美海軍部門從基于時間的維修到基于條件的維修+ (CBM+)的持續發展表明了提高艦隊武器系統操作可用性(Ao)的重要性。這一頂石采用了數字孿生(DT)與三維(3D)直接金屬激光熔化打印機相結合的數字效率概念,作為水面艦艇上的物理主機。DT為基于模型的系統工程與數字分析相結合提供了一種不可知的渠道,用于實時預測健康監測,同時改善預測維護。由于DT處于優先研發的前沿,3D打印機將增材制造的價值與動態船舶環境中的復雜系統相結合。為了證明DT具有提高物理主機Ao和最終目標任務的并行能力,開發了DT體系結構和高級模型。該模型聚焦于特定的打印機組件(去離子化[DI]水位、去離子化水電導率、空氣過濾器和激光電機驅動系統),以展示DT對CBM+的內在有效性。為了體現打印機適用性和性能的系統分析系統,應該評估更多的組件,并與船舶的環境數據相結合。此外,本文建議使用DTs作為連接更復雜武器系統的紐帶,同時使用更深層的實驗設計。
目前,美國海軍采用了持續或響應式維護戰略,以維持復雜防御系統的可用性(Ao)。特別是,這些維護策略是通過所謂的基于時間的維護(TBM)和糾正性維護來執行的。基于時間的維護需要定期檢查和/或維修部件,以確保故障不會發生在設計的使用壽命之前,這將影響Ao,因為系統停機。此外,糾正性維護是對組件或系統故障的一種反應,由于管理和后勤延遲時間,以及系統停機時間,會影響可用性。該項目的主要目標是為數字孿生(DT)開發一個體系結構和基本模型,在利用現有的預后健康管理技術的同時,探索維護策略從TBM到基于條件的維護+ (CBM+)的轉變。
為了探索在海軍水面艦艇上使用DT的概念,來自海軍研究生院(NPS)的一組學生檢查了當前可用或正在開發的DT能力,以及可能受益于DT使用的系統。該項目的范圍受到保密級別的限制,不超過受控非機密信息(CUI),這排除了對武器、戰斗和雷達系統的強調。此外,在CUI級以下的海軍系統的實際性能數據是不可用的,因此DT操作的概念是基于公開可用信息的研究發展起來的。為了解決分類約束和海軍非常感興趣的一個話題,增材制造(AM),該團隊探索了在水面艦艇上的三維(3D)打印機上應用DT系統。此外,為3D打印機創建一個DT體系結構,可以在海軍作戰獨特的動態環境中提供關于敏感、高精度系統的寶貴見解。該團隊通過創建架構和基本模型,確定了3D打印機的效率受益于DT。
一個操作視圖,或OV-1圖,這是一個高級的操作概念圖,被創建來說明這個頂點項目的操作概念(見圖1)。該圖描述了系統之間的系統交互,包括載人水面艦艇上的3D打印機,船上人員,混合云,衛星通信(SATCOM)和岸上支持,包括供應鏈系統。DT接收來自3D打印機的傳感器輸入,以及船上的環境數據,以預測必要的維護,以及打印部件的質量。包含DT的混合云存儲原始和處理過的數據,以維護歷史文物,并通過SATCOM或有線連接向船舶人員和岸上支持提供警報,當水面船只進入港口時。警報有助于向船舶人員提供有關即將進行的維修的必要信息,或提供岸上支持活動需要準備的部件,從而減少行政和后勤準備時間。
圖1:OV-1高級操作概念圖
該項目將焦點集中在一個特定的3D打印機模型上,以確定對DT架構至關重要的傳感器和數據的類型。該團隊選擇了一種打印機模型,這種模型目前在美國國防部的幾個實驗室使用,通用電氣的M2系列5。這臺打印機使用直接金屬激光熔化(DMLM)來制造打印。DMLM制造過程包括熔化金屬粉末顆粒,以創建超薄池,并在冷卻時固化(GE Additive 2021)。這種工藝生產的部件重量減輕,同時保持強度、耐久性和精度,以滿足海軍對部件的AM要求。DMLM 3D打印機的主要組成部分如圖2所示,包括激光器、焦透鏡、準直器、反射鏡、重拍刀片,以及供粉室、粉床搭建、用粉收集三個粉末室。準直器和焦距透鏡一起工作來聚焦激光。復蓋機刀片用于分散、磨平和壓平層間的金屬粉末。除了這些部件外,打印機在打印過程中還必須有優質的氣流,并保持惰性氣體環境;GE M2接口使用氮氣。該團隊專注于使用DT系統來利用3D打印機的嵌入式傳感器,以及放置在打印機和船艙中的傳感器,以確定影響系統可用性和打印部件質量的因素。
圖2:典型的激光電源床熔印機。
對于這個頂點項目,團隊決定最好遵循一個修改過的系統工程(SE)方法,如圖3所示,該方法包含一個計劃驅動的軟件過程,作為集成敏捷方法的基礎。這種混合過程允許團隊通過使用敏捷方法建立的迭代和協作環境,以及提供用于生成和細化需求的反饋,來增加整個設計和開發階段的靈活性和適應性。為了使這個頂點的重點與美國海軍(DON)建立的數字轉型戰略相一致,該團隊利用基于模型的系統工程(MBSE)方法來分解涉眾需求,制定概念設計,并在模擬操作環境中評估系統性能。MBSE的使用與DON數字轉換策略一致,通過使用標準語言創建相互關聯的模型,以提高系統的可追溯性和管理復雜性。
圖3:混合 SE 流程,計劃驅動的敏捷方法
MagicGrid方法是DT體系結構開發的主要過程。這種方法使用Cameo和系統建模語言(SysML)來定義問題和解決方案領域,概述了建模過程。這個頂點集中在問題領域,包括分解為兩個階段,黑盒透視圖和白盒透視圖,如圖4所示。每個階段都通過不同的透視圖來檢查問題,從而創建各種場景、表和圖來概述DT系統的結構、行為和功能。黑盒透視圖側重于通過創建用例和系統上下文圖對DT進行操作分析,而不需要指定DT系統的內部結構或行為。白盒透視圖通過為DT識別必要的行為和邏輯子系統來確定系統應該如何操作。此外,白盒透視圖建立活動、狀態機、塊定義和內部塊圖。
圖4:MagicGrid 問題域矩陣。
該團隊最初進行了一項利益相關者分析,其中考慮了將DT用于海軍系統的利益相關者。這些利益相關者的需求是基于主要贊助商(海軍水面作戰中心Hueneme港代碼00T)和NPS顧問的指導。利用涉眾的需求,進行了需求分析。基于DT系統的期望功能,分析確定了功能性/非功能性需求,以及外部接口。該團隊將DT系統的功能需求縮小為7個高級需求,如表1所示。
表1:高級功能需求表。
接下來,通過上下文關系圖、用例和場景的開發來說明系統的功能描述。系統上下文關系圖說明了與DT交互的用戶和外部系統。用例描述了DT實現涉眾目標所必需的功能。團隊開發DT體系結構的主要用例是執行DT函數。這個用例涵蓋了DT接收來自環境和3D打印機的傳感器數據,處理該數據,發送原始和處理過的數據進行存儲,并提供預測和警報。此外,還定義了一些有利于DON的有效性措施。這包括提高3D打印機的可維護性,提高打印部件的后勤保障性,以及提高打印部件的成功概率。
在確定系統完成任務所需的資源后,創建了DT系統功能的行為和結構圖。使用SysML圖,系統的動態行為被捕獲為功能分析和分配的一部分。功能分析包括一個自頂向下的過程,將系統級需求轉換為定義DT體系結構,以確保所有所需的系統功能都得到考慮。首先,在描述控制流和數據流程的活動圖中詳細說明了這一點。接下來,使用狀態機圖定義DT系統的各種系統狀態、轉換和事件。系統動作和狀態的確定有助于通過識別對系統執行必要功能至關重要的通用組件來識別邏輯子系統通信。我們創建了一個框圖來建立DT系統的輸入和輸出,其中包括傳感器數據、控制信號和能源。
隨著DT體系結構的開發,該團隊進行了研究,以確定哪些組件將受益于DT系統的應用。通過與利益相關方的互動和對3D打印機維護手冊的審查,確定分析的重點為以下部件/因素:去離子化(DI)水位、去離子水電導率、空氣過濾器和激光電機驅動系統。然后,該團隊創建了一個Excel模型作為基礎,以演示模型概念的證明。模型設計方法是基于所選部件的退化情況,因為3D打印機用于打印部件,比較了定期維護(TBM)和CBM的使用情況。基于Excel模型的結果表明,將DT系統應用于3D打印機,TBM的Ao值從90.56%提高到CBM的96.15%。這種可用性的增加是由于兩年期間預防性維護的數量減少。
在Excel模型的基礎上創建了一個ExtendSim模型,允許對Ao進行檢查,同時允許修改參數,如打印間隔時間和平均修復時間。對比TBM和CBM的結果表明,對于TBM, Ao在每次打印之間的時間間隔較短,這是因為3D打印機的部件更頻繁地出現故障,但仍需要進行定期維護。對于TBM來說,隨著每次打印間隔時間的增加,部件故障的影響似乎逐漸減弱,因為計劃維護的一致性,而每個部件的故障減少。相比之下,在每次打印之間較短的時間內,CBM的Ao大約高出5%,這是因為只有在部件出現故障時才進行維護。此外,隨著每次打印間隔時間的增加,由于無需進行預防性維護,使用CBM的Ao以穩定的速度增加。
在 3D 打印機上實施 DT 系統的效果表明,過渡到 CBM 方法通過減少系統停機時間改進了海軍目前使用的維護方法。從使用 TBM 到使用 DT 系統的 CBM 過渡,通過增強對系統條件和性能的了解,從根本上改變了維護理念從主動到被動。進行成本分析以補充模型并確定通過實施 DT 系統可以實現的成本節約。以維護手冊為指導,確定在兩年的時間里,僅更換空氣過濾器所節省的成本大約減少了 78 小時的人工和 4500 美元的維護成本。
建模和仿真工作與成本分析相結合,確定在3D打印機上實現DT系統,證明了系統可用性的改善,同時降低了與維護相關的成本。本文的研究范圍主要集中在如何利用CBM+改善Ao;因此,小組沒有探討各種主題和傳感器,而是將其確定為DT發展將受益的未來工作領域。進一步的分析證明,需要連接更多的內部和外部傳感器的數據收集計劃。為了充分了解環境因素和3D打印機如何影響性能指標,未來的工作應該包括方差分析(ANOVA)。將數據分析和歷史數據結合到實驗方法的標準設計中,提出了響應變量和關鍵因素,能夠為水面艦艇上的3D打印機提供方差分析。此外,DMLM過程將受益于額外的傳感器和環境數據輸入到DT。DT受益于數據收集的歷史部分,利用歷史性能、實時評估和預測性維護。當這些額外的傳感器與機器學習相結合時,將有助于更好地預測所需的維護、單個打印質量,并幫助任務規劃/性能。未來研究的其他主題包括混合云集成到艦隊和確保數據傳輸安全。
如今,隨著技術飛速發展和威脅環境變得更加復雜,在信息爆炸的局面下,作戰人員面臨著具有挑戰性的決策空間。人工智能(AI)和機器學習(ML)可以減輕作戰人員負荷。人工智能系統具有深遠的好處——提高態勢感知能力,檢測威脅,理解對手的能力和意圖;確定和評估可能的戰術行動方針;并提供方法來預測行動決策的結果和影響。人工智能系統是理解和解決高度復雜的戰術情況的關鍵。
人工智能系統為作戰人員提供了優勢,但前提是這些系統被正確設計和實施,并且以減輕作戰人員的認知負荷的方式。為國防應用實施人工智能系統帶來了獨特的挑戰。本文確定了四個獨特的挑戰,并描述了它們如何影響戰術作戰人員、工程設計界和國防。本文通過國防采辦和系統工程計劃,為解決這些獨特的挑戰提供了解決方案。
Bonnie Johnson——在海軍工程研發方面擁有超過 25 年的領導和系統工程經驗。她曾是 SAIC 和諾斯羅普·格魯曼公司的高級系統工程師,研究用于海戰系統和導彈防御能力的自動決策輔助。她于 2011 年加入美國海軍研究生院 (NPS) 系統工程系。她擁有 NPS 系統工程博士學位、約翰霍普金斯大學系統工程碩士學位和弗吉尼亞理工大學物理學學士學位。
人工智能是一個包含許多不同方法的領域,其目標是創造具有智能的機器(Mitchell,2019)。圖 1 顯示了一個簡單的維恩圖,其中機器學習 (ML) 作為 AI 的子集,而 AI 作為更廣泛的自動化類別的子集。自動化系統以最少的人工輸入運行,并且經常根據命令和規則執行重復性任務。人工智能系統執行模仿人類智能的功能。他們將從過去的經驗中學到的知識與收到的新信息結合起來,以做出決策并得出結論。
圖 1. 自動化、人工智能和機器學習的維恩圖
如圖 2 所示,有兩種主要類型的 AI 系統。第一種類型是明確編程的,也稱為手工知識系統。 Allen (2020) 將手工知識系統描述為“使用傳統的、基于規則的軟件,將人類專家的主題知識編碼為一長串編程的‘如果給定 x 輸入,則提供 y 輸出’規則的人工智能”(第3頁)。這些系統使用傳統的或普通的編程語言。第二種類型是從大量數據集訓練而來的機器學習系統。 ML 系統從訓練過的數據集中“學習”,然后在操作上使用“訓練過的”系統在給定新的操作數據的情況下產生預測結果。
圖 2. 兩種類型的人工智能:顯式編程和學習系統
自動化、人工智能和機器學習系統,包括手工知識系統和學習系統,為美國國防部 (DoD) 提供了巨大的潛力,在大多數任務領域具有多種應用。這些智能系統可以擴展國防部理解復雜和不確定情況、制定和權衡選項、預測行動成功和評估后果的能力。它們提供了在戰略、規劃和戰術領域支持國防部的潛力。人工智能系統可以減輕作戰人員的負擔,但前提是這些系統的設計和實施正確,并且以減輕作戰人員認知負擔的方式。這為國防應用實施人工智能系統提出了獨特的挑戰。本文確定了四個獨特的挑戰,并描述了它們如何影響戰術作戰人員、工程設計界和國防。
第一個為國防應用實施人工智能系統的獨特挑戰是戰術戰爭呈現高度復雜的情況。戰術復雜性可能涉及信息超載、需要處理的多個并發任務、具有可怕后果的時間關鍵決策、態勢感知的未知/不準確/不完整,以及因各種分布式戰爭能力所需的互操作性而產生的工程挑戰。將人工智能系統添加到這個已經很復雜的環境中是一項必要但極具挑戰性的工作。
第二個獨特的挑戰是人工智能系統需要大量數據來訓練。所開發的人工智能系統的質量很大程度上取決于訓練數據集的質量和數量。軍事領域的數據尤其難以獲得。軍事數據可能涉及分類問題、網絡漏洞、數據驗證挑戰,并且根據艦隊演習和兵棋推演的需要,收集起來可能非常昂貴且耗時。
第三個獨特的挑戰是人工智能系統為系統工程提出了一個新的前沿。在傳統系統中,行為是固定的,因此是可預測的:給定輸入和條件,系統將產生可預測的輸出。一些人工智能解決方案可能涉及本身就很復雜的系統——適應和學習——因此會產生無法預料的輸出和行為。事實上,一些人工智能系統的目的就是為了做到這一點——與人類決策者合作,承擔一些認知負荷并產生智能建議。需要系統工程方法來設計智能系統,并確保它們對人類操作員來說是可解釋的、可信賴的和安全的。
第四個獨特的挑戰是,對于國防應用,總是需要考慮潛在的對手。在人工智能系統方面,采購界必須注意同行競爭對手國家,他們在人工智能進步方面取得了自己的進步。美國國防系統也必須在這場人工智能競賽中取得進步。網絡攻擊在防御系統中總是有可能發生的。隨著防御能力增加對自動化和人工智能系統的依賴,這可能會造成更多的網絡漏洞。最后,技術正在迅速發展,對抗性威脅空間正在發生變化。國防采購和系統工程界必須確保人工智能系統不斷發展和適應,以應對威脅環境的變化,并以可信賴和安全的方式做到這一點。
第一個獨特的挑戰是許多防御領域呈現出復雜的決策空間。因此,設計和實施適當的人工智能系統來解決這種復雜性將是極具挑戰性的。圖 3 突出顯示了導致戰術領域決策復雜性的許多因素。例如,海軍打擊部隊的行動可以迅速從和平狀態轉變為一種巨大的危險——需要對威脅保持警惕并采取適當的反應行動——所有這些都在高度壓縮的決策時間線上。戰術威脅可能來自水下、水面、空中、陸地、太空,甚至是虛擬的,因此需要處理多個時間緊迫的任務。在船舶、潛艇、飛機、陸地和太空中擁有海軍和國防資產;戰術決策空間必須解決這些分散和多樣化資源的最佳協作使用問題。制定有效的戰術行動方案也必須發生在高度動態的作戰環境中,只有部分和不確定的態勢知識。決策空間還必須考慮指揮權、交戰規則和戰術條令施加的限制。人類作為戰術決策者的角色增加了決策空間的復雜性——面臨信息過載、操作員錯誤、人工智能信任以及人工智能模糊性和可解釋性問題等挑戰。最后,戰術決策及其可能后果的風險可能非常高。
圖 3. 導致戰術決策空間復雜性的因素
解決高度復雜的決策空間是美國國防部面臨的挑戰。人工智能提供了解決這種復雜性的潛在解決方案——通過處理大量數據、處理不確定性、理解復雜情況、開發和評估決策替代方案以及了解風險水平和決策后果。人工智能解決方案可以應用于國防部的戰略、規劃和戰術層面。海軍研究生院 (NPS) 開發了一種工程框架和理論,用于解決高度復雜的問題空間,這些問題空間需要使用智能和分布式 AI 系統來獲得態勢感知并做出適應動態情況的協作行動決策(Johnson, 2019)。模擬了一個復雜的戰術場景,以演示使用 AI 來驗證該方法(Johnson,2020a)。 NPS 已經開發了一種預測分析能力的概念設計,該設計將被實施為一個自動化的實時戰爭游戲系統,該系統探索不同的可能戰術行動方案及其預測效果和紅軍反應(Johnson,2020b)。 NPS 研究已經確定了在戰術行動中描述復雜性水平的必要性,并實施自適應人機協作安排以做出戰術決策,其中自動化水平根據情境復雜性水平進行調整。正在進行的 NPS 研究正在研究這些概念工程方法在各種防御用例應用中的應用,包括防空和導彈防御、超視距打擊、船舶自衛、無人機操作和激光武器系統。
復雜的決策空間為 AI 系統嘗試和解決創造了具有挑戰性的問題。表 1 根據決策空間的復雜性比較了不同的 AI 應用領域。該表包含 10 個表征決策空間復雜性的因素:認知不確定性(對情境知識的不確定性數量)、情境動態、決策時間線(做出決策的時間量)、決策的復雜性決策過程中的人機交互、資源復雜性(數量、類型、它們之間的距離以及它們的動態程度)、是否涉及多個任務、對手(競爭對手、黑客或打算摧毀的徹底敵人)的存在,允許誤差的幅度(多少決策錯誤是可以接受的),以及決策后果的嚴重性。
表 1. 不同 AI 應用的決策復雜度比較
人工智能應用程序涉及的決策空間用于廣告(根據特定用戶的購買習慣或互聯網搜索確定將哪些廣告流式傳輸)、貸款批準(根據貸款金額和信用評分確定貸款資格)和醫療(根據診斷確定關于患者癥狀)相對簡單。存在大量訓練數據,決策過程中的計算和人為交互簡單,情況相對穩定。不良廣告的后果是微乎其微的。可以審計不良貸款批準決定。糟糕的醫學診斷可能會產生更嚴重的后果,但通常有足夠的時間在治療前尋求更多的評估和意見。為自動駕駛汽車確定最佳運輸路線和工程 AI 系統是更復雜的工作。這些應用程序是動態變化的,需要更短的時間來做出決策。運輸路線在可能路線的數量上會很復雜——這可能會導致許多可能的選擇。但是,存在運輸錯誤的空間,并且后果通常不會太嚴重。對于自動駕駛汽車來說,決策錯誤的余地非常小。此應用程序中的錯誤決定可能導致嚴重事故。
然而,軍事戰術領域在決策空間的所有領域都呈現出極端的復雜性:不確定性和有限的知識/意識、高度動態的情況、非常有限的時間線、復雜的人機交互、大量和類型的資源、多個任務、昂貴和困難- 獲取訓練數據集、極小的允許誤差范圍以及行動(或不行動)的生死攸關的后果。
第二個獨特的挑戰是 AI/ML 系統需要大量相關且高質量的數據用于訓練和開發,而這些數據在軍事領域可能很難獲得。明確編程的手工知識系統在開發過程中需要數據進行評估和驗證。 ML 系統在開發過程中對數據的依賴性更大。如圖 4 所示,ML 系統從代表操作條件和事件的數據集中“學習”。 ML系統學習的過程也稱為被訓練,開發階段使用的數據稱為訓練數據集。有幾種類型的 ML 學習或訓練——它們是有監督的、無監督的和強化的。所有三種類型的 ML 學習都需要訓練數據集。 ML 系統在部署后或運營階段繼續需要數據。圖 4 顯示,在運營期間,ML 系統或“模型”接收運營實時數據,并通過使用其“訓練過的”算法處理運營數據來確定預測或決策結果。因此,在整個系統工程和采集生命周期中,ML 系統與數據密切相關。 ML 系統從訓練數據集的學習過程中“出現”。機器學習系統是數據質量、充分性和代表性的產物。他們完全依賴于他們的訓練數據集。
圖 4. 開發和實施機器學習系統
隨著許多領域(戰爭、供應鏈、安全、物流等)的更多 AI 開發人員正在了解 AI 解決方案的潛在優勢并開始著手 AI 系統開發,DoD 開始認識到對這些數據集的需求。在某些情況下,數據存在并準備好支持 AI 系統開發。在其他情況下,數據存在但不保存和存儲。最后,在其他情況下,數據不存在,需要模擬或在艦隊演習或戰爭游戲中收集。圖 5 說明了收集、獲取和在某些情況下開發用于開發和訓練 AI 和 ML 系統的數據時需要考慮的過程。
圖 5. 人工智能和機器學習系統訓練數據集的開發
軍事領域對開發訓練數據集提出了一些獨特的挑戰——數據可能被分類,數據可能存在網絡漏洞(它可能被攻擊并被對手故意破壞),如果數據不存在,它可能需要從軍事/艦隊演習或兵棋推演中獲得。數據驗證也是一項具有挑戰性的工作。
NPS 正在為海軍的數據管理系統執行需求分析和概念設計,該系統將收集數據并向海軍內部許多正在開發 AI/ML 系統的不同組織提供數據(French 等人,2021 年)。圖 6 是海軍中央人工智能庫 (CAIL) 的上下文圖,它被設想為一個數據管理系統和流程,用于識別數據集并提供索引、驗證、審計和對 AI 可以使用的數據的安全訪問。從事海軍應用的機器學習開發人員。 CAIL 將不是一個數據存儲庫或數據庫,而是一個中央組織,使 AI/ML 開發人員能夠訪問經過驗證和保護的海軍數據——以幫助識別數據集的存在,啟用授權訪問,并幫助支持開發人員所需的數據尚不存在,需要獲得——可能通過艦隊演習或兵棋推演。
圖 6. 概念性中央人工智能庫
第三個獨特的挑戰是開發人工智能系統為系統工程提出了一個新的前沿。系統工程方法已被開發用于設計可能非常復雜但也具有確定性的傳統系統(Calvano & John,2004)。傳統系統具有可預測的行為:對于給定的輸入和條件,它們將產生可預測的輸出。圖 7 說明了對傳統 SE 方法(如 SE Vee 過程)進行更改的必要性,以便設計復雜且不確定的 AI 系統。特別是,需要新的方法來定義隨時間適應的學習系統的要求,并且系統驗證過程可能需要在操作過程中不斷發展和繼續,以確保安全和期望的行為。對于具有高風險后果的軍事系統,幾乎沒有出錯的余地,因此需要實施一個可以確保 AI 系統安全和預期操作的系統工程流程。
圖7. 人工智能:系統工程的新前沿
國際系統工程師理事會 (INCOSE) 最近的一項倡議已經開始探索需要對系統工程方法進行哪些改變才能有效地開發人工智能系統。圖 8 是作為該計劃的一部分創建的,旨在強調在 SE 過程中需要考慮的 AI 系統的五個方面。除了不確定性和不斷發展的行為之外,人工智能系統可能會出現新類型的故障模式,這些故障模式可能會突然發生,并且可能難以辨別其根本原因。穩健的設計——或確保人工智能系統能夠處理和適應未來的場景——是另一個系統工程設計考慮因素。最后,對于涉及更多人機交互的 AI 系統,必須特別注意設計系統,使其值得信賴、可解釋并最終對人類決策者有用。
圖 8. 人工智能系統工程中的挑戰
NPS 正在研究可以支持復雜、自適應和智能 AI 系統的設計和開發的系統工程方法。已經開發了一個系統工程框架和方法來設計系統解決方案的復雜自適應系統(Johnson,2019)。該方法支持系統系統的開發,通過使用人工智能,可以協作以產生所需的緊急行為。當前的一個研究項目正在研究可以在設計過程中設計到 AI 系統中的安全措施,以確保操作期間的安全(Cruz 等人,2021 年)。 NPS 正在研究一種稱為元認知的設計解決方案,作為 AI 系統識別內部錯誤的一種方法(Johnson,2021 年)。當前的另一個 NPS 論文項目正在研究如何將“信任”設計到 AI 系統中,以確保有效的人機協作安排(Hui,2021)。幾個 NPS 項目研究使用稱為協同設計的 SE 設計方法,來確定人類操作員與 AI 系統之間的相互依賴關系(Blickley 等人,2021;Sanchez,2021)。
第四個獨特的挑戰是對手在防御應用中的存在和作用。國防部必須與對手競爭以提升人工智能能力,人工智能系統必須免受網絡攻擊,人工智能系統必須適應不斷變化的威脅環境演變。圖 9 突出顯示了對手的存在給國防部正在開發的 AI 系統帶來的一系列獨特挑戰。
圖9. 敵手的挑戰
競爭對手國家之間開發人工智能能力的競賽最終是為了進入對手的決策周期,以比對手更快的速度做出決定和采取行動(Rosenberg,2010 年)。人工智能系統提供了提高決策質量和速度的潛力,因此對于獲得決策優勢至關重要。隨著國防部探索人工智能解決方案,同行競爭對手國家也在做同樣的事情。最終,實現將 AI 用于 DoD 的目標不僅僅取決于 AI 研究。它需要適當的數據收集和管理、有效的系統工程和采集方法,以及仔細考慮人類與人工智能系統的交互。國防部必須確保它能夠應對實施人工智能系統所涉及的所有挑戰,才能贏得比賽。NPS 研究計劃正在研究如何應用 AI 和博弈論來進入對手的戰術決策周期(Johnson,2020b)。該項目正在開發一個概念,用于創建戰術態勢模型、對手的位置和能力,以及預測對手對形勢的了解。然后,概念系統將進行實時“兵棋推演”,根據預測的對抗反應和二階和三階效應分析戰術決策選項。這是一個研究未來戰術戰爭可能是什么樣子的一個例子,它為藍軍和紅軍提供了增強的知識和決策輔助。為 AI 競賽準備國防部的其他 NPS 舉措包括研究新的 SE 方法和獲取實踐以開發 AI 能力、研究海軍和國防部的數據管理需求(French 等人,2021 年)以及研究 AI 系統安全風險開發確保安全 AI 能力的工程實踐(Cruz 等人,2021 年;Johnson,2021 年)。
賽博戰是國防部必須成功參與的另一場競賽,以保持領先于黑客攻擊的持續攻擊。隨著國防部實施更多的自動化,它自然會導致更多的網絡漏洞。使用本質上依賴于訓練數據和操作數據的人工智能系統,為黑客在開發階段和操作階段用損壞的數據毒害系統提供了機會。如果對手控制了一個可操作的人工智能系統,他們可能造成的傷害將取決于應用程序領域。對于支持武器控制決策的自動化,后果可能是致命的。在最近一項關于汽車網絡安全的研究中,一家汽車公司在網上發布了一個假汽車電子控制單元,在不到 3 天的時間里,進行了 25,000 次違規嘗試(Taub,2021 年)。國防部必須注意人工智能系統開發過程中出現的特定網絡漏洞。必須為每個新的人工智能系統實施仔細的網絡風險分析和網絡防御策略。 NPS 正在研究數據安全要求,以確保 ML 訓練數據集不受黑客攻擊,并且需要安全授權才能訪問(French 等人,2021 年)。 NPS 正在研究使用元認知作為 AI 系統執行自我評估的一種方法,以識別網絡入侵、篡改或任何異常行為(Johnson,2020b)。 NPS 還在研究使用 ML 來識別惡意欺騙和篡改全球定位系統 (GPS; Kennedy, 2020)。
威脅環境的演變是國防部在開發人工智能系統時的第三次對抗性競賽。由于對抗性威脅空間隨著時間的推移而不斷變化,擁有更快、更致命的武器、更多的自主權、更大的監視資產、更先進的對抗措施和更多的隱身性,這對國防部能夠預測和識別新威脅并進行應對提出了挑戰戰場上的未知數。 NPS 研究的重點是在作戰過程中不斷適應和學習的工程系統,以檢測和識別戰場中的未知未知,并通過創新的行動方案快速響應新威脅(Grooms,2019;Jones 等人,2020;Wood,2019 )。 NPS 正在研究通過研究特定區域隨時間變化的數據來識別異常變化的機器學習方法(Zhao et al., 2016)。一個例子是研究商用飛機飛行模式并根據異常飛行模式識別可疑飛機。隨著時間的推移,可以監視地面行動,以識別可能意味著軍事行動的新的和不尋常的建設項目。
人工智能系統為國防部在實現和保持知識和決策優勢方面提供了重大進展。然而,為國防應用實施人工智能系統提出了獨特的挑戰。軍事戰術領域在決策空間的所有領域都呈現出極端的復雜性:不確定性和有限的知識、高度動態的情況、非常有限的時間線、復雜的人機交互、大量和類型的資源、多個任務、昂貴且難以獲得訓練數據集、極小的允許誤差范圍以及行動(或不行動)的生死攸關的后果。 AI 系統,尤其是 ML 系統,需要有代表性、足夠、安全和經過驗證的數據集來進行開發。為國防應用收集合適的數據具有處理分類數據集和確保數據安全和免受網絡攻擊的額外挑戰;這也將是收集代表戰術行動的真實數據的一項重大努力。將需要新的系統工程方法來有效地指定、設計和評估人工智能系統,這些系統通過其不確定性、新型人機協作挑戰以及難以預測和預防的新安全故障模式而呈現出新的復雜性.最后,軍事領域中對手的存在呈現出三種形式的 AI 競賽:與對手一樣快地開發 AI 系統的競賽、保持領先于可能的網絡攻擊的競賽以及訓練能夠應對的 AI/ML 系統的競賽隨著不斷發展的對抗性威脅空間。
NPS 正在通過一系列正在進行的研究計劃來解決四個獨特的挑戰領域。 NPS 研究人員正在研究人工智能系統在海軍戰術作戰領域的實施,對軍事數據集進行需求分析和需求開發,研究開發復雜人工智能系統的系統工程方法,以及開發安全、可信賴的人工智能系統工程方法,并注意潛在對手的作用。 NPS 正在為軍官和平民學生提供人工智能研究和教育機會。 NPS 歡迎與國防部和海軍組織合作,繼續研究用于國防應用的人工智能系統,并繼續探索解決方案戰略和方法,以克服開發和實施人工智能能力的挑戰。
建模和仿真有助于德國武裝部隊后勤的數字化,必須提供靈活性和穩健性等因素,以識別后勤鏈中的風險和弱點。 ESG,作為一家擁有多年軍事經驗的德國軍事技術公司,我們展示了成功的仿真和分析項目(例如,“以歐洲戰斗機為例,預測德國空軍的作戰能力”或“基于仿真的醫療救援鏈分析”),并提出進一步的行動方向,例如基于仿真的分析,以優化軍事供應鏈中的加法生產或自主系統的最佳概念。通過對軍事供應鏈使用后勤仿真,可以檢查和優化其穩健性和可持續性。這種基于數據的決策支持方法(工具 AnyLogic,德國聯邦國防軍基于仿真的分析指南和模型檔案)。它聚焦于一個關鍵問題,例如“在某些參數/因素/影響下,系統的材料運行準備情況如何更高概率的為在未來發展,以及什么可以提高系統的性能?”如本講座所述那樣提供各種優勢。
圖2-1 模型開發流程
圖2-2 系統結構
機器學習 (ML) 的使用已迅速擴展到多個領域,在結構動力學和振動聲學 (SD&V) 中產生了許多應用。在前所未有的數據可用性、算法進步和計算能力的推動下,ML 從數據中揭示洞察力的能力不斷增強,增強了決策制定、不確定性處理、模式識別和實時評估。 SD&V 中的三個主要應用都利用了這些優勢。在結構健康監測中,機器學習檢測和預測導致安全操作和優化維護計劃。 ML 技術在主動噪聲控制和主動振動控制中利用了系統識別和控制設計。最后,所謂的基于 ML 的代理模型為昂貴的模擬提供了快速替代方案,從而實現了穩健和優化的產品設計。盡管該地區有許多作品,但尚未對其進行審查和分析。因此,為了跟蹤和理解這種持續的領域整合,本文對機器學習在 SD&V 分析中的應用進行了調查,闡明了當前的實施狀態和新出現的機會。為這三種應用中的每一種確定了主要的方法、優勢、局限性和基于科學知識的建議。此外,本文還考慮了數字孿生和物理引導 ML 在克服當前挑戰和推動未來研究進展方面的作用。因此,該調查對在 SD&V 中應用的機器學習的現狀進行了廣泛的概述,并引導讀者深入了解該領域的進展和前景。
圖 9:結構健康監測工作流程:(a)在經典方法中,特征提取和選擇是手工制作的,然后是 ML 方法;(b) 如果使用深度學習,則通過 ML 方法自動執行特征提取和選擇。
圖 15:數字孿生框架:來自物理的數據由數字孿生的數據驅動方法處理,在整個產品生命周期中支持優化和穩健的決策。
無人駕駛飛行器 (UAV) 在過去十年中受到無人機硬件和監管框架的快速創新推動,被設想用于為未來社會多種服務應用。從下一代無線網絡的角度來看,無人機不僅有望充當被動蜂窩連接用戶的角色,而且還可以作為無人機輔助網絡的一部分,作為連接的主動推動者。用例范圍從貨物的“最后一英里”交付、客運、基礎設施檢查、環境監測和測量到智能農業的推動者。它們快速靈活的部署使它們在地面通信基礎設施不堪重負或被破壞的情況下特別有用,例如在自然災害和搜救情況下。在擴展永久性網絡基礎設施不可行或經濟上不可行的偏遠地區,無人機可以為目前沒有移動互聯網的世界一半人口提供移動互聯網接入。
圖 1.1 無人機提供通信服務和支撐固定基礎設施的應用示例。
圖 1.2 無人機分類。
無人機在所有潛在應用場景中的決定性優勢是它們的移動性。為了充分利用它們的能力,靈活高效的路徑規劃方法是必要的。本論文的重點是探索機器學習 (ML),特別是強化學習 (RL),作為解決無人機移動管理挑戰的一類有前途的解決方案。隨著近年來RL與神經網絡相結合的研究進展,deep RL是為數不多的能夠直接解決通信場景下無人機控制與部署復雜任務的框架之一,因為這些問題通常是NP-hard優化問題,且受到非凸性的嚴重影響。此外,深度 RL 提供了以直接方式平衡無人機輔助網絡的多個目標的可能性,它在先驗或模型信息的可用性方面非常靈活,而深度 RL 推理在計算上是高效的。
中小型無人機路徑規劃的一個關鍵限制是它們的最大活動任務時間受到機載電池能量密度的限制。當用作向地面用戶提供數據服務的空中基站 (BS) 時,自主無人機需要共同優化其飛行時間和系統的通信性能目標。論文的第一部分探討了使用深度 Q 學習來控制空中 BS,該 BS 從地面用戶那里收集數據,同時集成專用著陸點,無人機可以在著陸點著陸,從而在繼續為用戶服務的同時在其軌跡上節省能源。深度 Q 學習允許無人機在沒有任何關于環境或任務的明確信息的情況下找到有效的軌跡。
圖 3.1 空中 BS 移動決策是根據無人機的當前狀態做出的,即位置和電池電量。 UAV 完全不知道環境的先驗知識,即不知道著陸點(LS)的存在或位置、用戶位置、信道模型或最終 UAV 著陸位置。雖然 LS 提供了節能的可能性,但 UAV BS 可能不得不為某些用戶犧牲一些 QoS。
雖然 RL 范式為解決無人機輔助網絡中的優化問題提供了許多優勢,但仍然存在一些實際挑戰,尤其是在無人機可以學習的訓練數據需求的背景下。在現實世界中收集訓練數據是一個昂貴且耗時的過程,而在傳統的 RL 方法中,如果任務參數發生變化,則需要重復冗長的訓練過程,例如無人機的電池容量。在本論文中,我們通過提出一種深度 RL 算法來解決這個問題,該算法將訓練擴展到來自分布式物聯網 (IoT) 設備的無人機數據收集任務的隨機實例,如果任務參數發生變化,則無需重新訓練。與傳統方法相比,結果是一個復雜得多的問題,因為需要同時找到數千個任務實例的解決方案。這可以通過利用任務密集城市環境的智能處理地圖信息來實現。我們將此設置擴展到協作多無人機案例,其中出現機群協作的額外挑戰,以及大型、復雜和現實的城市環境挑戰。
圖 4.7 同一智能體適應設備數量和設備位置差異以及飛行時間限制的圖示,顯示了曼哈頓場景中已使用和可用的飛行時間以及收集和可用的總數據。
圖 5.8 軌跡圖說明傳播條件的變化對已經訓練好的智能體的影響。圖 5.8a 顯示了在智能體訓練時使用路徑損耗指數的原始行為。圖 5.8b 顯示了相同智能體在其他情況不變的情況下,路徑損耗指數略低。
論文的以下部分探討了無人機輔助通信和機器人技術,這是兩個通常不相交的研究界。 RL 范式的固有靈活性為提出可在多個無人機路徑規劃實例中工作的解決方案提供了機會,例如物聯網數據收集和覆蓋路徑規劃 (CPP),這是一個經典的機器人問題。最后,在本文的最后一部分,研究了基于模型輔助學習框架的另一種解決RL算法訓練數據需求挑戰的方法。在這種方法中,UAV首先學習真實環境的模型,然后利用學習的模型生成模擬訓練數據,大大減少了對昂貴的真實世界數據的需求。
當前的海軍作戰要求水手們根據動態作戰環境中的不確定態勢信息做出時間緊迫和高風險的決策。最近的悲慘事件導致了不必要的傷亡,海軍行動中涉及決策復雜性,并特別突出了 OODA 循環(觀察、定向、決策和評估)中的挑戰。涉及使用武器系統的殺傷鏈決策是 OODA 循環中一個特別緊張的類別——具有難以確定的意外威脅、縮短的決策反應時間和致命的后果。有效的殺傷鏈需要正確設置和使用船上傳感器;未知接觸者的識別和分類;基于運動學和智能的接觸意圖分析;環境意識;以及決策分析和資源選擇。
該項目探索了使用自動化和人工智能 (AI) 來改進海軍殺傷鏈決策。該團隊研究了海軍殺傷鏈功能,并為每個功能制定了特定的評估標準,以確定特定 AI 方法的功效。該團隊確定并研究了 AI 方法,并應用評估標準將特定的 AI 方法映射到特定的殺傷鏈功能。
圖:利用人工智能改進海軍殺傷鏈的作戰概念
當前的海軍行動通常是快節奏的、關鍵的,并且需要做出高風險的決策,這些決策有時基于非常動態的戰區中的不確定信息。許多例子強調了提高決策效率的必要性以及減輕觀察團隊負擔的必要性。缺乏上述情況的例子包括 2017 年的菲茨杰拉德號航空母艦 (DDG 62) 和 MV ACX Crystal相撞,以及 2009 年皇家港口號航空母艦 (CG 73) 的擱淺。一些根本原因是相關人員缺乏經驗、疲勞和壓力.
上述事故展示了軍事行動的難度,并展示了 OODA(觀察、定向、決策和評估)循環中的挑戰(Jones 等人,2020 年)。人為錯誤、人的認知限制和海軍作戰固有的決策復雜性導致了 OODA 循環中的挑戰,更具體地說,是殺傷鏈過程中的挑戰。
現代戰斗空間由來自常規陸地、空中和海洋等多個領域以及來自太空和網絡空間的大量數據組成。決策者需要考慮許多因素,包括交戰規則 (ROE)、要使用的武器、傳感器和意圖評估。發現、修復、跟蹤、瞄準、參與、評估 (F2T2EA) 殺傷鏈模型緩解了該過程的一些困難(參謀長聯席會議,2013 年)。人工智能 (AI) 和機器學習 (ML) 可以通過分析備選方案和使用評估標準將 AI 方法映射到殺傷鏈功能,從而幫助海軍在戰術領域做出殺傷鏈決策。這是在本報告的五個章節中分三個階段完成的。
本報告利用了數百個資源,主要利用了美海軍研究生院 AI-OODA 團隊在其 Capstone 報告(2020 年)中進行的先前研究,“利用人工智能 (AI) 進行空中和導彈防御 (AMD):以結果為導向的決策援助。”他們將他們的工作與 John Boyd 的觀察、定向、決定和行動決策框架相結合。作為他們分析的初步步驟,AI-OODA 團隊將特定的 OODA 功能明確且緊密地耦合到特定的 F2T2EA 功能。然而,本報告斷言 OODA 循環是一個決策循環,它嵌套在殺傷鏈的每個功能中,而不是在高壓力或低壓力情況下專門映射到一個或多個殺傷鏈功能。團隊基于 F2T2EA 模型開發了一組 28 個殺傷鏈功能。
在制定將 AI 方法映射到殺傷鏈的評估標準時,很難確定一個好的決策,這對于決策評估至關重要。在評估決策時,必須考慮選擇行動時的知識意識狀態以及解釋能力。使用了幾種對決策進行評分的方法,從定義和優先考慮感興趣的“武器-目標”到制定評分標準和報告評估結果,以供其他人審查。
目前,人工智能的狀態非常廣泛,必須對其進行解釋,以了解人工智能對殺傷鏈中功能的適用性。本報告討論了所選 AI 方法的高級概述,并突出顯示了部分最流行的方法。首先,沒有普遍接受的定義,這很難定義人工智能。其次,人工智能與機器學習 (ML) 存在差異。 ML 允許在準確性和可預測性方面取得增量收益; AI 接收數據并通過算法提供輸出。人工智能的歷史從 1940 年代艾倫·圖靈 (Alan Turing) 的加密機器到 1980 年代美國政府在戰略計算計劃中的使用,再到今天在聯合人工智能中心 (JAIC) 中的人工智能戰略五個支柱,從領先的人工智能人力到安全和倫理。美國國防高級研究計劃局 (DARPA) 在 3-wave 框架中描述了 AI 的發展方向,分為手工知識 (Wave 1)、統計學習 (Wave 2) 和上下文推理 (Wave 3) 在 1-4 個維度內情報參數的屬性(Launchbury 2017)。這些屬性包括感知、推理、抽象和學習。
人工智能涉及可以根據輸入值預測結果的監督學習。有幾種使用監督學習進行學習的技術。包括線性回歸和分類。此外,許多數值方法可以分析發生的學習有效性,例如 F-score 和 Accuracy score。人工智能還可以使用無監督學習,它使用算法來發現未標記數據集中的數據模式或分組。在分析未知(y)響應以揭示標記(x)數據中的模式時,無監督學習是有益的。數據分析界的一個著名例子是鳶尾花(Iris flower)數據集。僅使用標記的數據,可以看到響應聚集在一起,并且可以確定響應中存在模式(花的種類)。無監督學習的方法包括聚類和 K-means,但還有其他方法。強化學習有一個代理能夠接收來自環境的反饋并理解基本目標。此外,正如 Sutton 和 Barto 在(2018 年)中解釋的那樣,探索和開發之間存在權衡。最后,生成對抗網絡 (GAN) 利用無監督學習和強化學習,通常用于神經網絡 (NN)。神經網絡是機器學習算法的極好來源,它有大量的輸入,而這些輸入又會產生大量的計算。 NN 非常適合用于模擬、自然語言處理、博弈論和計算機視覺。 NN 只是一種將輸入映射到輸出的簡單方法,可以在此過程中進行學習。然而,NN 可以被描述為一種“黑盒”學習技術,因為很難解釋正在發生的事情,并且通常需要一種可解釋的 AI (XAI) 技術。 XAI 的三個主要組成部分是可解釋模型、解釋界面和解釋心理學(Gunning 2019)。數據安全必須與“大數據”一起考慮,“大數據”是指非結構化、復雜和大型數據集,具有五個 v 特征:數量、速度(數據量隨時間變化的增加)、多樣性、真實性和價值。其他理論包括決策理論、模糊邏輯和效用函數
使用上述文獻綜述,該團隊開發了一個框架,用于將 AI/ML 映射到 AMD(空中導彈防御)殺傷鏈。采取了四個步驟:1) 建立模型框架,2) 確定決策點,3) 應用 AI/ML 方法,以及 4) 分析結果。該團隊確定了以下用于殺傷鏈映射分析的 AI/ML 方法:線性回歸、邏輯回歸、聚類、關聯、隨機森林、神經網絡、GAN 和樸素貝葉斯。評估標準被稱為“決策點”并提出四個問題:(1)所需輸出的類型是什么,(2)所需的學習類型是什么,(3)可解釋性(XAI)是什么水平需要,以及 (4) 需要多少個預測變量?該團隊通過基于一組決策點和評分過程評估每個殺傷鏈功能的每種方法來執行映射。對于被認為非常適合某項任務的方法,得分為+1,如果該方法適合但次優,則為0,如果該方法不適合該任務,則為–1。
該團隊進行了映射分析,根據與殺傷鏈的 28 個功能中的每一個功能相關的評估標準(決策點)分析 AI 方法。該團隊使用評分方法來確定每個殺傷鏈功能的最佳整體 AI/ML 分數。團隊的映射顯示為 0。
該團隊的 AI/ML 映射到殺傷鏈功能為國防部和海軍提供了兩個關鍵好處。首先,映射本身是設計和開發支持殺傷鏈決策的人工智能戰術決策輔助工具的重要起點和基礎。其次,該團隊將 AI 方法映射到殺傷鏈的分析過程可用于了解 AI 在許多其他軍事和非軍事領域的應用。識別適當的人工智能方法、制定評估標準和評分過程以及制定過程功能以進行分析映射的過程對于支持許多不同人工智能系統的工程具有深遠的潛力。
表1:AI/ML方法到殺傷鏈的映射
海軍艦艇是由多個組織組成的復雜機構,這些組織必須在不影響效率和戰備狀態的情況下順利交互和外部交流。隨著后勤挑戰的增加和技術推動響應時間的增加,因此引入最先進的計算方法至關重要,用于分析互聯系統和針對不同事件進行分析。
美國海軍研究生院專家引入了一個名為LAILOW的框架:學習、優化和兵棋推演。LAILOW利用復雜機構中多個來源產生的數據,基于數據挖掘、機器學習和預測算法,分析和發現模式、規則和異常。接著LAILOW的輸出結果可以用來優化業務流程和行動方案。展示了使用LAILOW框架的三個用例。使用LAILOW框架,搜索主要艦艇設備維護和供應系統的脆弱性,以進行困難測試,并相應地提出彈性和新穎的解決方案。詞法鏈接分析(LLA)作為LAILOW的一部分,以提高與C4I系統相關的海軍艦艇關鍵部件失效概率的預測精度,用于NAVWARSYSCOM的預測風險備用矩陣(PRiSM)產品中。還展示了LLA對財務受限工作隊列(FRWQ)中的優先項目與基線計算的比較。
在決定是否減輕或接受網絡攻擊對武器系統的風險時,最重要的考慮因素是它如何影響作戰任務——也稱為任務影響。然而,對整個空軍的每個系統和所有任務進行全面評估是不切實際的,因為每個系統都很復雜,有大量潛在的漏洞需要檢查,每個漏洞都有自己復雜的威脅環境。
進入網絡任務線程分析框架。為了分析任務影響,作者提出了這種旨在同時實現幾個目標的新方法:足夠全面,可以在美國空軍的每個任務的規模上執行,但信息量足以指導決定接受或接受減輕特定風險。此外,該方法非常簡單,可以在不超過幾個月的時間內執行,并且可以根據需要進行更新。
該框架遵循自上而下的方法,從捕獲所有關鍵任務元素的整個任務的“線程”(映射)開始,然后是支持其執行的系統。雖然作者并未將網絡安全風險評估問題簡化為交鑰匙解決方案,但他們提出了有用的方法來分類與任務成功最相關的領域,同時將對漏洞和威脅的詳細調查限制在最關鍵的領域。他們的框架旨在大規模完成,適用于各種場景,并明確其工作方式。
00 報告研究的問題
01 主要發現
1.1 在合理的資源支出下分析大規模的任務影響是一個主要的挑戰
1.2 隨著新系統的引入、舊系統的修改以及戰術、技術和程序的發展,執行任務的方式發生了變化
1.3 網絡空間的特點之一是冗余無效
1.4 失去指揮和控制可能會在沒有任何系統或組件故障的情況下損害任務
1.5 當決策者不了解分析的工作原理時,他們通常會恢復直覺和判斷
02 建議
要大規模執行任務影響評估并節省工作量,請使用系統工程熟悉的方法和可用于分類的任務關鍵性標準組合。
定義任務時,不要包含任何系統。在分析的后期介紹特定系統的作用。
將隨著時間推移相對穩定的工作與需要在系統生命周期中更新的分析分開。
盡可能使用現有的和經過驗證的技術以保持透明,以便決策者了解分析的工作原理及其局限性,并信任它來指導決策。
應用網絡分離的概念來解決冗余問題。
在任務和系統級別合并功能流程圖,以解決對手指揮和控制分析問題。
為了全面驗證和驗證網絡任務線程分析框架,空軍應該在各種不同的任務中應用和測試它。
03 報告目錄
第一章
評估武器系統網絡安全風險的一些注意事項
第二章
評估任務影響的原型框架
第三章
框架的討論
人工神經網絡在解決特定剛性任務的分類問題時,通過不同訓練階段的廣義學習行為獲取知識。由此產生的網絡類似于一個靜態的知識實體,努力擴展這種知識而不針對最初的任務,從而導致災難性的遺忘。
持續學習將這種范式轉變為可以在不同任務上持續積累知識的網絡,而不需要從頭開始再訓練。我們關注任務增量分類,即任務按順序到達,并由清晰的邊界劃分。我們的主要貢獻包括:
(1) 對持續學習技術的分類和廣泛的概述;
(2) 一個持續學習器穩定性-可塑性權衡的新框架;
(3) 對11種最先進的持續學習方法和4條基準進行綜合實驗比較。
考慮到微型Imagenet和大規模不平衡的非自然主義者以及一系列識別數據集,我們以經驗的方式在三個基準上仔細檢查方法的優缺點。我們研究了模型容量、權重衰減和衰減正則化的影響,以及任務呈現的順序,并從所需內存、計算時間和存儲空間等方面定性比較了各種方法。
//www.zhuanzhi.ai/paper/c90f25024b2c2364ce63299b4dc4677f
引言
近年來,據報道,機器學習模型在個人任務上表現出甚至超過人類水平的表現,如雅達利游戲[1]或物體識別[2]。雖然這些結果令人印象深刻,但它們是在靜態模型無法適應其行為的情況下獲得的。因此,這需要在每次有新數據可用時重新啟動訓練過程。在我們的動態世界中,這種做法對于數據流來說很快就變得難以處理,或者可能由于存儲限制或隱私問題而只能暫時可用。這就需要不斷適應和不斷學習的系統。人類的認知就是這樣一個系統的例證,它具有順序學習概念的傾向。通過觀察例子來重新審視舊的概念可能會發生,但對保存這些知識來說并不是必要的,而且盡管人類可能會逐漸忘記舊的信息,但完全丟失以前的知識很少被證明是[3]。相比之下,人工神經網絡則不能以這種方式學習:在學習新概念時,它們會遭遇對舊概念的災難性遺忘。為了規避這一問題,人工神經網絡的研究主要集中在靜態任務上,通常通過重組數據來確保i.i.d.條件,并通過在多個時期重新訪問訓練數據來大幅提高性能。
持續學習研究從無窮無盡的數據流中學習的問題,其目標是逐步擴展已獲得的知識,并將其用于未來[4]的學習。數據可以來自于變化的輸入域(例如,不同的成像條件),也可以與不同的任務相關聯(例如,細粒度的分類問題)。持續學習也被稱為終身學習[18]0,[18]1,[18]2,[18]3,[18]5,[18]4,順序學習[10],[11],[12]或增量學習[13],[14],[15],[16],[17],[18],[19]。主要的標準是學習過程的順序性質,只有一小部分輸入數據來自一個或幾個任務,一次可用。主要的挑戰是在不發生災難性遺忘的情況下進行學習:當添加新的任務或域時,之前學習的任務或域的性能不會隨著時間的推移而顯著下降。這是神經網絡中一個更普遍的問題[20]的直接結果,即穩定性-可塑性困境,可塑性指的是整合新知識的能力,以及在編碼時保持原有知識的穩定性。這是一個具有挑戰性的問題,不斷學習的進展使得現實世界的應用開始出現[21]、[22]、[23]。
為了集中注意力,我們用兩種方式限制了我們的研究范圍。首先,我們只考慮任務增量設置,其中數據按順序分批到達,一個批對應一個任務,例如要學習的一組新類別。換句話說,我們假設對于一個給定的任務,所有的數據都可以同時用于離線訓練。這使得對所有訓練數據進行多個時期的學習成為可能,反復洗刷以確保i.i.d.的條件。重要的是,無法訪問以前或將來任務的數據。在此設置中優化新任務將導致災難性的遺忘,舊任務的性能將顯著下降,除非采取特殊措施。這些措施在不同情況下的有效性,正是本文所要探討的。此外,任務增量學習將范圍限制為一個多頭配置,每個任務都有一個獨占的輸出層或頭。這與所有任務共享一個頭的更有挑戰性的類增量設置相反。這在學習中引入了額外的干擾,增加了可供選擇的輸出節點的數量。相反,我們假設已知一個給定的樣本屬于哪個任務。
其次,我們只關注分類問題,因為分類可以說是人工神經網絡最既定的任務之一,使用相對簡單、標準和易于理解的網絡體系結構具有良好的性能。第2節對設置進行了更詳細的描述,第7節討論了處理更一般設置的開放問題。