。此外,在國防和安全領域,它們已用于樣本生成、生成對抗偽裝、用于支持特定發射器識別,并用于時空數據應用,包括軌跡預測和時間序列插補的事件生成。
這些技術在國防和安全領域的適當應用可以為軍方提供情報,這些情報可以在必須進行快速數據驅動決策的情況下加以利用。本文提供了對 ML 技術應用背后的基礎知識的基本理解,以幫助構建使用符合 RCN 既定目標的新技術支持和構建能力所需的內部專業知識。對發展這種專業知識的任何投資都將有助于塑造應對現代戰場所帶來的挑戰所需的未來能力。這些空間在本質上變得越來越技術化,因此,DND 和 RCN 必須學習如何適應和改變,以便在這些環境中發揮作用。對于 RCN,利用技術援助利用數據和信息對于海上信息戰概念的成功至關重要。
第 5 節中的討論涉及與 MIW 相關的防御和安全領域的各種 ML 應用。當前研究的一個共同主題是對艦艇監視的內在興趣。雖然 AIS 數據流是用于高度研究主題的重要信息來源,包括軌跡重建、路徑預測和船只異常行為識別,但文獻缺乏檢測與數據流本身相關的潛在異常。
在研究艦艇監視領域的異常檢測時,文獻傾向于將“異常”稱為可用于掩蓋非法海上活動的 AIS 應答器的有意和非有意開關。然而,研究這個數據流的特征和這個信息源中可能存在的異常是很重要的。檢測和解釋數據流中的異常有助于建立用戶對使用此信息訓練的 ML 模型的信任。模型提供準確和穩健的預測或分類的能力源于使用可靠和值得信賴的數據。因此,有必要將研究工作集中在 AIS 轉發器數據流上。
AIS數據流為各種船舶提供了大量的數據,這些船舶被法律要求在海上發送AIS信息。但是,船舶并不是操作可以產生AIS信息的AIS技術的必要條件。因此,用戶如何相信他們收到的數據是可靠、準確的,并且來自實際船只?這方面的一個例子是虛擬艦艇的存在。在這種情況下,這些船只正在將 AIS 消息傳輸到數據流中,即使它們實際上并不存在。這種類型的惡意注入可以用來迷惑和影響情報人員和決策者。這些虛擬船只的存在是海事運營中心注意到的數據流中的異常現象。因此,它們需要被識別和解釋,以支持決策過程。
在異常行為的背景下,研究虛擬艦艇的檢測是本研究中同樣重要的課題。這些研究將探索第 3 節和第 4 節中討論的機器學習技術的應用。檢測和確定識別虛擬艦艇的關鍵 AIS 信號特征的能力是這項工作的基礎。此外,從 AIS 數據流中刪除惡意注入的能力將大大有助于使信息更加可靠、準確和值得信賴。
第四次工業革命 (4IR) 擴展了信息革命(第三次工業革命),網絡、物理和生物系統之間的集成程度越來越高。預計 4IR 將影響所有行業,包括戰爭性質(Schwab,2016 年)。構成 4IR 一部分的關鍵概念包括(但不限于):
? 數據科學和大數據分析,通常由人工智能和機器學習驅動和/或自動化;
? 云計算,提供可遠程訪問的計算資源;
? 物聯網 (IoT),其中超連接設備可以充當傳感器和執行器,以產生大量信息和網絡物理互連;
? 增強現實,在眼鏡、地圖或圖像上疊加信息;
? 網絡安全,由于將不安全的“非傳統”設備連接到網絡而引入的安全風險。
一些 4IR 概念已以某種形式出現在軍事環境中,例如類似于平視顯示器的增強現實,而物聯網概念將網絡中心戰(或如 Wassel(2018 年)稱之為“數據戰”)演變為所謂的“戰場物聯網”(IoBT)或“軍事物聯網”(IoMT)(Castiglione、Choo、Nappi 和 Ricciardi,2017 年)。軍隊中的物聯網實施有可能在一系列領域支持多域作戰 (MDO) 的指揮和控制 (C2)(Seffers,2017 年)。因此,未來的 MDO 可以被認為包括一個超互聯的戰場,這會導致信息戰 (IW) 的攻擊面增加(Cenciotti,2017;van Niekerk、Pretorius、Ramluckan 和 Patrick,2018)。本文將在 MDO 和 IoBT 的背景下考慮 IW。
軍事行動的傳統“物理”領域包括陸地、海洋、空中和太空;然而,越來越需要在電磁頻譜 (EMS)、網絡和更廣泛的信息環境中占據主導地位(Ween、Dortmans、Thakur 和 Rowe,2019 年)。 MDO 方法被描述為“聯合作戰概念,它將承載所有動能和非動能火力”,以前所未有的方式在整個戰場上提供優勢(South,2019 年)。
圖 1 顯示了多個作戰域:四個“物理”域顯示在圖的中心;這些域通常是移動的,并通過各種頻率的廣播媒體(EMS)進行通信。網絡空間成為其延伸,提供數據和信息傳輸機制,例如網絡協議。雖然當代信息領域被認為與網絡空間幾乎相同,但信息環境更廣泛,還包括印刷信息和認知信息。這些都可支持人類決策,包括作戰人員和指揮官的戰略和戰術決策過程(例如指揮和控制),但可更廣泛地擴展到社會、經濟和政治領域。
圖1:作戰域
早期形式的信息戰包括可以影響和保護物理、虛擬和認知領域的信息作戰(Brazzoli,2007;Waltz,1998)。信息戰的這些“支柱”包括電子戰 (EW)、網絡戰、心理戰 (PSYOP)、情報網絡中心戰或信息基礎設施戰,以及指揮和控制戰 (C2W) (Brazzoli, 2007)。
信息戰的六大支柱
圖2:信息戰的“支柱”
“信息戰”一詞的現代化使用更傾向于認知方面,例如虛假信息和影響力活動,通常由社交媒體和即時消息驅動(Stengel,2019)。新出現的討論集中在所謂的網絡電磁活動 (CEMA) 中電子戰和網絡的“融合”(英國國防部,2018 年;美國陸軍部,2014 年)。然而,考慮到在烏克蘭協作信息和物理作戰的明顯成功,盡管沒有提供“決定性”的勝利,但可以認為信息戰“支柱”產生了更大融合(Valeriano、Jensen 和 Maness,2008 年;van Niekerk,2015 年)。
進攻性信息戰通常具有“5Ds”之一:否認、降級、破壞、欺騙或破壞(Sterling,2019),作為戰略或戰術目標;然而,其他人也提出了目標,例如:
? 破壞、否認、破壞、操縱和竊取(Hutchinson 和 Warren,2001 年);
? 貶低、否認、腐敗和剝削(Borden,1999;Kopp,2000);
? 中斷、修改、制造和攔截(Pfleeger 和 Pfleeger,2003 年)。
最終,人類決策的目標是戰術、作戰和戰略層面;然而,通過網絡空間和信息環境引發的沖突越來越多地針對社會、政治和經濟決策以及軍事行動或作戰人員。隨著國家和非國家行為體(特別是通過在線新聞網站和社交媒體)日益關注虛假信息和影響活動,信息戰在更高戰略層面的目標已被重新表述為 4Ds:駁回、扭曲、分散注意力和沮喪(White,2016)。這種類型的行動以民眾或政治家的“意志”為目標,并與特定戰場空間中更注重行動的信息戰要素相結合,旨在減少或消除民眾或政治對沖突或其軍事目標的支持。
Castiglione、Choo、Nappi 和 Ricciardi (2017: 16) 表明,戰場上已經看到“越來越多的無處不在的傳感和計算設備,被軍事人員佩戴并嵌入軍事設備中”。據報道,北約正在調查物聯網在態勢感知、監視、后勤、醫療應用、基地作戰和能源管理等領域對軍方的潛在好處(Seffers,2017 年;Stone,2018 年;Wassel,2018 年)。IoBT/IoMT還具有:通過聯合作戰支持MDO中的C2;戰術級態勢感知;目標識別;車輛和士兵狀態監測;戰地醫療甚至環境監測(Seffers, 2017)的巨大潛力。
Ren 和 Hou (2018) 提出了一個三層的“戰斗云霧”架構。 “戰斗資源”層包括傳統四個物理域中的平臺和傳感器等軍事裝備。 Cenciotti (2017) 以 F-35 飛機為例,該飛機配備傳感器來收集有關其環境和潛在威脅的信息;它還具有內部傳感器來監控其性能,因此既可以被視為互聯網上的“事物”,也可以被視為一組傳感器。 Valeriano、Jensen 和 Maness (2008) 認為 F-35 相當于一臺計算機服務器。這表明現代軍事系統日益復雜,對數字信息的依賴以及可以生成的大數據量(與“大數據”相關的概念有關)。
Ren和Hou(2018)架構的第二層包括一個“霧層”,用于本地化分布式計算和存儲。第三層則包括云計算,具有更大的存儲空間并由多個“霧網絡”鏈接組成。霧網絡可以被認為是服務于 C2 的戰術和行動,而云網絡服務于 C2 的行動和戰略。鑒于 MDO 的范圍,明智的做法是擴展“戰斗云霧”架構的傳感器,將 EM 域中的傳感器作為戰斗資源集的一部分。
對于那些需要根據提供給他們的分析數據做出指揮決策的人來說,算法被“欺騙”的可能性尤其令人擔憂:關于戰場空間的信息是否可信?在戰術層面上,軍艦上的飛行員或控制站可以信任所顯示的信息嗎?任何猶豫或不正確的決定最終都是信息戰的目標。
還需要在整個戰斗云架構的網絡域中提供監控,以幫助網絡安全。“連接”的軍事單位和設備受到網絡事件影響:據報道,2009 年惡意軟件影響了軍艦和軍用機場(Page,2009;Willsher,2009),移動惡意軟件被用于跟蹤炮兵部隊(Volz,2016 年),現在人們越來越擔心對衛星和天基系統的網絡和電磁威脅(Garner,2020 年;Rajagopalan,2019 年)。受損的物聯網設備已被用于發起分布式拒絕服務 (DDoS) 網絡攻擊,這是當時發生的最大的網絡攻擊之一(Fruhlinger,2018 年)。
此類事件以及與信息系統和安全相關的更廣泛關注點,表明了高度互連系統的固有風險。 Van Niekerk、Pretorius、Ramluckan 和 Patrick(2018 年)說明了如何在信息戰中通過易受攻擊的物聯網攻擊設施和人類。許多此類理論攻擊可應用于軍事場景,例如:
? 破壞數據和系統軟件的 Wiper 惡意軟件或勒索軟件可能對飛機或水下潛艇造成災難性影響;
? 將 PSYOP 信息注入飛行員的平視顯示器會通過暗示飛機系統受到損害,并對時間關鍵的決策產生不利影響而分散飛行員的注意力和使飛行員感到沮喪。
? 網絡攻擊隨機操縱傳感器陣列(例如聲納陣列或防空雷達)以提供虛假目標并隱藏實際目標,從而扭曲戰場視野;
? 在軍事人員的手機上使用惡意軟件和社交媒體來確定部署,從而生成與行動相關的情報。
表 1 說明了與云霧 IoBT 架構相關可能的“通用”信息戰威脅。
表 1:IoBT的信息戰威脅
一般來說,由于電磁信號數量的增加和傳輸的數據量的增加,IoBT 可能會導致電磁頻譜和網絡擁塞。這反過來可能會增加對電磁和 DDoS 攻擊的敏感性,因為每個信號都可能彼此呈現為“噪音”,而干擾會增加這種“噪音”水平,從而降低或破壞通信鏈路的有效性。以類似的方式,數據量越接近網絡的“閾值”,就越容易被惡意流量淹沒。
霧網絡可以被認為是服務于 C2 的戰術和作戰層面,而云網絡服務于 C2 的作戰和戰略層面。鑒于 MDO 的范圍,明智的做法是擴展“戰斗云霧”架構的傳感器,將電磁域中的傳感器作為戰斗資源集的一部分。
IoBT 可能會在戰術層面促進網絡、電子戰和心理戰的“融合”; van Niekerk、Pretorius、Ramluckan 和 Patrick (2018) 在一般背景下討論了這種融合。上面提到了網絡被用來向目標飛行員注入 PSYOP 消息的可能性;類似地,電子戰可用于“壓制”無線電通信,將 PSYOP 消息傳輸給人員。這種融合可以被認為是信息戰的分層模型:電子戰針對網絡的物理層,網絡針對更高層和協議,網絡組件的有效載荷選擇是分發PSYOP消息。
要考慮的另一個方面是為數據分析和軍事設備的作戰而實施的算法。由于現代設備產生的數據量很大,人類不可能對所有數據進行分析,因此需要一定程度的自動化,通常通過人工智能 (AI) 實現。但是,有一些實例表明修改后的輸入導致 AI 提供了不正確的分類(Field,2017;Lemos,2021)。通常在不考慮安全性的情況下實施新技術,人工智能也不例外。在學術領域,研究對人工智能系統攻擊的研究數量急劇增加,包括導致錯誤輸出的對抗性攻擊,以及破壞訓練數據以產生有缺陷模型的數據中毒(也稱為模型中毒) (康斯坦丁,2021 年;萊莫斯,2021 年)。對于那些需要根據提供給他們的分析數據做出指揮決策的人來說,算法被“欺騙”的可能性尤其令人擔憂:關于戰場空間的信息是否可信?在戰術層面上,軍艦上的飛行員或控制站可以信任所顯示的信息嗎?任何猶豫或不正確的決定最終都是信息戰的目標。
多域作戰涵蓋所有物理環境,也可以擴展到電磁域和網絡域。戰場物聯網提供了一種機制,通過嵌入式傳感器實現多域作戰,提供作戰環境的通用圖像。然而,物聯網總體上被認為容易受到攻擊,超連接的戰場可能會增加物理、電磁、網絡和認知領域的信息戰攻擊面。攻擊可能針對物理基礎設施、信號、網絡協議、算法、數據和人類心理。
Brett van Niekerk 博士是夸祖魯-納塔爾大學的高級講師,并擔任國際信息處理聯合會和平與戰爭中 ICT 工作組的主席,以及國際期刊網絡戰和恐怖主義的聯合主編。他在學術界和工業界擁有多年的信息安全和網絡安全經驗,并為 ISO/IEC 信息安全標準和國際工作組做出了貢獻。他以他的名義發表了 70 多篇出版物和演講。 2012 年,他獲得博士學位,專注于信息運營和關鍵基礎設施保護。
這項工作的目的是深入了解人工智能 (AI) 工具以及如何將它們應用于空中目標威脅評估。人工智能工具是包含人工智能元素的軟件產品。關于人工智能有多種不同的思想流派,并且可以在同一個工具中使用不同的方法。許多現代人工智能方法都涉及機器學習 (ML)。本參考文檔將涵蓋不同類型的 AI 和 ML 以及如何將它們應用于威脅評估。這項工作將介紹所有 ML 模型共有的元素,例如數據收集、數據準備和數據清理。該報告還將討論選擇適合不同問題的最佳人工智能類型。
此外,這項工作將描述處理缺失數據或數據不確定性的方法。將提出實用的解決方案,包括通過數據插補填充缺失數據或修改人工智能工具的架構。
最后,該報告將檢查人工智能工具的輸出與現有基礎設施的集成。將結合威脅評估過程及其可以改進的元素來描述 AI 工具。還將討論 AI 工具系統的通用架構。
威脅評估對于維護國家安全利益和維護各國主權具有重要意義。空中威脅評估對于一個有大片國土需要保護的國家(例如加拿大)很有價值。人工智能和機器學習都可以應用于威脅評估的研究領域。通過學習構建人工智能驅動的工具,加拿大的國防和安全將通過獲得持續的前沿研究得到改善。無論哪個國家開發出最有效和最可靠的威脅評估工具,在決策和威脅反應方面都將獲得優勢。通過利用前面提到的快速擴張的領域,加拿大可以獲得決定性的優勢。
評估所有領域(如空中、網絡、陸地、海洋、太空)的威脅是維護任何國家安全的一個重要方面。威脅分析包括查看敵人過去、現在和預期的行動,以及這些行動對友軍資產或單位的影響。威脅評估還考慮了為減少、避免或消除風險而可能采取的任何防御措施[1]。在防空的背景下,空中目標威脅評估的任務需要識別、確定空中目標和優先排序,并管理任何必要的資源以應對威脅[2,3]。
當前的空中目標威脅評估任務由操作室中的一組高技能和經驗豐富的人員執行[3,4]。該任務涉及考慮先驗信息(例如,情報報告和評估標準)和獲取的信息(例如,從傳感器系統動態收集的運動學信息),以確定目標對某個感興趣點/區域(POI/AOI)。此信息(運動學和非運動學)稱為提示。這些信息的心理整合需要相當水平的戰術專業知識,包括有關威脅類型、軍事條令和基于經驗的評估啟發式的知識[4]。人工智能(AI)將允許根據防空作戰員(ADO)可用的線索以及他們的威脅評估決策[5]或專業知識來創建工具。
本報告全面概述了AI工具及其構建。這些方法是尖端的并且非常有效。本報告將清晰地展示人工智能工具的開發方式。它將展示哪些組件是必要的,如何獲取數據并使其對機器學習(ML)模型有用,以及AI工具如何與更廣泛的威脅評估環境進行交互。
本節將介紹人工智能的概念和許多現代人工智能算法。它將包含有關AI和ML主要主題的背景知識。它還將描述AI工具中經常出現的組件。
從一個非常廣泛的角度來看,人工智能是人工系統“執行與智能生物相關的任務”的能力[6]。然而,這是一個非常寬泛的術語,涵蓋了許多系統。例如,它不區分人工智能系統、智能系統和自動化系統。關于什么構成人工智能,文獻和文化中有許多定義。本報告中使用的“人工智能系統”的定義是文獻和文化中各種來源的觀點的結合。
人工智能系統是一種具有以下能力的人工系統:
1.執行“有趣的”[7]任務,這些任務“通常與智能生物相關”[6]
2.“自學成才”[7,8]
早期的AI開發人員研究的問題在智力上對我們來說很困難,但對計算機來說卻相對簡單。這些問題可以用一組形式和數學規則來描述[9]。例如,國際象棋游戲由一組有限且嚴格的規則定義,這些規則可以編程到人工智能中。然而,人工智能很難處理使用人類直覺而不是使用一組正式的規則來處理的任務,例如圖像識別。人工智能的一種方法是基于知識的方法,它涉及嘗試設計形式語言和手工制作的邏輯推理規則,以使機器能夠推理和解決問題。另一種方法是讓計算機從經驗中收集知識,而不是讓人類對程序的行為進行硬編碼。
機器學習是通過從數據中發現模式來獲取知識的能力。因此,這些數據的表示會顯著影響機器學習算法的性能。換句話說,提供給機器的信息(即特征)會影響它解決問題的能力。然而,手工設計的特征受到人類知識的限制。讓機器發現哪種表示最好稱為表示學習。學習到的表示通常比手工設計的表現要好得多。本報告在2.3小節中探討了人工智能的機器學習方法。
AI 工具的最終目標是通過減少操作員的認知和體力工作量來改善操作員的決策過程。為此,人工智能工具通過提供協作環境來補充操作員的角色。人工智能工具處理可用信息,從數據中獲得洞察力,并以有利于操作員體驗的方式呈現信息和洞察力。圖1顯示了AI工具流程的概覽。該模型基于[3]中提出的決策支持系統(DSS)架構。
1.操作員是與工具交互和監控工具、根據工具輸出做出決策并根據這些決策向相關個人報告的人。輸入工具的信息可以是靜態的或動態的。靜態信息(例如配置文件和靜態操作員首選項)在操作期間不會更改。動態信息,例如數據輸入和設備操作,在整個操作過程中不一定保持不變[3]。將操作員與咨詢能力聯系起來的箭頭強調了該工具的協作方面。
2.咨詢能力負責管理操作員和系統之間的交互。這包括管理操作員輸入(即靜態和動態信息),管理環境輸入(例如,約束和環境信息),促進操作員交互(例如,人機交互,人機界面)和顯示信息。要顯示的關鍵信息包括算法的結果和當前的操作限制。
3.領域知識由用于評估的規則和關系組成。例如,領域知識可能包括操作員對信息變化影響的意見。
4.算法組負責處理數據和執行評估或預測任務。可以考慮許多不同的算法和功能來實現算法組。該組將提供應用程序中的大部分AI功能,并且可以選擇或組合不同的AI或ML應用程序。
5.環境為人工智能工具提供操作約束。更具體地說,環境由檢測和測量目標的傳感器系統以及來自更高級別個人的任務概覽和命令組成。
雖然[3]對圖1中的大多數組件進行了詳細解釋,重點是咨詢能力部分,但本報告側重于架構的算法部分。
圖1:操作員、環境和人工智能工具的交互
上面介紹的AI工具被認為是基于第 2.1 節中介紹的定義的AI系統。評估的復雜性和重要性使其成為一項不容易解決的任務。人工智能工具的學習和適應方面可以通過機器學習方法來完成,這將在2.3小節中進行描述。
本節將討論機器學習和人工智能的結合。有許多不同類型的AI算法,ML是這些算法的一個子集。本節將描述使用ML從數據中學習的算法類型,以及這對AI工具有何用處。作者還在他們之前的工作中定義了機器學習中的許多基本概念[5]。
根據柯林斯詞典,機器是“使用電力或發動機來完成特定工作的設備”[10]。在機器學習的背景下,機器就是計算機。更具體地說,是計算機中的程序完成了這項工作。正如[11]中所定義的那樣,“如果計算機程序在T中的任務(由P衡量)上的性能隨著經驗E提高,則可以說計算機程序從經驗E中學習某類任務T和性能度量P。”這個定義提出了機器學習問題的三個主要組成部分:任務T、性能度量P和經驗E。
1.任務是要解決的問題。例如,分類任務涉及確定某個輸入屬于哪個類別(例如,對象分類)。其他任務示例是回歸(例如,成本預測)、異常檢測(例如,欺詐檢測)和去噪(例如,信號處理)。
2.性能度量是用于評估ML算法性能的指標。例如,準確度是一種可用于分類任務的性能度量。準確率是模型正確分類的示例的分數。“示例”被定義為特征的集合,通常表示為向量,其中n為特征個數,每個元素
為一個特征[9]。數據集是一組例子的集合。
3.經驗是指模型在學習過程中所接受的訓練類型。在無監督學習中,模型所體驗的數據集僅包含特征,并且由模型來學習數據的特征。例如,學習描述數據的概率分布可能很有用。聚類也可以使用無監督學習算法來執行。在監督學習中,模型體驗的數據集不僅包含特征,還包含與每個示例相關聯的標簽。無監督學習模型觀察幾個例子,而監督學習模型觀察幾個例子及其標簽。但是,在某些情況下,有監督和無監督之間沒有明確的區別。例如,半監督學習涉及從包含標記和未標記數據的數據集中學習。在強化學習中,模型不是從固定的數據集中體驗,而是模型與環境交互并從交互中學習。
為了了解模型在處理現實世界中的新數據時的表現如何,通常會分離出一部分數據集,以便僅在完成所有訓練后才能使用。這被稱為測試集,由于模型之前沒有看到測試集中的數據,因此測試集上的性能可以作為模型真實性能的指標。文獻提供了機器學習算法和模型的許多不同分類(例如,[12]提出了機器學習的五種范式:連接主義(例如,神經網絡、象征主義、進化論、貝葉斯和類比)。本報告并不是對機器學習中在空中目標威脅評估領域有用的不同方法的詳盡回顧。本報告重點關注三類特定的方法:監督機器學習、無監督機器學習和強化學習。
在監督機器學習中,可以使用一組標記的訓練示例(即訓練集)。該模型的目標是能夠為示例分配正確的標簽,其中正確的標簽是與特定示例對應的標簽。通過基于一組標記的訓練數據最小化某個損失函數來調整模型。具體來說,迭代調整模型的參數,以減少訓練誤差。
1.模型:模型是根據樣本特征輸出標簽的算法。
2.參數:模型的參數根據選擇的模型而有所不同。例如,在神經網絡中,參數包括神經元的權重和偏差。
3.誤差:也稱為損失,誤差用于衡量模型的執行情況。可以針對特定應用設計和修改損失函數。
4.迭代調整:在訓練過程中,采用一定的方案來改變每次迭代的參數。具體來說,迭代調整模型的參數,以減少訓練誤差。一個例子是普通梯度下降法[13]:
其中θ是模型的參數,α是學習率(決定每次迭代調整多少參數的超參數),J(θ) 是模型在整個訓練集上的損失函數, 是相對于θ的梯度。可以使用各種修改來改進普通梯度下降算法,例如動量[13]。這種改進產生的算法包括Adagrad[14]和Adam[15]。
由于機器學習,許多研究和應用領域都取得了許多成功。圖像理解(例如,檢測[16]、分類[17])和自動化物理系統(例如,自動駕駛汽車[18])只是成功的兩個例子。這些成功的很大一部分歸功于監督學習和強化學習的使用。然而,這兩種范式都僅限于人類輸入和經驗:監督學習的訓練信號是目標標簽,而在強化學習中,信號是期望行為的獎勵[19]。使用人類設計的標簽和獎勵的一個弱點是由于訓練信號的稀疏性而導致的信息丟失。例如,盡管用于訓練監督學習和強化學習模型的數據通常具有豐富的特征(例如,圖像),但目標和獎勵通常非常稀疏(例如,表示圖片標簽的單個向量)[19]。無監督學習的動機是更好地利用可用數據來更好地理解數據。因此,無監督學習范式“旨在通過獎勵智能體(即計算機程序)來創建自主智能,以學習他們在不考慮特定任務的情況下觀察到的數據。換句話說,智能體“為了學習而學習”[19]。無監督學習算法的強大之處在于它能夠發現標簽無法完全表達的數據的潛在模式和結構。
強化學習(RL)的思想是學習采取什么行動來獲得最大的回報。這種范式背后的一個共同動機是智能體與環境之間的交互(圖2)。根據對環境的觀察,智能體執行影響環境的動作。作為響應,會生成新的觀察結果,并且智能體會收到獎勵或懲罰。
圖 2:智能體-環境交互
RL的兩個重要區別特征是試錯搜索和延遲獎勵。與程序員指定輸出應該是什么的監督學習不同,RL智能體必須進行實驗以發現導致最高獎勵的動作。此外,行動可能會產生長期影響。因此,較早采取的行動可能會導致稍后的獎勵或懲罰。
在監督學習中,該模型嘗試從訓練示例中學習以泛化并在新示例上表現良好。雖然功能強大,但在處理涉及交互的問題時,監督學習是不夠的。例如,在未知環境中學習時,獲得包含代表智能體在所有可能情況下應采取的行動方式的示例的訓練集可能是不切實際的。在這些情況下,智能體必須使用自己的經驗和與環境的交互來學習。
RL系統[20]有四個主要組成部分:
1.策略:策略根據智能體的感知狀態定義智能體的行為。換句話說,它決定了當智能體處于當前狀態時要采取什么行動(或行動的什么分布)。
2.獎勵信號:獎勵信號表明智能體在某個時刻的表現如何。獎勵的概念是RL問題的核心概念,因為從長遠來看最大化獎勵數量是智能體的最終目標。獎勵的類型是特定于問題的。例如,在訓練RL智能體玩游戲時,它可能會因獲勝而獲得正獎勵,而因失敗而獲得負獎勵。結果,通過監控獎勵信號來學習策略。例如,如果當前策略給出的某個動作導致了懲罰,那么該策略可能會以某種方式改變,以便在情況再次出現時避免該動作。
3.價值函數:價值函數表示如果遵循當前策略,智能體在未來的預期表現如何。雖然獎勵被視為即時指標,但價值函數是長期指標。例如,在當前狀態下投資獲得負回報可能會導致總回報為正。價值函數引入了延遲獎勵的方面:某個狀態的價值是預期在長期內獲得的總折扣獎勵,其中每個收到的獎勵都根據最近收到的時間進行折扣。
4.環境模型:環境模型存在于基于模型的RL問題中。它指示環境如何根據智能體在特定狀態下的行為做出反應。然而,環境模型并不總是可用的。無模型方法解決了這一挑戰。
正式表示完全可觀察的環境(即智能體的觀察完全描述當前環境狀態的環境)以進行強化學習的流行方法之一是使用馬爾可夫決策過程(MDPs)。馬爾可夫過程是服從馬爾可夫性質的一系列隨機狀態S:在給定當前狀態的情況下,未來狀態獨立于過去狀態。
其中是第
時間步的狀態,t是當前時間步,
是
發生的概率。MDPs是馬爾可夫過程的擴展:除了表征馬爾可夫過程的狀態集S和狀態轉換集P之外,還有可能的動作集A和獎勵集R。
本節將把空中威脅評估的任務與人工智能工具的能力聯系起來。 AI 能力將映射到威脅評估的每個階段,并將展示如何將其集成到現有能力中或改進現有能力。
如第 1 節所述,ADOs等操作人員面臨認知和身體挑戰,這些挑戰不利于其做出可靠決策的能力。人工智能工具將通過提供以下兩個主要好處來應對這些挑戰:
1.減少認知和身體負荷量:人工智能工具為操作員提供的支持和顯示將緩解導致操作員總壓力的眾多因素。這種好處是通過使用決策支持系統(DSS)的設計原則來提供的。
2.利用最先進的方法:人工智能的機器學習方法是一個非常受歡迎的研究領域,因此在方法的開發和改進方面做了大量工作。通過使用AI支持空中目標決策,該系統可以使用和利用最先進的方法。
如2.2小節所述,通用AI工具中有多個組件可以專門用于評估。威脅評估AI工具中的組件及其專業化如下:
1.操作員(Operator)是評估過程中的ADO。操作員將負責確保提供給AI工具的信息盡可能準確。然后,ADO將與該工具交互,以充分了解威脅情況,并獲得AI生成的威脅評估。
2.咨詢能力(Advisory?Capability)負責與ADO以及各種傳感器和數據庫系統進行交互。這將涉及從雷達和其他傳感器收集數據,以及解釋從情報報告中獲得的數據。咨詢能力還負責確保ADO可以有效地與計算機界面一起工作。更新界面可能涉及一個可以結合機器學習的動態過程。
3.領域知識(Domain Knowledge)將包括ADO的經驗以及他們用來進行準確評估的任何規則。在空中威脅評估中,這可能包括常見的高度、異常的飛行模式或敵軍作戰節奏的變化。
4.算法組(Algorithms)負責目標數據的處理和威脅評估。這將包括處理軌跡數據以獲得提示數據,并使用提示數據和領域知識來評估目標的威脅。可能的評估算法包括基于規則的方法[3、4]、貝葉斯方法[3]和本報告[5]中提供的AI技術。
5.環境(Environment)為人工智能工具提供操作限制和目標數據。更具體地說,環境包括檢測和測量目標的傳感器系統以及來自更高軍事指揮鏈的任務概覽和命令。
由于機器學習方法的種類和成功率眾多且不斷增加,機器學習在威脅評估中的應用數量僅限于研究人員的知識和經驗。本報告將概述如何將三種主要機器學習范式應用于人工智能工具進行威脅評估的示例。
通過一組標記的過去目標示例,其中每個示例包含有關歷史目標及其相應威脅值標簽的信息,監督機器學習可用于將威脅值分配給目標。在[21]中,監督學習被用于構建多標準決策(MCDM)方法(EMCDM)的集成,以根據當時的線索值推斷目標在某個時間點的威脅值。EMCDM技術由各種MCDM方法組成,它們的輸出組合成一個單一的威脅值。MCDM方法的輸出基于作為輸入的提示值。用于訓練EMCDM技術的監督學習技術取決于集成技術的類型。例如,在加權組合EMCDM技術中,MCDM方法是使用監督學習調整的組合權重。在所有的EMCDM訓練中,示例集由標記的目標實例組成,其中目標實例被定義為目標在某個時間點的提示數據。
可以從目標中提取各種信息。因此,對于某個目標,可以為系統提供關于目標的大量線索,作為威脅評估的基礎。無監督學習可用于分析提示數據,以深入了解底層結構和模式。例如,無監督學習的一種用法是降維。通過降低提示數據的維數,系統可以處理更緊湊和簡潔的目標描述。換句話說,目標是以數據可以提供關于目標的大致相同信息但使用較少資源的方式轉換數據(例如,使用10個提示而不是50個提示)。
實現降維的一種方法是主成分分析(PCA)[23]。PCA旨在通過學習最大化新子空間中數據方差的線性變換,來表達低維子空間中的數據。最大化數據方差背后的直覺是假設更高的方差意味著更多的信息量。數據原本會有一定量的方差/信息。PCA嘗試使用低維子空間來近似數據,同時盡可能多地保留原始方差。PCA的結果之一是檢測和去除數據中的冗余,從而在沒有不必要的線索的情況下描述目標。然后可以將這些PCA生成的線索視為要使用的新的各種線索。然而,在應用過程中需要考慮基于PCA的假設(例如,方差足以描述信息量,主成分是正交的)。
自動編碼器[9]是經過訓練以將輸入重新創建為其輸出的神經網絡。自動編碼器通常由兩部分組成:編碼器和解碼器。編碼器網絡生成低維潛在特征。然后將潛在特征輸入到解碼器網絡中,該解碼器網絡嘗試輸出最初輸入到編碼器中的內容。通常存在約束和限制,以防止自動編碼器能夠完美地重新創建輸出(即,它只能提供近似值)。結果,模型被訓練為優先使用最有用的數據特征。因此,與PCA類似,自動編碼器可用于使目標提示數據更加簡潔,并且僅包含足以描述目標的提示數據。自動編碼器的其他用法也存在。例如,自動編碼器可用于去噪[24]應用程序。這在威脅評估中特別有用,因為目標數據(例如,傳感器數據、提示)本質上是含噪的。
除了降維之外,無監督學習的另一個用途是聚類。文獻中有大量關于用于聚類的無監督學習算法的工作,所有這些算法都用于威脅評估。在不關注特定算法的情況下,聚類的一種用途是將感興趣的目標與歷史目標進行聚類。這樣做的目的是發現感興趣的目標是否與歷史目標相似。如果有關于如何處理過去目標的知識,操作員可以在決定對當前感興趣的目標采取何種行動時考慮這些信息。
可以將威脅評估過程建模為強化學習問題。例如,咨詢能力可以在操作期間使用RL來了解操作員希望如何顯示信息。這類似于社交網站知道在首頁上顯示哪些項目的方式。例如,如果RL模型有一個獎勵處理速度的策略,它可以測量從ADO開始評估到ADO提交威脅評估所花費的時間。這將允許模型因導致更短的威脅評估過程的行動而獲得獎勵,從而鼓勵更有效的交互選擇。如果某個深度為兩級的菜單項(即,它需要兩次單擊才能訪問)被頻繁使用,則模型可以將該菜單項放置為第一級深度項。如果該項目被非常頻繁地使用,則該項目應該在主屏幕上被賦予一個突出的按鈕位置。在空中威脅評估應用程序界面上工作的強化學習算法將能夠進行這些和其他更改,以檢查威脅評估的時間是否正在減少,在這種情況下,它將獲得獎勵。
有大量研究和許多資源可用于解決MDPs,這使得使用MDPs解決RL問題成為一個不錯的選擇[25]。
人工智能工具的結構需要考慮多種因素。該工具將在流程管道中運行,從數據收集和準備開始,到模型訓練,然后到模型預測,最后為用戶顯示結果。在AI工作流程中,可以更容易地將結構視為流程工作流[26]。一旦AI工具經過訓練,它就會不斷返回到周期的第一階段,并使用新數據和新見解進行重新訓練。這個過程使人工智能工具非常強大,可以隨著時間的推移保持準確性和有效性。
人工智能工具開發的第一階段是收集高質量數據。這些數據將存放在一個或多個可供AI工具訪問的數據庫中。人工智能工具將首先在數據庫中的現有數據上進行訓練,然后在生產時,它將主動監控任何操作數據庫中的最新數據,以便提供威脅評估。
除了收集數據,還必須確定最有效的機器學習或人工智能模型。該決定需要考慮可用數據的類型、數據的數量及其質量。與最終用戶面談也很重要,以確保所選模型將以對他們有用的格式輸出信息。這可能是一個要求,例如最終威脅評估值必須呈現為分類問題(例如,高、中、低)或回歸問題(例如,1.4、2.9、9.0)。要求也可能更嚴格,例如人工智能工具的推理必須能夠被人類操作員解釋。像這樣的要求可能會使現代機器學習研究的整個分支沒有吸引力,而是需要不同的模型。由于所選AI模型對整個工具的影響很大,因此必須在模型開發之前的早期階段收集最終用戶的需求。
一旦選擇了一個或多個模型類型,就必須對其進行訓練。在這個階段,由于上一步的需求分析,一些AI模型可能已經被淘汰。在此步驟中,將淘汰更多模型。在對數據進行訓練之前,通常很難判斷哪個機器學習平臺最有效。這意味著應該對多個模型進行數據訓練,并使用某種準確度指標進行比較。一旦確定了最準確的模型,該模型將被完全訓練并準備好在生產中使用。
下一階段是將模型部署到生產應用中。ADO獲得了一個功能性AI工具,可以連接到操作數據庫并協助威脅評估過程。輸出到ADO的最終值都將被處理和清理,最終格式將被確定。然后,隨著所有ADO將其威脅評估以及可用的線索提交給訓練數據庫,該工具將得到持續訓練。這將使該工具能夠與新出現的威脅和新情況保持同步。ADO還可以就AI工具提供的評估進行反饋。例如,如果AI工具提供“高”威脅評估,而ADO認為它應該是“中”,則ADO可以提供反饋信號,表明該工具不正確并且威脅等級太高。這將存儲在數據中并用于在線訓練,使其能夠不斷地向經驗豐富的ADO學習,也可以自學成型。
AI工具流程的最后階段是將工具轉移到精度維護。在這個階段,需要對工具進行監控,以確保準確性不會下降。該工具也將在此階段接收反饋并從ADO評估中學習。最后,人工智能工具的開發并沒有停留在這個最后階段;相反,它必須隨著威脅的演變、環境和要求的變化以及新的和更相關的數據變得可用,而相應地更新和改進。
圖3: AI工具中的模塊及其交互
圖 3 提供了AI工具中以下模塊的可視化表示:
1.數據庫組件
2.數據訪問和存儲模塊
3.數據預處理模塊
4.ML 模型組件
5.數據后處理模塊
6.可視化/操作員交互模塊
將ML組件集成到更大的AI工具中需要兩條不同的管道。第一個管道將是訓練管道,這是進行模型選擇、測試和訓練的地方。一旦確定了合適的ML模型,并且該模型已經針對所有當前可用的數據進行了訓練,它將在稱為推理管道的第二個管道中使用。
圖4顯示了訓練管道的可視化。第一步需要收集歷史威脅評估數據以及ADO威脅標簽(如果所需的ML模型使用監督學習算法)。接下來,這些數據將通過數據預處理模塊合并為格式良好的數據集。然后,這個大型數據集將被分成三個不同的集合:
1.訓練數據集:該數據集將是ML模型在訓練時唯一看到的數據集。它也將是三個數據集中最大的一個。通常在本節中描述的三組之間決定百分比分配。這取決于系統設計者的判斷。常見的比率是80/20或90/10,具體取決于可用訓練點的數量。這些點將用于訓練模型,但重要的是保留一個保留數據集,以確保您的模型不會過度擬合訓練數據(即,無法泛化到新的未見數據點)。
2.驗證數據集:這將在訓練進行時用作測試集。這些數據不會用于訓練模型,而是在訓練的非常時期結束時,將在這個小集合上測試模型。這對于確定模型何時得到充分訓練很有用。即使模型在訓練數據集上的損失可能會繼續減少,但如果驗證集上的損失已經趨于穩定,那么模型可能會過度擬合訓練數據集,應該停止訓練。
3.測試數據集:該數據集將為所有候選 ML 模型提供最終評估指標。它不會用于訓練,并且模型設計者也必須不要檢查此數據集。這將確保模型超參數不會根據此測試數據集進行調整。測試數據集的價值在于發現ML模型是否可以泛化到來自類似于訓練示例分布的看不見的數據點。如果測試數據集的損失遠高于訓練集和驗證集,則模型很可能對其訓練數據進行過擬合。如果有多個候選ML模型,則可以使用測試數據集上的損失和準確率來確定選擇哪個模型。
在模型訓練期間將使用訓練和驗證數據集,在模型評估期間將使用測試數據集。
圖4 :ML 模型訓練管道
一旦最佳候選ML模型經過訓練和選擇,它將用于AI工具的生產版本。該模型將用于實時提供在線推理/預測。候選模型的訓練和測試可以繼續進行,也可以納入新模型或研究。這將確保AI工具始終使用性能最佳的ML模型。
一旦經過訓練的模型展示了所需水平的能力,就該使用推理管道了。推理管道是ML組件,將在操作中使用的實際AI工具中使用。該管道的示意圖如圖5所示。
圖5:ML 模型推理管道
人工智能工具將被要求不斷監控傳感器和操作員的情報,以獲得最準確的現實畫面。該數據將組合成與每個空中目標相關的提示數據集。一旦一組提示數據可用,它將被提供給ML模型,以便進行預測。然后,該預測將通過本工作前面討論的AI工具的其他組件提供給ADO。一旦投入生產,該模型還將通過運行來自新威脅評估情況的示例和迄今為止ADO對預測的反饋來保持最新狀態。這種訓練可以以在線方式(即連續)完成,也可以通過批量訓練(即以設定的時間間隔一次對所有示例進行訓練)完成。該模型還將對其性能進行監控,以確保準確性和損失不會隨著操作現實的變化而隨著時間的推移而降低。如果檢測到性能下降,則人工干預和糾正可以使系統恢復到以前的性能水平。
本小節將解釋威脅評估過程的背景以及傳統上它是如何完成的。它還將標志著傳統流程中的挑戰和通過智能決策支持系統(DSS)改進的機會。還將介紹AI工具及其與傳統DSS威脅評估的關系。
有關因素信息和分類的描述,請參見[21]。出于 AI 目的,因素數據應構造為包含m個因素的向量,其中m是觀察中的因素數量,每個條目是一個因素值。每個完整的向量都是一個樣本,如果有足夠大的樣本訓練數據集,就可以進行機器學習。
對于空中威脅評估,已經確定了16個因素來構成關于目標的最有價值的信息[4]。這些見表 1。
表 1:用于目標威脅評估的因素。
威脅評估過程絕非易事。這是一項壓力極大的任務,需要做出復雜的決策。該過程的認知和物理性質是由于各種原因造成的,當它們結合起來時,會對操作員的決策過程產生不利影響。
操作員不僅必須處理來自各種來源的大量和類型的信息,而且還要同時管理多個任務。例如,操作員管理可能來自眾多媒體、顯示器和人員的音頻、口頭和視覺信息[4]。除此之外,他們還必須執行其他任務,例如監控指定監視區域內的空中目標、了解可用資源以及準備情況報告[4]。這種高度的多任務處理和信息過載給威脅評估任務帶來了認知復雜性和身體壓力。
除了大量數據之外,運營商還面臨著信息中固有的不確定性。運營商必須考慮到數據源的不完善性以及人類行為的不可預測性[3]。不確定性量化和感知在威脅評估過程(和戰術軍事行動一般[3],因為運營商依賴決策過程中的數據來獲取環境(和對手)的感知。
在時間限制下操作人員的工作也造成了相當大的壓力。需要時間來收集信息、處理信息并最大限度地減少不確定性。但是,空中目標正在高速移動,因此必須根據可用的融合做出決策此外,用于信息收集/處理和不確定性最小化的時間越多,制定后續決策和行動的時間就越少,對手收集/處理信息和行動的時間就越多。最后,錯誤決定的后果是嚴重的,甚至可能是災難性的。飛機的錯誤分類1988年造成290名平民死亡的事件[27]就是決策失誤的一個例子。操作員工作的重要性和不正確執行的后果增加了任務的壓力。
運營商在威脅評估過程中面臨的挑戰促使人們研究如何在不影響威脅評估可靠性的情況下減輕認知和物理工作量。更具體地說,有機會開發用于空中目標威脅評估的決策支持系統(DSS)[4]。圍繞DSS的設計原則(即DSS 所包含的內容)有許多著作。
DSS的關鍵要求之一是它不能取代運營商;相反,DSS是對運營商的補充。[3]將此要求描述為DSS充當“決策支持而非決策自動化”。這方面允許在威脅評估過程中操作員和系統之間的協作。讓人參與決策過程是至關重要的:人在環方面確保每個決策都有責任。軍事行動的合法性要求問責是其行動的組成部分,問責包括明確的合法性和道德標準。如果在這個過程中沒有操作者,那么誰應該為錯誤決策的后果負責的模糊性就會帶來法律和道德上的分歧。
除了確保操作員始終參與決策之外,文獻中還介紹了其他設計原則。[2]根據文獻及其實地工作,詳細列出了設計威脅評估系統的規則。顯著的設計特點包括:
1.透明度:DSS應該能夠證明其計算和后續建議的合理性[3,4]。因此,DSS應向操作員提供導致最終值[2]的中間計算以及每個提示對最終威脅值[4]的影響。消除DSS的黑盒特性的重要性在于建立對系統的信心和信任[3]。如果不知道決策/建議是如何生成的,人類不太可能接受自動化系統的決策/建議[29]。理解上的不透明為誤用和錯誤創造了機會[12]。由于使用機器學習方法來構建AI工具,因此這是這項工作的一個重要考慮因素。機器學習方法不限于人類定義的決策規則,因此可以表現出黑盒性質。因此,與傳統DSS相比,AI工具的透明度更為重要。
2.處理不確定性:DSS決策所依據的數據中有許多不確定性來源(例如,傳感器數據、威脅值計算中的參數)[2]。處理不確定性也是DSS的一個重要設計特征,因為它允許運營商調整他們對系統的信任級別。在[2]中,這個設計方面是通過使用提示數據的區間表示來實現的。
3.信息的有效和交互式顯示:使用圖形格式顯示信息很重要,因為威脅是一個模糊的概念[4]。應傳達給操作員的重要信息是威脅等級、威脅歷史、線索列表[4],以及與建議相關的不確定性[3]。除了顯示信息之外,系統還必須能夠提供操作員可以與之交互的媒介。這可確保操作員留在威脅評估過程中[3]。
本報告中提出的人工智能工具可作為空中目標威脅評估的DSS。人工智能工具的人工智能方面在于系統的運行方式。更具體地說,人工智能工具將把人工智能概念(例如,機器學習、適應)納入其操作中。
AI工具將能夠集成到空中威脅評估的所有階段。本小節將描述威脅評估的每個階段與AI工具的能力之間的關系。
空中威脅評估的階段如下[4]:
1.掃描并選擇提示。
2.比較、調整適合和適應。
3.計算威脅等級。
4.繼續處理。
關于1(掃描并選擇提示),AI工具將能夠使用所有可用的提示。這與人類操作員不同,后者僅審查18個可用于評估飛機的線索中的6到13個[4]。這些信息將通過各種傳感器從環境中收集,然后通過通常的情報報告或傳感器讀數方式進行報告。這些數據將被編譯到一個數據庫中,供AI工具訪問以從中進行學習和預測。
關于2(比較、調整擬合和適應),AI工具將對數據庫中可用的線索進行計算。該數據可以與ADO專家提供的感知數據(例如預期海拔)進行比較,并檢查實際數據是否一致。如果數據與預期不一致,人工智能工具會將差異與歷史示例進行比較,以提供對差異的解釋或調整。如果數據無法協調,則可能需要調整模型的擬合度,人工智能工具可以選擇將飛機作為不同類型(即軍用、民用)進行處理。
關于3(計算威脅評級),人工智能工具將使用可用的線索,如果它增強預測,可能還會使用這些線索的子集,來預測目標的威脅評級。 Liebhaber、Kobus 和 Smith 在[30]中發現威脅等級獨立于檢查的線索數量。
關于4(繼續處理),如果所有提示數據都可以充分解釋,人工智能工具將完成分析,或者它將繼續搜索和處理新的提示。這個過程將一直持續到模型通過基于解釋的輸出獲得ADO的批準,或者直到所有可用的線索都被處理并且模型擬合得到盡可能好的調整。
第3.5.2節概述的關于操作員對DSS的信任的關鍵點之一是用于生成威脅評估結果的模型的透明度。操作員很難對沒有提供理由和解釋的機器輔助預測有信心[4]。出于這個原因,已經創建了許多在計算和標準加權方面具有透明度的DSS方法。例如,許多MCDM方法可以為每個單獨屬性的權重以及它們如何對最終威脅評估做出貢獻提供充分的理由。這是MCDM DSS工具的優勢之一。不幸的是,這種透明性可能會導致工具缺乏復雜性和表現力。相反,機器學習工具可以同時基于所有數據點之間的非常深的聯系做出假設,這可能是以人類不會的方式。這種增加的復雜性往往會降低工具的透明度和可解釋性。
某些機器學習方法的結果仍然是透明的,并且以與自學的MCDM方法相似的方式工作。例如,線性回歸模型可以提供每個線索如何影響最終威脅評估評估的完整理由。該模型既受益于透明度,也受益于無需人類專家參與的自學。
其他一些機器學習模型并沒有從透明度中受益。最先進的機器學習模型之一是神經網絡。這是一個擁有大量研究的大領域,也是深度學習分支的新爆炸。這些方法不那么透明。在[31]中發現的2020年文獻調查探索了許多現有的試圖使神經網絡和深度神經網絡推理對最終用戶可解釋的工作,但是,局限性仍然存在。
現實世界的威脅評估變量通常包括決策過程各個級別的不確定性。對威脅評估準確性的最大影響之一來自根本沒有獲取的數據。這種丟失的數據可能是由于無法收集、傳感器故障、傳感器誤報或許多其他原因造成的。當數據完全丟失時,就很難就目標所擁有的威脅做出明智的決定。幸運的是,機器擅長執行計算,可以估計、替換或忽略丟失的數據。
在[22]中,探索了為每個決策結構預先計算不同查找表的選項。這將涉及根據每種可能的信息缺乏狀態訓練許多不同的模型,并將它們與完整狀態相關聯。這假設對于訓練有大量完整的示例可供借鑒。不幸的是,“為所有可能的輸入組合訓練網絡的天真的策略在復雜性上呈爆炸式增長,并且需要為所有相關案例提供足夠的數據”[32]。相反,[32]建議定義一個可以被認為是真實的基礎模型,然后將所有數據與該模型相關聯。
在許多可能的情況下,在訓練時沒有或只有很少的完整示例可用。在這種情況下,必須確定是僅使用完整數據進行訓練,還是以某種方式合并不完整的示例。在[32]中,發現用均值代替缺失輸入會導致比僅基于完整示例訓練網絡更差的性能。因此,尋求改變神經網絡架構或訓練方法的方法,以有效地合并(可能大量)不完整的數據示例。
使用不完整數據進行訓練的最有效方法之一來自[33]。本文證實,在訓練神經網絡中使用原始不完整數據可能是比在學習開始之前填充缺失屬性更好的方法。所采用的方法涉及對神經網絡架構的輕微改變,但應該與大多數現有架構兼容。該方法通過將第一個隱藏層中典型神經元的響應替換為其期望值來工作。高斯混合模型在每個神經元的輸出上進行訓練,以學習概率密度函數和期望值。這消除了通過單個值對任何缺失屬性進行直接插補的需要。 “隱藏層不是計算單個數據點的激活函數(對于完整的數據點),而是計算神經元的預期激活”[33]。該方法還取得了與其他現有方法可比的結果,這些方法可以從不完整的數據中進行預測,但需要完整的數據進行訓練。
另一種方法可以通過提高缺失數據插補的準確性來采取。[34]研究了文獻中許多可能的數據插補解決方案。它還指出,一些無監督學習聚類算法,如分類和回歸樹(CART)和K-means,已適用于缺失數據的問題。缺失數據插補的優點是不需要對實際的機器學習模型或平臺進行任何更改。當前存在或將來構建的任何基于完整數據提供準確預測的方法都將有效地處理通過插補生成的數據。數據插補的目標是以盡可能接近現有真實數據分布的方式填充缺失值。如果成功完成,則可以對新完成的數據使用現有的統計分析和機器學習工具。
在本節中,將討論AI工具的潛在架構。將涵蓋從面向操作員的界面到AI組件組合的設計。所提出的AI工具的整體架構可以在參考文獻[35]中看到,它需要三個主要組件,如圖6所示。
圖6:AI 工具的概念框架
未來的人工智能工具可能會將舊的基于模型或自上而下的方法與新的數據驅動的自下而上的方法結合起來。這種類型的系統允許人工智能工具擁有一個由數百或數千個專家派生規則以及數百萬條特定領域知識(如歷史傳感器數據)組成的知識庫[36]。一種可以結合領域專業知識和數據驅動學習的人工智能系統是回歸樹。圍繞回歸或分類樹構建用于空中威脅評估的AI工具將是一個不錯的選擇。回歸樹的另一個好處是它們的輸出可以被人類操作員解釋,并且可以解釋它的選擇。整個模型基于一系列決策或規則,這些決策或規則可以在操作員界面中作為理由提供。這使ADOs可以對AI工具提供的評估充滿信心,或者質疑為什么某個值的解釋與他們的解釋不同。
AI工具的前端組件將是所有ADO交互發生的地方。它將顯示可用信息和AI工具獲得的見解。它還將允許ADO與信息交互并形成自己的結論。此前端將需要分析ADO工作流程。在[4]中已經對美國海軍ADOs進行了采訪,并提出了許多不同的圖形顯示建議。前端應顯示計算出的軌道威脅等級,并為該評估提供證據和解釋。還應提供原始數據,以便ADOs可以確認AI工具的假設。盡可能以圖形方式呈現給用戶的概率,因為這會減少冒險行為[37]。前端還將通過使用強化學習來利用AI功能。應制定一項獎勵快速完成ADO活動的政策,例如將資源分配到目標軌道以保護資產。此RL算法將能夠決定用戶界面(UI)元素的放置位置以及UI上顯示的內容。如果將常見動作從菜單移動到主顯示屏增加了RL功能獲得的獎勵,那么ADO完成任務所用的時間將會減少。這確保了前端最終變得最優,并適合實際ADOs的工作流程。
人工智能工具后端的兩個不同元素之間存在區別。在AI中,該工具可以是正在學習的,也可以是經過全面訓練并準備好執行的。首先將檢查學習后端。無論是第一次訓練AI工具還是處于持續學習狀態,它都會利用學習后端。學習后端連接到包含歷史數據的知識數據庫,可用于提供數百萬對自下而上的人工智能技術有用的數據點。這是機器學習和決策樹將特別有效的地方。如果實施決策樹學習算法,它將能夠創建有助于根據歷史數據和決策對新目標進行分類的規則。這些規則還允許AI工具向ADOs解釋其輸出。
當工具準備好用于生產并與前端交互時,將使用正在執行的后端。這種執行就緒狀態將存儲自上而下或基于模型的人工智能的人類專家規則。該組件將是一個由學習后端輔助的專家系統。通過對ADOs的專業知識和對目標線索重要性的看法的采訪中獲得的數千條規則將使其成為AI組件。同時,通過將這些人工規則與通過機器學習在學習后端找到的規則相結合,可以優化值和預測。
一些功能性和非功能性需求可以從目前已知的用于威脅評估的AI工具中指定。更高級的要求應通過與未來ADO 客戶的面談來制定。
1.當傳感器或智能數據更新時,人工智能工具應攝取數據并進行訓練或預測。
2.AI 工具應為 ADO 定義的感興趣區域內的所有目標提供評估預測。
3.界面應提供評估說明并允許 ADO 交互。
4.AI 工具應提供自動模型訓練或新數據的重新訓練。
5.AI 工具應與 ADO 請求時可用的任何數據子集一起使用,并在新數據可用時合并它。
1.AI 工具應在數據可用后 100 毫秒內提取數據。
2.AI 工具必須處理每個實例和感興趣區域的數百個目標。
3.AI 工具應在 2 秒內提供 ADO 要求的特定威脅評估。
4.界面必須符合 ADO 偏好,并允許在 3 次點擊內訪問所有常用命令。
5.人工智能工具必須對缺失的數據做出強有力的反應,并繼續進行評估和學習。
本報告之后的下一步將是開發供ADOs用于空中威脅評估的AI工具。為完成此目標應采取的一系列步驟如下:
1.需求分析:人工智能工具開發人員應在威脅評估過程的每個階段與關鍵決策者坐下來。應采訪ADOs,以確保該工具滿足其工作模式和預期結果的所有要求。還應與流程早期的關鍵人員進行面談,以確保系統兼容性。這將包括傳感器和其他資產經理,他們可以確認系統輸出將如何格式化并提供給AI工具。人工智能工具完成分析后,需要以有用的格式輸出和存儲,因此依賴人工智能工具輸出的系統中的決策者應該分析他們的需求。
2.確定AI工具所需的組件:完成需求分析后,開發人員應決定哪些通用AI工具組件將需要,哪些可以省略(如果有的話)。可能還需要開發某些專門的組件來支持威脅評估和軍事環境所面臨的獨特挑戰。應該開發工具的架構,并為每個組件分配明確的職責。該架構還將受益于每個組件之間的嚴格輸入和輸出合同,以便數據可用于現有系統。
3.AI和ML組件的選擇和評估:架構和需求確定后,應該明確哪些類型的AI和ML適合該問題。每個可能涉及AI或ML的組件都需要提出和訓練多個候選人。然后將比較這些候選者,以確定哪個最有效地解決了獨特的要求。一旦選擇了最佳模型并選擇了正確的AI類型,所有模型將被移入生產環境并準備連接到AI工具中的其他組件。
4.文檔和培訓:一旦開發了最終的AI工具并通過代碼注釋和其他文檔工具正確記錄了文檔,就該開發外部文檔了。該文檔應傳達AI工具的實用性以及如何有效使用它及其功能。審查ADO要求將有助于為受眾塑造文檔。一旦開發了該工具,培訓會和從ADOs收集反饋將很有用。
5.集成到生產系統:人工智能工具將投入生產,以協助ADOs進行空中威脅評估。需要檢查智能管道中較早的系統和管道中較晚的系統之間的所有連接以確認兼容性。
6.監控和維護:隨著時間的推移,隨著新威脅或新情況的發現,人工智能工具將能夠得到更新和改進。無論是通過人工還是自動系統,持續監控AI工具以確保預測質量不會隨著時間的推移而降低,這一點很重要。通過使用新版本更新舊模型,也可以納入AI和ML研究的新改進。
人工智能工具是執行通常由人類處理的復雜任務的最先進方法。這為提高人類操作員的效率和有效性提供了許多可能性,例如執行高腦力任務的ADOs。威脅評估就是這樣一項非常適合人工智能協助的任務。重要的是要承認,人工智能工具不會取代操作員做出關鍵決策:相反,它們將為決策者提供更準確的數據,以有效地做出關鍵和及時的決策。
將ML集成到AI工具中可以帶來許多過去只能通過人類設計才能實現的新可能性。ML可以讓AI工具在沒有人類教授或者面對不斷變化的情境要求或敵人能力的情況下,從數據中學習。它可以重新設計AI工具交互,使其對 ADOs盡可能有用。它可以幫助將新目標與歷史示例進行聚類,從而為ADOs提供更好的威脅心理模型。可以自動檢測異常數據或空中目標并向操作員報告。
熟練和經驗豐富的ADOs與AI工具的結合將實現更快、更準確和更強大的空中威脅評估。通過讓人工操作員參與進來,該工具將保持ADO的責任和專業知識,同時提高生產力和效率。結合處理不完整數據狀態的現代方法也將使該工具對數據不準確或不可用具有魯棒性。
因此,該工具應該有助于國防和威脅評估過程。
澳大利亞皇家海軍 (RAN) 最近推出了一項開發和使用機器人、自主系統和人工智能 (RAS-AI) 的戰略,該戰略將通過一項運動計劃來實施。蘭德澳大利亞研究團隊正在通過建立證據基礎來支持 RAN 的這項工作,以幫助識別和塑造基礎活動。本報告概述了近期和長期(到 2040 年)海上 RAS-AI 技術的現狀和軌跡,并對近期、中期和長期可能執行的任務進行了高級審查根據相關的技術和非技術推動因素。
本報告并沒有研究人工智能在海上行動中更廣泛的整合,而是關注支撐無人平臺的任務和技術的進步,包括無人空中、水面和水下航行器。除了概述近期和長期 RAS-AI 任務的關鍵技術推動因素外,該報告還指出了在 RAS-AI 能力發展中應考慮的三個關鍵原則:(1)關注多種技術(新系統和“遺留”系統),而不是單一的技術解決方案; (2) 考慮國防和商業 RAS-AI 系統的互補性進展; (3) 監測非技術因素,例如不斷發展的監管、法律、政策和道德框架,這些框架可能會顯著影響未來的技術采用路徑。
?美國國防部已經可以開始應用其現有的國際科技協議、全球科學網絡以及在多邊機構中的作用來促進數字國防合作。本報告將這些選項集合構建為軍事人工智能合作工具箱,可為調整政策、推進研究、開發和測試以及連接人員提供了有價值的途徑。
美國將人工智能 (AI) 的領導地位視為提升其在國際體系中的戰略地位和保持其未來軍事優勢的關鍵。美國的盟友和伙伴網絡是服務于這些目標的不對稱資產,正如旨在讓美國為當前戰略競爭時代做好準備的國家安全和國防政策所確認的那樣。
最值得注意的是,美國國防部 (DOD) 人工智能戰略中宣布的關鍵舉措和國家安全委員會關于人工智能的建議表明了國際參與對人工智能安全、安保、互操作性和與民主價值觀保持一致的重要性。
簡而言之,人們一致認為,加強聯盟和伙伴關系很重要,不僅因為美國在聯盟中行動,而且因為俄羅斯等經常單獨行動。由于技術加速如何推動軍事進步、刺激經濟增長和塑造21世紀的治理模式,人工智能和其他新興技術是與這些近乎同等競爭對手競爭的核心。如果不深化與盟友和伙伴的合作,美國既無法應對大國帶來的挑戰,也無法從塑造人工智能的民主軌跡中獲益。
在此背景下,本報告重點關注通過基于可互操作部隊和尖端技術的強大軍事關系,維護美國及其伙伴和盟國網絡相對于潛在對手的優勢的必要性。國防部已經擁有多種工具可用于深化與其盟國和國際安全伙伴的科技(S&T)合作。但為了充分利用它們在人工智能方面的潛力,該部門需要重新設想并更好地整合它們。
為此,此處的分析將現有的國防科技協議、軍事科技交流和多邊機構的要素構建為軍事人工智能合作工具箱。這項工作不僅僅是為人工智能能力開發集中資源,還包括政策調整;測試、評估、確認和驗證 (TEVV) 管道;研發(R&D)、人員交流;數據共享;和標準化。這里的目的不是提出新的協議,而是回答國防部如何利用其現有的科技合作機制來支持數字時代的軍事合作,確保相關資源和框架在尋求人工智能領導力和未來時不會被利用聯軍成功。
雖然應該承認挑戰,包括圍繞數據交換的敏感性和對技術政策的不同政策觀點,但隨著時間的推移,它們也可以成為合作以減輕這些障礙的動力。換言之,現有工具有助于在政治信任、凝聚力和互操作性方面獲得更多支持,從而使合作有助于應對數字威權主義和技術驅動的國際安全環境變化的共同挑戰。 主要發現是:
雖然軍事人工智能合作的某些方面可能需要新的投資、機制和協議,但這不應該排除現有工具可以用于新用途的多種方式。軍事人工智能合作工具箱之所以有吸引力,正是因為它可以在短期內啟動,滿足與盟友和伙伴盡早建立互操作性和推進人工智能的緊迫性。
空軍專業 (AFS) 初始技能培訓 (IST) 的最新趨勢表明,美國空軍 (USAF) 入伍人員重新分類為其他職業專業的人數近年來有所增加,并且在財政年度之間出現了穩步增長2013 年和 2017 年。職業領域重新分類可能會導致廣泛的負面結果,包括成本增加、人員配備延遲、培訓計劃挑戰和士氣下降。為了理解和解決 IST 重新分類的挑戰,作者考慮了改進流程的選項,以對 IST 的現役非在職飛行員進行分類和重新分類。在本報告中,他們概述了 2019 年一項研究的主要發現,該研究采用了定性和定量分析,包括機器學習 (ML) 模型、評估 IST 成功(和失敗)的預測因素。他們還描述了他們對優化模型的測試,該模型旨在確定修改重新分類決策的機會,以便不僅減少重新分類飛行員的數量,而且提高飛行員的工作滿意度和生產力,并提高美國空軍的保留率。
01 研究問題
02 主要發現
2.1 IST 分類旨在優化訓練成功,但不優化其他重要結果
2.2 增加相關變量的數量可以提高 ML 預測的準確性
2.3 重新分類是一個手動過程,可以進行優化以實現不同的結果
2.4 與 IST 飛行員就選定的 AFS 進行的焦點小組討論確定了促成 IST 成功和挑戰的因素,并確定了改進建議
飛行員的特征(例如,動機)和先前的經驗(例如,教育)、支持性教官和學習小組有助于 IST 的成功。
IST 挑戰涉及飛行員特征和訓練基地環境。
改進涵蓋了諸如 AFS 的先驗知識以及對 IST 的期望、課程設計、非 IST 要求和宿舍安排等領域。
03 建議
通過保留有關 IST 資格和結果的數據庫,要求新兵完成職業評估和招聘人員提供有關 IST 和 AFS 的信息,系統地收集有關工作要求的信息,開發生物數據工具,從而擴展 USAF 入伍分類中使用的預測變量集。由所有入伍新兵完成,并使用同行和教官對飛行員的個性進行評分。
通過定義和系統地測量與 IST 成功相關的結果以及通過監控專業畢業的移動平均值來擴展 USAF 入伍分類中使用的結果集。
提高數據質量、全面性和可訪問性,以便 ML 模型能夠提供準確且有用的預測。
更新分類和重新分類流程以優化 IST 的成功和工作匹配,從而提高績效和職業滿意度。
在實施任何 ML 模型之前,應對道德和隱私、ML 模型的可解釋性和模型性能等領域的挑戰。
04 報告目錄
第一章
簡介和背景
第二章
空軍分類和重新分類過程
第三章
可用于預測空軍訓練和職業成果的數據
第四章
預測成功的模型
第五章
重新分類訓練消除的優化模型
第六章
飛行員在選擇專業的初始技能培訓中的經驗
第七章
結論和建議
附錄 A
定義和衡量人員選拔的成功
附錄 B
描述性統計和分析建模結果
附錄 C
優化模型方法論
附錄 D
焦點小組方法論