亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

人工智能已經使用了幾十年。它已經被部署在有人駕駛的編隊中,并將在未來幾年內繼續被用于軍事。目前的戰略和作戰概念要求在整個國防企業中增加使用人工智能能力,從高級領導人到戰術邊緣。不幸的是,人工智能和它們所支持的戰士不會 "開箱即用"地兼容。簡單地將人工智能植入人類團隊并不能確保成功。美國防部必須仔細注意如何將人工智能與人類一起部署。這在團隊中尤其如此,因為團隊的結構和成員的行為可以決定業績的好壞。由于人類和機器的工作方式不同,團隊的設計應該利用每個伙伴的優勢。團隊設計應該考慮到機器伙伴的固有優勢,并利用它們來彌補人類的弱點。這項研究通過提交新的概念模型,捕捉人類和機器在人機合作結構中運作時的理想團隊行為,對知識體系做出了貢獻。這些模型可以為人機團隊的設計提供信息,從而提高團隊的績效和敏捷性。

圖1 智能自主系統技術框架

圖3 美國人工智能相關戰略

引言

核導彈發射被探測到。那是1960年10月5日,北約正處于最高級別的警戒狀態。以99.9%的準確率,來襲的蘇聯彈道導彈被格陵蘭島的預警系統探測到。值得慶幸的是,北約的報復行動被制止了,操作人員發現,"智能 "系統正在跟蹤上升的月亮(Singer,2009)。自然,這并不是唯一一次世界幾乎在人工智能(AI)引起的核交換中喪生。1983年9月26日,蘇聯的彼得羅夫中校發現自己是莫斯科附近Serpukhov15掩體內的值班人員。在太空中運行的蘇聯Oko預警衛星系統完全肯定地報告說,多枚導彈正在前往莫斯科的路上。問題是,奧科系統把從云頂反射的陽光誤認為是美國的一系列導彈發射(Scharre,2018)。解讀其系統的局限性,并將事件置于背景中,操作人員能夠防止災難的發生。當然,這些極端案例是少見的,對于今天的人工智能,我們沒有那么依賴人類的判斷,對嗎?不幸的是,不盡然。人類和人工智能(AI)的工作方式不同,所以像美國防部(DOD)這樣的組織在將人工智能系統插入操作團隊時,需要非常慎重。

B 研究問題、方法和路徑

1 研究問題

本研究試圖回答以下問題:

  • 成為隊友意味著什么?
  • 機器如何在團隊中與人類成為伙伴?
  • 將機器伙伴融入以前的人與人之間的團隊,如何提高團隊的敏捷性?
  • 能否用共享的團隊心理模型或互動的團隊認知方法更好地理解機器伙伴?

2 方法

將對文獻進行詳盡的回顧,并對兩個適用的案例研究進行分析。這項研究的目標是產生一個人機協作的概念模型,并提供有關人機團隊內部溝通的背景性、現實世界的知識。鑒于目前可用的基于實驗室的人機協作實驗數量有限,本研究將檢查數據以確定廣泛的主題和模式。

人類團隊和人類團隊動態的性質已經得到了廣泛的研究。這一領域的文獻有豐富的發現,可以提供關于人與人團隊動態的細節;然而,關于機器融入人與人團隊的文章卻很少。隨著機器伙伴被納入傳統意義上的人類團隊,就需要對人機團隊進行研究。本研究將首先描述人工智能的特點及其對戰爭的預期影響。將提供關于機器-機器團隊的現有文獻分析,然后是人類認知和人-人團隊的更多發展主題。這項研究在描述人機團隊的通信、協調和互動動態之前,將對人機團隊進行特征描述。然后,作者將展示這些動態如何與團隊敏捷性和績效的概念相聯系。

3 研究目的

本研究目的是探索人機團隊中的溝通、協調和互動動態,并闡述它們對團隊敏捷性和績效的潛在影響。隨著人機團隊結構在DON中變得越來越普遍,這種探索對于發展對團隊動態的理解是必要的。這項研究將產生人機團隊的概念模型,可以為未來系統的設計提供參考。這項研究的結果可以幫助美海軍軍部更好地理解將狹義的人工智能能力整合到團隊構建中的影響。這種知識將最終使美國防部能夠應用研究結果來提高人機團隊的敏捷性。

提綱

  • 第2章 美海軍部人工智能戰略分析
  • 第3章 編隊理論綜述
  • 第4章 指揮與控制概念及條令綜述
  • 第5章 對人工智能理論、能力和局限性的綜述
  • 第6章 人機編隊
  • 第7章 方法論
  • 第8章 分析
  • 第9章 未來工作總結

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

確保信息和武器系統免受網絡威脅是美國國防部及其盟國合作伙伴的一個重要目標。了解這些系統在現實操作條件下的端到端性能,包括網絡干擾,對于實現任務目標至關重要。在不利的操作條件下,識別和減輕操作性能的不足,可以為我們的防御能力提供重要價值,并直接拯救生命。

作為一個說明性的例子,我們考慮聯合全域指揮與控制(JADC2)系統。JADC2從根本上依靠通信和網絡來包含、提取和傳播時間敏感的、與任務相關的信息,以決定性地贏得對敵方部隊的勝利。未來的沖突很可能涉及到試圖破壞對JADC2通信和高度復雜的武器系統的可靠運行至關重要的信息系統。破壞已經是潛在對手部隊的一種能力,并將蔓延到與他們結盟的次要威脅。JADC2綜合網絡和動能戰場的復雜性要求訓練、分析、測試和評估部門充分考慮到網絡操作退化和/或利用網絡漏洞對整體任務結果的潛在影響。這促使人們對工具、技術和方法進行大量的持續研究和開發,以評估一般軍事系統,特別是作戰系統的網絡復原力。

戰斗系統之間的復雜性和相互依賴性以及它們之間的聯系使目前的彈性分析方法變得復雜。例如,假設故障是隨機的硬件故障,那么與網絡中的單點故障相關的風險可以通過冗余的組件來緩解。然而,一個未被緩解的網絡漏洞也可能導致冗余組件出現相同的故障。即使組件本身沒有漏洞,成功干擾數據交換時間的攻擊,例如通過加載數據總線,也可能導致作戰系統性能下降。同樣,通過延遲的、間歇性連接的、低帶寬的環境建立通信聯系,可能需要使用多跳來轉發信息,這增加了對中間人攻擊的敏感性。

還有一種情況是,武器系統的網絡漏洞不一定是任務漏洞,因為利用該漏洞可能會也可能不會影響實現任務目標所需的整體系統能力。為了保證任務免受網絡威脅,武器系統的網絡彈性必須在現實的戰術環境中進行評估,以便:

  • 預測潛在的網絡攻擊對具體任務的影響。
  • 分析任務背景下的替代緩解策略。
  • 訓練作戰人員有效應對對手為破壞動能任務而動態部署的網絡工具、戰術和程序(TTPs)。

使用虛擬機(VM)的傳統網絡演習是網絡系統的最高保真表現,因為它們不僅虛擬了通信協議,還虛擬了操作系統和應用程序,因此,在這些模塊中發現了漏洞。因此,網絡范圍經常被用于網絡攻擊和防御評估和培訓。然而,虛擬機往往需要大量的硬件足跡來模擬大型網絡,并需要大量的時間和人力來配置特定實驗的范圍。這種類型的網絡范圍受到以下額外的限制:

  • 表現戰術、5G、衛星和其他無線網絡以及適當的網絡和電子戰(EW)攻擊載體的能力有限。
  • 在產品生命周期的設計階段,支持分析的能力有限。
  • 難以表現替代性作戰環境以及與動能戰領域的整合。

在本文的其余部分,我們從以任務為中心的角度研究了使用網絡數字孿生體來提高軍事(戰斗)系統的網絡彈性。網絡數字孿生依靠高保真模擬和仿真來對物理系統進行建模,并在可移植性、可擴展性、對無線網絡和通信進行建模的能力以及支持整個產品開發周期的網絡分析方面提供好處。我們還提出了一組用例,說明數字孿生在不同系統的網絡彈性評估中發揮的作用。

我們認為,將基于虛擬機的網絡范圍與網絡數字孿生體相結合的網絡框架,可以為調查各種戰術系統的網絡復原力和脆弱性提供一個理想的平臺。

圖 3. 連接兵棋模擬器和網絡數字孿生。

圖 4. 使用網絡數字孿生進行網絡分析。

付費5元查看完整內容

本報告著重于2025年混合部隊的任務工程過程。來自OPNAV N9I的最新任務強調了關注使用成本保守的無人系統的必要性。具體來說,重點放在近鄰的競爭對手大國以及在南海的反介入/區域拒止(A2/AD)情況下可能出現的問題。海軍水面作戰中心的任務工程方法被用來確定擬議的替代艦隊架構的具體事件,然后使用作戰模擬和優化模型進行分析。對目前的無人系統,特別是那些正在開發的高技術準備水平無人系統的性能特征和成本的研究進行了匯編。提議的無人系統架構是作為A2/AD問題的解決方案而開發的。然后,無人系統架構通過優化模型運行,以最大限度地提高系統性能,同時最小化成本。然后,架構優化的結果被輸入到建模和仿真中。然后比較每個架構的整體有效性,以找到最有效的解決方案。對結果進行了分析,以顯示預期的任務有效性和利用擬議解決方案的無人架構的擬議成本。最有效的架構包括搜索、反蜂群、運送和攻擊系統。

執行總結

A 引言

系統工程分析31組由美海軍作戰司令部戰爭整合處(OPNAV N9I)負責確定一個解決方案,以彌補與大國在2025年的預期能力差距(Boensel 2021)。該解決方案系統必須具有成本效益并能在2025年之前交付。SEA團隊利用任務工程過程來確定候選的未來艦隊架構來解決問題(工程副主任辦公室2020)。

B 問題陳述

到2025年,如何才能有效地對抗近鄰對手的反介入和區域拒止能力?

C 能力需求

以具有成本效益的方式調整目前的能力,并創建一個未來的架構,以加強美國海軍的作戰能力,包括存在、欺騙、ISR以及在反介入和區域拒止環境中的防御和進攻能力。

D 任務描述

利用任務工程流程,總體情景被設定在2025年的南海。大國已執行了其九段線的領土要求,并建立了一個反介入/區域拒止(A2/AD)區。大國不斷擴大的艦隊、對人造島嶼的使用、遠距離ASCMs以及對無人系統的擴大使用使美國的水面作戰艦艇處于高風險之中。總體任務是美國海軍DDG通過提高其殺傷力和生存能力,在A2/AD區域內進行FONOPS。在整個方案中,有三個小場景被開發出來。OTH ISR、目標選擇和交戰,威脅無人機蜂群,以及提供目標選擇的威脅無人機ISR資產。

E 任務衡量

衡量任務成功與否的總體標準是美國海軍部隊在近乎同行的反介入區域拒止環境中的作戰能力。有助于衡量成功的有效性的措施是DDG的生存能力和殺傷力的提高程度與解決方案系統的成本相結合。

F 分析設計

為了分析擬議的系統解決方案(SoS)是否能達到既定的成功標準,設計了一個價值體系。利用通用的海軍任務列表,項目組確定了擬議的系統解決方案需要完成的三個二級任務,以完成任務(海軍部,2008)。

對三個選定任務下的后續任務進行了評估,以確定擬議系統需要完成的具體功能。通過這次審查,確定了候選無人系統需要完成的四項高級功能。這些功能是交付、搜索、通信中繼和打擊。為每項功能選擇了性能措施,以用于多屬性價值分析。

多屬性價值分析被用來比較完成四個功能中一個或多個功能的候選系統。一個系統的價值是根據每個性能指標對完成一個特定功能的重要性,給每個性能指標分配一個權重而得出的。權重從1到5不等,其中5表示最重要的MOP。計算MOP和權重的乘積,并將每個乘積相加,以獲得系統的價值。

為了確定可行的候選系統,項目組成員各自研究了一個不同的無人系統,并收集了每個候選系統的性能衡量標準。如果一個特定的無人系統的MOP值不知道,則推斷其值與一個類似的系統相同。如果不存在這樣的類似系統,則使用啟發式方法估計該值。對于每項功能,至少有一個系統符合技術成熟度,可考慮用于2025年的混合部隊。

F.1 建議的系統簇

為了實現所有四個功能,候選系統的組合被排列組合成16個系統簇。每個備選方案的系統價值和成本都被計算出來。系統價值的計算方法是將每個備選方案中的每個系統的價值相加。

F.2 優化

為了產生用于比較的替代方案,該團隊使用整數線性規劃生成了架構。這是用Pyomo的優化功能完成的。線性規劃被創建、約束以更好地表示現實,并被解決以生成分別針對性能、預算和替代合約選項進行優化的替代架構。

F.3 使用炮擊作戰模型計算MOE

現代導彈戰可以使用炮擊作戰模型進行評估。這個模型被用來計算每個小場景中的每個SoS備選方案的有效性。結果顯示了超視距ISR平臺的重要性,一個獨立的武器系統來對付敵人的無人機,目前IAMD作戰系統的有限防御能力,以及超視距搜索和瞄準能力。

F.4 基于電子表格的戰斗模擬

“大國”和美國都擁有深入的綜合空中和導彈防御。為了證明這種互動,在微軟Excel中使用反二項式函數對不同的交戰進行了建模。每一個擬議的艦隊架構都被輸入到三個小插曲的戰斗模擬中。為了獲得隨機的結果,試驗的數量被設定為300次,每個概率都有一個可能的值范圍。該模型中的自變量可分為防御性或進攻性變量。防御性變量是每個單位的綜合防空和導彈防御武器的殺傷數量和殺傷概率。PLAN的進攻性變量是YJ-18 ASCM和Harpy無人機的命中數。美國海軍的進攻性變量是海上攻擊戰斧、ASCM和特定攻擊無人機的進攻性命中數量。

模擬的結果顯示了擊中敵方水面平臺或美國海軍水面部隊的數量。通過比較建議的系統與基線的命中率,可以得出變化的百分比。在我們的分析中,進攻和防御的有效性被平均加權,允許將進攻和防御百分比變化的高值相加,以計算出高低變化的總百分比。

F.5 使用基于智能體的建模和仿真進行模型驗證

基于智能體的建模和仿真(ABMS)被用來驗證每個設想的系統架構與所需的MOE。ABMS旨在通過對智能體之間的相互作用進行建模,來捕捉戰爭交戰的隨機性,但又很復雜。進行了蒙特卡洛分析,以收集每個系統性能的個體層面的數據。隨后的統計分析提供了一個途徑,以確定和量化每個擬議的系統架構所實現的改進。為此目的,指揮部:現代行動(CMO),是一個跨領域的現代兵棋推演計算機軟件,旨在模擬戰術到作戰水平的行動,被用作仿真引擎。CMO模擬的是基于規則的智能體,它們相互之間以及與環境之間的互動,包括感興趣的場景中的武器系統(Coyote, YJ-18, Chaff)和平臺(例如PLAN DDG, Luyang)。與多屬性價值分析方法相比,CMO允許對定量的系統MOP進行建模,并在模擬結果中觀察其相對差異。

G 電子表格作戰模擬結果

電子表格戰斗模型模擬的第一個結果是解放軍DDG在三個不同的迭代中對美國海軍DDG的命中率,即只用YJ-18攻擊,只用哈比攻擊,以及YJ-18和哈比同時攻擊。同時使用YJ-18和Harpy的命中率被作為防御性MOE的基線值。接下來,兩種不同的防御性無人機系統被分別加入到作戰模型中。對只有哈比的攻擊和YJ-18與哈比的同時攻擊進行了重復模擬。每個系統的防御性百分比變化是用前面描述的公式計算的。

接下來的結果是美國海軍DDG在三次不同的迭代中擊中PLAN DDG的次數。模擬了僅用MST攻擊、僅用ASUW無人機攻擊以及MST和ASUW同時攻擊的結果。只用MST攻擊的命中率作為進攻性MOE的基線值。接下來,七個不同的運載系統被分別加入到作戰模型中。對僅有ASUW無人機攻擊和同時進行的MST和ASUW無人機攻擊進行了重復模擬。每個投送系統的進攻百分比變化被計算出來。

將同等權重的進攻和防守百分比變化相加,計算出高和低的總變化百分比。根據該模型,期望值是這樣的:在0.95的置信度下,增加SoS將使水面部隊的有效性增加一個介于高值和低值之間的百分比。

H. 基于智能體的建模和仿真結果

總的來說,從ABMS觀察到的性能與從電子表格模型觀察到的性能MOE相關。在所有提議的架構中,都觀察到了防御和進攻MOE的明顯改善。這是預料之中的,因為在DDG上增加任何防御性武器系統應該減少艦隊DDG的直接命中數量。同樣,增加一個具有增強OTH感知能力的進攻性武器系統會增加對目標直接作用的武器數量。

對防御性和進攻性MOE與每一方所消耗的平均武器數量的比率的進一步分析顯示,由于美國海軍DDG上增加了反群武器系統,防御性MOE得到了改善。這種增加被證明是對所有架構的一種有效的廣泛改進。三種提議的架構之間最明顯的差異來自于進攻性MOE(%),其中性能系統優于其他架構。與發射的武器總數相比,預計一個性能更好的系統會向目標發射更少的武器,同時造成更多的命中。

I 結論

這項工作證明了低成本的無人駕駛威脅系統給傳統水面戰艦帶來的危險,這些系統可以在幾乎沒有警告的情況下進行協調和攻擊,并為船員提供很少的反應時間。為了避免強制增加對峙距離以提高生存能力,有必要使用增程傳感器系統和反無人機系統來彌補預期的能力差距并提供進入被拒絕區域的機會。為了使這些系統可行和安全,高帶寬的通信系統將是必需的。

為了滿足這些需求,建議的解決方案系統利用Dive-LD來運送Coyote無人機平臺。搜索和通信中繼將由兩個VBAT無人機平臺提供。這種平臺組合為每一美元的系統成本提供了最高的進攻和防御能力的提高。叢林狼 "無人機也將作為一個蜂群來防御威脅性無人機群和威脅性無人機ISR資產。增加解決方案系統的采購將提高艦隊的生存能力和殺傷力,并允許在其他艦隊優先領域進行額外投資。

建議通過為無人機平臺配備額外的無源傳感器來改進該系統,以利用電磁頻譜的所有部分,從而提高在所有天氣和戰斗條件下探測敵方威脅的能力。此外,擬議的解決方案系統可以擴展到許多其他領域和任務區,如港口防御和反對出口。

付費5元查看完整內容

美國軍隊繼續在日益復雜的安全環境中作戰,不能再期望在每個領域都有無爭議的或主導性的優勢。由特種作戰部隊(SOF)操作的飛機需要改進防御能力,以支持在非許可環境下的任務。將自動化和人機協作納入現有的防御能力,可以減少威脅的反應時間,提高有人和無人飛機配置的防御機動的有效性。這篇論文研究了作為威脅反應一部分的飛機機動的價值,以確定人類干預對時間和準確性產生負面影響的情況。它還考慮了復制Merlin實驗室的飛行自動化方法和將能夠進行防御性機動的機器訓練系統納入現有飛機的機會。分析表明,飛機的機動性對于有效的威脅反應至關重要,自動選擇操作者的行動可以提高對某些地對空威脅的生存能力。這篇論文建議重新關注特種部隊飛機的防御能力,并贊同將機載自主系統整合到傳統的載人平臺上,以提高防御性威脅反應。它還主張繼續研究在SOF任務中使用可選的載人飛機,以完善其操作效用,并在各種任務平臺上擴大能力。

美國軍隊繼續在日益復雜的安全環境中運作,不能再期望在每個領域都有無爭議的或主導性的優勢。由于地對空威脅已經擴散到在世界各地活動的敵對行為者,未來的作戰環境將以有爭議的空域為特征,這將對有人和無人駕駛飛機的操作構成挑戰。由特種作戰部隊(SOF)操作的飛機需要改進防御能力,以便在這些有爭議的地區進行機動,同時支持傳統SOF任務。這篇論文研究了商業能力的進步,以減少威脅的反應時間,提高有人和無人駕駛飛機配置的防御性機動的有效性。

通過與位于波士頓的飛行自動化初創公司Merlin實驗室合作,本分析探討了防御性機動的潛在自動化。飛機機動是對威脅作出有效反應的一個關鍵方面,自動選擇操作者的行動可以提高對某些地對空威脅的生存能力。通過確定AC-130J威脅反應中人為干預影響飛機操縱時機和準確性的步驟,這項分析揭示了復制梅林實驗室的飛行自動化方法和將能夠執行防御性操縱的機器訓練系統納入現有飛機的機會。

在威脅反應過程中確定的關鍵步驟包括威脅指示、威脅作戰識別和威脅反應配對。目前,機組人員手動執行這些步驟來完成防御性威脅機動。然而,這些步驟中的每一個都可以從自動化和人機協作中受益,通過三種明顯的方式提高整體性能。首先,生成簡化的視覺和聽覺威脅指示,確保及時通知威脅的存在。其次,自動識別過程以準確識別威脅的變體,減少了反應時間和人類識別錯誤的可能性。最后,將威脅識別與適當的飛機反應同步配對,減少了不必要的延誤,并提高了威脅操縱的準確性。

這篇論文建議重新關注SOF飛機的防御能力,并贊同將機載自主系統整合到傳統的載人平臺上,以改善防御性威脅反應。將人機協作和自主能力納入飛機防御系統,可以使防御機動性能優于傳統系統,并允許在更廣泛的環境中作戰。除了改善防御性機動,梅林實驗室的自動飛行甲板在各種不同的飛機和任務中提供了潛在的用途。繼續研究應該調查在SOF任務中使用可選擇的載人飛機,以完善其操作效用,并在各種任務平臺上擴大能力。最后,在整個特種部隊中采用梅林系統將顛覆既定的操作慣例,需要個人和組織行為的改變。為了緩解過渡期并提高采用率,AFSOC應采取步驟,盡量減少利益相關者的行為變化,同時最大限度地提高系統的操作效益。培養對人工智能、機器學習和自動化的理解,將使這些行為者為軍事技術的快速變化和戰爭特征的變化做好準備。

圖 9. AC-130 防御性威脅反應圖。

付費5元查看完整內容

目前,人工智能(AI)為改造許多軍事行動領域提供了巨大的機會,包括作戰、指揮與控制(C2)、后勤、安全和維護,以提高其整體作戰效率。空中和導彈防御(AMD)是一個特別復雜的任務領域,人工智能的應用至關重要。空中導彈防御任務指的是保衛國土、保護區、地面基地、地面部隊或艦艇免受敵對的空中或導彈威脅。AMD的威脅包括敵對的飛機、無人駕駛飛行器(UAV)或機載導彈。AMD行動的復雜性源于威脅的嚴重性、威脅的意外性、對形勢認識的不確定性以及事件的快速發展,因為作戰人員必須迅速評估形勢,制定適當的行動方案,并最好地利用他們的戰爭資產來應對。美國國防部(U.S. DOD)正在研究使用AI系統(或AI-enabled AMD[AI-AMD]系統)作為AMD作戰人員的自動決策輔助工具,以大大減少他們的認知負荷(Jones等人,2020),使AMD決策更快、更好。

人工智能的一個關鍵方面已經聚集了大量的研究興趣,那就是信任。信任是有效團隊的一個基本原則。它同時適用于人類和人機團隊。信任使團隊成員能夠很好地合作,是有效團隊表現的基礎(Lee and See 2004)。與人工智能系統的成功合作將需要人類對人工智能系統有一個校準的信任和依賴程度(泰勒等人,2016)。

隨著更先進和更快的空中和導彈威脅彈藥的發展和投入使用,操作人員更需要在AMD行動中迅速作出監測。不及時的決策和反應將導致災難性的后果。因此,人工智能是一個可能的解決方案,通過自動決策輔助工具加快和加強決策過程。這些AMD自動戰斗管理輔助工具可以幫助戰術操作人員應對更快的決策周期、大量的數據以及需要觀察的幾個系統或屏幕(Galdorisi 2019)。然而,為了有效地利用人工智能能力的潛力,需要操作員的高度信任。操作員對系統的信任程度低,可能會導致人工智能-AMD系統利用不足,受到不適當的監控,或者根本不使用(Floyd, Drinkwater, and Aha 2016)。這些問題中的任何一個都可能導致操作者的工作量不必要的增加,或者任務失敗的可能性。

論文對信任的定義、人機交互(HMI)的概念、信任因素以及包括AMD殺傷鏈模型、威脅場景、架構、模型和功能在內的概念模型進行了廣泛的回顧。有了這樣的認識,論文提出了人工智能-AMD系統的信任框架,對人機交互和人工智能-AMD系統信任因素的描述。論文最后提出了在人類操作者和AI-AMD系統之間實現校準信任的策略

信任框架始于對系統背景的分析。圖1顯示了AI-AMD指揮與控制(C2)系統(包括AI-AMD操作員和決策輔助工具)及其他與之互動的子系統的背景圖,這些子系統有助于操作員和AI-AMD決策輔助工具之間信任的發展。背景圖使我們能夠研究各系統之間的相互作用,以及它們對AI-AMD操作員和決策輔助工具之間信任動態的影響。

圖1. AI-AMD系統框架圖。

這篇論文將信任定義為操作者的態度,即AI-AMD決策輔助工具將有助于實現操作者的目標,即在一個以不確定性和脆弱性為特征的作戰環境中迅速摧毀來襲威脅的任務。這種信任的定義表明,它是對操作者相信或感知AI-AMD決策輔助工具的一種情感評估。為了積極地影響信任,操作者必須親自看到并感受到AI-AMD決策輔助行動的優勢。AI-AMD行動涉及很多不確定因素,以及天氣、電磁干擾和地形等環境因素以及不斷變化的威脅的性質所帶來的脆弱性。操作員將預期AI-AMD決策輔助系統按照 "合同 "執行,以處理這些不確定性和脆弱性。這些合同將是人工智能-AMD決策輔助工具應該執行的感知功能或任務,以及執行這些功能或任務的理想表現。

圖2說明了操作員和AI-AMD決策輔助工具之間的信任框架。y軸代表人類對AI-AMD決策輔助系統的信任程度,x軸代表AI-AMD決策輔助系統的能力。綠色的45°虛線表示最佳的信任水平或校準的信任線,其中的信任與AI-AMD的能力相對應,導致正確的利用(Lee and See 2004)。過度信任由最佳信任水平線以上的區域表示,此時的信任超過了系統能力,導致誤用。低于理想信任水平線的區域表示不信任,這時的信任沒有達到系統能力,導致濫用。假設存在一些默認的信任水平(如黃框所示),目標是制定一個策略,以提高AI-AMD輔助決策能力的信任。在使用該系統時,可能會發生違反信任的情況,從而降低操作員的信任。因此,信任修復行動必須被納入,以保持信任在最佳水平。

圖2. 人類操作員和AI-AMD決策輔助工具之間的信任。

基于功能分配的操作員和AI-AMD決策輔助工具之間的人機交互研究表明,操作員和AI-AMD決策輔助工具應該被設計成在大多數殺戮鏈功能中作為一個 "團隊"運作。這引導論文研究了單獨和集體考慮人類和決策輔助的信任因素。對操作員和人工智能-AMD決策之間的人機交互的研究還顯示,操作員的角色已經從手動控制器變成了監督控制器。因此,一個值得信賴的決策輔助工具是很重要的,因為操作者會期望系統的表現符合預期,以幫助操作者更好地履行他的角色。另外,為了進一步幫助減輕操作者的認知工作量,信息的外部表示、決策輔助工具的建議必須易于閱讀和理解。

關于信任因素,本論文提出了一個 "由外而內 "的框架,如圖3所示。論文首先考慮了與操作環境相關的因素,這些因素描述了AMD操作系統的背景。第二,它研究了與組織環境相關的因素,操作人員和人工智能-AMD系統得到了培訓和發展。第三,論文研究了操作人員和人工智能-AMD決策輔助工具之間的交互,以提出與操作人員、人工智能-AMD、單獨和集體相關的因素。

圖3. 建議的信任因素

圖4顯示了擬議的戰略銜接圖,以實現操作者和AI-AMD輔助決策之間的校準信任。對信任定義、人機界面和信任因素的審查表明,該戰略應關注三個關鍵領域:(1)人類對自動化技術和AI-AMD決策輔助系統的集體和個人感知;(2)增強操作員和AI-AMD決策輔助系統的團隊活力;(3)AI-AMD決策輔助系統的可信度,重點是系統開發。該戰略利用DOTMLPF-P框架提出了三個關鍵原則和五個支持原則。首先,軍事作戰人員需要被告知自動化技術的真正能力和局限性,特別是AI-AMD輔助決策。第二,操作員的培訓要求必須增加,以應對新的工作范圍和不斷變化的威脅。第三,必須在人工智能-AMD決策輔助系統的開發中加入新的要求,以提高系統的可感知的可信度。這三個關鍵原則得到了DOTMLPF-P框架其他方面的支持,如組織、領導、人員、設施和政策。

圖4. 實現操作員和人工智能-AMD決策輔助工具之間校準信任的戰略銜接圖

付費5元查看完整內容

該項目通過比較傳統彈藥和美國傳統武器系統發射的超高速炮彈(HVP),探討了普通超高速炮彈如何支持反空戰(AAW)、反水面戰(ASUW)和海軍水面火力支援(NSFS)任務。這項研究考察了HVP在任務規劃、后勤和多個任務區使用的效果。該研究的主要目標問題是:"在傳統武器系統中使用HVP是否能提供同等的進攻和防御能力,并改善任務規劃中的后勤運作?" 利用基于模型的系統工程和架構,該項目正式確定了對HVP系統中固有的操作或任務靈活性進行定量系統分析所需的標準。創建了一個深入的模型,分析了包括和不包括HVP彈藥的情況下多個變量的性能,這提供了整體有效性的信息。結果證明了將HVP納入武器系統裝載的好處。在保持性能的同時,在成本、再補給和可用彈藥方面都有好處。基于這個模型的結果,最初的假設被證實,HVP彈藥的有效性提高了整個任務的成功率,并提供了一個成本效益高的替代方案,而不是只使用傳統的武器系統。

執行摘要

本研究考察了在DDG 51(Arleigh Burke)和CG(Ticonderoga)級海軍艦艇上的MK 45-5英寸炮以及DDG 1000(Zumwalt)級海軍艦艇上的先進火炮系統(AGS)155毫米炮中使用超高速炮彈(HVP)作為普通彈藥在任務規劃、操作和后勤方面的效果。HVP是一種多任務彈藥,可以與傳統的武器系統一起使用。

這篇論文通過比較傳統彈藥和美國傳統武器系統發射的HVP,探討了HVP彈藥如何支持反水面戰(ASUW)、反空戰(AAW)和海軍水面火力支援(NSFS)任務。化學推進的HVP彈藥提供了多任務的靈活性,使作戰人員在離開港口時可以帶著比常規導彈更深的彈倉裝載。HVP彈藥改善了由DDG和CG艦組成的海軍遠征軍的后勤作業,減輕了防御和進攻任務的特定武器配置。在艦隊中部署HVP彈藥使這些艦艇具有更強的能力,并為建造或改裝帶有電磁軌道炮及其相關能源支持系統的艦艇提供了一個更實用和更具成本效益的選擇。

在這項研究中,任務情景的重點是在水面行動組(SAG)中使用DDGs和CGs進行AAW、ASUW和NSFS行動。具體的任務場景集中在一個行動的攻擊前階段,以消除敵方持有的島嶼對航行造成的威脅。一個適應性部隊組合(AFP)已經形成,以奪取控制權并消除位于具有戰略意義的紅島上的威脅性進攻能力和少量敵軍部隊。AFP包括一個兩棲準備小組(ARG)和一個由兩艘DDGs和一個CG組成的SAG,其任務是保衛ARG,獲得周圍水域的海上控制權,并在兩棲攻擊前消除威脅性的海岸設施。使用ExtendSim建立了一個作戰模型來模擬行動的預突擊階段,并允許進行系統分析。

Microsoft Excel被用來創建一個隨機模型,探討在對可能擁有武器優勢的對手進行防御性或進攻性交戰時實施HVPs。通過射程目標圖和隨機模型,該場景被模擬成靜態版本。這些工具被用來估計發射的導彈數量、發射的HVP子彈,以及我們場景的統計結果。使用我們的ExtendSim模型進行分析的結果,使用Minitab進行分析,允許驗證隨機模型所捕獲的數據的能力。這使團隊能夠根據不同的統計圖和圖表軟件來分析數據,以收集計算有效性(MOE)和性能(MOP)的措施所需的信息。

衡量效力和性能的結果證明了將HVPs納入武器系統裝載的好處。在保持性能的同時,在成本、再補給、可用彈藥方面都有好處。這些都證實了最初的假設,即HVP彈藥的有效性提高了整個任務的成功率,并提供了一個具有成本效益的替代方案,而不是只使用傳統的武器系統。

用于模擬防御場景的DDG和CG艦的導彈和火炮的致命性概率數據是不保密的,因此本論文中提出的結果需要用保密數據來運行,以獲得現實的結果。

I. 簡介

A. 綜述

美國海軍的使命是 "維持、訓練和裝備能夠贏得戰爭、阻止侵略和維護海洋自由的戰斗準備的海軍部隊"(美國海軍2017)。為了實現這一使命,美國海軍艦艇必須能夠支持幾個不同的任務領域,并能夠在沒有預警的情況下適應不斷變化的任務。為了做到這一點,海軍艦艇依靠使用幾種彈藥類型來支持幾個任務領域。本研究考察了在DDG 51(Arleigh Burke)和CG(Ticonderoga)級海軍艦艇上的MK 45-5英寸炮以及DDG 1000(Zumwalt)級海軍艦艇上的先進火炮系統(AGS)155毫米炮中使用超高速炮彈(HVP)作為通用彈藥在作戰、任務規劃和后勤方面的效果。

B. 問題陳述

目前,美國海軍依靠幾種類型的彈藥來支持進攻性和防御性武器系統和任務能力。任務的需要驅動著艦上彈藥的裝載(即彈藥的類型和數量),在開航前就已經上船。在海上,如果任務或威脅發生了重大變化,艦艇根據其彈藥裝載和能力進行調整和應對的能力可能是有限的,至少在他們能夠在海上或岸上得到補給之前。由于需要在開航前確定武器裝載量,以及必須考慮的各種特定任務的彈藥,限制了作戰的靈活性、能力和容量。這項研究考察了HVP在任務規劃、后勤和使用方面的影響,作為美國海軍反空戰(AAW)、反水面戰(ASUW)和海軍水面火力支援(NSFS)任務領域中的一種通用彈藥。

C. 研究目標

本研究通過比較傳統彈藥和美國傳統武器系統發射的HVP,探討了一種通用的HVP彈藥如何支持ASUW、AAW和NSFS任務。化學推進的HVP彈藥提供了多任務的靈活性,使作戰人員在離開港口時擁有比常規導彈更深的彈倉裝載量,而不必在特定任務的武器中進行選擇。利用系統工程和架構,該項目正式確定了對HVP系統中固有的操作或任務靈活性進行定量系統分析所需的標準。

主要的研究目標是解決這個研究問題,它指出 "在傳統武器系統中使用HVP是否能提供同等的進攻和防御能力,并改善任務規劃中的后勤運作?"

D. 系統工程方法

本項目使用的系統工程方法包括三個階段。它在圖1中被描繪出來。從最初的研究階段開始,對論文主題進行了徹底的研究,以更好地了解被分析的系統。確定了能力差距,進行了利益相關者分析,并對當前系統的運行概念進行了分析。不同的分析被用來確定項目的范圍。該階段完成后,開始了系統架構階段。在這個階段,通過需求分配、功能分析和貿易研究,開發了一個架構來指導系統的設計和開發。在第二階段完成后,系統分析階段開始。在第三階段,團隊對傳統彈藥與傳統武器系統發射的普通HVP彈藥進行了離散事件建模的比較分析。根據這一建模的結果,提出了建議。

圖1. 系統工程方法

付費5元查看完整內容

摘要

美國海軍在實現海上作戰空間自動化的過程中面臨著挑戰,并有可能落后于其崛起的大國競爭者--中國人民解放軍海軍(PLAN)。美國海軍和中國人民解放軍海軍是如何采用自動化來改善海軍情報、監視和偵察(ISR)的?這項研究的結果表明,美國海軍是一個創新者和早期采用者,而解放軍海軍作為一個后期現代化者接受了自動化系統和人工智能(AI),受益于已經存在的相關技術知識。美國海軍的宙斯盾和艦艇自衛系統以及人工智能技術能夠實現海上優勢;然而,中國海軍在人工智能技術方面的進展比美國海軍快。這篇論文比較了兩支海軍在ISR方面采用自動化和人工智能技術的情況。在本研究中,自動化被定義為一個過程或特定的、以任務為導向的系統,它的運行不需要人類的直接控制。人工智能更深入,包括旨在創造能夠分析、評估和優化備選方案以追求更廣泛目標的機器技術。采用了埃弗雷特-羅杰斯的擴散過程S曲線模型,作為分析海軍規劃者和決策者提高效率的框架,因為他們正在考慮采用哪些自動化和人工智能技術以及如何最好地利用它們。

1. 簡介

自動化和人工智能(AI)的發展將影響未來的海權。2017年7月8日,中國表示,目標是建立一個國內的人工智能產業,并在2030年之前使國家成為"人工智能的創新中心"。2019年2月11日,唐納德-特朗普總統簽署了13859號行政命令,以保持人工智能的領導地位,并體現美國的價值觀。雖然這些戰略已經公布,但在海軍事務中采用自動化的速度仍然緩慢。在美國海軍作戰部長2018年的文章《海上優勢的設計》中,海軍作戰部長的首要任務是設計未來的綜合海軍力量結構,并 "全員上陣,使杰拉爾德-R-福特號(CVN 78)盡快準備好作為戰艦。"而中國人民解放軍旨在向未來的 "智能化戰爭 "發展。人工智能超級大國的海軍競相采用自動化和人工智能技術進行持久的情報、監視和偵察。這篇論文比較了兩個關鍵的自動化傳感器--美國宙斯盾和中國348型 "龍眼"的技術采用情況,以及它們如何改進海軍的情報、監視和偵察(ISR)

自冷戰以來,海上優勢已經開始依賴來自相互連接的ISR平臺的自動化預警系統。在美國和當時的蘇維埃社會主義共和國聯盟(USSR)之間,海上指示和警告(I&W)的自動化被大量嵌入常規海軍能力。蘇聯解體后,中國穩步崛起,并一直在尋求使用人工智能(AI)來增強其軍隊的認知能力,速度越來越快,特別是在未來的海權方面。航空母艦、海軍飛機和潛艇之間的自動化通信鏈路,稱為Link-11或Link-16,允許人類操作員通過互聯網計算機系統即時發送信息。

這項研究的重點是美國海軍和中國人民解放軍海軍(PLAN)采用基于自動化的平臺。海軍ISR平臺的例子包括:船舶自動化、有人和無人系統、空中偵察衛星、可視化識別和定位海上平臺的計算機系統。這個話題很重要,因為有三個關鍵因素:快速人工智能技術研發的政策;大國競爭(GPC)的回歸;以及減輕不確定性和增強判斷力的需要。然而,先前的地緣政治事件表明,由于設備的錯誤配置和人為錯誤,自動化系統可能容易出現錯誤的、非結構化的或無監督的數據。在正確的時間、正確的地點接收正確的數據,對于了解未來海權自動化的采用至關重要。

本研究關于關鍵領域的范圍包括:自動化戰略;輔助決策(速度);以及使自動化工具發揮作用的空間關鍵情報系統。對采用自動化的影響的概述是以美國和中國的國防和政策戰略文件為界。將討論采用關鍵情報系統的戰略意義。

采用和駕馭當今的自動化技術是至關重要的。對新興技術的技術采用有賴于頻繁的軟件更新和兼容的硬件來成功運作;否則,系統將不能按預期或最初的設計運作。另一種方式來概念化這個采用和整合2020年的技術的過程,就是思考將現代藍牙揚聲器或收音機整合到20世紀80年代的車輛中;可能的,但試圖整合不兼容的軟件或硬件將是有代價的,很可能會出現故障并導致不兼容,這就是在海軍ISR平臺上部署或采用自動化系統或AI工具之前缺乏冗余的測試。

1.1 研究問題

美國海軍和中國海軍(PLAN)是如何采用自動化技術來改善海軍ISR與 "宙斯盾 "和348型雷達傳感器對未來海權的影響

1.2 背景介紹

半個世紀前,美國陸軍參謀長威廉-C-威斯特摩蘭將軍對未來戰爭的看法在今天看來是正確的。1969年10月14日,他在美國陸軍協會的演講中指出

  • 在未來的戰場上,通過使用數據鏈、計算機輔助的情報評估和自動火力控制,敵軍將幾乎在瞬間被定位、追蹤和鎖定......有了可以持續追蹤敵人的監視裝置,用大量的部隊來固定對手的物理位置的必要性將變得不那么重要。

威斯特摩蘭將軍概括了采用持續監視、跟蹤和瞄準的設想,用計算機即時跟蹤敵人。

著名的斯坦福大學計算機科學教授、人工智能開發者和企業高管安德魯-吳(Andrew Ng)認為,就像一個多世紀前電力幾乎改變了一切一樣,今天很難想象在未來幾年內有哪個行業不會被人工智能所觸及。他的愿景似乎正在實現,今天提供海上態勢感知的軟件程序被稱為共同作業圖像(COP)。美國國防公司雷神公司開發的COP是為了以近乎實時的方式直觀地顯示海軍的空中、陸地和海上平臺。屏幕上的圖片點根據其獨特的標識符或指紋來識別和定位海上的海軍平臺,這也是GPS在地圖上的顯示方式。這是一種人工智能的應用形式,其中自動化催化了這個過程,并簡化了飛機、水面艦艇、潛艇、地面站和衛星之間的數據流。

自20世紀50年代以來,杰出的領導人已經研究并在海軍事務中采用了海上平臺的模式識別及其相關的雷達信號或信號。對于海軍ISR來說,一種被稱為基于活動的情報(ABI)的軟件程序是 "一種分析方法,它圍繞人、事件和活動的相互作用,迅速整合來自多個情報源和來源的數據,以發現相關模式,確定和識別變化,并對這些模式進行定性,以推動收集和創造決策優勢"。

根據海軍研究生院(NPS)計算機科學家Joshua Kroll教授的說法,自動化是根據一套既定的規則對一個過程進行操作,這些規則被稱為一套顯性和隱性的規范。這些規則可以非常簡單,也可以非常復雜,由人類和機器以各種方式實施。這些規則在軟件程序中以 "如果,那么"的邏輯實現和編碼,然后可以與機械功能相配合,通常與人配合。自動化是有益的,因為它在機械或視覺上使一項任務自動化,同時避免了人類的弱點,如疲勞和不專心。

自動化和人工智能是不完美的,有時會有特定的錯誤。系統規則或規則的輸出可能不正確或不完整,它可能導致災難性的事件,導致自動化的研究停止或暫停。人的錯誤在系統錯誤中也會有很大一部分。

使海上數據流自動化的海軍傳感器已經推動了海軍運營商和戰略家為未來的海上戰斗空間重塑人工智能的采用。美國防部(DOD)的人工智能戰略已經加快了 "采用人工智能和創建一支適合我們時代的部隊。"簡單地說,使用有效的傳統技術是有價值的,但了解人工智能超級大國如何采用改變游戲規則的技術,對于改善海軍ISR至關重要。采用自動化的合適方式圍繞著知識、訪問和時間來進行相關和準確的預警。

第二種方法是定義和理解自動化和人工智能的文獻,包括其在社會各部門的看法。對自動化沒有一個公認的具體定義。我的方法將是概述來自政府、軍事、公共和私人的標準定義,并將他們的定義與計算機科學家等技術專家進行比較。當人們說或聽到人工智能這個短語時,各種想法和圖像就會出現在腦海中--從摧毀對手的致命自主武器或殺手機器人到不那么嚇人的圖像。對人工智能的看法可以從想象水手們坐在船上的電腦屏幕前到蘋果的Siri或亞馬遜的Alexa技術。對自動化的看法可以是簡單的流水線,到自動精簡信號以控制信息流,并納入數字地圖以顯示船只、飛機和潛艇的位置。定義取決于你問誰。

第三種方法是分析今天有關人工智能超級大國之間海軍ISR的自動化和人工智能能力。

第四種方法是構思和描述采用自動化加上人工智能新興技術的設計方法,這些技術可以在不到六個月的時間內被回收、重復使用和轉身,從而擁有為海軍ISR采用自動化的長期戰略的優勢。這種不規則的方法將納入有效性和性能的措施,并有一個苛刻的時間表,其中包括積極的、及時的和道德的標準。

1.3 研究方法

本論文方法將是開發一個適應性模型,用于比較分析今天美國海軍和中國海軍之間的自動化和人工智能能力,包括其海軍的空軍部分。我們的目標是產生一種研究方法,為參謀長聯席會議主席提供精確和簡明的指標和衡量標準,以便其啟發式地觀察和吸收,在今天采取行動,并在人工智能軟件開始超越現有技術時重新調整方向。在第二章中,對自動化和人工智能的文獻回顧進行了定義,海軍ISR的技術方面對于討論、概念化和在本論文中使用一個簡單的工作定義是必要的。

除了定性分析,定量分析將通過對有貢獻的行業公司(私營和公共)的網絡分析來進行,以追求為高層決策和反饋系統開發一個采用框架。混合方法的目的是為了確定情報、監視和偵察的自動化做法。對ISR自動化的徹底分析將使我們更好地了解海上戰場ISR的當前趨勢和限制。值得注意的是,采用的理論通常是基于組織或用戶;因此,將討論兩者。將使用埃弗雷特-羅杰斯(Everett Rogers)的擴散過程的S型曲線模型,研究在過去50年里ISR采用自動化的水平。

這篇論文將包括三個具體的自動化系統,它們可以連接到兩個重點自動化傳感器和兩個海軍采用的云服務來存儲ISR數據。這些系統包括無人潛航器(UUVs)、無人駕駛飛行器(UAVs)。除了美國防部企業范圍內的云解決方案,美國還整合了聯合企業防御基礎設施(JEDI)云計劃,這可以提高海軍ISR支持,并與中國保持同步。關于解放軍的云服務發展計劃,已知的公開信息很少。然而,在2017年,與解放軍合作的中國科技部招募了互聯網巨頭百度、阿里巴巴集團控股公司和騰訊控股--也被稱為BAT--用于云計算。

埃弗雷特-羅杰斯1962年的擴散過程S曲線模型將有助于更好地理解當前的采用方法。例如,美國國防采購系統(DAS)和聯合能力整合與發展系統(JCIDS),以及根據DODI 5000.2的2020年中層采購(MTA)途徑是美國技術采用的采購模式。還將使用定量措施來聯系相關公司的空間和時間網絡分析,私營和非營利公司,可以積極和消極地促進自動化的采用。其目的是可能揭示公司的專有權利和它們之間的距離或分離度,這可能顯示出未來海軍ISR的方法和整體采用過程中的弱點。

作為第三章的案例研究,將提供埃弗雷特技術采用的S型曲線的概述和一個逐步的過程,以幫助海軍ISR采用自動化和AI的過程。其他可提及的擁有采用自動化系統或AI工具的AI戰略的國家將在本論文中簡要討論,它們是英國、俄羅斯、法國、伊朗和韓國。

1.4 技術采用理論

幾十年來,技術背景下的采用理論一直是研究人員、商業和工業界的焦點。現代術語 "采用 "源自羅馬的一種采用形式,即adoptio。這個15世紀末的法語和拉丁語短語adoptare來自ad,意思是 "到",optare意思是 "選擇"。簡單地說,人們可以選擇一個無生命的物體、人、地方或事物,或者選擇改變,或者不改變。

技術采用的S型曲線代表了一個理論框架,幫助概念化一個人或一個組織如何成功或不成功地采用一項技術。根據美國傳播理論家和社會學家埃弗雷特-羅杰斯(Everett Rogers)的觀點,創新技術的成功采用發生在一個分布式的鐘形曲線上,呈S型,它是由擴散曲線在時間和常態方面得出的(圖1)。采用系統的五個類別是。(1) 創新者;(2) 早期采用者;(3) 早期多數;(4) 晚期多數;(5) 落后者。了解S型鐘形曲線的各個階段對成功采用新興技術非常重要。

圖1以水平和拉伸的 "S "形式描述了技術采用率,采用率在Y軸上,時間在X軸上。這意味著,當一項技術最初被采用時,無論是技術還是市場條件,都需要幾年的時間來調整或發展到達到一個拐點,以實現快速采用。

圖1. 擴散過程的S型曲線模型

當市場開始飽和時,曲線就會變平,技術的后期采用者在飽和點上采用新興技術并融入競爭環境已經太晚了,這就是落后者的位置。海軍領導層會發現這一點很有用,因為這意味著最好是在S型曲線的拐點上,而不是在它的起點或終點。

隨著人口的增長,自動化和人工智能新興技術也將增長。S型曲線思想的歷史始于19世紀,其動機是為了了解更多關于人類的成長。羅杰斯的S型曲線采用理論是基于Logistic函數作為人口增長的模型,該模型由比利時數學家Pierre-Francois Verhulst在1839年首次提出。Verhulst將這一理論與人口增長聯系起來,最初他的想法來自英國人和政治經濟學家托馬斯-馬爾薩斯在1789年的《人口原理論》。在這一時期,人們擔心人口增長超過食物供應,以及未來養活人口的問題。從1950年到今天,美國的人口增長從3.3億美國公民增長到14億中國公民;促成了目前77.6億的人口,而且還在不斷增加。人類人口越是增長,對知識的渴求就越有可能,不僅是人類,還有自動化和AI。人們希望有更多的自動化系統,并采用人工智能技術,因為它們通常比人類更快,可以消耗更多的數據,同時提供智能和監控,有時某些技術只是使用起來很有趣。

S型曲線采用理論的一個重要推論是,海軍應該在已經成長并經歷過失敗的技術上建立公司,以實現成功采用。一些技術包括AlphaGo深度學習系統和IBM的DeepMind子公司谷歌,用于下圍棋的戰略游戲,或稱圍棋。2016年,計算機系統AlphaGo擊敗了韓國特級大師李世石。對于這兩個人工智能超級大國的海軍來說,這種模擬游戲直接關系到美國海軍和解放軍海軍之間的傳感器和計算機系統如何在海上戰場上相互學習。技術的采用和增長可以很好地轉化為生命周期模式,并以長期的累積增長來衡量。

自20世紀50年代以來,自動化技術的增長并不令人驚訝,而且是不完善的。根據Modus的說法,S型曲線 "來自于一個定律,即增長速度與已經完成的增長量和有待完成的增長量成正比"。就像生命周期--出生、成長、青春期或成熟和死亡的時期一樣,S型曲線階段作為減速、加速、換檔或完全停止并重新開始的關鍵機制。不是每一個為ISR設計的特定海軍傳感器或計算機系統都能實現對海上戰場的完美了解。

這種觀察在商業領域得到了認可和利用。谷歌前首席執行官和國防部顧問委員會的董事會成員埃里克-施密特認為問題是直接的。他認為,如果我們建立可靠的系統,在其中了解故障模式和錯誤率,計算機視覺是很容易理解的。通過宙斯盾接收、分析和傳播信息和情報,計算機系統與傳感器的連接有時間差,這在年輕的操作人員中產生了公認的挫折感,他們設想計算機系統和人工智能應用,就像高分辨率的視頻游戲,是采用自動化的一個弱點。

人類使用自動化軟件應用來解決問題。重要的是要明白,自動化目前沒有能力進行智力評估。人工智能模擬了人腦的認知功能和計算機視覺顯示數據。在美國海軍中,機器背后的人類操作員使用基于規則的自動化系統,該系統顯示雷達信號。靜止的數據--計算機中沒有被使用或操作的數據--被限制在輸入的數據量中。

采用理論的變化是不可避免的。與美國歷史學家Elting Morison的研究和反思過程相似,自動化的采用主要圍繞著四個不同的部分:"任何機械變化的起源點的初始條件;變化的主要代理人的特點;那些抵制變化的人的性質;以及促進適應所引入的變化的手段。"不理解和忍受這些部分,就不能超越現有知識體系的門檻。

在2020年,我們處于另一個巨大的技術發展和GPC回歸的時代,通過這個時代維持未來的海權取決于在網絡空間的第四維度的優勢。俄羅斯總統弗拉基米爾-普京曾經說過:"人工智能是未來,不僅是俄羅斯的,而且是全人類的。它帶來了巨大的機會,但也有難以預測的威脅。誰成為這個領域的領導者,誰就會成為世界的統治者。"自動化簡單的任務和采用人工智能工具,即使是傳統的系統,也需要改變今天的GPC和國家安全。

5 總結和建議

5.1 前言

這篇論文試圖比較美國和中國海軍采用自動化和人工智能進行海軍ISR的不同方式。將具體的自動化工具--宙斯盾、SSDS和346型--如何改善現代海上戰斗空間的問題進行了概念化。第二章概念化了自動化一詞--一種技術、過程或系統,機器通過它來實現一個特定的目標--和人工智能,一個更雄心勃勃的概念,提出了分析和評估能力。第三章描述了羅杰斯的技術采用的S型曲線,并建議總共有五類采用者來規范采用者類別的使用。這種方法很重要,因為如果沒有這種方法,在采用過程中,將想法討論和將適當的技術歸類到其適當的時間表是至關重要的。第四章展示并分析了兩國海軍采用自動化和人工智能海軍ISR平臺和軟件的方式。盡管美國海軍在海上優勢和空中優勢方面一直保持著主導地位,但中國海軍在主導人工智能以獲得未來的海權方面正在快速接近。

這篇論文包含一個七步戰略和設計過程,適用于簡單、復雜和特別復雜的自動化或人工智能應用的技術采用。這個理論過程可以幫助確定海上戰斗空間中成功的海軍ISR實踐所需的主要需求和材料。人、材料和物理空間代表了關鍵要素。本研究的理論框架確定了五個關鍵的技術采用能力:早期和季度的 "篝火談話";有遠見的思想領袖;宏偉的戰略敘事;設計一個人工智能發展計劃;在計算機技術材料資源方面的領先;以及,為人工智能工程專家和海軍知識專家建立一個即時的和用戶友好的平臺。

本章涵蓋了調查結果的總結、人工智能的差距、倫理和人工智能、對美國海軍的建議,以及涉及海軍ISR的人機合作的自動化和人工智能工具的未來工作。

5.2 調查結果摘要

弗蘭克-巴納比提醒我們,"軍事技術正在使戰爭自動化。"目前的趨勢顯示,無疑是自動化處理、融合和產品交付,用于指揮和控制海上戰斗空間。我開始對自動化和人工智能應用于海軍ISR的調查,以更好地了解兩國海軍采用的機制和類別,不僅使每個海軍成為偉大的競爭對手,而且使其部隊成功的海軍人工智能力量有哪些特點和技術。

如果指揮官被信息或情報淹沒,海軍ISR技術采用的S型曲線的結論可能很重要,相反,可以刺激一種新的文化,采用自動化和人工智能的混合方式,將早期采用者與后期采用者折疊在一起。根據谷歌前首席執行官埃里克-施密特的說法,"美國防部有一個創新采用的問題",應該對軟件系統采用DevOps,或開發運營的文化,并專注于 "客戶采用 ",文化發展的中心是用戶或戰術操作員和在兩國海軍中服務的AI工程師。例如,中國人民解放軍有一種采用技術較晚的發展文化。后期采用者或落后者可以從早期創新者的成功和失敗中獲益,因為這類采用者專注于采用和 "復制 "成功的技術,并觀察到哪些技術的失敗不被采用。

圖20表明,這兩支海軍作為近似的競爭者,在采用自動化方面是成功的;然而,它們處于曲線的兩端。這意味著美國海軍代表著創新和早期采用,而解放軍海軍代表著海軍ISR任務中采用技術的后來者。

圖20. 美國海軍創新者和采用者與中國人民解放軍后期采用者在S型曲線上的對比

這兩個大國競爭者似乎都在采用技術的前向或后向思維方式中共存并完成波長,但政治制度會影響采用技術的速度,無論是創新者還是后來者。

5.2.1 人工智能有利于專制的海軍

自動化和人工智能技術的采用速度往往有利于專制社會。根據中國的人工智能戰略,中國的計劃是通過快速發展人工智能成為全球創新中心,加強中國在采用自動化進行海軍ISR方面的領先地位。"中國的人口超過14億公民,大約有29萬解放軍人員,這大約相當于解放軍230萬人員的12.6%。自2018年以來,中國發表了約42.64%的頂級人工智能論文,約52%的人工智能全球專利,在人工智能公司中排名第二,有超過1011家公司,而美國的人工智能公司有2028家。"在私營部門,中國利用百度、阿里巴巴和騰訊(統稱為BAT)來推動人工智能的發展。中國擁有開放社會中較多人口的優勢,可以協助清理數據,開發或復制算法,并利用開源數據和社交媒體收集和監視海上的海軍平臺。也許,開發人工智能的公司和中國之間的強大反饋回路對軍隊來說是天作之合。

5.2.2 自動化和人工智能:國際海事治理的變化

此后,解放軍海軍能夠利用并聲稱擁有一種新的海事治理模式,并迅速接近其在人工智能方面的主導地位。中國已經開始在采用自動化方面超越美國海軍。在中國清華大學最近關于人工智能發展的工作中,中國國家人工智能政策演變的第五階段(2017年至今)顯示了下一代人工智能在軍事、工業和民用部門中的特點。自2013年以來,解放軍和中國建設和軍事化了其自造島(即,在第一個島鏈內,解放軍擁有 "主場 "優勢,可以監視和維護其在SCS有爭議島嶼周圍12海里的區域。解放軍繼續使用東雕級AGI船來了解美國的海軍事務。作為后來者,解放軍海軍將有可能 "復制 "美國海軍所展示的成功海軍ISR戰術和行動。

中國正在通過收集大量的數據,在人工智能方面領先于美國海軍的間諜船、偵察衛星和OTH雷達。摩爾定律,即每塊硅芯片的晶體管數量--計算處理能力每兩年翻一番,導致快速增長和生產力。中國正在利用收集從海上到太空資產的大量數據的優勢,生產高質量的數據。如果計算機處理能力每兩年翻一番,那么用長期收集的高質量數據進行過濾的難度就會降低,并且更容易在中央數據存儲(即云)中找到。

隨著中國繼續在當地和全球建立更多的網絡基礎設施,它顯示了它愿意為長期優勢承擔短期風險。另一個長期接受的因素,梅特卡夫定律,斷言完全連接的網絡的價值增長與兼容通信設備數量的平方成正比。例如,如果一個網絡有五個節點完全相互連接,每個節點的固有價值是x,它的力量是100倍(由于它有十個不同的鏈接),而單一鏈接的網絡的力量是5倍。雖然網絡的價值增加了兼容通信,但如果競爭對手破壞或黑掉其中一個節點,它也會增加網絡安全問題。解放軍的愿意承擔計算機網絡攻擊的風險,在人工智能方面占據主導地位,以實現長期戰略。

5.2.3 美國海軍的先發優勢:半導體和軟件

然而,美國在人工智能方面的領導地位已經超越了美國沿海地區,擁有比中國更多的海軍人員,并領導著建立網絡基礎設施所需的物質資源。雖然美國人口為3.294億,低于中國的總人口,但美國海軍有339,448人,比中國海軍人數多。美國海軍在采用人工智能技術方面具有先發優勢,不僅僅是因為它的人數比中國海軍多,而是因為美國在頂級人工智能公司方面處于領先地位。具體來說,美國的人工智能公司集中在企業軟件、半導體和量子計算方面。

然而,美國海軍與工業界或私營公司的聯姻可能會帶來重大問題,并與那些不或不堅持用人工智能支持軍隊的人工智能工程師產生摩擦。美國人才來自于硅谷、聯合人工智能中心、國防部的項目,如DARPA、DIU和NavalX。然而,谷歌、臉書和亞馬遜等頂級人工智能公司因隱私權問題受到批評,公眾對人工智能武器化的看法造成了無縫合作的問題。即使美國海軍和國防部在與硅谷合作,在60至90天內完成商業人工智能工具的原型制作并投入使用時,似乎在人工智能的某些方面處于領先地位,但這并不適用于所有海軍ISR平臺。美國海軍司令部可能能夠利用硅谷的人工智能工程師的商業人工智能工具,但傳統的美國海軍可能需要數年或數十年才能完全自動化并采用傳統的常規平臺的人工智能工具。

5.2.4 在人工智能和海權的未來,一艘自動化的航空母艦可能無能為力

ISR技術使海軍平臺幾乎無法隱藏,大量的數據可以欺騙競爭對手。勞倫斯-利弗莫爾國家實驗室高級研究員、海軍研究生院教授扎卡里-戴維斯博士在他的文章《戰場上的人工智能》中認為,"人工智能可以通過增加突襲的感知風險來侵蝕穩定性",一方的人工智能支持的ISR平臺可以迷惑其他精致的ISR。 由于許多海軍ISR操作人員工作時間長,無法完全審核定位移動目標的相關性和準確性,也無法以速度和精度進行打擊,戴維斯稱今天的ISR操作人員很容易被大量的數據和過度收集的數據所害,而競爭者都很想操縱或欺騙其他競爭者。

5.3 AI差距:缺少連接AI工程師和運營商/用戶的AI平臺

這項研究顯示,沒有明顯的中央自動化或人工智能工具,具有連接人工智能工程師和知識專家或海軍用戶的即時通知技術,以更快地解決問題。自動彌合這一差距可以大大有助于獲得客戶和競爭對手的洞察力。根據蘭德公司關于評估數據分析的研究,一個特殊的挑戰與非結構化數據的收集和使用有關,而且不在固定的位置,如關系型數據庫.直接在一個中央數據庫內為人工智能工程師和海軍用戶自動化一個人工智能平臺,對于美國海軍解決和掌握至關重要。采用一個新的平臺來連接人工智能建設者和海軍用戶將有助于超越技術應用的拐點。

盡管收集的信息越來越多,這項研究顯示,描述性和診斷性的風格,特別是視覺分析和趨勢分析,被利用。人工智能提供了關于海軍ISR(即平臺和傳感器)所發生的信息,而診斷性人工智能則迅速指出了確切的問題或議題。正如第四章中提到的,美國海軍采用了一種OTH視覺分析工具,用于對來襲的海軍平臺進行預警。描述性和診斷性的人工智能都是在采用更復雜的預測性和規定性人工智能之前需要掌握的基本程序,其典型代表是神經網絡、模式識別、機器學習和深度學習。

預測性人工智能在美國海軍的數據分析武庫中是缺乏的。預測性人工智能為可能發生的事情提供數據--一個海軍平臺下一步可能去哪里,或者可能是為什么它下一步要去特定的地點。預測性人工智能技術的例子是機器學習、模式識別和統計建模;這種人工智能編程的方法使用歷史和統計數據來進行海軍活動的趨勢分析。預測性和規定性人工智能是對中國保持競爭態勢所必需的先進技術。

規定性人工智能也是缺乏的。規定性人工智能根據歷史數據提供數據,說明如果海軍ISR平臺在海上進行x、y或z的演習,會發生什么以及什么可以更好地發生,并提供建議。規定性人工智能的例子包括監督學習算法,如 "隨機森林",它根據以前收集的數據或模型創建并將決策樹合并成一個 "森林"。這可以幫助支持未來的熱圖和生成對抗網絡(GANs)技術,用于兵棋推演或與競爭對手進行 "紅隊"。簡而言之,無論海軍是早期采用還是在所有其他海軍采用特定的自動化或人工智能技術之后,完善基礎知識并在每一級指揮部發展創新和人工智能操作的文化仍然是成功領導人工智能的關鍵。

美國海軍缺乏的另一個人工智能平臺是能夠從海上生活的 "正常 "模式中區分出可能的異常或反常現象。為了開發和采用區分海上異常或反常現象的技術,目前可用的材料,如來自硅谷的半導體和軟件人才,應該持續和頻繁地訪問和測試。軟件或硬件不足的問題會導致更新的延遲,這最終可能會對識別和定位在海上行動的解放軍部隊構成問題。

人工智能和軍事技術的商業化可能是下一個改變游戲規則的威脅。商業行業出售和使用的無人機可能導致競爭對手使用蜂群戰術來對付關鍵的傳感器,如宙斯盾、SSDS或龍眼雷達。每一級的自動化和人工智能都會增加一層復雜性,以診斷、預測和規定解放軍的下一步行動。此外,如果解放軍與商業部門一起開發人工智能,就會減少美國海軍對具體軟件或硬件更新的控制。對特定的自動化或人工智能工具的控制減少,可能導致其他競爭者或對手購買、銷售和采用這些工具,并利用它們直接對付美國海軍。

5.4 建議

這項研究提供了四個主要建議。另一個已經在快速采用新興技術的模范社區是特種作戰部隊(SOF),特別是特種作戰司令部另一個已經在快速采用新興技術的模范社區是特種作戰部隊(SOF),特別是特種作戰司令部(USSOCOM)。根據NPS教授Leo Blanken的說法,DIU、NavalX和USSOCOM等美國防部組織可以提供 "一種簡單且具有成本效益的方式來改善該領域的現有創新工作:將軍事研究生研究人員與已部署的特種作戰部隊結盟,以快速建立原型:概念和技術。"SOF社區為快速原型設計提供了一個有吸引力的測試平臺,并將戰術用戶與人工智能工程師即時聯系起來。

其次,美國海軍應該投資并采用 "DevOps "文化,以保持對解放軍的競爭優勢。在一個等級森嚴的組織中,培養和實踐DevOps將內在地從人工智能學校或部署前和部署后周期的教育時間開始。這只能由負責的高級官員進行灌輸和啟發。可以說,美國在創新和軟件技術及人才方面繼續領先,但可以通過將美國海軍司令部或總部設在商業和私營人工智能公司附近來進一步提高,以培養和采用下一個人工智能的突破。

第三,在為航母植入更多自動化和人工智能的同時,相應的理論應該考慮蜂群戰術和網絡空間。就像一窩蜜蜂可以蜂擁而上超越一頭熊一樣,自主的無人機可以輕易地蜂擁一個航母打擊群,特別是宙斯盾或SSDS及其相關的天線。如果不將蜂群技術與作戰和戰術ISR任務結合起來,其后果可能導致競爭對手以極小的代價摧毀宙斯盾或346型,并對海軍ISR造成巨大的損害。

第四,兩國海軍共享網絡空間。JP 3-12將信息主導權定義為 "一支部隊在網絡空間的主導程度,允許該部隊及其相關的陸地、空中、海上和太空部隊在特定的時間和地點安全、可靠地開展行動而不受對手的干擾。"網絡空間是自動化海軍平臺的致命弱點,因為海軍ISR平臺之間的自動化和通信依賴于共享信息空間和解讀頻率進行通信。

這篇論文發現了在海軍ISR采用自動化和人工智能時應該考慮的五點:

1.從第一天起就制定一個戰略敘事,并在每個指揮層討論人工智能戰略。戰略敘事是一種特殊的故事,一個組織可以清楚地理解和參與這個故事。這很重要,因為它能告訴其他海上競爭者你是誰,你曾經去過哪里,你要去哪里,以及你在哪里。每個指揮部都應該希望激勵其軍隊成員,讓盟友和合作伙伴興奮,并吸引用戶,如人工智能工程師和人類操作員。

2.控制了建立自動化和人工智能所需的技術材料的國家和海軍,如半導體、硅和鍺,將在未來海權的人工智能方面占據主導地位。市場是否準備好支持軍方在海軍ISR方面的解決方案?

3.采用自動化的成敗在很大程度上取決于對電磁頻譜的控制和頻率的解調能力,如果不是全部的話。

4.應該有一個自動化的人工智能反饋平臺,以便軍事用戶和人工智能工程師可以直接發短信和說話。一個獲勝的、更好的端到端產品需要很好的用戶體驗,以實現高效的工作流程和即時的報告。

5.早期采用者和后來者之間的重大洞察力表明,美國海軍和解放軍海軍在技術采用和競爭的波長上處于兩端。在羅杰斯在第三章關于技術采用的S型曲線的工作中,美國和中國海軍領導人都落在S型曲線的兩端,適合他們各自的組織和理論結構。

5.5 海上力量的未來和未來工作:人機合作

人類和機器聯手是在海軍ISR事務中采用自動化和AI的關鍵。本節涵蓋了未來的工作和采用自動化和人工智能過程中的長期考慮。這些因素是:為操作者提供自動化的健康指標;利用量子計算的研究;以及各種現實技術(虛擬、增強和混合)的增加。

5.5.1 團隊AI健康:COVID-19

海軍ISR和采用自動化或新興技術的重心取決于海軍平臺上健康的人類操作員來操作這些系統。如果一種流行病在一艘航空母艦上蔓延,如USS Theodore Roosevelt (CVN 71),那么所有支持航母行動的ISR都會停止,美國海軍未能采用AI進行監視--其后果可能會導致生死攸關的情況。AI可以提供重要的人類輔助工具,可以將明確的指標自動化。

指揮官會發現,為海軍操作人員的各種設計制定策略,并設計一個整合健康實踐和人工智能的戰略是非常有用的。一個自動化的紅綠燈圖表和每日追蹤器,帶有閃爍的通知符號,將有助于為指揮官和決策者指示診斷出的問題或觸發因素。與生物事件相關的社會破壞的自動化指標的一個簡單模型是威爾遜-科爾曼量表,即生物事件可能性增加的四個階段:有利條件、單焦點或多焦點生物事件、嚴重的基礎設施限制和當地反應能力的耗盡,然后是社會崩潰。第二個復雜的模型是約翰霍普金斯大學冠狀病毒互動地圖。另一個可以提取或利用模型的數據庫是康奈爾大學的arXiv數據庫,供世界頂級人工智能研究人員提交給斯坦福大學的知名資料庫(見附錄)。以互動的方式自動列出SWOT,可以使海軍ISR受益。這很重要,因為有一個明確定義的任務和問題清單有助于盡早診斷出問題,并迅速找到合適的人工智能研究人員。

5.5.2 量子計算

對量子計算的進一步研究將有助于美國海軍對人工智能的成功采用。量子計算超越了二進制數字(比特值為0或1),這是計算機中最小的數據單位,并使用研究人員托馬斯-坎貝爾所說的 "量子比特,其中單個比特可以處于三種狀態之一:開、關,以及唯一的,同時開和關。"在2018年的美國國家量子倡議中,國會確定國家標準與技術研究所(NIST)和能源部的量子信息科學研究中心為量子計算的頂級領導部門。因此,美國海軍應不斷與NIST和能源部密切合作。在這種情況下,國會是資助和提出法案以啟動海軍內部采用新興技術的最高關鍵之一。雖然處于初級階段,但量子計算可以提高人工智能的速度,特別是在機器學習方面,以便迅速發現模式并過濾大量數據集;它將為未來的海權投下長長的陰影。

5.5.3 倫理與人工智能

美國和中國都發布了 "原則",而不是專注于自動化和人工智能是否符合道德、道德上允許或不允許的爭議性問題。2019年6月,中國科技部發布了《新一代人工智能治理原則:發展負責任的人工智能》,其中列出了人工智能治理的八項原則:(1)和諧友好;(2)公平公正;(3)包容共享;(4)尊重隱私;(5)安全可控;(6)責任共擔;(7)開放合作;(8)敏捷治理。2020年2月,美國防部的國防創新部門花了15個月時間才宣布采用人工智能道德的五項原則。它們應該是負責任的、可靠的、公平的、可治理的、可追蹤的。發布像人工智能倫理指南這樣的原則表明,兩個國家都希望在人工智能的發展中具有靈活性,但也有責任。不管有沒有原則,關于使用人工智能的主要爭議很快就與人工智能的錯誤識別以及自動化和人工智能工具武器化的可能性有關。

首先,存在與人工智能和軍事有關的倫理問題,這些問題在電影中都有描寫,如《終結者》或《我,機器人》,這些電影最初是艾薩克-阿西莫夫的深思熟慮的短篇小說,并在現實生活中得到了證明。一些人認為,軍事技術或人工智能在軍隊中的使用不應繼續下去,因為計算機系統可能會自行行動,或根據流行的電影和社交媒體做出自己的致命決定。如果人工智能告訴人類操作員一架飛機有敵意,那么指揮官只有幾秒鐘的時間來決定是否根據現有信息作出反應。然而,自1988年以來,在ISR平臺上采用自動化和人工智能工程,增加了透明度,避免了像美國海軍文森號這樣的事件,這是人的錯誤而不是機器的錯誤。可以說,自動化有助于防御友軍或敵軍的火力,有助于國家安全。

第二,在人機合作中,人是道德主體,而機器不是,但可以被打造為提供道德的選擇。在亞里士多德的《尼各馬可倫理學》中,一個有德行的人并不持有公開的德行態度,而是在特定情況下以某種方式行事,并有一系列的理由。人類可以有意識地做出單獨的選擇;而今天的機器只是協助人類做決定。在美國海軍中,道德問題很可能取決于傳統主義或法律主義的觀點,也可能是以更多的探究性或可能是功利性的心態來修正一種觀點。

在中國人民解放軍中,未來關于道德和采用自動化的工作可以通過中國的道德決策來研究。在中國,倫理學與美德倫理學密切相關,涉及一個人應該如何生活,以及后果主義,涉及所有涉及物質產品的利益。

雖然今天的人工智能機器在一定程度上是自主的,但人工智能機器最終可能會根據特定的道德倫理規范,比人類更快地提出后果。兩個嚴重的倫理問題是:自主系統在未來能否或將被歸類為道德代理人?如果在生死攸關的情況下,對違反人類戰爭法的無道德的代理人--自主系統--缺乏問責,會發生什么?NPS教授Bradley Strawser提出的這些倫理問題值得考慮,但超出了本論文的范圍。

5.5.4 人機合作與虛擬現實(增強現實)。

雖然Ishare對自動化和人工智能大大改善人類福祉的潛力抱有極大的熱情,但智力優于人類的機器的發展可能會導致人類操作者頭腦中的認知失調,并可能被用作一種威懾機制。愛因斯坦警告說,原子的力量會改變我們的思維模式。原子彈導致了廣島和長崎的核災難。然后,核電變成了 "核大決戰 "的想法,這是一個涉及使用核武器造成廣泛破壞并最終導致文明崩潰的理論情景。今天,前國務卿亨利-基辛格等人認為,人工智能威脅著我們的意識以及我們理解真理和現實的方式。"人工智能可以作為威懾工具的概念是一個重要問題,可以在未來的研究中進一步研究。

根據這項研究,海軍ISR平臺的自動化程度越高,人工智能工具的增加,海軍事務和海權將變得更加虛擬。最近的報告,如美國 "2020年美國國防訓練中的擴展現實應用",闡明了數字轉型對人類的日常影響,并已延伸到虛擬現實(VR)、增強現實(AR)和混合現實(MR)技術,這可能是下一個顛覆性技術。各種形式的VR的商業化可能會成為對海軍部隊的威脅。本研究沒有涉及現實技術,VR、AR或MR對于保持人類安全不受傷害或作為一種威懾工具是非常有用的。

由于愛因斯坦和基辛格分別就核戰爭的災難和人工智能對人類意識的威脅提出了警告,人工智能可能會走向一場 "認知戰爭"。認知戰爭將是在海上戰場上使用自動化和人工智能,幾乎由不在海上的人類控制。作為一種威懾工具,人工智能可以被用來用 "假的注入數據 "來威脅競爭對手在海上可能存在的海軍威脅,而實際上,沒有機器存在或曾經存在過。

在一場由自動化和人工智能驅動的革命中,人類正處于信息主導的邊緣。自古以來,海上的艦隊一直在尋求了解地平線外的情況,即敵人可能潛伏的地方。一個世紀前,安裝在駕駛飛機上的無線電和雷達的興起使海軍有能力將監視范圍擴大到地平線以外。具有諷刺意味的是,人工智能解決問題和管理信息的最終效果可能是人類推理、智能和決策的轉變。今天,自動化既在全球范圍內擴展其影響力,又在解釋大量的信息以解決問題,并比以往任何時候都更能創造出充分的透明度。真正的,自動化ISR正在改變人類的知識、認知、現實,并最終改變21世紀海權的面貌。

付費5元查看完整內容

摘要

記錄一個系統或集成系統內所有信息變化的出處,這提供了關于正在做出的決定和促使這些決定的重要信息。從取證的角度來看,這可以用來重新創建決策環境。然而,出處也可以為其他兩個重要功能服務。收集的數據可以支持組件的整合,而生成的圖形數據結構可以通過解釋、總結和告警來支持操作員進行態勢感知。混合戰爭將必然匯集不同決策支持能力,因為決策者必須在多個戰爭領域運作。自主代理將可能在計劃和執行過程中發揮作用,有時能夠在沒有人類干預的情況下做出決定,但人類決策者必須意識到這一點。事實證明,證據圖可以轉化為修辭結構圖(RSG),使代理能夠用自然語言甚至多模態交流,向人類解釋他們的行動。證據還被證明可以加強對計劃執行監控,并可用于向人類或自主代理提供通知,當計劃中使用的信息發生變化時,可能需要重新考慮計劃。隨著我們朝著智能機器在復雜環境中支持人類決策者團隊的方向發展,跟蹤決策及其輸入的需要變得至關重要。

引言

出處是關于實體、活動、代理以及這些概念之間關系的信息[1]。這些信息不僅僅解釋了發生了什么,它還回答了關于實體如何被操縱、何時發生以及誰參與了這個過程的問題。我們很可能熟悉關于追蹤藝術作品出處的新聞和虛構的故事。任何實體的創造、破壞或修改的出處都可以被追蹤。在本文中,我們將重點討論軍事系統內的信息。在指揮與控制(C2)內,信息出處對于記錄行動背后的決策過程是必要的,特別是當自主和人工智能(AI)代理深入參與時。參與某一過程的 "誰 "可能是人類或人工智能代理。

信息出處有幾個目的。在取證方面,出處追蹤提供了參與決策的人和代理,以及數據是如何演化為該決策的。美國公共政策委員會指出,數據出處是算法透明度和問責制的一個明確原則[2]。完整記錄的出處可以闡明數據的依賴性、責任流,并幫助解釋為什么采取某些行動。隨著人工智能和自主代理繼續自動化進程,它們在做出關鍵決策時已變得更加不可或缺[3]。

圖1 PROV-DM模型。
付費5元查看完整內容

摘要

人工智能領域的進展繼續擴大這組技術的潛在軍事應用范圍。本文探討了信任在人機聯合作戰中的關鍵作用,以及依靠人工智能來補充人類認知的潛在影響。如果依靠人工智能來準確處理傳感器數據,操作自主系統和平臺,或通過擬議的作戰概念(如以決策為中心的戰爭)提供有利的決策支持,設想機器智能的中央指揮和控制作用,那么信任機器智能將是未來作戰中的一個關鍵組成部分。鑒于這些技術和理論的發展,信任的概念對于機器智能在戰術和作戰層面的軍事行動中的使用變得高度相關,正確校準的信任水平是安全和有效行動的基礎。在簡要回顧了機器智能的最新進展和對信任概念的探索之后,本文概述了人工智能在戰場上的當前和潛在應用,以及由不充分或不合理的高信任度帶來的挑戰。

引言

縱觀歷史,技術已經擴大了武裝沖突的領域,戰術交戰的節奏,戰場的地理范圍,以及指揮官與部隊溝通的手段。技術創新--包括軍事和民用--改變了軍隊的作戰方式以及國家計劃和進行這些沖突的方式。在21世紀,迄今為止,很少有進步能像統稱為人工智能(AI)的一組技術那樣獲得如此多的關注。人工智能正準備迎來一個新的時代,在這個時代,機器智能和自主性正在為軍事行動的規劃和執行產生明顯的新概念。算法戰爭可能會帶來一些獨特的東西:增強甚至取代人類決策過程的系統,其速度可能超過人類規劃者的認知能力。
新興技術的整合提出了任何數量的基本組織和倫理問題,值得關注。本文將采用定性的社會科學方法,重點討論人類-自治團隊(HAT)的一個重要方面:鼓勵對機器智能的適當信任程度。有大量的學術文獻關注自動化或機器人技術中的信任問題,但有關具體軍事應用的工作較少。當人工智能在聯合作戰中被實際部署時,在信任方面有哪些挑戰和機會?在簡要回顧人工智能和概述機器智能在戰場上的可能應用之后,本文在分析鼓勵適當信任水平的陷阱和潛在解決方案之前,探討了信任和信任校準的概念。

人工智能的進展

幾十年來,人類一直對賦予機器某種形式的人工智能的可能性著迷,Nils Nilsson將其定義為 "致力于使機器智能化的活動,而智能是使一個實體在其環境中適當運作并具有預見性的品質"。在數字時代的早期,出現了兩種廣泛的人工智能方法。自上而下的專家系統方法使用復雜的預編程規則和邏輯推理來分析一個特定的數據集。對于具有可預測規則的明確定義的環境--諸如分析實驗室結果或下棋等應用--專家系統或 "符號 "人工智能(基于符號邏輯)的性能主要取決于處理速度和算法的質量。另一大類使用自下而上的機器學習方法,模擬人類通過檢測數據中的模式進行學習的方式。神經網絡是一種以人腦為模型的機器學習形式,能夠通過使用多個(因此是 "深")人工神經元層來識別復雜的模式,是被稱為 "深度學習 "的技術的基礎。通過其在數據集中尋找關系的能力,這種技術也被稱為 "連接主義"。
自上而下、基于規則的符號系統和自下而上的機器學習連接主義技術之間的差異是很大的,特別是關于它們的潛在應用范圍和靈活性。深度學習方法的顯著特點是能夠將學習與它所訓練的數據集分開,因此可以應用于其他問題。基于規則的算法可以在狹義的任務中表現得非常好,而深度學習方法能夠迅速找到模式,并在 "蠻力 "專家系統計算方法無效的情況下有效地自學應用。最近的一些人工智能進展顯示了模仿創造力的能力,產生了有效的解決問題的方法,這些方法對人類來說可能是反直覺的。
然而,總的來說,人工智能仍然是狹窄的或 "脆弱的",即它們在特定的應用中功能良好,但在用于其他應用時仍然不靈活。與人類的認知相比,鑒于機器的計算速度遠遠超過人腦,機器智能在將邏輯規則應用于數據集時要優越得多,但在嘗試歸納推理時,它必須對數據集或環境進行一般性的觀察,這就顯得不足。大多數機器學習仍然需要大量的訓練數據集,盡管新的方法(包括生成對抗網絡(GAN)和 "小于一次 "或LO-shot學習)正在出現,需要非常小的數據集。圖像識別算法很容易被混淆,不能像人類那樣立即或直觀地理解情景背景。這種脆性也延伸到了其他問題,比如游戲。雖然人工智能在視頻游戲中經常表現出超人的能力,但他們往往不能將這種專業知識轉移到具有類似規則或玩法的新游戲中。
 雖然人工智能技術繼續在變得更加適應方面取得重大進展,但任何接近人類的人工通用智能仍然難以實現。評估人工智能的近期前景因該技術的漸進式進展而變得更加復雜。圍繞著人工智能的炒作--在很大程度上被深度學習方法的成功所推動--既導致了對該技術未來的不切實際的期望,也導致了對其非常大的進展的正常化。正如一份報告所指出的,"人工智能將一項新技術帶入普通人的視野,人們對這項技術習以為常,它不再被認為是人工智能,而出現了更新的技術"。盡管象征性的人工智能和各種形式的機器學習構成了該領域最近的大部分進展,也許除了融合這兩種方法的嘗試之外,未來仍然不確定。一些人猜測,機器學習技術帶來的進展可能會趨于平穩,而另一些人則保持樂觀。相關的技術進步,如短期內的計算機芯片設計和長期內的量子計算,可能會影響進一步進展的速度。

付費5元查看完整內容

當前的海軍作戰要求水手們根據動態作戰環境中的不確定態勢信息做出時間緊迫和高風險的決策。最近的悲慘事件導致了不必要的傷亡,海軍行動中涉及決策復雜性,并特別突出了 OODA 循環(觀察、定向、決策和評估)中的挑戰。涉及使用武器系統的殺傷鏈決策是 OODA 循環中一個特別緊張的類別——具有難以確定的意外威脅、縮短的決策反應時間和致命的后果。有效的殺傷鏈需要正確設置和使用船上傳感器;未知接觸者的識別和分類;基于運動學和智能的接觸意圖分析;環境意識;以及決策分析和資源選擇。

該項目探索了使用自動化和人工智能 (AI) 來改進海軍殺傷鏈決策。該團隊研究了海軍殺傷鏈功能,并為每個功能制定了特定的評估標準,以確定特定 AI 方法的功效。該團隊確定并研究了 AI 方法,并應用評估標準將特定的 AI 方法映射到特定的殺傷鏈功能

圖:利用人工智能改進海軍殺傷鏈的作戰概念

總結

當前的海軍行動通常是快節奏的、關鍵的,并且需要做出高風險的決策,這些決策有時基于非常動態的戰區中的不確定信息。許多例子強調了提高決策效率的必要性以及減輕觀察團隊負擔的必要性。缺乏上述情況的例子包括 2017 年的菲茨杰拉德號航空母艦 (DDG 62) 和 MV ACX Crystal相撞,以及 2009 年皇家港口號航空母艦 (CG 73) 的擱淺。一些根本原因是相關人員缺乏經驗、疲勞和壓力.

上述事故展示了軍事行動的難度,并展示了 OODA(觀察、定向、決策和評估)循環中的挑戰(Jones 等人,2020 年)。人為錯誤、人的認知限制和海軍作戰固有的決策復雜性導致了 OODA 循環中的挑戰,更具體地說,是殺傷鏈過程中的挑戰。

現代戰斗空間由來自常規陸地、空中和海洋等多個領域以及來自太空和網絡空間的大量數據組成。決策者需要考慮許多因素,包括交戰規則 (ROE)、要使用的武器、傳感器和意圖評估。發現、修復、跟蹤、瞄準、參與、評估 (F2T2EA) 殺傷鏈模型緩解了該過程的一些困難(參謀長聯席會議,2013 年)。人工智能 (AI) 和機器學習 (ML) 可以通過分析備選方案和使用評估標準將 AI 方法映射到殺傷鏈功能,從而幫助海軍在戰術領域做出殺傷鏈決策。這是在本報告的五個章節中分三個階段完成的。

本報告利用了數百個資源,主要利用了美海軍研究生院 AI-OODA 團隊在其 Capstone 報告(2020 年)中進行的先前研究,“利用人工智能 (AI) 進行空中和導彈防御 (AMD):以結果為導向的決策援助。”他們將他們的工作與 John Boyd 的觀察、定向、決定和行動決策框架相結合。作為他們分析的初步步驟,AI-OODA 團隊將特定的 OODA 功能明確且緊密地耦合到特定的 F2T2EA 功能。然而,本報告斷言 OODA 循環是一個決策循環,它嵌套在殺傷鏈的每個功能中,而不是在高壓力或低壓力情況下專門映射到一個或多個殺傷鏈功能。團隊基于 F2T2EA 模型開發了一組 28 個殺傷鏈功能。

在制定將 AI 方法映射到殺傷鏈的評估標準時,很難確定一個好的決策,這對于決策評估至關重要。在評估決策時,必須考慮選擇行動時的知識意識狀態以及解釋能力。使用了幾種對決策進行評分的方法,從定義和優先考慮感興趣的“武器-目標”到制定評分標準和報告評估結果,以供其他人審查。

目前,人工智能的狀態非常廣泛,必須對其進行解釋,以了解人工智能對殺傷鏈中功能的適用性。本報告討論了所選 AI 方法的高級概述,并突出顯示了部分最流行的方法。首先,沒有普遍接受的定義,這很難定義人工智能。其次,人工智能與機器學習 (ML) 存在差異。 ML 允許在準確性和可預測性方面取得增量收益; AI 接收數據并通過算法提供輸出。人工智能的歷史從 1940 年代艾倫·圖靈 (Alan Turing) 的加密機器到 1980 年代美國政府在戰略計算計劃中的使用,再到今天在聯合人工智能中心 (JAIC) 中的人工智能戰略五個支柱,從領先的人工智能人力到安全和倫理。美國國防高級研究計劃局 (DARPA) 在 3-wave 框架中描述了 AI 的發展方向,分為手工知識 (Wave 1)、統計學習 (Wave 2) 和上下文推理 (Wave 3) 在 1-4 個維度內情報參數的屬性(Launchbury 2017)。這些屬性包括感知、推理、抽象和學習。

人工智能涉及可以根據輸入值預測結果的監督學習。有幾種使用監督學習進行學習的技術。包括線性回歸和分類。此外,許多數值方法可以分析發生的學習有效性,例如 F-score 和 Accuracy score。人工智能還可以使用無監督學習,它使用算法來發現未標記數據集中的數據模式或分組。在分析未知(y)響應以揭示標記(x)數據中的模式時,無監督學習是有益的。數據分析界的一個著名例子是鳶尾花(Iris flower)數據集。僅使用標記的數據,可以看到響應聚集在一起,并且可以確定響應中存在模式(花的種類)。無監督學習的方法包括聚類和 K-means,但還有其他方法。強化學習有一個代理能夠接收來自環境的反饋并理解基本目標。此外,正如 Sutton 和 Barto 在(2018 年)中解釋的那樣,探索和開發之間存在權衡。最后,生成對抗網絡 (GAN) 利用無監督學習和強化學習,通常用于神經網絡 (NN)。神經網絡是機器學習算法的極好來源,它有大量的輸入,而這些輸入又會產生大量的計算。 NN 非常適合用于模擬、自然語言處理、博弈論和計算機視覺。 NN 只是一種將輸入映射到輸出的簡單方法,可以在此過程中進行學習。然而,NN 可以被描述為一種“黑盒”學習技術,因為很難解釋正在發生的事情,并且通常需要一種可解釋的 AI (XAI) 技術。 XAI 的三個主要組成部分是可解釋模型、解釋界面和解釋心理學(Gunning 2019)。數據安全必須與“大數據”一起考慮,“大數據”是指非結構化、復雜和大型數據集,具有五個 v 特征:數量、速度(數據量隨時間變化的增加)、多樣性、真實性和價值。其他理論包括決策理論、模糊邏輯和效用函數

使用上述文獻綜述,該團隊開發了一個框架,用于將 AI/ML 映射到 AMD(空中導彈防御)殺傷鏈。采取了四個步驟:1) 建立模型框架,2) 確定決策點,3) 應用 AI/ML 方法,以及 4) 分析結果。該團隊確定了以下用于殺傷鏈映射分析的 AI/ML 方法:線性回歸、邏輯回歸、聚類、關聯、隨機森林、神經網絡、GAN 和樸素貝葉斯。評估標準被稱為“決策點”并提出四個問題:(1)所需輸出的類型是什么,(2)所需的學習類型是什么,(3)可解釋性(XAI)是什么水平需要,以及 (4) 需要多少個預測變量?該團隊通過基于一組決策點和評分過程評估每個殺傷鏈功能的每種方法來執行映射。對于被認為非常適合某項任務的方法,得分為+1,如果該方法適合但次優,則為0,如果該方法不適合該任務,則為–1。

該團隊進行了映射分析,根據與殺傷鏈的 28 個功能中的每一個功能相關的評估標準(決策點)分析 AI 方法。該團隊使用評分方法來確定每個殺傷鏈功能的最佳整體 AI/ML 分數。團隊的映射顯示為 0。

該團隊的 AI/ML 映射到殺傷鏈功能為國防部和海軍提供了兩個關鍵好處。首先,映射本身是設計和開發支持殺傷鏈決策的人工智能戰術決策輔助工具的重要起點和基礎。其次,該團隊將 AI 方法映射到殺傷鏈的分析過程可用于了解 AI 在許多其他軍事和非軍事領域的應用。識別適當的人工智能方法、制定評估標準和評分過程以及制定過程功能以進行分析映射的過程對于支持許多不同人工智能系統的工程具有深遠的潛力。

表1:AI/ML方法到殺傷鏈的映射

付費5元查看完整內容
北京阿比特科技有限公司