生成方法(生成式人工智能,Gen-AI)在解決機器學習和貝葉斯推斷任務中的應用進行了綜述。生成模型需要模擬一個大規模的訓練數據集,并使用深度神經網絡來解決監督學習問題。為了實現這一目標,我們需要高維回歸方法和用于降維的工具(即特征選擇)。生成式人工智能方法的主要優勢在于它們能夠不依賴具體模型,并利用深度神經網絡來估計條件密度或感興趣的后驗分位數。為了說明生成方法的應用,我們分析了著名的埃博拉數據集。最后,我們總結了未來研究的方向。
關鍵詞:生成式人工智能,神經網絡,深度學習,ABC,INN,歸一化流,擴散模型,分位貝葉斯,擬似推斷,埃博拉
1 引言
機器學習中的一個重要任務是:給定輸入-輸出對,其中輸入是高維的,構建一個“查找”表(即字典)來存儲輸入-輸出示例。這是一個編碼(即數據壓縮問題),用于快速搜索和檢索。另一個常見問題是找到一個簡單的預測規則(即算法),即:我們能否找到一個好的預測函數f(x)f(x)f(x),用來在給定xxx 的情況下預測輸出yyy?給定一個訓練數據集(yi,xi)i=1N(y_i, x_i)_{i=1}^{N}(yi,xi)i=1N 的輸入-輸出對,我們能否訓練一個模型,即找到函數fff?從計算角度來看,我們有一個高維的多變量函數f(x)f(x)f(x),其中x=(x1,…,xd)x = (x_1, \dots, x_d)x=(x1,…,xd)。 給定(y,x)(y, x)(y,x)-輸入-輸出對,我們有一個模式匹配(即監督學習)非參數回歸形式:
為了實現良好的泛化能力,我們需要能夠進行非線性降維,并找到一組合適的特征/因素。關鍵問題是:我們如何表示一個多變量函數,以便使訓練過程高效?許多高維統計模型需要數據降維方法。根據 Breiman(2001),我們將數據表示為由一個黑箱生成,其中輸入向量xxx 被黑箱轉化為輸出yyy,或生成一個描述從xxx 預測yyy 的不確定性的預測分布p(Y∣X)p(Y | X)p(Y∣X)。Fisher(1922)和Cook(2007)清楚地描述了降維問題。雖然通過篩選和將預測值與輸出變量繪制來尋找預測器是典型的做法。 統計推斷中的一個核心問題是計算一個感興趣的后驗分布。給定似然函數p(y∣θ)p(y | \theta)p(y∣θ) 或前向模型y=f(θ)y = f(\theta)y=f(θ),以及先驗分布π(θ)\pi(\theta)π(θ),目標是進行逆概率計算,即計算后驗分布p(θ∣y)p(\theta | y)p(θ∣y)。對于高維模型來說,這一任務非常困難。馬爾科夫鏈蒙特卡羅(MCMC)方法通過生成后驗樣本來解決這個問題,使用密度評估。 另一方面,生成式人工智能技術直接學習從均勻分布到目標分布的映射。生成式人工智能的主要優勢是它是無模型的,并且不需要使用迭代密度方法。逆貝葉斯映射被通過深度學習的輸入輸出映射的模式識別所替代。深度分位神經網絡(Deep Quantile NNs)提供了一個用于推斷決策的通用框架。分位神經網絡提供了一種替代不可逆神經網絡(如歸一化流)的方式。 生成方法通過以下方式解決這兩個問題。設Z~PZZ \sim P_ZZ~PZ 是潛變量ZZZ 的基礎度量,通常是標準多變量正態分布或均勻分布的向量。生成方法的目標是從訓練數據(Xi,Yi)i=1N~PX,Y(X_i, Y_i){i=1}^{N} \sim P{X,Y}(Xi,Yi)i=1N~PX,Y 中表征后驗度量PX∣YP_{X|Y}PX∣Y,其中NNN 被選擇為適當的大值。使用深度學習器來估計f^\hat{f}f^,通過非參數回歸X=f(Y,Z)X = f(Y, Z)X=f(Y,Z)。深度學習器通過從三元組(Xi,Yi,Zi)i=1N~PX,Y×PZ(X_i, Y_i, Z_i){i=1}^{N} \sim P{X,Y} \times P_Z(Xi,Yi,Zi)i=1N~PX,Y×PZ 中學習來估計。隨后的估計器H^N\hat{H}NH^N 可以看作是從基礎分布到所需后驗分布的傳輸映射。在ZZZ 為均勻分布的情況下,這相當于逆累積分布函數(CDF)采樣,即X=FX∣Y?1(U)X = F{X|Y}^{-1}(U)X=FX∣Y?1(U)。 設(X,Y)~PX,Y(X, Y) \sim P_{X,Y}(X,Y)~PX,Y 是輸入-輸出對,且PX,YP_{X,Y}PX,Y 是聯合度量,我們可以從中模擬一個訓練數據集(Xi,Yi)i=1N~PX,Y(X_i, Y_i){i=1}^{N} \sim P{X,Y}(Xi,Yi)i=1N~PX,Y。標準的預測技術是條件后驗均值X^(Y)=E(X∣Y)=f(Y)\hat{X}(Y) = E(X|Y) = f(Y)X^(Y)=E(X∣Y)=f(Y),即給定輸出YYY 時預測輸入XXX。為此,考慮多變量非參數回歸X=f(Y)+?X = f(Y) + \epsilonX=f(Y)+?,并提供估計條件均值的方法。通常的估計器f^\hat{f}f^ 包括 KNN 和核方法。最近,提出了深度學習器,并提供了關于仿射函數疊加(即嶺函數)的理論屬性(見 Montanelli 和 Yang(2020),Schmidt-Hieber(2020),Polson 和 Rockova(2018))。一般來說,我們可以為任何輸出YYY 表征后驗映射。只需通過使用傳輸映射:
從新的基礎抽樣ZZZ 中評估網絡。這里,ψ\psiψ 表示余弦嵌入,因此潛變量的架構對應于離散傅里葉近似。另一方面,生成方法通過構建訓練數據的“查找”表,并將深度神經網絡擬合到該表上,來解決監督學習問題。這提供了一種傳輸映射到基礎分布,基礎分布由潛變量zzz 的已知分布p(z)p(z)p(z) 給出。由于我們可以選擇樣本大小NNN,因此理解這些深度學習估計器的貝葉斯風險屬性及其插值屬性(稱為雙重下降)非常重要。 本文的其余部分安排如下:第 1.1 節描述了降維技術;第 2 節介紹了架構設計的多種選擇。例如,自動編碼器(Albert et al. 2022;Akesson et al. 2021)或隱式模型(參見 Diggle 和 Gratton 1984;Baker et al. 2022;Schultz et al. 2022);它還與間接推斷方法相關(參見 Pastorello et al. 2003;Stroud et al. 2003;Drovandi et al. 2011, 2015)。常用的生成方法包括:變分自動編碼器(VAE)、獨立成分分析(ICA)、非線性獨立成分估計(NICE)、歸一化流(NF)、可逆神經網絡(INN)、生成對抗網絡(GAN)、條件生成對抗網絡、近似貝葉斯計算(ABC)和深度擬似推斷(DFI)。第 3 節回顧了使用無密度深度分位 ReLU 網絡的生成貝葉斯計算(GBC);第 4 節提供了經典埃博拉數據集的應用。最后,第 5 節總結了未來研究的方向。 深度學習的民間傳說:淺層深度學習器能夠很好地表示多變量函數,并且在外推時表現良好。因此,我們可以在任何新的輸入上評估網絡并預測輸出,同時我們仍然可以學習感興趣的后驗映射。 雙重下降:關于深度神經網絡的逼近和插值屬性的問題依然存在。最近關于分位神經網絡插值屬性的研究,參見 Padilla 等(2022)和 Shen 等(2021),Schmidt-Hieber(2020)。另見 Bach(2024);Belkin 等(2019)。 **
**
隨著人工智能系統日益融入日常生活,可解釋性領域受到了極大的關注。這一趨勢尤其受到現代AI模型及其決策過程復雜性的驅動。基礎模型的出現,以其廣泛的泛化能力和新興應用,進一步加劇了這一領域的復雜性。基礎模型在可解釋性領域占據著模糊的位置:它們的復雜性使得這些模型天生難以解釋,但它們也越來越多地被用作構建可解釋模型的工具。在這篇綜述中,我們探討了基礎模型與可解釋AI(XAI)在視覺領域的交集。我們首先編制了一份全面的文獻合集,涵蓋了這些領域的交叉研究。接下來,我們根據模型的架構特征對這些研究進行了分類。然后,我們討論了當前研究在將XAI整合進基礎模型時所面臨的挑戰。此外,我們還回顧了這些結合方法的常見評估方法。最后,我們提出了本次綜述的關鍵觀察和見解,并為這一快速發展的領域提供了未來研究的方向。 關鍵詞: 可解釋性, 可解釋AI, XAI, 基礎模型, 視覺, 綜述
深度神經網絡(DNNs),即具有大量可訓練參數的網絡,近年來對計算機視覺領域產生了重大影響【1】。它們在語義分割【2】、分類【3】和圖像生成【4】等各種任務中取得了最先進的性能。然而,DNN的深度和復雜性也導致了決策過程和預測可解釋性的缺乏透明度【5】【6】。在那些性能和可解釋性都至關重要的高風險環境中,對透明度的需求日益增加【7】。為了增強透明度和可解釋性,廣泛采用的各種方法被統稱為可解釋人工智能(XAI)【8】(見圖1)。 XAI方法為自動化系統與人類用戶之間搭建了橋梁,因為人類的感知和解釋本質上是主觀的。滿足一個用戶需求的解釋可能并不一定能滿足另一個用戶【9】。因此,為了提高有效性,XAI方法應確保不同用戶之間的解釋一致性【10】。XAI引起了越來越多的關注,尤其是在倫理問題至關重要的領域,例如醫療診斷【11】和自動駕駛【12】。因為不透明的模型可能隱藏與道德原則相悖的功能。例如,在【13】中觀察到的性別偏見結果。 在文獻中,已經識別出一些XAI的關鍵屬性【14】【6】,例如可信性、復雜性、魯棒性、泛化能力和客觀性。我們將在4.1節進一步探討這些問題。 深度學習中的一個顯著趨勢是模型規模越來越大(見圖2)。這一趨勢始于1998年的LeNet(60,000個參數),然后是2014年的InceptionV3(6.23M參數),2016年的ResNet(42.70M參數)。隨后,2017年自然語言處理領域采用了Transformers(65M參數),2018年的BERT(340M參數),2019年的GPT-2(1.5T參數),2023年的QWEN(72B參數)。這些“大型語言模型”的成功激發了將高參數量和大量訓練數據的優勢應用到其他領域的興趣,例如視覺問答【15】和目標檢測【16】。這促使了這些架構在更廣泛的分類下被統稱為“基礎模型”。 基礎模型在XAI領域處于一個模糊的位置。一方面,基礎模型的復雜性使其特別難以解釋;另一方面,文獻中越來越多地將其作為構建可解釋模型的工具。這篇綜述提供了計算機視覺領域基礎模型中可解釋性技術的全景,特別是預訓練基礎模型(PFM)。結構安排如下:第2節提供了基礎模型和XAI方法的背景,回顧現有的綜述,并提出XAI方法的分類法;第3節定義了識別的XAI方法類別,描述了它們的背景、它們如何使用PFM、它們的應用以及評估方法;第4節討論了評估生成的解釋質量所采用的不同方法;第5節介紹了我們綜述中的一些觀察結果;第6節描述了XAI方法面臨的不同挑戰,包括仍未解決的問題;最后,第7節總結了我們的結論,并提出了進一步研究的潛在方向。
自回歸模型(Autoregressive Models)在自然語言處理(NLP)領域中展現了卓越的性能,具有令人印象深刻的可擴展性、適應性和泛化能力。受其在NLP領域顯著成功的啟發,自回歸模型近年來在計算機視覺領域得到了廣泛研究。這些模型通過將視覺數據表示為視覺標記并執行下一個標記預測,為圖像生成、視覺理解以及最近將視覺生成與理解統一為單一自回歸模型的多模態生成等多種視覺任務提供了支持。 本文對視覺自回歸模型進行了系統綜述,包括對現有方法的發展分類,并突出了它們的主要貢獻、優勢與局限性,涵蓋了圖像生成、視頻生成、圖像編輯、動作生成、醫學圖像分析、三維生成、機器人操作、統一多模態生成等多種視覺任務。此外,我們調查并分析了自回歸模型的最新進展,包括在各種評估數據集上的方法基準測試和深入討論。最后,我們總結了關鍵挑戰和未來研究的潛在方向,為視覺自回歸模型的進一步發展提供了路線圖。
1 引言
自回歸(AR)模型近年來在人工智能領域取得了顯著進展,尤其是在像GPT系列 [1][2][3][4][5] 及其他大語言模型(LLMs) [6][7][8] 中表現突出,這些模型在解決各種自然語言處理任務上表現出色。它們采用簡單而強大的“下一個詞預測”策略,通過預測序列中的下一個單詞生成連貫且上下文相關的文本。AR模型的成功主要歸因于兩個關鍵特性:(1)可擴展性,擴展法則 [9][10] 使研究人員能夠基于小模型預測大模型的性能,從而優化資源分配并指導模型開發;(2)泛化能力,AR模型無需任務特定的訓練即可適應新任務和未見任務 [1][3]。這些特點使AR模型在語言任務中表現出前所未有的效果,并展現出朝著通用人工智能(AGI)系統發展的潛力。
受AR模型在自然語言處理領域成功的啟發,近年來的研究將AR模型擴展到了視覺生成任務。典型示例包括VQVAE [11]、VQGAN [12]、DALL-E [13] 和Parti [14] 等模型,這些模型通過圖像標記器將連續圖像轉換為離散標記,從而使AR模型能夠像處理語言一樣,通過“下一個標記預測”方法生成圖像。視覺標記化通過將文本和圖像都視為離散標記序列,統一了它們的表示方式,使其適配序列到序列(sequence-to-sequence)建模技術。因此,這些模型能夠利用類似于GPT系列 [1][2][3] 的架構,從大規模文本-圖像對中高效學習。
除了視覺生成,AR模型還推動了視覺理解的發展,尤其是在多模態理解領域 [15][16][17][18][19],它們可以感知并整合多種模態信息。在多模態任務中,AR模型通過訓練解讀視覺輸入并生成連貫的文本序列,成為在視覺和文本信息結合方面極具潛力的工具。例如,多模態大語言模型(MLLM)如LLaVA [15],利用LLMs同時解讀視覺和文本輸入,從而實現對圖像的問答、生成描述性字幕以及在詳細視覺上下文中進行對話。通過這一設計,基于AR的MLLM在推動AI應用中的多樣化視覺理解能力方面表現出色。
鑒于AR模型在視覺生成和理解方面的成就,近期的研究嘗試將這兩種能力整合到一個統一的AR模型中,使其能夠同時處理視覺生成和理解任務。例如,Transfusion [20] 通過結合語言建模中常用的“下一個標記預測”目標與圖像生成中的擴散過程,實現了這一整合。通過對文本和圖像數據進行聯合訓練,Transfusion [20] 在單一Transformer架構中處理離散文本標記和連續圖像數據,從而能夠執行廣泛的多模態任務,并彌合視覺理解與生成之間的差距。此外,AR模型在視頻等其他領域也表現出強大的理解與生成能力 [21],如視頻字幕生成、視頻生成及場景解讀等任務。
盡管AR模型在視覺研究中取得了顯著進展并吸引了越來越多的關注,但目前缺乏系統的綜述來全面概述現有方法、挑戰以及未來可能的研究方向。本文旨在填補這一空白,全面綜述AR模型在各種視覺任務中的應用,并按任務類型進行分類,包括圖像生成、圖像理解及其他領域。我們從多個角度展開綜述,包括AR模型的背景、相關數據集、方法論、基準測試,以及當前的研究挑戰與未解難題。我們的目標是為學術界和工業界提供清晰的現狀概覽,展示已經取得的成果、面臨的挑戰以及未來研究的潛力方向。
本文的主要貢獻總結如下:
本教程全面調查了用于微調擴散模型以優化下游獎勵函數的方法。雖然擴散模型因其出色的生成建模能力廣為人知,但在生物學等領域的實際應用中,需要生成最大化某些期望指標(如RNA的翻譯效率、分子的對接評分、蛋白質的穩定性)的樣本。在這些情況下,擴散模型不僅可以生成逼真的樣本,還可以明確地最大化感興趣的度量。這些方法基于強化學習(RL)的概念。我們解釋了各種RL算法的應用,包括PPO、可微優化、獎勵加權最大似然估計(MLE)、價值加權采樣和路徑一致性學習,這些算法專門用于微調擴散模型。我們旨在探索基本方面,例如不同RL微調算法在各種場景中的優缺點、RL微調相對于非RL方法的好處,以及RL微調的正式目標(目標分布)。此外,我們還將探討它們與相關主題的聯系,如分類器指導、Gflownets、基于流的擴散模型、路徑積分控制理論和從非標準化分布(如MCMC)中采樣。本教程的代碼可在//github.com/masa-ue/RLfinetuning Diffusion Bioseq獲得。
擴散模型(Sohl-Dickstein等,2015;Ho等,2020;Song等,2020)被廣泛認為是強大的生成建模工具。它們能夠通過緊密模擬訓練數據的特征來準確地建模復雜的分布。擴散模型在多個領域有許多應用,包括計算機視覺(Podell等,2023)、自然語言處理(Austin等,2021)、生物學(Avdeyev等,2023;Stark等,2024;Li等,2023)、化學(Jo等,2022;Xu等,2022;Hoogeboom等,2022)以及生物學(Avdeyev等,2023;Stark等,2024;Campbell等,2024)。盡管擴散模型在捕捉訓練數據分布方面表現出顯著的能力,但常常需要根據特定的下游獎勵函數對這些模型進行定制。例如,在計算機視覺領域,Stable Diffusion(Rombach等,2022)作為一個強大的預訓練模型骨干,但我們可能希望通過優化下游獎勵函數(如美學評分或人類對齊評分(Black等,2023;Fan等,2023))來進一步微調它。同樣,在生物學和化學等領域,已經開發出各種復雜的擴散模型用于DNA、RNA、蛋白質序列和分子,有效地建模生物和化學空間。然而,生物學家和化學家通常旨在優化特定的下游目標,如DNA序列中的細胞特異性表達(Gosai等,2023;Lal等,2024;Sarkar等,2024)、RNA序列的翻譯效率/穩定性(Castillo-Hair和Seelig,2021;Agarwal和Kelley,2022)、蛋白質序列的穩定性/生物活性(Frey等,2023;Widatalla等,2024)或分子的QED/SA評分(Zhou等,2019)。為了實現這一目標,已經提出了許多通過強化學習(RL)微調擴散模型的算法(如Black等,2023;Fan等,2023;Clark等,2023;Prabhudesai等,2023;Uehara等,2024),旨在優化下游獎勵函數。RL是一種機器學習范式,代理通過學習進行順序決策以最大化獎勵信號(Sutton和Barto,2018;Agarwal等,2019)。在我們的背景下,RL由于擴散模型固有的順序結構,自然而然地成為一種合適的方法,其中每個時間步涉及一個“決策”,對應于該步樣本的去噪方式。本教程旨在回顧最近的研究成果,為對從整體角度理解基于RL的微調基礎知識感興趣的讀者提供幫助,包括基于RL的微調相對于非RL方法的優勢、不同RL微調算法的優缺點、RL微調的正式目標及其與分類器指導等相關主題的聯系。本教程的內容主要分為三個部分。此外,作為實現示例,我們還發布了利用RL微調進行引導的生物序列(DNA/RNA)生成的代碼,地址為: Diffusion Bioseq。
我們旨在提供當前算法的全面概述。特別是,鑒于擴散模型的順序特性,我們可以自然地將微調框架為馬爾可夫決策過程(MDP)中的強化學習(RL)問題,如第3和第4節所述。因此,我們可以采用任何現成的RL算法,例如PPO(Schulman等,2017)、可微優化(直接獎勵反向傳播)、加權MLE(Peters等,2010;Peng等,2019)、價值加權采樣(類似于Dhariwal和Nichol(2021)中的分類器指導)以及路徑一致性學習(Nachum等,2017)。我們在第4.2和第6節詳細討論了這些算法。我們不僅僅列出每個算法,還旨在呈現它們的優缺點,以便讀者可以根據自己的具體目的選擇最合適的算法。
我們在第7節根據獎勵反饋的獲取方式分類了各種微調場景。這一區分對實際算法設計至關重要。例如,如果我們可以獲得準確的獎勵函數,計算效率將成為我們的主要關注點。然而,在獎勵函數未知的情況下,必須從具有獎勵反饋的數據中學習它們,從而需要考慮反饋效率和分布轉移的問題。特別是,當需要從靜態離線數據中學習獎勵函數而沒有任何在線交互時,我們必須解決過度優化的問題,即微調模型被分布外樣本誤導,生成低真實獎勵的樣本。這一點非常重要,因為在離線場景中,具有反饋的離線數據分布的覆蓋范圍有限,因此分布外區域可能非常廣泛(Uehara等,2024)。
我們詳細討論了基于RL的微調方法與文獻中密切相關的方法之間的關系,如第8節中的分類器指導(Dhariwal和Nichol,2021)、第9節中的基于流的擴散模型(Liu等,2022;Lipman等,2023;Tong等,2023)、第10節中的非標準化分布采樣(Zhang和Chen,2021)、第6.3節中的Gflownets(Bengio等,2023)以及第6.2.3節中的路徑積分控制理論(Theodorou等,2010;Williams等,2017;Kazim等,2024)。我們總結了以下關鍵信息:
時間序列數據在各個領域中無處不在,使得時間序列分析至關重要。傳統的時間序列模型是針對特定任務的,具有單一的功能和有限的泛化能力。最近,大型語言基礎模型顯示出了其在跨任務轉移、零次/少次學習和決策解釋性方面的顯著能力。這一成功激發了探索基礎模型以同時解決多個時間序列挑戰的興趣。主要有兩個研究方向,即從頭開始預訓練時間序列的基礎模型和將大型語言基礎模型適配到時間序列。這兩者都有助于開發一個高度泛化、多功能且易于理解的統一模型用于時間序列分析。本綜述提供了一個3E分析框架,用于全面檢查相關研究。具體來說,我們從三個維度——有效性、效率和解釋性——檢查現有工作。在每個維度中,我們專注于討論相關工作如何通過考慮時間序列領域的獨特挑戰來設計定制解決方案。此外,我們提供了一個領域分類法,以幫助后來者跟進領域特定的進展。此外,我們還介紹了促進該領域發展的廣泛資源,包括數據集、開源時間序列庫。同時維護一個GitHub倉庫以更新資源(//github.com/start2020/Awesome-TimeSeries-LLM-FM)。
1 引言
時間序列數據指的是在連續時間間隔記錄的數據點序列。時間序列分析有著悠久的研究歷史,與現實世界的應用密切相關[51]。最早的時間序列挖掘可以追溯到古埃及時期,當時人們分析尼羅河的波動來指導農業生產[35]。早期,時間序列研究主要集中在商業和經濟活動[57]、氣象和人口統計等領域,當時收集的數據相對較小,結構簡單(例如,單變量序列)。那時,統計學是主導方法論,促成了各種經典模型的發展,包括ARIMA、ARCH[50]和馬爾可夫轉換模型[64]。然而,大規模工業系統的出現,涵蓋了交通[216]、醫療保健[101]、物聯網(IoT)[59]和電子商務[8]等行業,導致了龐大而復雜的時間序列數據的產生。除了時間序列數據,一些系統還生成包括文本[82]、圖像[150]和圖表[98]在內的不同模態的數據。數據爆炸推動了具有日益復雜模式的新型時間序列應用的出現。例如,交通擁堵檢測[7]、心電圖(ECGs)分類[74]、電子商務銷售需求預測[17]。統計方法難以管理如此龐大和異質的數據集,且依賴于預定義模式假設,限制了它們在處理動態和復雜模式的應用中的實用性。 在過去幾十年中,機器學習和深度學習在各個領域取得了顯著進展,特別是在計算機視覺(CV)和自然語言處理(NLP)[196]。與統計方法不同,這些方法可以以更自動化的方式處理更大、更多樣化的數據集,減少了人力和專業知識的需求。這些技術引入了能夠檢測更復雜模式的先進架構,激發了時間序列社區的極大興趣[79, 106, 125, 160]。因此,出現了多種針對時間序列建模的有效架構,包括不同基礎架構的RNNs[108]、CNNs[29, 109, 207]、GNNs[28, 32]、Transformers[182]、擴散模型[107]。
盡管這些強大的架構將時間序列分析推向了一個新的水平,但在這一領域仍然存在未解決的挑戰。 第一個挑戰是關于知識的可遷移性[149]。時間序列通常表現出季節性(在特定間隔的規律波動)[56]和趨勢(數據的長期方向)[132]。除了這些可識別的模式外,時間序列數據還表現出一定程度的隨機性或噪聲,這通常歸因于未知的因素或模式。這些特征在不同領域之間甚至在同一領域隨時間的變化可能差異很大,由于分布的變化[88],使得將從一個特定任務中學到的模型或時間序列表示遷移到其他任務變得具有挑戰性。例如,對股市數據訓練的時間序列模型[188]學習到的模式受到經濟指標、投資者情緒等高度不穩定因素的影響。而氣候模型[131]則關注長期模式、季節循環,這些循環受物理定律而非人類行為的約束。由于數據性質的根本不同,不同領域間的知識可遷移性依然是一個挑戰。 ? 第二個挑戰與數據稀疏性有關。在許多傳統時間序列場景中[49, 157],數據的收集可能是每日、每月或每年進行的(例如,經濟指標[18]),這導致數據本質上的稀疏性。另外,獲取和標注數據可能存在隱私限制。例如,對心電圖(ECGs)[136]的分類需要臨床診斷,但這些診斷成本高昂,且數據可用性受到患者隱私的限制。這種數據稀缺性阻礙了深度學習模型的有效訓練。實際上,在大多數情況下,可用的數據集仍然不足以學習高質量的模型[110]。 ? 第三個挑戰是關于多模態學習[16]。在多模態時間序列分析的背景下,利用不同模態間的互補見解可以增強解釋性并提升模型性能。例如,在股票行情預測中,社交媒體上的新聞和評論可以直接影響交易活動,將它們整合到模型中可以實現更精確的預測[170, 189]。然而,對各種頻率或間隔收集的多模態數據進行對齊,以準確反映不同模態之間的時間關系,是具有挑戰性的。此外,不同模態可能需要不同的技術來有效捕捉信息,將這些信息無縫整合成一個統一的模型可能很復雜。 ?** 最后,解釋性也是非常需要的[210]**。詳細解釋模型如何生成預測或識別模式可以顯著增強時間序列的實用性和可接受性。一個案例是,如果一個公用事業公司使用一個能源需求預測模型[77]來計劃電力生成或設定價格,它需要向監管機構和消費者證明這些決策是基于合理且可理解的因素。然而,大多數現有的時間序列模型本質上是黑盒,缺乏對模型行為或預測的解釋。
為了應對上述挑戰,已經有一些努力,如時間序列的遷移學習[78, 120, 177, 193]、時間序列數據增強[181]、多模態時間序列分析[26, 42]以及時間序列的可解釋人工智能[143]。然而,這些工作大多集中在單一挑戰上。時間序列社區期待一個能同時解決多個挑戰的多方面模型。理想的模型應具有強大的泛化能力,能在訓練期間處理未見過的時間序列任務和數據稀缺的任務。此外,它還應該能夠無縫整合來自不同模態的數據,并為其決策過程提供可理解的解釋。 在過去幾年中,為了促進知識遷移,出現了一種結合遷移學習和自監督學習的新學習范式,即預訓練和微調范式[65]。它首先在一個數據豐富的源域上預訓練模型,然后在與源域相關的目標任務上進行微調[39]。BERT[41]是一個在大規模語料庫上預訓練的語言模型。研究人員發現,它可以適應廣泛的下游NLP任務,并大幅提升它們的性能水平。這項研究激發了NLP[97, 138, 212]和CV[14, 137]領域中大量的后續工作。這類模型被稱為基礎模型(FM)[22]。它們在各種下游任務上展示出強大的泛化能力。當NLP研究者通過增加數據或模型規模來擴展基礎模型時,他們觀察到這些更大的基礎模型獲得了一些在較小模型中不存在的令人驚訝的能力。這些意外的能力被稱為突現能力[179],包括上下文學習[24]、指令跟隨[69]、思維鏈(CoT)[128]。它們將語言基礎模型從一個可遷移的NLP任務解決者轉變為跨領域的通用任務解決者,現在廣泛被稱為大型語言模型(LLM)。LLM的發展迅速而強勁,催生了許多強大的LLM,如GPT系列[24, 138]。 受到大型語言基礎模型在NLP中顯著成功的啟發,時間序列社區越來越關注基礎模型在時間序列分析中的潛力[25, 82, 112]。一個研究方向是從零開始用時間序列數據預訓練一個基礎模型,仿照語言基礎模型。如TimesFM[36]和TimeGPT[58]等開創性的努力已經啟動了在時間序列領域內基礎模型的預訓練。然而,與NLP領域可用的龐大語料相比,時間序列領域的數據規模相對較小,使得難以產生具有LLM那樣突現能力的基礎模型。此外,基于時間序列數據預訓練的基礎模型缺乏語言生成能力,限制了它們生成人類可讀解釋的能力。受到大型語言基礎模型在各種下游任務中強大的泛化能力的吸引,另一個研究方向集中于將大型語言基礎模型(即LLM)適配于時間序列任務。大型語言基礎模型在跨任務泛化、零次/少次學習和推理方面的優勢可以解決知識遷移、數據稀缺性和可解釋性等時間序列分析中的挑戰。廣義上,有兩種將LLM適配于時間序列任務的范式,即嵌入可見的LLM適配和文本可見的LLM適配[113, 190, 192]。它們在LLM的使用上有所不同,使用微調的提示策略來適配LLM于時間序列任務。它們都面臨著時間與LLM空間對齊、時間序列屬性和模式識別、多模態數據融合的挑戰。盡管這兩條研究線探索了基于不同結構數據集(即時間序列或文本語料)預訓練的基礎模型,但它們都致力于實現一個統一且易于理解的架構,以解決多個時間序列挑戰,并具有強大的泛化能力。
本綜述對時間序列的基礎模型的發展進行了深入分析。該評審以圖2中的四個研究問題為指導,涵蓋三個分析維度(即有效性、效率、可解釋性)和一個分類法(即領域分類法)。(1) 如何在時間序列分析的背景下有效地適應基礎模型?我們將相關工作分為兩條研究線:從頭開始為時間序列預訓練基礎模型和將大型語言基礎模型(即LLMs)適用于時間序列。對于第一條線,我們通過兩個關鍵階段討論有效性:數據收集與對齊、架構設計。對于第二條線,我們識別了兩種適配范式,即嵌入可見的LLM適配和文本可見的LLM適配。在每種適配范式下,我們討論了LLM的利用、時間序列提取和多模態數據融合。時間序列提取包括獲取適當的時間序列表示、對齊時間空間和LLM空間、識別時間序列屬性和模式等挑戰。此外,我們還研究了LLM的多樣化角色,這進一步增加了LLM適配的有效性。(2) 如何高效地為時間序列任務預訓練或微調基礎模型?鑒于這一領域正在興起,當前的高效技術是從NLP領域借鑒的。因此,我們首先提供了一份可轉移至此背景的NLP領域尖端高效方法的簡要概覽。然后,我們討論了不同調整范式下的效率,并總結了已經使用的高效方法。(3) 如何獲得時間序列應用中基礎模型行為或決策的可解釋性?模型的實際部署需要可解釋性。我們從探索AI中的可解釋性概念開始,強調全局和局部解釋。然后,我們繼續回顧和提煉現有研究中的可解釋性進展。(4) 每個時間序列應用領域中基礎模型的發展情況如何?為回答這個問題,我們引入了一個領域分類法。這個分類法使我們能夠比較每個領域內現有研究的目標、貢獻和局限。此外,我們還提供了豐富的資源,如代碼、基準數據集、時間序列庫和加速LLM的工具,以支持未來的研究工作。圖4提供了基于四個研究問題的作品的綜合概覽。
論文組織 本綜述的其余部分安排如下:第2節介紹與基礎模型和時間序列分析相關的綜述,指導讀者了解每個領域的更多研究。第3節為讀者提供關于基礎模型和時間序列任務的基本知識。第4節深入探討了時間序列的基礎模型預訓練的關鍵階段。第5節檢查了LLM向時間序列任務的適配。第6節討論了模型微調和推理的效率。第7節總結了關于解釋模型行為或決策的研究。第8節介紹了各個領域內的進展。最后,第9節提供了包括基準數據集、代碼和時間序列庫以及LLM工具在內的資源。
大型語言模型(LLMs)在靜態、預先收集的通用數據集上的訓練取得的最近成功,已經引發了眾多研究方向和應用。其中一個方向解決了將預訓練的LLMs整合到動態數據分布、任務結構和用戶偏好中的非平凡挑戰。這個問題的主要挑戰在于平衡模型適應性和知識保存。為特定需求量身定制的預訓練LLMs經常在之前的知識領域經歷顯著的性能退化——這一現象被稱為“災難性遺忘”。雖然在持續學習(CL)社區進行了廣泛研究,但在LLMs領域呈現出新的表現形式。在這篇綜述中,我們提供了一個關于大型語言模型在持續學習背景下當前研究進展的全面概覽和詳細討論。除了介紹初步知識外,這篇綜述被分為四個主要部分:我們首先描述了持續學習LLMs的概覽,包括兩個連續性方向:垂直連續性(或垂直持續學習),即從一般到特定能力的持續適應;和水平連續性(或水平持續學習),即跨時間和領域的持續適應(第3節)。在垂直連續性之后,我們總結了在現代CL背景下學習LLMs的三個階段:持續預訓練(CPT)、領域適應性預訓練(DAP)和持續微調(CFT)(第4節)。然后我們提供了LLMs的持續學習評估協議的概覽,以及當前可用的數據來源(第5節)。最后,我們討論了有關LLMs持續學習的引人深思的問題(第6節)。這篇綜述揭示了持續預訓練、適應和微調大型語言模型這一相對未受到足夠研究的領域,表明需要社區更多的關注。需要立即關注的關鍵領域包括開發實用且易于訪問的評估基準,以及專門設計的方法論,以對抗遺忘和在不斷演變的LLM學習范式中啟用知識轉移。在這項綜述中檢查的完整論文列表可在//github.com/Wang-ML-Lab/llm-continual-learning-survey找到。
近期大型語言模型(LLMs)的進步顯示了實現人工普遍智能(AGI)的巨大潛力。研究人員觀察到,隨著參數規模的增加,多步驟推理、小樣本上下文學習和指令跟隨等復雜能力有所提高。LLMs的發展具有重大影響和革命性,促使機器學習從業者重新考慮傳統的計算范式,用于處理一些曾經具有挑戰性的人類水平任務,如問答、機器翻譯和對話系統。然而,LLMs通常在包含通用領域的靜態、預先收集的數據集上進行訓練,導致性能隨時間逐漸降低,并且在不同內容領域之間也會降低。此外,單一的預訓練大模型無法滿足每個用戶的需求,需要進一步的微調。盡管重新收集預訓練數據和根據額外的具體需求重新訓練模型是一種潛在的解決方案,但這種方法在現實世界場景中代價高昂且不切實際。為了有效地適應LLMs到下游任務,同時盡量減少對以前知識領域的性能退化,研究者采用了持續學習的方法,也稱為終身學習或增量學習。持續學習受到人類大腦中觀察到的增量學習模式的啟發,涉及按順序在一系列任務上訓練機器學習模型,期望在所有任務中保持性能。在訓練過程中,模型對以前的數據有限或無法訪問,這在保留過去知識時構成了一個挑戰,因為在當前任務學習時,來自未見過的以前數據的優化約束是不存在的。這一挑戰,被稱為災難性遺忘,自持續學習研究開始以來一直是研究的中心焦點。多年來,研究者探索了各種技術來減輕機器學習模型中的遺忘,這些技術包括基于重放的方法、參數規范化和模型架構擴展。這些技術共同顯著推進了在不同任務、模型架構和學習范式中實現零遺忘的持續學習目標。在順序訓練和適應LLMs的背景下,CL的重要性也正在發生自身的語義轉變。為了更好地突出這一持續的轉變,在這篇綜述中,我們提供了一個關于LLMs在CL背景下當前研究進展的全面概覽和詳細討論。對于持續學習LLMs的總體情況,我們將其分為兩個需要由從業者解決的連續性方向(第3節):
在圖1中,繼垂直連續性之后,我們勾畫了現代CL中LLM學習的三個關鍵階段:持續預訓練(CPT)、領域適應性預訓練(DAP)和持續微調(CFT)(第4節)。在CPT中,現有研究主要調查三種類型的分布式轉變:時間、內容層次和語言層次。每種都呈現出獨特的焦點和挑戰。在DAP中,雖然它主要被視為為下游任務準備LLMs的過程,但頻繁地使用CL評估和技術。然而,這些技術的多樣性明顯不足,考慮到傳統CL社區的成熟度。在CFT中,我們關注的是學習LLMs的新興領域,涵蓋持續指令調整(CIT)、持續模型精煉(CMR)、持續模型對齊(CMA)和持續多模態LLMs(CMLLMs)等主題。接下來,我們呈現了一系列公開可用的評估協議和基準(第5節)。我們總結我們的綜述,討論了LLMs持續學習的最新出現的特性,傳統增量學習類型和LLMs持續學習中的記憶約束的角色變化,以及這個主題的潛在研究方向(第6節)。總結而言,本文提供了一份詳盡的現有持續學習研究LLMs的綜述,顯著區別于相關主題的現有文獻。我們的綜述突出了持續開發LLMs的研究領域,特別是在持續預訓練(CPT)和領域適應性預訓練(DAP)領域的研究。我們強調需要社區更多的關注,迫切需要包括開發實用、易于訪問且廣為認可的評估基準。此外,需要定制方法來解決在新興的大型語言模型學習范式中的遺忘問題。我們希望這篇綜述能提供一個系統而新穎的持續學習視角,在迅速變化的LLMs領域中,幫助持續學習社區為開發更有效、可靠和可持續的LLMs做出貢獻。
組織結構
本文的其余部分安排如下。我們首先在第2節介紹大型語言模型和持續學習的背景和初步知識。然后我們在第3節展示了大型語言模型的現代持續學習概覽。從垂直角度來看,它可以大致分為三個階段的LLMs持續訓練,我們將在第4節逐一介紹每個階段。在4.3節中,將介紹持續微調LLMs的獨特方面,包括持續指令調整(4.3.3節)、持續模型精煉(4.3.4節)、持續模型對齊(4.3.5節)和持續多模態大型語言模型(4.3.6節)。在第5節中,我們提供了公開可用的LLMs持續學習評估協議和基準的全面介紹。最后,在第6節中,我們討論了在大型語言模型時代持續學習的角色,包括大規模持續LLMs的新興能力(6.1節)、三種類型的持續學習(6.2節)、LLMs持續學習中的記憶角色(6.3節)以及未來的研究方向(6.4節)。 持續學習與大型語言模型相遇:概覽****大型語言模型(LLMs)在多個維度上都非常龐大,包括模型參數的大小、預訓練數據集、計算資源、項目團隊和開發周期。LLMs的巨大規模為開發團隊帶來了顯著的挑戰,特別是在快速變化的環境中保持更新。舉例來說,2023年,用戶發布的新推文的平均每日流量超過5億,即使是在這么大量數據的“小”子集上進行訓練也是不可承受的。在考慮到它們對下游應用的連鎖影響時,有效且可靠地適應LLMs變得更為關鍵。下游用戶通常缺乏收集和存儲大規模數據、維護大規模硬件系統以及自行訓練LLMs的專業知識。《可回收調整》是首個明確概述現代LLM生產流水線供應商-消費者結構的先導研究。在供應商側,模型在一系列大規模未標記數據集上持續進行預訓練。每次預訓練模型發布后,消費者需要利用更新、更強大的上游模型以獲得更好的下游性能。為了提高下游消費者微調的效率,他們最初對持續預訓練的LLMs進行了幾項關鍵觀察,聚焦于模式連接性和功能相似性。此外,他們提出在上游預訓練LLM進行重大更新后,復用過時的微調組件。基于《可回收調整》引入的概念框架,我們在本綜述中提出了一個包含各種研究的現代生產流水線的全面框架,涉及持續LLM預訓練、適應和部署,如圖1所示。我們的框架與現有研究的不同之處在于融入了兩個連續性方向:垂直連續性和水平連續性。
結論
在這項工作中,我們提供了一份關于持續LLMs的綜述,從持續學習的角度總結了它們在訓練和部署方面的最新進展。我們根據它們在我們提出的現代分層持續學習LLMs的更廣框架內的位置,對問題和任務進行了分類。雖然這一領域在社區中的興趣廣泛且日益增長,但我們也注意到幾個缺失的基石,包括算法多樣性以及對大模型行為(如知識遺忘、轉移和獲取)的基本理解。通過全面而詳細的方法,我們希望這篇綜述能激勵更多從業者探索持續學習技術,最終有助于構建健壯和自我進化的人工智能系統。
擴散模型(DMs)在不需要對抗訓練的情況下展示了最先進的內容生成性能。這些模型使用兩步過程進行訓練。首先,前向擴散過程逐漸向數據(通常是圖像)添加噪聲。然后,反向擴散過程逐步去除噪聲,將其轉化為被建模目標分布的樣本。DMs的靈感來源于非平衡態熱力學,具有固有的高計算復雜度。由于在高維空間中頻繁的函數計算和梯度計算,這些模型在訓練和推理階段都會產生大量的計算開銷。這不僅阻礙了擴散模型的民主化,而且阻礙了擴散模型在實際應用中的適應性。更不用說,由于過度的能源消耗和對環境的擔憂,計算模型的效率正在迅速成為一個重要的問題。這些因素導致了文獻中對設計計算高效的DM的多項貢獻。在這篇綜述中,我們介紹了視覺擴散模型的最新進展,特別關注影響DMs計算效率的重要設計方面。我們特別強調最近提出的設計選擇,這些設計選擇導致了更高效的DM。不像最近的其他評論,從廣泛的角度討論擴散模型,本綜述旨在通過強調文獻中的設計策略,推動這一研究方向向前發展,為更廣泛的研究社區帶來了可實施的模型。從計算效率的角度展望了視覺中擴散模型的發展前景。深度生成模型(DGMs)——已經成為人工智能中最令人興奮的模型之一,它挑戰了人類的創造力[1]。變分自編碼器、生成對抗神經網絡、歸一化流和擴散模型的發展在人工創造力方面引起了轟動,特別是在圖像嵌入任務方面。圖像合成和文本到圖像的生成。由于生成對抗網絡(GANs)輸出的高質量,近年來受到了廣泛關注。然而,擴散模型最近成為最強大的生成模型,在生成質量[2]、[3]、[4]方面挑戰了GANs的統治地位。擴散模型正變得越來越受歡迎,因為它們提供訓練穩定性以及高質量的圖像和音頻生成結果。這些模型試圖解決GANs的固有局限性,如由于梯度消失而導致的生成器訓練可能失敗、對抗性學習的開銷以及其收斂失敗[5]。另一方面,擴散模型使用了一種不同的策略,它涉及到用高斯噪聲污染訓練數據,然后學習通過反轉這個噪聲過程來恢復數據。擴散模型提供了額外的可伸縮性和并行性的特性,這增加了它們的吸引力。此外,隨著討論模型經過去噪的迭代和迭代,偏離現實太遠的可能性也就更小。生成步驟經過每個檢查點,在每個步驟中,可以向圖像添加越來越多的細節。因此,最近所有超級強大的圖像模型,如DALLE、Imagen或Midjourney和stable Diffusion都是基于擴散模型[6]、[7]的。
擴散模型有各種各樣的應用,包括圖像去噪、圖像生成、時間序列生成、語義分割、圖像超分辨率、大工作臺機器學習、圖像嵌入、決策和圖像間翻譯[4]。因此,自降噪擴散概率模型[8]引入以來,關于該主題的研究論文數量持續上升,每天都有新的模型被提出。然而,最近的熱潮是在穩定擴散(Diffusion)引入后興起的,這是一種機器學習、文本到圖像模型,可以從自然語言描述生成數字圖像。圖1提供了關于擴散模型的文獻的統計數據和時間軸概述,以顯示它們最近在視覺界的流行程度。DMs屬于概率模型的范疇,需要過多的計算資源來建模未觀察到的數據細節。他們訓練和評估模型,需要迭代估計(和梯度計算)的RGB圖像在高維空間[9]。例如,最強大的DM訓練通常需要數百個GPU天(例如150-1000 V100天),重新估計輸入空間的噪聲版本可能導致昂貴的推斷,因此每個模型生成50,000個樣本大約需要5天A100 GPU。這對研究界和一般用戶有兩個影響:第一,訓練這樣的模型需要大量的計算資源,只適用于領域的一小部分,并留下巨大的碳足跡。其次,評估一個已經訓練好的模型在時間和內存方面也很昂貴,因為相同的模型架構需要連續運行大量的步驟(例如25 - 1000步)[10]。早期關于擴散模型的工作只關注于高質量的樣本生成,而不考慮計算成本[8],[11],[12]。然而,在達到這一里程碑后,最近的工作集中在效率上。因此,為了解決生成過程緩慢的真正缺點,新的趨勢是許多增強的工作集中于效率的提高。我們稱這些模型的增強類別為有效擴散模型。在這篇綜述文章中,我們基于效率的標準來評價現有的方法,而不犧牲樣本的高質量。此外,我們討論了模型速度和采樣質量之間的權衡。擴散模型依賴于擴散步驟的長馬爾可夫鏈來生成樣本,因此在時間和計算方面可能相當昂貴。已經提出了新的方法,使該過程大大加快,但采樣速度仍慢于GAN[13],[14]。
為什么模型效率如此重要?人工智能是能量密集型的,對人工智能的需求越高,我們使用的能源就越多。訓練一個復雜的AI模型需要時間、金錢和高質量的數據[15],[16]。它也消耗能量。當我們使用能源時,它會產生二氧化碳。二氧化碳等溫室氣體將地球表面附近的熱量困在大氣中,導致全球氣溫升高,破壞脆弱的生態系統。OpenAI在45 tb的數據上訓練了GPT-3模型[17]。英偉達使用512 V100 gpu對MegatronLM的最終版本進行了9天的訓練,MegatronLM是一種與GPT-3相當但小于GPT-3的語言模型。單個V100 GPU的功耗可能高達300瓦。如果我們估計功耗為250瓦,512 V100 gpu使用128000瓦或128千瓦[18]。對MegatronLM來說,9天的跑步訓練是27648千瓦時。根據美國能源情報署(US Energy Information Administration)的數據,普通家庭每年的耗電量為10649千瓦時。因此,訓練最終版本的MegatronLM所需的能源幾乎相當于三個房子一年的消耗。數據中心對環境的影響是最大的。
這篇綜述的動機是深入探索擴散方法的設計,并強調設計選擇可以提供對修正模型效率的洞察。與以往對擴散模型進行一般分類的工作不同,本文將對導致有效擴散模型和無效擴散模型的設計選擇進行精確分類。這將指導未來計算機視覺任務計算效率擴散模型的研究。論文的其余部分組織如下:第二節提供了擴散模型的概述,簡要說明了三個代表性的架構,第三節提供了設計選擇的描述,并討論了這些選擇如何導致計算效率的設計,第四節比較了代表性的作品w.r.t質量和效率權衡。第五部分討論了未來的工作方向,然后是結論和參考文獻。
**擴散模型概述 **概率擴散模型的原始思想是從隨機噪聲中模擬特定的分布。因此,生成的樣本的分布應該接近原始樣本的分布。它包括一個正向過程(或擴散過程),其中復雜數據(通常是圖像)被逐步噪聲化,和一個反向過程(或反向擴散過程),其中噪聲從目標分布轉換回樣本。在這里,由于它們對有效擴散體系結構的影響,我們特別描述了三個模型。它包括去噪擴散概率模型(DDPM)[8]、潛在擴散模型(LDM)[10]和特征金字塔潛在擴散模型[19]。
有效擴散模型的有效策略
擴散模型需要重構需要采樣的數據分布。有效擴散模型的主要障礙是采樣過程的低效,因為從DDPM生成樣本非常慢。擴散模型依賴于擴散步驟的長馬爾可夫鏈來生成樣本,因此在時間和計算方面可能相當昂貴。近年來,為加快抽樣程序作出了重大努力。我們將這些影響策略分為兩類:有效設計策略(EDS)和有效過程策略(EPS),前者建議對基線擴散模型的設計進行修改,后者建議如何提高擴散模型的效率或加快采樣過程。然而,這些策略是通過修改文獻推斷出來的,未來的工作可能會包括一些下文未提及的新策略。
為了追求精度,深度學習模型框架的結構越來越復雜,網絡越來越深。參數量的增加意味著訓練模型需要更多的數據。然而人工標注數據的成本是高昂的,且受客觀原因所限,實際應用時可能難以獲得特定領域的數據,數據不足問題非常常見。數據增強通過人為地生成新的數據增加數據量來緩解這一問題。數據增強方法在計算機視覺領域大放異彩,讓人們開始關注類似方法能否應用在序列數據上。除了翻轉、裁剪等在時間域進行增強的方法外,也描述了在頻率域實現數據增強的方法;除了人們基于經驗或知識而設計的方法以外,對一系列基于GAN的通過機器學習模型自動生成數據的方法也進行了詳細的論述。介紹了應用在自然語言文本、音頻信號和時間序列等多種序列數據上的數據增強方法,亦有涉及它們在醫療診斷、情緒判斷等問題上的表現。盡管數據類型不同,但總結了應用在這些類型上的數據增強方法背后的相似的設計思路。以這一思路為線索,梳理應用在各類序列數據類型上的多種數據增強方法,并進行了一定的討論和展望。
持續學習變得越來越重要,因為它使NLP模型能夠隨著時間的推移不斷地學習和獲取知識。以往的持續學習方法主要是為了保存之前任務的知識,并沒有很好地將模型推廣到新的任務中。在這項工作中,我們提出了一種基于信息分解的正則化方法用于文本分類的持續學習。我們提出的方法首先將文本隱藏空間分解為對所有任務都適用的表示形式和對每個單獨任務都適用的表示形式,并進一步對這些表示形式進行不同的規格化,以更好地約束一般化所需的知識。我們還介紹了兩個簡單的輔助任務:下一個句子預測和任務id預測,以學習更好的通用和特定表示空間。在大規模基準上進行的實驗證明了我們的方法在不同序列和長度的連續文本分類任務中的有效性。
我們為構建帶有深度學習組件的結構性因果模型(SCMs)制定了一個總體框架。所提出的方法采用了流歸一化和變分推理,以實現對外生噪聲變量的可處理推理——這是反事實推理的關鍵一步,而這正是現有的深度因果學習方法所缺少的。我們的框架在構建在MNIST上的合成數據集以及真實世界的腦核磁共振掃描醫學數據集上得到驗證。我們的實驗結果表明,我們可以成功地訓練深度SCMs,使其具備Pearl因果關系階梯的所有三個層次:關聯、干預和反事實,從而為在成像應用和其他方面回答因果問題提供了一種強大的新方法。
//github.com/biomedia-mira/deepscm.