亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

確保信息和武器系統免受網絡威脅是美國國防部及其盟國合作伙伴的一個重要目標。了解這些系統在現實操作條件下的端到端性能,包括網絡干擾,對于實現任務目標至關重要。在不利的操作條件下,識別和減輕操作性能的不足,可以為我們的防御能力提供重要價值,并直接拯救生命。

作為一個說明性的例子,我們考慮聯合全域指揮與控制(JADC2)系統。JADC2從根本上依靠通信和網絡來包含、提取和傳播時間敏感的、與任務相關的信息,以決定性地贏得對敵方部隊的勝利。未來的沖突很可能涉及到試圖破壞對JADC2通信和高度復雜的武器系統的可靠運行至關重要的信息系統。破壞已經是潛在對手部隊的一種能力,并將蔓延到與他們結盟的次要威脅。JADC2綜合網絡和動能戰場的復雜性要求訓練、分析、測試和評估部門充分考慮到網絡操作退化和/或利用網絡漏洞對整體任務結果的潛在影響。這促使人們對工具、技術和方法進行大量的持續研究和開發,以評估一般軍事系統,特別是作戰系統的網絡復原力。

戰斗系統之間的復雜性和相互依賴性以及它們之間的聯系使目前的彈性分析方法變得復雜。例如,假設故障是隨機的硬件故障,那么與網絡中的單點故障相關的風險可以通過冗余的組件來緩解。然而,一個未被緩解的網絡漏洞也可能導致冗余組件出現相同的故障。即使組件本身沒有漏洞,成功干擾數據交換時間的攻擊,例如通過加載數據總線,也可能導致作戰系統性能下降。同樣,通過延遲的、間歇性連接的、低帶寬的環境建立通信聯系,可能需要使用多跳來轉發信息,這增加了對中間人攻擊的敏感性。

還有一種情況是,武器系統的網絡漏洞不一定是任務漏洞,因為利用該漏洞可能會也可能不會影響實現任務目標所需的整體系統能力。為了保證任務免受網絡威脅,武器系統的網絡彈性必須在現實的戰術環境中進行評估,以便:

  • 預測潛在的網絡攻擊對具體任務的影響。
  • 分析任務背景下的替代緩解策略。
  • 訓練作戰人員有效應對對手為破壞動能任務而動態部署的網絡工具、戰術和程序(TTPs)。

使用虛擬機(VM)的傳統網絡演習是網絡系統的最高保真表現,因為它們不僅虛擬了通信協議,還虛擬了操作系統和應用程序,因此,在這些模塊中發現了漏洞。因此,網絡范圍經常被用于網絡攻擊和防御評估和培訓。然而,虛擬機往往需要大量的硬件足跡來模擬大型網絡,并需要大量的時間和人力來配置特定實驗的范圍。這種類型的網絡范圍受到以下額外的限制:

  • 表現戰術、5G、衛星和其他無線網絡以及適當的網絡和電子戰(EW)攻擊載體的能力有限。
  • 在產品生命周期的設計階段,支持分析的能力有限。
  • 難以表現替代性作戰環境以及與動能戰領域的整合。

在本文的其余部分,我們從以任務為中心的角度研究了使用網絡數字孿生體來提高軍事(戰斗)系統的網絡彈性。網絡數字孿生依靠高保真模擬和仿真來對物理系統進行建模,并在可移植性、可擴展性、對無線網絡和通信進行建模的能力以及支持整個產品開發周期的網絡分析方面提供好處。我們還提出了一組用例,說明數字孿生在不同系統的網絡彈性評估中發揮的作用。

我們認為,將基于虛擬機的網絡范圍與網絡數字孿生體相結合的網絡框架,可以為調查各種戰術系統的網絡復原力和脆弱性提供一個理想的平臺。

圖 3. 連接兵棋模擬器和網絡數字孿生。

圖 4. 使用網絡數字孿生進行網絡分析。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

數字工程和數字設計是美國空軍(USAF)的一個新興重點領域,特別是用于現代復雜系統。高復雜度系統的一個例子是網絡合作自主彈藥群(NCAM),它優先考慮廣域搜索和多視角目標確認。首先,本研究討論了在基于模型的系統工程(MBSE)工具中建立行為模型的方法。然后,本研究介紹了NCAM在兩個環境中的并行建模工作:Cameo系統建模器中的MBSE模型,以及仿真、集成和建模高級框架(AFSIM)中的基于物理學的模型。每個數字模型在其環境中都為設計過程中的利益相關者提供了不同的好處,所以這些模型必須呈現出一致和平行的信息。因此,這項研究也提出了在模型之間翻譯設計信息的自動化方法。總的來說,這對協同工作的模型通過系統認知和數字場景模擬對自主過程的理解,與決策部門建立信任關系。

引言

1.1 一般問題

在始于1903年萊特兄弟首次飛行的重于空氣的飛行歷史中,美國軍隊促進了空對地攻擊能力的持續和快速發展。最初,飛行在軍事上的應用僅限于1909年美國陸軍信號部隊的偵察和監視;然而,第一次世界大戰和后來的第二次世界大戰的爆發創造了軍用飛機技術和理論的繁榮。到1946年,簡單的偵察雙翼飛機被可以超過音速的噴氣機所取代。美國看到了這種快速發展的技術的可行性,并在1947年創建了獨立的美國空軍(USAF)服務。空中力量的勢頭一直持續到現在,現代美國空軍的飛機可以隱藏他們的雷達信號,并精確地投擲制導彈藥,在地面上的同一個洞里投擲5枚炸彈!這就是美國空軍。

在美國空軍這個令人難以置信的組合中,一個合乎邏輯的下一個能力是合作和自主的彈藥,它利用相互通信來尋找、識別和打擊一個目標,同時評估對目標的損害。國防部研究與工程助理部長(USD(R&E))對這種能力有兩個關鍵定義。

  • "自動化。該系統的功能沒有或很少有人類操作者的參與。然而,系統的性能被限制在它被設計為做的具體行動上。通常,這些都是定義明確的任務,有預先確定的反應(即基于規則的簡單反應)。

  • 自主性。系統有一套基于智能的能力,使其能夠對系統部署前沒有預先編程或預期的情況做出反應(即基于決策的反應)。自治系統具有一定程度的自治和自我指導行為(由人類代理決策)"。[4]

目前的制導彈藥非常嚴格地遵循自動化的定義。通過激光或全球定位手動指定目標,然后彈藥執行程序化的行動以擊中指定位置。在這種情況下,控制權被操作者緊緊抓住,對目標開火的決定需要多個人為步驟。這些人為步驟使操作者對自動化有一種信任感,因為扣動扳機時風險最小化;與操作者使用無制導彈藥相比,彈藥利用其自動化技術更準確地擊中目標。當討論下一步的自主化發展時,人們有一種理性的擔心,即人類通常控制的決定將由自主系統的機器大腦來代替。這種不信任導致人們對部署旨在自主摧毀目標的武器猶豫不決。

理解與系統自主決策相關的行為是建立對自主性信任的絕佳方式。有多種方法可以將行為理解傳達給人類評估者:首先是提供描述系統各個方面的正式文件,接下來是創建一個數字模型,用圖表表示系統結構和行為,另一個是運行涵蓋廣泛場景的模擬,最后演示可以證明物理系統在測試和評估中的能力。文檔方法一直是所有國防部采購的標準,可以追溯到手繪示意圖的設計時代。然而,最近,國防部對使用建模和仿真來記錄和管理系統表示了興趣。已經出現的一個概念是數字孿生,系統的每個方面都被虛擬建模,以實現快速的修改原型和精確的配置控制。[5]這種數字孿生的焦點也為它所代表的系統的物理結構和行為創造了清晰的、可瀏覽的數據,從而使系統得到合理的理解。

1.2 問題陳述

如Reed[6]所示,基于模型的系統工程(MBSE)已經迅速被美國空軍的數字工程工作所采用,用于程序和系統結構建模項目。然而,復雜系統的行為MBSE建模在美國空軍的相同項目中并不常見。對于自主系統,算法的復雜性和這些自主系統協作時出現的突發行為使得評估邏輯行為和性能影響變得困難。對系統行為進行建模的能力是MBSE過程所固有的,但MBSE模型通常缺乏提供詳細的基于物理學的模型的能力,無法對系統的運行情況進行性能評估。有一些專門建立的基于物理的仿真平臺,如高級仿真、集成和建模框架(AFSIM),就是為了這后一種目的而存在的,但它們往往與MBSE工具中的定義模型脫節[3]。一種將復雜系統的MBSE行為模型和同一復雜系統的基于物理學的仿真模型聯系起來的方法和工具是必要的。要確保這對模型之間的行為一致,需要有能力在建模平臺之間傳輸設計數據。

1.3 研究目標和問題

本研究的目的是建立一個復雜的合作彈藥系統的行為MBSE模型,并建立一個自動和可重復的方法,將數據從MBSE模型轉移到AFSIM場景中,以執行相同的合作彈藥行為的模擬。MBSE模型將足以驗證單個自主彈藥的邏輯行為,以及在合作概念中同一彈藥的數量。AFSIM模擬將反過來為建模者提供反饋,以便對彈藥模型進行潛在的修改,從而實現更高的性能。

合作彈藥模型的研究問題包括:

  • SysML在行為建模中的優勢和劣勢是什么?

  • 哪些MBSE元素和/或屬性適合翻譯成AFSIM的原生語言用于情景模擬?

  • SysML數字模型在多大程度上可以代表AFSIM模擬中使用的合作彈藥的行為?

  • 在SysML模型和AFSIM場景之間可以利用哪些自動和可重復的方法進行數據交換?

1.4 方法學總結

這項研究必須首先確定連接點和集成到AFSIM的所需變量,這將有助于定義合作彈藥的MBSE系統模型的邏輯接口。這些接口有助于定義合作彈藥的MBSE模型的邊界,并為整合到AFSIM的場景模型提供數據點。設計和測試的關鍵領域是:為AFSIM實體所需的變量和基本方程建模;提供從MBSE模型到AFSIM的彈藥和場景參數的自動導出可用性;以及確定MBSE模型中會影響模擬的可修改區域。基于對連接點的評估,研究將轉向創建一個MBSE模型,以保持連接點,同時建立與AFSIM模型平行的行為。MBSE模型中的行為將根據AFSIM模型的情況進行評估。

1.5 假設和局限性

本研究僅限于虛擬彈藥的建模和模擬。此外,本研究定義的合作彈藥概念是名義上的;因此,彈藥模型將由名義上的數據填充。

1.6 提綱

第2章是對與彈藥建模、AFSIM集成、自主無人機系統行為建模和美國空軍先進彈藥的歷史應用有關的出版物的文獻回顧。第3章介紹了合作彈藥概念的設計方法和將數據自動傳輸到AFSIM場景模擬的方法。第4章討論了已完成的網絡化合作自主彈藥(NCAM)MBSE模型的行為分析、自動轉換結果和平行模型之間的比較。第5章總結了研究的重要發現,并推薦了未來的研究課題。

付費5元查看完整內容

數字孿生有可能支持設計、建造、運營和維護美海軍部(DON)賴以開展海軍行動的平臺的決策者。然而,由于數字孿生的應用范圍和與之相關的風險仍不清楚,因此關于數字孿生的知識體系很薄弱,這給美海軍部帶來了挑戰。本論文進行了定性的技術評估,以確定采用數字孿生對DON的企業架構的影響。對企業范圍內采用的分析確定了數字孿生在DON的戰略、流程、人員、技術、網絡安全和風險管理方面的機會和風險。數字孿生提供的商業價值主要取決于物理平臺的總風險值和數字孿生同步的度和頻率。

海軍服務是基于平臺的(美海軍部,2020c)。在戰術層面上,海軍行動是由艦艇、飛機和潛艇等平臺進行的(海軍部,2020c)。這些海軍行動是為了履行海軍的持久職能。

海軍對復雜系統的依賴,如艦艇和潛艇,來進行海軍行動,這就要求有效地管理和開發這些產品及其相關的信息。這些產品的開發采用了設計、開發、運行和處置四個階段的過程。這個過程被稱為產品生命周期管理(PLM)。DON開發和維持有效的PLM是至關重要的。沒有足夠的PLM,國防部不可能開發、部署和維持滿足不斷變化的海洋環境需求的平臺。海軍作戰部長(CNO)2021年的NAVPLAN進一步強調了PLM對海軍的重要性。在他對美國海軍的指導中,CNO解釋說,"專業地照顧我們的平臺是我們的DNA","維持我們的船舶和飛機對滿足未來的需求絕對是至關重要的"(海軍作戰部長[CNO],2021,第7頁)。

為了維持所需的PLM,DON必須發現和利用減少不確定性的手段。不確定性限制了決策者在他們管理的產品中避免風險和利用機會的能力。不確定性表現為知識不足的結果(Kramer,1999)。因此,不確定性可以通過決策支持工具來減少,這些工具可以為決策者提供及時和相關的信息,以做出更明智的決策(Kramer, 1999)。數字孿生是一種新興技術,能夠在PLM過程中支持DON決策者。數字孿生是現實世界系統的數字表示(Gartner,n.d.-a)與數字建模等類似概念不同,數字孿生是完全集成的,數據在物理產品和虛擬產品之間雙向常規流動(Grieves & Vickers,2017)。對產品數據的常規捕獲和分析可以支持對物理產品的決策。然而,在DON背景下,采用的好處和風險并沒有明確界定。本論文旨在探討數字孿生如何以及為什么可以在產品生命周期管理(PLM)的背景下被DON采用。

A. 問題陳述

美國防部的運作需要協作、復雜和昂貴的系統。國防部產品生命周期管理(PLM)中的挑戰導致操作能力下降以及財政需求增加。數字孿生有可能幫助國防部克服這些挑戰,保持國防部系統狀態的最新數據,并進行自動數據分析以幫助決策。然而,關于數字孿生的知識體系對國防部來說是一個挑戰,因為整個應用范圍和與數字孿生相關的風險仍不清楚。隨著國防部繼續尋找能夠延長其系統使用壽命的方法,由計算機支持的收集和響應通過數字孿生提供的數據變得越來越可取。因此,需要研究如何在DON企業內采用數字孿生,以及與這種潛在采用相關的商業價值。

B. 目的聲明

本研究的目的是探索如何在國防部內采用數字孿生。這項研究的重點是確定(a)數字孿生對國防部企業架構的影響,(b)采用數字孿生對美國防部PLM的好處和風險,以及(c)數字孿生能夠為國防部提供的商業價值。這項研究的目標很重要,因為美國防部PLM的不足對國防部的運營能力有直接的負面影響。這項研究的結果可以幫助國防部更好地了解如何采用數字孿生,最終目的是改善PLM,從而提供商業價值。

C. 研究問題

  • 1.采用數字孿生如何影響海軍部的企業架構?

    • 1.1.業務流程是如何改變的?

    • 1.2.對海軍部的網絡安全有什么積極和消極影響?

  • 2.如何采用數字孿生來支持海軍部的產品生命周期管理?

    • 2.1.數字孿生給組織帶來什么好處?

    • 2.2.數字孿生給組織帶來什么風險?

  • 3.數字孿生能給海軍部帶來什么商業價值?

    • 3.1.所提供的價值是否值得采用?

D. 論文的組織

本論文又分為四章。第2章是文獻回顧,調查了數字孿生的背景、組成部分和應用。第3章解釋了分析的方法。第4章是基于研究問題的數字孿生的分析。第5章是結論,提供關鍵的見解、建議和未來研究的機會。

付費5元查看完整內容

目前,人工智能(AI)為改造許多軍事行動領域提供了巨大的機會,包括作戰、指揮與控制(C2)、后勤、安全和維護,以提高其整體作戰效率。空中和導彈防御(AMD)是一個特別復雜的任務領域,人工智能的應用至關重要。空中導彈防御任務指的是保衛國土、保護區、地面基地、地面部隊或艦艇免受敵對的空中或導彈威脅。AMD的威脅包括敵對的飛機、無人駕駛飛行器(UAV)或機載導彈。AMD行動的復雜性源于威脅的嚴重性、威脅的意外性、對形勢認識的不確定性以及事件的快速發展,因為作戰人員必須迅速評估形勢,制定適當的行動方案,并最好地利用他們的戰爭資產來應對。美國國防部(U.S. DOD)正在研究使用AI系統(或AI-enabled AMD[AI-AMD]系統)作為AMD作戰人員的自動決策輔助工具,以大大減少他們的認知負荷(Jones等人,2020),使AMD決策更快、更好。

人工智能的一個關鍵方面已經聚集了大量的研究興趣,那就是信任。信任是有效團隊的一個基本原則。它同時適用于人類和人機團隊。信任使團隊成員能夠很好地合作,是有效團隊表現的基礎(Lee and See 2004)。與人工智能系統的成功合作將需要人類對人工智能系統有一個校準的信任和依賴程度(泰勒等人,2016)。

隨著更先進和更快的空中和導彈威脅彈藥的發展和投入使用,操作人員更需要在AMD行動中迅速作出監測。不及時的決策和反應將導致災難性的后果。因此,人工智能是一個可能的解決方案,通過自動決策輔助工具加快和加強決策過程。這些AMD自動戰斗管理輔助工具可以幫助戰術操作人員應對更快的決策周期、大量的數據以及需要觀察的幾個系統或屏幕(Galdorisi 2019)。然而,為了有效地利用人工智能能力的潛力,需要操作員的高度信任。操作員對系統的信任程度低,可能會導致人工智能-AMD系統利用不足,受到不適當的監控,或者根本不使用(Floyd, Drinkwater, and Aha 2016)。這些問題中的任何一個都可能導致操作者的工作量不必要的增加,或者任務失敗的可能性。

論文對信任的定義、人機交互(HMI)的概念、信任因素以及包括AMD殺傷鏈模型、威脅場景、架構、模型和功能在內的概念模型進行了廣泛的回顧。有了這樣的認識,論文提出了人工智能-AMD系統的信任框架,對人機交互和人工智能-AMD系統信任因素的描述。論文最后提出了在人類操作者和AI-AMD系統之間實現校準信任的策略

信任框架始于對系統背景的分析。圖1顯示了AI-AMD指揮與控制(C2)系統(包括AI-AMD操作員和決策輔助工具)及其他與之互動的子系統的背景圖,這些子系統有助于操作員和AI-AMD決策輔助工具之間信任的發展。背景圖使我們能夠研究各系統之間的相互作用,以及它們對AI-AMD操作員和決策輔助工具之間信任動態的影響。

圖1. AI-AMD系統框架圖。

這篇論文將信任定義為操作者的態度,即AI-AMD決策輔助工具將有助于實現操作者的目標,即在一個以不確定性和脆弱性為特征的作戰環境中迅速摧毀來襲威脅的任務。這種信任的定義表明,它是對操作者相信或感知AI-AMD決策輔助工具的一種情感評估。為了積極地影響信任,操作者必須親自看到并感受到AI-AMD決策輔助行動的優勢。AI-AMD行動涉及很多不確定因素,以及天氣、電磁干擾和地形等環境因素以及不斷變化的威脅的性質所帶來的脆弱性。操作員將預期AI-AMD決策輔助系統按照 "合同 "執行,以處理這些不確定性和脆弱性。這些合同將是人工智能-AMD決策輔助工具應該執行的感知功能或任務,以及執行這些功能或任務的理想表現。

圖2說明了操作員和AI-AMD決策輔助工具之間的信任框架。y軸代表人類對AI-AMD決策輔助系統的信任程度,x軸代表AI-AMD決策輔助系統的能力。綠色的45°虛線表示最佳的信任水平或校準的信任線,其中的信任與AI-AMD的能力相對應,導致正確的利用(Lee and See 2004)。過度信任由最佳信任水平線以上的區域表示,此時的信任超過了系統能力,導致誤用。低于理想信任水平線的區域表示不信任,這時的信任沒有達到系統能力,導致濫用。假設存在一些默認的信任水平(如黃框所示),目標是制定一個策略,以提高AI-AMD輔助決策能力的信任。在使用該系統時,可能會發生違反信任的情況,從而降低操作員的信任。因此,信任修復行動必須被納入,以保持信任在最佳水平。

圖2. 人類操作員和AI-AMD決策輔助工具之間的信任。

基于功能分配的操作員和AI-AMD決策輔助工具之間的人機交互研究表明,操作員和AI-AMD決策輔助工具應該被設計成在大多數殺戮鏈功能中作為一個 "團隊"運作。這引導論文研究了單獨和集體考慮人類和決策輔助的信任因素。對操作員和人工智能-AMD決策之間的人機交互的研究還顯示,操作員的角色已經從手動控制器變成了監督控制器。因此,一個值得信賴的決策輔助工具是很重要的,因為操作者會期望系統的表現符合預期,以幫助操作者更好地履行他的角色。另外,為了進一步幫助減輕操作者的認知工作量,信息的外部表示、決策輔助工具的建議必須易于閱讀和理解。

關于信任因素,本論文提出了一個 "由外而內 "的框架,如圖3所示。論文首先考慮了與操作環境相關的因素,這些因素描述了AMD操作系統的背景。第二,它研究了與組織環境相關的因素,操作人員和人工智能-AMD系統得到了培訓和發展。第三,論文研究了操作人員和人工智能-AMD決策輔助工具之間的交互,以提出與操作人員、人工智能-AMD、單獨和集體相關的因素。

圖3. 建議的信任因素

圖4顯示了擬議的戰略銜接圖,以實現操作者和AI-AMD輔助決策之間的校準信任。對信任定義、人機界面和信任因素的審查表明,該戰略應關注三個關鍵領域:(1)人類對自動化技術和AI-AMD決策輔助系統的集體和個人感知;(2)增強操作員和AI-AMD決策輔助系統的團隊活力;(3)AI-AMD決策輔助系統的可信度,重點是系統開發。該戰略利用DOTMLPF-P框架提出了三個關鍵原則和五個支持原則。首先,軍事作戰人員需要被告知自動化技術的真正能力和局限性,特別是AI-AMD輔助決策。第二,操作員的培訓要求必須增加,以應對新的工作范圍和不斷變化的威脅。第三,必須在人工智能-AMD決策輔助系統的開發中加入新的要求,以提高系統的可感知的可信度。這三個關鍵原則得到了DOTMLPF-P框架其他方面的支持,如組織、領導、人員、設施和政策。

圖4. 實現操作員和人工智能-AMD決策輔助工具之間校準信任的戰略銜接圖

付費5元查看完整內容

摘要

在要求嚴格的航空航天、國防和安全領域,操作和維護人員必須在保證系統運行方面表現出色。因此,遠程培訓和支持是有助于實現這一目標的關鍵活動。滿足高度標準化的程序和復雜的任務,如果以傳統的方式進行,在物流、成本、安全和環保方面會有很大的缺陷。新興技術,特別是那些促進全面互聯互通的技術,正在為解決這些問題提供創新的解決方案。這一點正由建模與仿真服務(MSaaS)范式來解決,而諸如虛擬、增強和混合現實(VR/AR/MR)等新興技術提供了革命性的方法,能夠大幅降低成本并提高性能。在這種情況下,在聯盟正在進行的數字化轉型中,本文為遠程培訓和支持開發創新的解決方案,通過開發一個集成的協作數字平臺,使客戶在操作中得到充分的幫助,與專家進行遠程連接,并訪問所有相關文件,在云端安全地存儲和參考。然而,這種專用平臺的成功實施和運行是以全面連接、數據攝取和處理、云計算和網絡安全、人工智能等因素為前提的。

關鍵詞:建模與仿真、云計算、擴展現實、連接、培訓即服務、遠程培訓和支持。

1.0 引言

在過去的十年里,世界和工業已經進入了被定義為第四次工業革命的階段。它的特點是創新技術和工藝的出現,如超連接性、人工智能、機器人、物聯網、自動駕駛汽車、增材制造、納米技術、生物技術、材料科學、能源儲存、量子計算等等[1]。人們過去的操作和合作方式發生的最劇烈的轉變之一是平臺技術的崛起,特別是由數字化促成的平臺技術。事實上,大多數相關行業目前正處于現在眾所周知的數字轉型之中。雖然很少使用 "革命 "一詞,但包括北約在內的全球防務領域肯定正在許多(如果不是所有)部門中沖浪,進行數字化轉型。

軍隊需要有能力在復雜的現實環境中為部隊做準備,包括威脅和作戰環境(OE)不斷變化的靈活場景,以確保訓練有素的預備人員能夠在整個軍事行動范圍內執行任務。利用新興技術,軍隊現在比以往任何時候都更注重創造全方位的作戰環境(OE)能力和學習經驗,以訓練和準備部隊應對未來的作戰情況,而這些情況是由動蕩、不確定、復雜和模糊的全球安全所決定的。使用數字技術的創新為軍事領域注入了越來越多的能力。在很大程度上,根據北約建模與仿真總體規劃,未來的軍事能力(即理論、訓練、行動等)將由建模與仿真(M&S)來開發和支持[2,3]。為了強調這一重要性,北約STO內的北約M&S小組(NMSG)已經建立了一個方案,以建議、促進和協調聯盟機構、北約成員國和伙伴國之間的合作,最大限度地有效利用M&S解決方案。根據他們的設想,M&S服務和工具必須盡可能方便地被大量用戶使用,從而實現 "作為一種服務 "的方法,以提供更具成本效益的 "按需 "產品、數據和流程的可用性[4] 。

為了實現這一點,許多國防部隊被吸引到現場、虛擬和建設性(LVC)環境中進行訓練。這種方法確實突破了傳統訓練方法的限制,因為它提供了一個安全、更真實和身臨其境的體驗。它還提供了一個無限的空間來進行訓練,以及為增加真實感所需的所有可變威脅。M&S即服務(MSaaS)在NATO STO技術文件MSG-131[5]中已經被定義。"M&S即服務(MSaaS)是一種向客戶提供價值的手段,以實現或支持建模和仿真(M&S)用戶的應用和能力,并按需求提供相關數據,而不需要擁有具體的成本和風險"。這種 "作為一種服務 "的方法正在推動全球社區開發與這一理念相匹配的最新技術的產品,其目的是不僅在產品方面,而且在其相關的商業模式及其對行業與采購部門關系的影響方面獲得重大的現代化。萊昂納多作為國際陸軍、海軍、航空航天、國防和安全領域的領導者,一直在根據這些概念開發最先進的解決方案。

本文描述和討論了一些解決方案,主要集中在創新的培訓目的上,這大大顛覆了傳統方法。更具體地說,描述了用于提供服務的云平臺OCEAN,以及相關的合成環境(RIAce)和M&S中心之間的安全網絡基礎設施(SHORE)。此外,還介紹了專門為培訓目的設計的擴展現實工具。

付費5元查看完整內容

摘要

兵棋模擬是一種決策工具,可以為利益相關者分析的場景提供定量數據。它們被廣泛用于制定軍事方面的戰術和理論。最近,無人駕駛飛行器(UAVs)已經成為這些模擬中的一個相關元素,因為它們在當代沖突、監視任務以及搜索和救援任務中發揮了突出的作用。例如,容許戰術編隊中的飛機損失,有利于一個中隊在特定戰斗場景中勝利。考慮到無人機的分布可能是這種情況下的決定性因素,無人機在超視距(BVR)作戰中的位置優化在文獻中引起了關注。這項工作旨在考慮敵人的不確定性,如射擊距離和位置,使用六種元啟發法和高保真模擬器來優化無人機的戰術編隊。為紅軍蜂群選擇了一種空軍經常采用的戰術編隊,稱為line abreast,作為案例研究。優化的目的是獲得一個藍軍蜂群戰術編隊,以贏得對紅軍蜂群的BVR戰斗。采用了一個確認優化的穩健性程序,將紅軍蜂群的每個無人機的位置從其初始配置上改變到8公里,并使用兵棋方法。進行了戰術分析以確認優化中發現的編隊是否適用。

索引詞:優化方法,計算機模擬,無人駕駛飛行器(UAV),自主智能體,決策支持系統,計算智能。

I. 引言

兵棋是在戰術、作戰或戰略層面上模擬戰爭的分析性游戲,用于分析作戰概念,訓練和準備指揮官和下屬,探索情景,并評估規劃如何影響結果。這些模擬對于制定戰術、戰略和理論解決方案非常有用,為參與者提供了對決策過程和壓力管理的洞察力[1]。

最近,無人駕駛飛行器(UAVs)作為一種新的高科技力量出現了。利用它們來實現空中優勢可能會導致深刻的軍事變革[2]。因此,它們的有效性經常在兵棋中被測試和評估。

由于具有一些性能上的優勢,如增加敏捷性、增加過載耐久性和增加隱身能力,無人機已經逐漸發展起來,并在許多空中任務中取代了有人系統[3]。然而,由于戰斗的動態性質,在視覺范圍之外的空戰中用無人系統取代有人平臺是具有挑戰性的。在空戰中,無人機可以被遠程控制,但由于無人機飛行員對形勢的認識有限,它將在與有人平臺的對抗中處于劣勢。然而,這種限制可以通過自動戰斗機動[4]和戰術編隊的優化來克服。此外,使用無人機可以允許一些戰術編隊和戰略,而這些戰術編隊和戰略在有人駕駛的飛機上是不會被考慮的,例如允許中隊的飛機被擊落,如果它有助于團隊贏得戰斗。文獻中最早的一篇旨在優化超視距(BVR)作戰中的飛機戰術編隊的文章[5]表明,空戰戰術是用遺傳算法(GA)進行優化的候選方案。該實施方案采用分層概念,從小型常規作戰單位建立大型編隊戰術,并從兩架飛機的編隊開始,然后是四架飛機,最后是這些飛機的倍數。在模擬中沒有對導彈發射進行建模。當一架飛機將其對手置于武器交戰區(WEZ)的高殺傷概率(Pkill)區域內一段特定時間,簡化的交戰模擬器就宣布傷亡。事實證明,所提出的方法的應用是有效的,它消除了團隊中所有沒有優化編隊的飛機,并為整個優化編隊的飛機團隊提供了生存空間。

Keshi等人[6]使用了與[5]相同的分層概念,從由兩架飛機組成的元素中構建大型戰術編隊。模擬退火遺傳算法(SAGA)被用來優化編隊,使其能夠克服對局部最優解的收斂。對16架飛機的編隊進行了優化,提出的最優解表明SAGA比基本的GA更有效。最后,為了探索一個穩健的SAGA,對不同的馬爾科夫鏈進行了比較,事實證明自調整馬爾科夫電流更適合所提出的問題。

Junior等人[7]提出使用計算機模擬作為一種解決方案,以確定BVR空戰的最佳戰術,使擊落敵機的概率最大化。在低分辨率下使用通用參數對飛機和導彈進行建模,并改編了名為COMPASS的模擬優化算法,模擬了兩架飛機對一架飛機的BVR戰斗。低分辨率模型假定在水平面的二維空間內有一個均勻的直線運動。使用優化的戰術表明,擊落敵機的平均成功率從16.69%提高到76.85%。 Yang等人[8]提出了一種方法來優化飛機對一組目標的最佳攻擊位置和最佳路徑。該工作考慮到飛機能夠同時為每個目標發射導彈,并將飛機與目標有關的攻擊性和脆弱性因素作為評價攻擊位置的指標。一個高保真模擬被用來模擬每個導彈的飛機、雷達、導彈和WEZ的動態特性。這項工作并沒有解決在BVR戰斗場景中優化一組飛機對另一組飛機的編隊問題。

Li等人[9]提出了一種基于指揮員主觀認識的編隊優化方法,即在空戰中目標設備信息不確定的情況下選擇飛機編隊的問題。首先,計算戰斗機的戰斗力,這是通過指揮員的主觀認識評估目標戰斗力的基礎。戰斗機的戰斗力以能力的形式表現出來,包括攻擊、探測、生存能力、通信、電子戰、預警系統等。因此,通過采用前景理論和綜合模糊評估來優化空戰訓練。最后,一個應用實例證明了該方法在小規模空戰中的可行性。作者聲稱,利用戰斗力評估戰斗情況的能力為優化空戰訓練提供了一種新的方法。

?zpala等人[10]提出了一種在兩個對立小組中使用多個無人駕駛戰斗飛行器(UCAVs)進行空戰的決策方法。首先,確定兩隊中每個智能體的優勢地位。優勢狀態包括角度、距離和速度優勢的加權和。在一個團隊中的每個智能體與對方團隊中的每個智能體進行比較后,每個航空飛行器被分配到一個目標,以獲得其團隊的優勢而不是自己的優勢。為一對對立的團隊實施了一個零和博弈。對許多智能體參與時的混合納什均衡策略提出了一種還原方法。該解決方案基于博弈論方法;因此,該方法在一個數字案例上進行了測試,并證明了其有效性。

Huang等人[11]開發了新的方法來處理UCAV編隊對抗多目標的合作目標分配和路徑規劃(CTAPPP)問題。UCAV的編隊是基于合作決策和控制的。在完成目標偵察后,訓練指揮中心根據戰場環境和作戰任務向每架UCAV快速傳輸任務分配指令。UCAV機動到由其火控系統計算出的最佳位置,發射武器裝備。合作目標分配(CTAP)問題通過增強型粒子群優化(IPSO)、蟻群算法(ACA)和遺傳算法(GA)來解決,并在歸因、精度和搜索速度等方面進行了比較分析。在進化算法的基礎上發展了UCAV多目標編隊的合作路徑規劃(CPPP)問題,其中提供并重新定義了獨特的染色體編碼方法、交叉算子和突變算子,并考慮燃料成本、威脅成本、風險成本和剩余時間成本來規劃合作路徑。

Ma等人[12]開展的工作解決了在BVR作戰場景中優化兩組(R和B)無人機對手之間的優勢地位問題。一個無人機ri∈R對一個無人機bj∈B的優勢是通過ri和bj之間的距離、ri的導彈發射距離的下限和上限、ri的高度和bj的高度之差以及ri的最佳發射高度來估計的。決定性的變量是無人機在兩組中的空間分布和每架飛機在這些組中的目標分配。無人機在三維作戰空間BVR中的可能位置被簡化(離散化),通過立方體的中心位置來表示。每個無人機組都有一組立方體。優化問題被建模為一個零和博弈,并被解決以獲得納什均衡。

Ma等人[12]提出的工作沒有使用高保真模擬來分析無人機空間分布的選擇和分配給它們的目標對BVR作戰的影響。高保真模擬對飛機、雷達、導彈及其導彈的WEZ的動態特性進行建模。這些動態特性也影響到BVR作戰時每架飛機的行動觸發,因此也影響到最終的結果。例如,如果在兩組無人機之間第一次沖突后的時間窗口內考慮高保真BVR作戰模擬,新的沖突可能會發生,直到模擬結束。因此,每個在交戰中幸存的無人機將能夠選擇一個新的目標,這取決于可用目標的優勢值。在[12]中沒有考慮與無人機行為有關的不確定性。有關敵方無人機在戰術編隊中的確切位置及其導彈發射距離的信息是行為不確定性的例子。這兩個信息和上面描述的其他信息在BVR戰斗中是相關的:它們直接影響飛機之間的交戰結果。

在這項研究中,我們試圖解決文獻中發現的一些局限性,如低分辨率模擬、與敵人有關的不確定性的處理以及缺乏對優化解決方案的穩健性的確認,旨在提高兵棋結果的質量。我們的目標是驗證哪些藍色蜂群的戰術編隊可以在BVR戰斗中戰勝紅色蜂群。作為一個案例研究,RED蜂群使用了空軍經常采用的戰術編隊,稱為line abreast[13]。為了評估BLUE蜂群解決方案的穩健性,我們解決了新的問題,改變了RED蜂群每架飛機的位置,目的是估計新的RED蜂群編隊對BLUE蜂群的優化戰術編隊的效率的影響。

我們使用自主智能體和高保真計算機模擬來優化BVR戰斗中的無人機戰術編隊,考慮與敵人相關的不確定性,如戰術編隊中的位置誤差和導彈發射距離。統一行為框架(UBF)被采納為創建自主智能體的基礎。飛機和導彈在三維環境中用六個自由度(DoFs)建模。

該程序將在接下來的章節中進一步討論。

付費5元查看完整內容

摘要

北約正在進行一項名為聯邦任務網絡(FMN)的重大舉措,旨在在北約成員國和伙伴國家之間建立一個共同的技術和培訓基礎,以便在聯盟行動需要時,他們的部隊能夠對關鍵信息系統進行互操作。FMN不是網絡;它是一套互操作的標準和實踐。作者正在領導MSG-193專家團隊的工作,該團隊一直致力于支持在FMN中納入適當的建模和仿真 (M&S) 標準和實踐。本文總結了FMN規范是如何制定的,包括MSG-193作為“M&S辛迪加”在過程中的作用。然后,該論文強調了NMSG的科學技術與FMN支持的軍事行動之間的文化差距,以及如何有效彌合這種差距。FMN開發的第5和第6螺旋(階段)將是建模和仿真的主要重點,包括任務演練、培訓和決策支持。本文最后總結了當前針對這些螺旋的建議中的M&S技術。

付費5元查看完整內容

摘要

自主系統的開發者需要通過測試來訓練和驗證他們的算法。最終用戶在決定如何有效利用系統時也可以使用這些數據。模擬是在真實環境中進行實驗的另一種選擇,它更安全,成本更低,并允許執行可重復和可控的實驗。傳統上,機器人專家使用的模擬器專注于與系統相關的細節,同時簡化了與環境、通信和資產間關系相關的方面。作為替代方案,CMRE提出了一個海事仿真框架(MSF),可與機器人中間件(即MOOS和ROS)互操作,采用了一種硬件和軟件循環仿真方法,允許模擬通常被簡化的重要外部因素。這些擴展元素包含內容可以發現自主系統的開發人員可能不知道的交互,從而提高開發中的系統的健壯性。這項工作的目的是建立一個可配置和可擴展的仿真框架,以訓練和測試海事系統的自主行為,以協助系統開發者和支持最終用戶的操作決策。

該框架由高級體系結構(HLA)中的專用模擬器、聯邦成員模擬環境、平臺動態、傳感仿真、通信和直觀的可視化組成。提出的框架提供了一種模擬情況,包括復雜的海上操作的挑戰,以水下領域為重點,提供了比傳統方法更全面和現實的能力。到目前為止,MSF已經被用于支持地雷對抗(MCM)和反潛戰(ASW)任務中自主系統算法的發展,具有單個或多個車輛配置。

付費5元查看完整內容

摘要

當代和新出現的安全威脅以及從最近的軍事行動中吸取的教訓已經證明,為了在傳統的物理領域(陸地、空中、海上、太空)實現作戰目標,確保在非物理領域的主導地位至關重要,即網絡空間、電磁環境(EME)和信息環境。因此,除了物理作戰領域之外,在非物理領域取得優勢的能力對于實現戰役的軍事和非軍事目標具有決定性意義。

作戰人員將面臨消除沖突,協作,同步和整合行動的挑戰,以實現并發揮協同效應以應對多種威脅,其中可能還包括來自每個作戰領域對手的武裝沖突閾值以下的行動,包括非物質的。

本文探討了作戰環境聯合情報準備 (JIPOE) 作為支持聯合作戰規劃、執行和評估的主要工具的作用和意義,從而有助于多域作戰 (MDO) 的同步和協調。在這方面,基于政治、軍事、經濟、信息、基礎設施-物理、時間(PMESII-PT)方法,不可能將對當代作戰環境(OE)的分析局限于物理領域及其與非物理領域的關系。相反,作者們相信,確定一種合適的方法來關注在非物理領域單獨或聯合進行的活動影響,它們在PMESII-PT所有領域的相互融合和實際操作領域的相關性,將大大有助于友軍識別和評估對手的重心(COG)、關鍵弱點、意圖和行動路線(COAs)的能力,包括各自的指標。JIPOE將為聯合部隊指揮官(JFC)提供OE的整體視圖,將與戰術層面密切合作、共享和開發,通過結合不同領域的能力,應該能夠壓倒對手的部隊。這種集中控制和分散執行的方法將有助于在作戰和戰術層面之間產生協同效應。

引言

未來的軍事行動將以物理和非物理層面的融合為特征,眾多不同的行為者將在其中運作。任何部隊都需要適應極其復雜的作戰環境和大量的作戰變量,需要適應性地使用一系列武器系統來產生致命和非致命的效果。因此,除了物理作戰領域(即陸地、空中、海上和太空),在非物理領域(網絡空間、EME、信息環境)取得優勢的能力將對實現戰役的軍事和非軍事目標具有決定性意義[1, p.280]。

OE是影響能力運用和影響指揮官決策的條件、環境和影響因素的綜合體[2, p.3]。了解OE的因素和條件不僅是所有計劃活動,特別是行動設計的關鍵前提,也是友軍保護和許多其他相關任務的關鍵前提[3, p.41]。

JIPOE代表了一種系統的方法,用于分析有關OE和對手的信息。它可以應用于全部的軍事行動。指揮官和參謀部在危機背景、根本原因和具體動態方面,對戰區形成共同的理解和整體的看法。它使指揮官能夠直觀地看到問題的程度,以及他們如何塑造和改變OE,使之成為他們的優勢,這將為他們的決策提供信息[2, p.3-5]。

JIPOE產品極大地促進了聯合(即作戰)層面的軍事行動的規劃和執行。現代軍隊,特別是北大西洋公約組織(NATO)內的軍隊,幾十年來在討論跨領域(陸、海、空)的協調行動時一直使用聯合這一術語。如今,由于全球安全環境的巨大變化以及俄羅斯和中國日益增長的野心,為了挑戰潛在的同行對手,需要采取多領域的方法。在傳統的戰爭門檻下,盟國及其合作伙伴已經受到了跨越物理和非物理領域的持續攻擊[4, p.2]。MDO一詞不同于聯合行動,因為它旨在關注跨越多個領域的行動,而不考慮服務的歸屬,不一定是由多個部門進行的行動[5,p.49]。

圖1:支持聯合行動的當前JIPOE流程的可視化。

圖2:提出支持MDO的JIPOE過程方案。

付費5元查看完整內容

在決定是否減輕或接受網絡攻擊對武器系統的風險時,最重要的考慮因素是它如何影響作戰任務——也稱為任務影響。然而,對整個空軍的每個系統和所有任務進行全面評估是不切實際的,因為每個系統都很復雜,有大量潛在的漏洞需要檢查,每個漏洞都有自己復雜的威脅環境。

進入網絡任務線程分析框架。為了分析任務影響,作者提出了這種旨在同時實現幾個目標的新方法:足夠全面,可以在美國空軍的每個任務的規模上執行,但信息量足以指導決定接受或接受減輕特定風險。此外,該方法非常簡單,可以在不超過幾個月的時間內執行,并且可以根據需要進行更新。

該框架遵循自上而下的方法,從捕獲所有關鍵任務元素的整個任務的“線程”(映射)開始,然后是支持其執行的系統。雖然作者并未將網絡安全風險評估問題簡化為交鑰匙解決方案,但他們提出了有用的方法來分類與任務成功最相關的領域,同時將對漏洞和威脅的詳細調查限制在最關鍵的領域。他們的框架旨在大規模完成,適用于各種場景,并明確其工作方式。

00 報告研究的問題

  • 評估整個空軍的任務影響或網絡安全風險有哪些挑戰?
  • 網絡攻擊的風險與其他任務風險有何不同?
  • 從任務影響的角度來看,網絡問題的哪些方面提出了必須解決的獨特挑戰?

01 主要發現

1.1 在合理的資源支出下分析大規模的任務影響是一個主要的挑戰

  • 即使是狹義的任務也需要大量的系統,而且每個系統都可能相當復雜。
  • 在美國空軍的每項任務中增加一項任務的復雜性,要評估的系統數量變得不可行。

1.2 隨著新系統的引入、舊系統的修改以及戰術、技術和程序的發展,執行任務的方式發生了變化

  • 對系統的更改會導致系統漏洞的更改,同時威脅也會演變。
  • 隨著任務、漏洞和威脅的變化,必須重新檢查風險評估。

1.3 網絡空間的特點之一是冗余無效

  • 冗余并不能提供抵御網絡攻擊的穩健性。
  • 冗余組件具有共同的網絡攻擊漏洞。

1.4 失去指揮和控制可能會在沒有任何系統或組件故障的情況下損害任務

  • 對手操縱指揮和控制的脆弱性是另一種特殊的網絡效應。
  • 這種類型的網絡效應通常不會在系統工程中用于安全的技術中捕獲。

1.5 當決策者不了解分析的工作原理時,他們通常會恢復直覺和判斷

  • 分析工具越不透明,就越被視為“黑匣子”,越不可信。
  • 這種反應提出了透明的動機,以便可以信任該方法來指導決策。

02 建議

  • 要大規模執行任務影響評估并節省工作量,請使用系統工程熟悉的方法和可用于分類的任務關鍵性標準組合。

  • 定義任務時,不要包含任何系統。在分析的后期介紹特定系統的作用。

  • 將隨著時間推移相對穩定的工作與需要在系統生命周期中更新的分析分開。

  • 盡可能使用現有的和經過驗證的技術以保持透明,以便決策者了解分析的工作原理及其局限性,并信任它來指導決策。

  • 應用網絡分離的概念來解決冗余問題。

  • 在任務和系統級別合并功能流程圖,以解決對手指揮和控制分析問題。

  • 為了全面驗證和驗證網絡任務線程分析框架,空軍應該在各種不同的任務中應用和測試它。

03 報告目錄

第一章

評估武器系統網絡安全風險的一些注意事項

第二章

評估任務影響的原型框架

第三章

框架的討論

付費5元查看完整內容
北京阿比特科技有限公司