大型語言模型(LLMs)在靜態、預先收集的通用數據集上的訓練取得的最近成功,已經引發了眾多研究方向和應用。其中一個方向解決了將預訓練的LLMs整合到動態數據分布、任務結構和用戶偏好中的非平凡挑戰。這個問題的主要挑戰在于平衡模型適應性和知識保存。為特定需求量身定制的預訓練LLMs經常在之前的知識領域經歷顯著的性能退化——這一現象被稱為“災難性遺忘”。雖然在持續學習(CL)社區進行了廣泛研究,但在LLMs領域呈現出新的表現形式。在這篇綜述中,我們提供了一個關于大型語言模型在持續學習背景下當前研究進展的全面概覽和詳細討論。除了介紹初步知識外,這篇綜述被分為四個主要部分:我們首先描述了持續學習LLMs的概覽,包括兩個連續性方向:垂直連續性(或垂直持續學習),即從一般到特定能力的持續適應;和水平連續性(或水平持續學習),即跨時間和領域的持續適應(第3節)。在垂直連續性之后,我們總結了在現代CL背景下學習LLMs的三個階段:持續預訓練(CPT)、領域適應性預訓練(DAP)和持續微調(CFT)(第4節)。然后我們提供了LLMs的持續學習評估協議的概覽,以及當前可用的數據來源(第5節)。最后,我們討論了有關LLMs持續學習的引人深思的問題(第6節)。這篇綜述揭示了持續預訓練、適應和微調大型語言模型這一相對未受到足夠研究的領域,表明需要社區更多的關注。需要立即關注的關鍵領域包括開發實用且易于訪問的評估基準,以及專門設計的方法論,以對抗遺忘和在不斷演變的LLM學習范式中啟用知識轉移。在這項綜述中檢查的完整論文列表可在//github.com/Wang-ML-Lab/llm-continual-learning-survey找到。
近期大型語言模型(LLMs)的進步顯示了實現人工普遍智能(AGI)的巨大潛力。研究人員觀察到,隨著參數規模的增加,多步驟推理、小樣本上下文學習和指令跟隨等復雜能力有所提高。LLMs的發展具有重大影響和革命性,促使機器學習從業者重新考慮傳統的計算范式,用于處理一些曾經具有挑戰性的人類水平任務,如問答、機器翻譯和對話系統。然而,LLMs通常在包含通用領域的靜態、預先收集的數據集上進行訓練,導致性能隨時間逐漸降低,并且在不同內容領域之間也會降低。此外,單一的預訓練大模型無法滿足每個用戶的需求,需要進一步的微調。盡管重新收集預訓練數據和根據額外的具體需求重新訓練模型是一種潛在的解決方案,但這種方法在現實世界場景中代價高昂且不切實際。為了有效地適應LLMs到下游任務,同時盡量減少對以前知識領域的性能退化,研究者采用了持續學習的方法,也稱為終身學習或增量學習。持續學習受到人類大腦中觀察到的增量學習模式的啟發,涉及按順序在一系列任務上訓練機器學習模型,期望在所有任務中保持性能。在訓練過程中,模型對以前的數據有限或無法訪問,這在保留過去知識時構成了一個挑戰,因為在當前任務學習時,來自未見過的以前數據的優化約束是不存在的。這一挑戰,被稱為災難性遺忘,自持續學習研究開始以來一直是研究的中心焦點。多年來,研究者探索了各種技術來減輕機器學習模型中的遺忘,這些技術包括基于重放的方法、參數規范化和模型架構擴展。這些技術共同顯著推進了在不同任務、模型架構和學習范式中實現零遺忘的持續學習目標。在順序訓練和適應LLMs的背景下,CL的重要性也正在發生自身的語義轉變。為了更好地突出這一持續的轉變,在這篇綜述中,我們提供了一個關于LLMs在CL背景下當前研究進展的全面概覽和詳細討論。對于持續學習LLMs的總體情況,我們將其分為兩個需要由從業者解決的連續性方向(第3節):
在圖1中,繼垂直連續性之后,我們勾畫了現代CL中LLM學習的三個關鍵階段:持續預訓練(CPT)、領域適應性預訓練(DAP)和持續微調(CFT)(第4節)。在CPT中,現有研究主要調查三種類型的分布式轉變:時間、內容層次和語言層次。每種都呈現出獨特的焦點和挑戰。在DAP中,雖然它主要被視為為下游任務準備LLMs的過程,但頻繁地使用CL評估和技術。然而,這些技術的多樣性明顯不足,考慮到傳統CL社區的成熟度。在CFT中,我們關注的是學習LLMs的新興領域,涵蓋持續指令調整(CIT)、持續模型精煉(CMR)、持續模型對齊(CMA)和持續多模態LLMs(CMLLMs)等主題。接下來,我們呈現了一系列公開可用的評估協議和基準(第5節)。我們總結我們的綜述,討論了LLMs持續學習的最新出現的特性,傳統增量學習類型和LLMs持續學習中的記憶約束的角色變化,以及這個主題的潛在研究方向(第6節)。總結而言,本文提供了一份詳盡的現有持續學習研究LLMs的綜述,顯著區別于相關主題的現有文獻。我們的綜述突出了持續開發LLMs的研究領域,特別是在持續預訓練(CPT)和領域適應性預訓練(DAP)領域的研究。我們強調需要社區更多的關注,迫切需要包括開發實用、易于訪問且廣為認可的評估基準。此外,需要定制方法來解決在新興的大型語言模型學習范式中的遺忘問題。我們希望這篇綜述能提供一個系統而新穎的持續學習視角,在迅速變化的LLMs領域中,幫助持續學習社區為開發更有效、可靠和可持續的LLMs做出貢獻。
組織結構
本文的其余部分安排如下。我們首先在第2節介紹大型語言模型和持續學習的背景和初步知識。然后我們在第3節展示了大型語言模型的現代持續學習概覽。從垂直角度來看,它可以大致分為三個階段的LLMs持續訓練,我們將在第4節逐一介紹每個階段。在4.3節中,將介紹持續微調LLMs的獨特方面,包括持續指令調整(4.3.3節)、持續模型精煉(4.3.4節)、持續模型對齊(4.3.5節)和持續多模態大型語言模型(4.3.6節)。在第5節中,我們提供了公開可用的LLMs持續學習評估協議和基準的全面介紹。最后,在第6節中,我們討論了在大型語言模型時代持續學習的角色,包括大規模持續LLMs的新興能力(6.1節)、三種類型的持續學習(6.2節)、LLMs持續學習中的記憶角色(6.3節)以及未來的研究方向(6.4節)。 持續學習與大型語言模型相遇:概覽****大型語言模型(LLMs)在多個維度上都非常龐大,包括模型參數的大小、預訓練數據集、計算資源、項目團隊和開發周期。LLMs的巨大規模為開發團隊帶來了顯著的挑戰,特別是在快速變化的環境中保持更新。舉例來說,2023年,用戶發布的新推文的平均每日流量超過5億,即使是在這么大量數據的“小”子集上進行訓練也是不可承受的。在考慮到它們對下游應用的連鎖影響時,有效且可靠地適應LLMs變得更為關鍵。下游用戶通常缺乏收集和存儲大規模數據、維護大規模硬件系統以及自行訓練LLMs的專業知識。《可回收調整》是首個明確概述現代LLM生產流水線供應商-消費者結構的先導研究。在供應商側,模型在一系列大規模未標記數據集上持續進行預訓練。每次預訓練模型發布后,消費者需要利用更新、更強大的上游模型以獲得更好的下游性能。為了提高下游消費者微調的效率,他們最初對持續預訓練的LLMs進行了幾項關鍵觀察,聚焦于模式連接性和功能相似性。此外,他們提出在上游預訓練LLM進行重大更新后,復用過時的微調組件。基于《可回收調整》引入的概念框架,我們在本綜述中提出了一個包含各種研究的現代生產流水線的全面框架,涉及持續LLM預訓練、適應和部署,如圖1所示。我們的框架與現有研究的不同之處在于融入了兩個連續性方向:垂直連續性和水平連續性。
結論
在這項工作中,我們提供了一份關于持續LLMs的綜述,從持續學習的角度總結了它們在訓練和部署方面的最新進展。我們根據它們在我們提出的現代分層持續學習LLMs的更廣框架內的位置,對問題和任務進行了分類。雖然這一領域在社區中的興趣廣泛且日益增長,但我們也注意到幾個缺失的基石,包括算法多樣性以及對大模型行為(如知識遺忘、轉移和獲取)的基本理解。通過全面而詳細的方法,我們希望這篇綜述能激勵更多從業者探索持續學習技術,最終有助于構建健壯和自我進化的人工智能系統。
大型語言模型(LLMs)在各種與代碼相關的任務中取得了顯著進展,特別是在從自然語言描述生成源代碼的代碼生成任務中,這些模型被稱為代碼LLMs。由于其在軟件開發中的實際意義(例如GitHub Copilot),這個新興領域吸引了學術研究人員和行業專業人士的廣泛關注。盡管從自然語言處理(NLP)或軟件工程(SE)或兩者的角度,研究人員對各種代碼任務的LLMs進行了積極探索,但目前缺乏一篇專門針對代碼生成LLM的全面且最新的文獻綜述。在本綜述中,我們旨在彌補這一空白,通過提供一篇系統的文獻綜述,為研究人員調查代碼生成LLM的最新進展提供有價值的參考。我們引入了一個分類法,對代碼生成LLM的最新發展進行分類和討論,涵蓋數據整理、最新進展、性能評估和實際應用等方面。此外,我們還提供了代碼生成LLM發展的歷史概覽,并使用廣泛認可的HumanEval和MBPP基準進行經驗比較,以突出代碼生成LLM能力的逐步提升。我們識別了學術界與實際開發之間的關鍵挑戰和有前景的機會。此外,我們建立了一個專門的資源網站(//codellm.github.io),以持續記錄和傳播該領域的最新進展。
引言
大型語言模型(LLMs),例如ChatGPT[171]的出現,深刻改變了自動化代碼相關任務的格局[45],包括代碼補全[78, 152, 233, 244]、代碼翻譯[48, 121, 211]和代碼修復[109, 170, 176]。LLMs一個特別有趣的應用是代碼生成,這項任務涉及從自然語言描述中生成源代碼。盡管各研究對其定義有所不同[47, 191, 204, 232],但在本綜述中,我們采用一致的定義,將代碼生成定義為自然語言到代碼(NL2Code)任務[15, 16, 264]。這一領域因其在學術界和工業界都引起了廣泛興趣,開發了如GitHub Copilot[45]、CodeGeeX[275]和Amazon CodeWhisperer等工具,這些工具利用先進的代碼LLMs來促進軟件開發。 最初對代碼生成的研究主要利用啟發式規則或專家系統,例如基于概率文法的框架[9, 57, 113]和專門的語言模型[59, 74, 106]。這些早期技術通常較為僵化且難以擴展。然而,基于Transformer的大型語言模型的引入改變了這一范式,使其成為首選方法,因其具備更高的能力和靈活性。LLMs的一個顯著特點是其跟隨指令的能力[51, 164, 173, 238, 250],即使是新手程序員也可以通過簡單表達需求來編寫代碼。這一新興能力使編程變得更加大眾化,使更廣泛的受眾能夠接觸編程[264]。在代碼生成任務中的LLMs表現出顯著改進,如HumanEval排行榜所示,從PaLM 8B[49]的3.6%到LDB[279]的95.1%在Pass@1指標上的提升。由此可見,HumanEval基準[45]已成為評估LLMs代碼能力的事實標準[45]。
為了提供全面的時間演變概覽,我們展示了LLMs用于代碼生成的發展概覽,如圖1所示。代碼生成LLMs的格局由一系列模型組成,其中一些模型如ChatGPT[173]、GPT4[5]、LLaMA[217, 218]和Claude 3[13]用于通用應用,而其他如StarCoder[132, 151]、Code LLaMA[196]、DeepSeek-Coder[79]和Code Gemma[54]則專門針對代碼任務。代碼生成與最新LLM進展的融合尤為關鍵,特別是當編程語言可以被視為多語言自然語言的不同方言時[15, 275]。這些模型不僅符合軟件工程(SE)的要求,還推動了LLMs向實際生產的進步[271]。
盡管近期的綜述從自然語言處理(NLP)、軟件工程(SE)或兩者結合的視角對代碼LLMs進行了探討[91, 264, 271, 278],它們通常涵蓋了廣泛的代碼相關任務。仍然缺乏專門回顧代碼生成高級主題的文獻,如精細數據整理、指令調優、與反饋對齊、提示技術、自主編碼代理的發展、檢索增強代碼生成、LLM作為代碼生成的評審等。一個相關的重要研究[15, 264]也集中在文本到代碼生成(NL2Code)的LLMs上,但主要考察了2020年至2022年發布的模型。因此,這一顯著的時間差距導致了缺乏考慮最新進展的最新文獻綜述,包括如CodeQwen[215]、WizardCoder[154]和PPOCoder[204]等模型,以及前述高級主題的全面探索。
鑒于需要一個專門且最新的文獻綜述,本綜述旨在填補這一空白。我們提供了一篇系統綜述,為研究人員快速探索代碼生成LLMs的最新進展提供了基礎性參考。我們引入了一個分類法,對最近的進展進行分類和審視,涵蓋數據整理[154, 231, 240]、高級主題[42, 47, 94, 125, 146, 152, 164, 166, 177, 205, 266]、評估方法[45, 85, 111, 284]和實際應用[45, 275]。這一分類法與代碼生成LLM的完整生命周期相一致。此外,我們指出了關鍵挑戰并識別了橋接研究與實際應用之間的有前景機會。因此,本綜述使NLP和SE研究人員能夠全面了解代碼生成LLM,突出前沿方向和當前的障礙與前景。 綜述的其余部分按照我們在圖3中概述的分類法結構組織。在第2節中,我們介紹了LLM與Transformer架構的基礎知識,并制定了代碼生成LLM的任務。接下來在第3節中,我們提出了一種分類法,對代碼生成LLMs的完整過程進行分類。在第4節中,我們在該分類框架內深入探討代碼生成LLMs的具體細節。在第5節中,我們強調了橋接研究與實際應用差距的關鍵挑戰和有前景的機會,并在第6節總結本工作。
分類
近期大型語言模型(LLMs)開發的激增導致大量這些模型通過持續預訓練或微調被重新用于代碼生成任務。這一趨勢在開源模型領域尤為明顯。例如,Meta AI最初公開了LLaMA [217]模型,隨后發布了專為代碼生成設計的Code LLaMA [196]。類似地,DeepSeeker開發并發布了DeepSeek LLM [25],隨后擴展為專門用于代碼生成的變體DeepSeek Coder [79]。Qwen團隊基于其原始的Qwen [19]模型開發并發布了Code Qwen [215]。微軟則推出了WizardLM [250],并正在探索其面向編程的對應模型WizardCoder [154]。谷歌也加入了這一行列,發布了Gemma [214],隨后發布了Code Gemma [54]。除了簡單地將通用LLMs適用于代碼相關任務外,還出現了大量專門為代碼生成設計的模型。值得注意的例子包括StarCoder [132]、OctoCoder [164]和CodeGen [169]。這些模型強調了以代碼生成為重點開發的LLMs的趨勢。 認識到這些發展的重要性,我們提出了一種分類法,對代碼生成LLMs的最新進展進行分類和評估。此分類法如圖3所示,作為研究人員快速熟悉該動態領域最新技術的全面參考。 在接下來的章節中,我們將對與代碼生成相關的每個類別進行深入分析。這將包括問題的定義、要解決的挑戰以及對最突出的模型及其性能評估的比較。
大型語言模型(LLMs)與Transformer架構在多個領域引發了革命性變革,其在代碼生成中的應用尤為顯著。這些模型遵循一個全面的過程,從代碼數據的整理和合成開始,然后是包括預訓練和微調在內的結構化訓練方法,并使用復雜的提示工程技術。最近的進展包括集成了庫級和檢索增強的代碼生成,以及自主編碼代理的發展。此外,評估LLMs的編碼能力已成為該研究領域的重要組成部分。 在接下來的章節中,我們將詳細探討這些與代碼生成相關的LLMs各個方面。第4.1節將介紹在LLMs開發的各個階段中使用的數據整理和處理策略。第4.2節將討論旨在緩解高質量數據稀缺性的數據合成方法。第4.3節將概述用于代碼生成的LLMs的流行模型架構。第4.4節將探討全參數微調和參數高效微調的技術,這些技術對于將LLMs調整為代碼生成任務至關重要。第4.5節將通過強化學習和利用反饋的力量,闡述提升代碼質量的方法。第4.6節將深入研究通過策略性使用提示來最大化LLMs的編碼能力。第4.7和4.8節將分別詳細說明庫級和檢索增強代碼生成的創新方法。此外,第4.9節將討論自主編碼代理這一令人興奮的領域。最后,第4.11節將提供一些利用LLMs進行代碼生成的實際應用見解,展示這些復雜模型的現實世界影響。通過這一全面探索,我們旨在強調LLMs在自動化代碼生成領域的意義和潛力。 結論
在本綜述中,我們提供了一篇系統的文獻綜述,為研究代碼生成LLMs最新進展的研究人員提供了寶貴的參考。我們詳細介紹和分析了數據整理、最新進展、性能評估和實際應用。此外,我們還展示了近年來代碼生成LLMs演變的歷史概覽,并使用廣泛認可的HumanEval和MBPP基準進行經驗比較,以突出代碼生成LLMs能力的漸進提升。我們還識別了學術界與實際開發之間的關鍵挑戰和有前景的機會,以供未來研究。此外,我們建立了一個專門的資源網站,以持續記錄和傳播該領域的最新進展。我們希望本綜述能夠為代碼生成LLMs提供一個全面而系統的概覽,促進其蓬勃發展。我們樂觀地相信,LLMs最終將改變編碼的各個方面,自動編寫安全、有用、準確、可信且可控的代碼,如同專業程序員一樣,甚至解決當前人類無法解決的編碼問題。
在過去的一年中,多模態大型語言模型(MLLMs)在視覺問答、視覺理解和推理等任務中表現出色。然而,龐大的模型規模和高昂的訓練與推理成本阻礙了MLLMs在學術界和工業界的廣泛應用。因此,研究高效且輕量級的MLLMs具有巨大的潛力,特別是在邊緣計算場景中。在這篇綜述中,我們對當前高效MLLMs的研究現狀進行了全面而系統的回顧。具體來說,我們總結了代表性高效MLLMs的時間線、高效結構和策略的研究現狀以及應用。最后,我們討論了當前高效MLLM研究的局限性和未來有前景的研究方向。更多詳情請參考我們的GitHub倉庫://github.com/lijiannuist/Efficient-Multimodal-LLMs-Survey。
大規模預訓練作為人工智能(AI)領域的一種領先方法,使得像大型語言模型和多模態模型這樣的通用模型在許多任務中超越了專門的深度學習模型。大型語言模型(LLM)的卓越能力激發了將它們與其他基于模態的模型結合起來以增強多模態能力的努力。這一概念得到了OpenAI的GPT-4V[1]和Google的Gemini[2]等專有模型顯著成功的進一步支持。因此,多模態大型語言模型(MLLMs)應運而生,包括mPLUG-Owl系列[3, 4]、InternVL[5]、EMU[6]、LLaVA[7]、InstructBLIP[8]、MiniGPT-v2[9]和MiniGPT-4[10]。這些模型通過有效利用每種模態的預訓練知識,繞過了從頭開始訓練的計算成本。MLLMs繼承了LLM的認知能力,展示了許多顯著特性,如強大的語言生成和遷移學習能力。此外,通過與其他基于模態的模型建立強大的表示連接和對齊,MLLMs能夠處理來自多種模態的輸入,顯著拓寬了它們的應用范圍。 MLLMs的成功主要歸因于規模定律:隨著數據、計算能力或模型規模等資源的增加,AI模型的性能會提高。然而,可擴展性伴隨著高資源需求,這阻礙了大型模型的發展和部署。例如,MiniGPT-v2的訓練需要基于NVIDIA A100 GPU計算出的總計超過800個GPU小時[9]。這對主要企業外的研究人員來說是一個巨大的費用負擔。除了訓練之外,推理也是MLLMs資源消耗的主要部分。考慮一個典型場景,模型輸入包括一個尺寸為336 × 336像素的圖像和一個長度為40個tokens的文本提示,使用LLaVA-1.5和Vicuna-13B LLM骨干進行推理需要18.2T的FLOPS和41.6G的內存使用量。大規模模型的資源密集型特性也引發了關于民主化和隱私保護的擔憂,因為當前主流的MLLMs,如GPT-4V和Gemini,由少數幾家主導企業控制,并在云端運行。如上述實驗所示,即使是開源的MLLMs,對計算資源的高要求也使得在邊緣設備上運行它們變得具有挑戰性。這進一步加劇了確保公平訪問和保護用戶隱私的挑戰。
鑒于這些挑戰,高效MLLMs的研究受到了越來越多的關注。這些努力的主要目標是減少MLLMs的資源消耗,擴大其適用性,同時盡量減少性能下降。高效MLLMs的研究始于用輕量級替代品替換大型語言模型,并進行典型的視覺指令微調。隨后,研究進一步通過以下方式增強了能力并擴展了用例:(1)引入更輕量的架構,注重效率,旨在減少參數數量或計算復雜度[25, 13, 18];(2)開發了更專業的組件,聚焦于高級架構的效率優化或賦予特定屬性,如局部性[19, 17, 12];(3)支持資源敏感任務,一些工作采用視覺token壓縮來提高效率,使MLLM的能力能夠轉移到資源密集型任務中,如高分辨率圖像和視頻理解[35, 39, 14, 40]。
在本綜述中,我們旨在呈現快速發展的高效MLLMs領域的最新進展,如圖2所示。我們將文獻組織成六個主要類別,涵蓋高效MLLMs的各個方面,包括架構、高效視覺、高效LLMs、訓練、數據和基準測試以及應用。Architecture 關注通過高效技術開發的MLLM框架,以降低計算成本。該架構由多個基于模態的基礎模型組成,具有不同于單模態模型的特征,從而促進了新技術的發展。
Efficient Vision 探討優化高效視覺特征提取策略,強調在保持準確性的同時提高效率的方法。它解決了集成高質量視覺數據以實現有效跨模態理解的問題。
Efficient LLMs 探索提高語言模型計算效率和可擴展性的策略。它研究了模型復雜性與性能之間的權衡,并提出了平衡這些競爭因素的有前景途徑。
Training 調查了對高效MLLMs開發至關重要的訓練方法的現狀。它解決了與預訓練階段、指令微調階段及整體訓練策略相關的挑戰,以實現最先進的結果。
Data and Benchmarks 評估用于多模態語言模型評估的數據集和基準測試的效率。它評估了數據集規模、復雜性和計算成本之間的權衡,同時倡導開發優先考慮效率和與現實世界應用相關性的基準測試。
Application 研究高效MLLMs在各個領域的實際影響,強調性能和計算成本之間的平衡。通過解決諸如高分辨率圖像理解和醫療問答等資源密集型任務,本節強調了高效MLLMs在拓寬其應用范圍和解決現實問題方面的潛力。
總之,這篇綜述深入探討了這些研究工作,探索了多種使MLLMs更具資源效率的策略。我們回顧了高效MLLMs的發展歷史,提供了高效MLLMs策略的分類法,并全面比較了現有高效MLLMs的性能。通過這一探索,我們希望提供對當前最先進技術的全面理解,從而揭示這一新興領域的復雜細微之處。此外,這篇綜述還充當了路線圖,突出了未來研究的潛在途徑,促進了對高效MLLMs領域挑戰和機遇的更深入理解。除了這篇綜述,我們還建立了一個GitHub倉庫,收錄了綜述中提到的論文,并按照相同的分類法進行整理,地址為:
按照標準的MLLM框架,高效MLLMs可以分為三個主要模塊:視覺編碼器g,負責接收和處理視覺輸入;預訓練語言模型,管理接收到的多模態信號并進行推理;視覺-語言投影器P,作為連接兩種模態的橋梁。為了提高通用MLLMs的效率,主要的優化在于處理高分辨率圖像、壓縮視覺令牌、實施高效結構以及使用緊湊的語言模型等策略。圖3展示了架構圖。表1概述了高效MLLMs的總結,包括基礎LLM、視覺編碼器、圖像分辨率和用于連接視覺和語言的投影器。這些高效MLLMs包括:MobileVLM[20]、LLaVA-Phi[21]、Imp-v1[22]、TinyLLaVA[23]、Bunny[24]、Gemini Nano-2[2]、MobileVLMv2[17]、MoE-LLaVA-3.6B[25]、Cobra[13]、Mini-Gemini[26]、Vary-toy[27]、TinyGPT-V[28]、SPHINX-Tiny[14]、ALLaVA[29]、MM1-3B[30]、LLaVA-Gemma[31]、Mipha-3B[32]、VLMamba[18]、MiniCPM-V2.0[70]、DeepSeek-VL[34]、KarmaVLM[71]、moondream2[72]。在本節中,我們將按順序全面概述這三個模塊以及其他高效組件。
Vision Transformer (ViT) [94] 架構在計算機視覺應用中獲得了顯著的關注并被廣泛使用。然而,隨著ViT模型規模的增長,可訓練參數和操作數量也隨之增加,影響了它們的部署和性能。此外,自注意力機制的計算和內存成本隨著圖像分辨率的增加呈二次增長。參考論文[95],本綜述旨在探索可用于高效MLLMs的最有效的視覺編碼方法。
檢索增強型生成(Retrieval-Augmented Generation, RAG) 將檢索方法與深度學習的進展結合起來,旨在解決大型語言模型(LLMs)的靜態限制,通過動態整合最新的外部信息。這種方法主要關注文本領域,提供了一個成本效益高的解決方案,用以改進LLMs生成的可能正確但實際錯誤的回答,從而通過使用真實世界數據提高其輸出的準確性和可靠性。隨著RAG在復雜性上的增長,并融入多個可能影響其性能的概念,本文將RAG范式組織為四個類別:預檢索(pre-retrieval)、檢索(retrieval)、后檢索(post-retrieval)和生成(generation),從檢索的視角提供了詳細的觀點。文中概述了RAG的發展,并通過分析重要研究討論了該領域的進展。此外,本文還介紹了對RAG的評估方法,討論了所面臨的挑戰,并提出了未來的研究方向。通過提供一個有組織的框架和分類,該研究旨在整合現有關于RAG的研究,闡明其技術基礎,并強調其擴展LLMs的適應性和應用潛力。
//www.zhuanzhi.ai/paper/64e819fddc014c8a615b8e9beb7c5deb
ChatGPT的出現因其交互能力和廣泛的應用而顯著影響了學術界和工業界,已成為領先的人工智能工具(Laskar等人,2023年;Jahan等人,2023年;Huang與Huang,2024年)。ChatGPT的核心是大型語言模型(LLM)GPT-4,正如(OpenAI等人,2023年)所詳述,它在其前身的基礎上進行了多項增強,展示了在各種自然語言處理(NLP)任務中的卓越能力(Laskar等人,2020年)。盡管有這些進步,LLMs的采用突顯了幾個關鍵問題,主要是由于它們依賴于大量數據集。這種依賴限制了它們在訓練后納入新信息的能力,導致三個主要挑戰。首先,側重于廣泛和通用數據以最大化可訪問性和適用性,結果在專業領域的性能不佳。其次,網絡數據的快速創建,加上數據注釋和模型訓練所需的大量資源,阻礙了LLMs的更新能力。第三,LLMs易于生成令人信服但不準確的回答,這種情況被稱為“幻覺”,可能會誤導用戶。 解決這些挑戰對于LLMs在各個領域的有效利用至關重要。一個有前景的解決方案是整合檢索增強型生成(Retrieval-Augmented Generation,RAG)技術,該技術通過在回應查詢時獲取外部數據來補充模型,從而確保輸出更準確、更及時。圖1演示了RAG如何使ChatGPT能夠提供超出其初始訓練數據的精確答案。自從Lewis等人(Lewis等人,2020b)在2020年引入RAG技術以來,特別是受到ChatGPT成功的影響,RAG技術已經取得了重大進展。然而,在文獻中關于RAG機制的徹底分析以及后續研究所取得的進展方面存在明顯的差距。此外,該領域的研究重點多樣,對類似方法使用的術語含糊其辭,導致混淆。本文旨在通過提供RAG的結構化概述、分類各種方法,并對這一研究領域提供深入理解,以闡明這些方面。本綜述主要關注RAG的文本應用,反映了當前這一領域研究工作的重點. RAG結合檢索方法和先進的深度學習來解決兩個主要問題:有效檢索相關信息和生成準確的回應。RAG的工作流程在第2節中概述,將方法分類為預檢索、檢索、后檢索和生成階段。從第3節到第6節,對這些階段內的技術進行了深入分析。第7節提供了所審查研究的總結,以及使用的檢索器和生成器。第8節詳述了RAG的評估方法。第9節探討未來研究方向,專注于基于文本的研究,并擴展到圖像和多模態數據的考慮。結論在第10節提出。 本文的貢獻有三個方面:本文為理解RAG領域提供了一個全面的框架,確定了改進的領域和未來研究的挑戰。它對RAG的核心技術進行了詳細分析,考察了它們在解決檢索和生成問題上的優勢。此外,它介紹了RAG研究中使用的評估方法,突出了當前的挑戰,并提出了未來研究的有希望的方向。 2 RAG框架
幻覺問題主要歸因于LLMs無法獲取最新信息的問題。這一限制源自模型依賴其訓練數據集。RAG通過利用檢索模型補充LLM的訓練數據與外部來源的當前信息,提出了解決這一問題的方案,從而使生成的回答更準確。RAG提供了一個成本效率更高的選擇,相比通常需要的大量訓練和微調過程而言。它允許通過傳統的檢索方法或預訓練的語言模型(LMs),動態地合并新鮮信息,無需直接將這些新數據整合到LLM中。這一特性使RAG具有靈活性和可擴展性,便于在不同的LLM上針對各種目的進行應用。通過RAG檢索的信息來自實際的人類編寫的數據,這不僅簡化了生成過程,還提高了生成回答的可靠性。圖2展示了統一的RAG框架以及基本工作流程和范式。 Khandelwal等人的研究(Khandelwal等人,2020年)表明,從訓練數據集本身獲取相關信息可以顯著提高LLM的性能,凸顯了RAG的有效性。隨著時間的推移,RAG已從提供補充信息的手段發展成為使檢索和生成組件之間進行多次交互的工具。這涉及進行多輪檢索以提煉檢索信息的準確性,并迭代提高生成輸出的質量。如LangChain1和LlamaIndex2等平臺已將RAG方法模塊化,增強了其適應性并擴展了應用范圍。盡管這些平臺采用多種方法解決RAG的不同方面——從多次搜索迭代到迭代生成——它們保持對基本RAG工作流程的遵守。這種一致性對于理解它們的操作和指明進一步發展的機會至關重要。
2.1 基本RAG工作流程RAG的基本工作流程從創建一個包含外部資源的索引開始。這個索引是基于特定查詢通過檢索模型檢索相關信息的基礎。最終步驟涉及一個生成模型,該模型將檢索到的信息與查詢結合,以產生所需的輸出。 2.1.1 索引高效的檢索始于全面的索引,其中數據準備是關鍵。這一階段涉及文本規范化過程,如分詞、詞干提取和停用詞移除,以增強文本的索引適用性(Manning等人,2008年)。然后,文本段落被組織成句子或段落,以便進行更有針對性的搜索,允許精確定位包含相關關鍵詞的段落。深度學習的整合通過使用預訓練的語言模型為文本生成語義向量表示,徹底革新了索引技術。這些向量被存儲,使從龐大的數據集中快速且精確地檢索成為可能,顯著提高了檢索效率。
2.1.2 檢索傳統的檢索方法,如BM25算法(Hancock-Beaulieu等人,1996年),側重于文檔排名的術語頻率和存在性,但通常忽視了查詢的語義信息。當前策略利用像BERT(Devlin等人,2019年)這樣的預訓練語言模型,更有效地捕捉查詢的語義本質。這些模型通過考慮同義詞和短語結構,提高搜索精度,通過檢測語義相似性來精細化文檔排名。這通常是通過測量文檔和查詢之間的向量距離實現的,將傳統檢索指標與語義理解結合,以產生既相關又符合用戶意圖的搜索結果。
2.1.3 生成生成階段的任務是產生既與查詢相關又反映檢索文檔中信息的文本。常用方法包括將查詢與檢索信息連接起來,然后輸入到一個LLM中進行文本生成(Li等人,2022年)。盡管確保生成文本的一致性和準確性面臨挑戰,但在嚴格遵循源材料和注入輸出創造性之間找到平衡也是必要的。生成的文本應準確傳達檢索文檔的信息并與查詢意圖一致,同時也提供引入未在檢索數據中明確包含的新見解或視角的靈活性。 2.2 RAG范式RAG范式在領域內組織研究,提供一個簡單而強大的框架以增強LLM的性能。RAG的核心是其搜索機制,對生成高質量結果至關重要。因此,從檢索角度看,這一范式被結構化為四個主要階段:預檢索、檢索、后檢索和生成。單跳和多跳檢索方法,包括迭代檢索-生成周期,遵循這四個階段的結構。圖3是RAG核心技術的分類樹。
2.2.1 預檢索檢索增強生成的預檢索階段為成功的數據和查詢準備奠定基礎,確保信息檢索的效率。這一階段包括準備有效數據訪問的必要任務。索引:過程從索引開始,建立一個有組織的系統,以實現信息的快速和準確檢索。索引的具體性取決于任務和數據類型。例如,針對問答系統,句子級索引有助于精確定位答案,而文檔級索引更適合于總結文檔以理解其主要概念和思想。查詢操作:索引后,進行查詢操作以更好地匹配索引數據。這涉及查詢重構(Jansen等人,2009年;Yu等人,2020年),它重寫查詢以更緊密地符合用戶意圖;查詢擴展(Huang等人,2013年),通過同義詞或相關術語擴展查詢以捕獲更相關的結果;以及查詢規范化,解決拼寫或術語上的差異以實現一致的查詢匹配。數據修改:數據修改在提高檢索效率方面也至關重要。這一步包括預處理技術,如移除無關或冗余信息以提高結果質量,并通過如元數據等附加信息豐富數據,以增強檢索內容的相關性和多樣性(Bevilacqua等人,2022a)。
2.2.2 檢索搜索與排名:檢索階段是搜索與排名的結合。它專注于從數據集中選擇和優先考慮文檔,以提高生成模型輸出的質量。這一階段使用搜索算法來導航索引數據,查找與用戶查詢匹配的文檔。識別相關文檔后,開始對這些文檔進行初步排名,按其與查詢的相關性進行排序。
2.2.3 后檢索后檢索階段旨在完善最初檢索的文檔,提高文本生成的質量。這一階段包括重新排序和過濾,每項都旨在優化文檔選擇以完成最終的生成任務。重新排序:在重新排序步驟中,之前檢索的文檔被重新評估、評分并重新組織。其目標是更準確地突出與查詢最相關的文檔,并降低不太相關文檔的重要性。這一步涉及結合額外的度量和外部知識源以提高精確性。在這種情況下,可以有效地使用精確度更高但效率較低的預訓練模型,因為可用的候選文檔集有限(Huang和Hu,2009年)。過濾:過濾旨在移除未達到特定質量或相關性標準的文檔。這可以通過幾種方法完成,例如設定最低相關性分數閾值以排除低于某一相關性級別的文檔。此外,使用用戶或先前相關性評估的反饋有助于調整過濾過程,確保只保留用于文本生成的最相關文檔(Khattab和Zaharia,2020年;Huang和Huang,2023年)。
2.2.4 生成生成階段是RAG流程的關鍵組成部分,負責利用檢索到的信息增強生成響應的質量。這一階段包括幾個旨在產生可讀、吸引人及富有信息量的內容的子步驟。增強:生成階段的核心是增強步驟,其目標是將檢索到的信息與用戶的查詢合并,創建一個連貫且相關的響應。這包括闡述過程,向檢索內容添加額外的細節以豐富它。努力專注于通過重述和重組等方法提高輸出的質量,增加其清晰度、連貫性和風格吸引力。將來自各種來源的信息結合在一起,提供全面的視角,并進行驗證,以確保內容的準確性和相關性。定制:定制是一個可選步驟,涉及調整內容以符合用戶的特定偏好或請求的上下文。這種調整包括根據目標觀眾的需求或內容呈現的格式調整內容,并壓縮信息以簡潔地傳達內容的本質。這個過程還包括創建強調關鍵點或論點的摘要或概要,確保輸出既信息豐富又簡潔。
圖是一種自然表示方式,適用于基于連接實體之間關系的系統。當考慮與感興趣的過程相關的目標函數時,會出現組合優化問題,這些問題通常具有挑戰性,因為解決方案空間的迅速增長。強化學習的試錯范式最近已經成為一種有前景的替代傳統方法,如精確算法和(元)啟發式算法,用于在化學、計算機科學和統計學等多種學科中發現更好的決策策略。盡管這些技術源自截然不同的領域,但它們具有顯著的共性。因此,我們著手將這些工作綜合在我們稱之為圖強化學習的統一視角中,將其解釋為圖問題的一種構造性決策方法。在介紹相關的技術背景后,我們回顧了這些研究工作,并沿著是否旨在優化給定過程的圖結構,或在固定圖結構下優化過程本身的結果這一分界線進行了評述。最后,我們討論了該領域面臨的共同挑戰和開放性研究問題。與其他綜述不同,本工作關注于非典型圖問題,對于這些問題,通常沒有已知的高效算法,而強化學習能夠提供高效且有效的解決方案。
圖是一個數學概念,用于形式化由關系(邊)連接的實體(節點)的系統。超越原始拓撲結構,圖中的節點和邊常常與屬性相關聯:例如,一個邊可以與距離度量的值相關聯(Barthélemy, 2011)。通過這樣的特性增強,圖成為了一種強大的形式主義,能夠表示各種系統。這種靈活性使得它們被廣泛應用于計算機科學、生物學和社會科學等多樣的領域(Newman, 2018)。這種類型的數學建模可以用來分析性地檢查網絡的結構和行為,構建預測模型和算法,并將它們應用于實際問題。除了描述在圖上發生的過程外,一個自然的問題是如何介入網絡以優化給定過程的結果。這類在離散結構上的組合優化問題通常具有挑戰性,因為解決方案空間的迅速增長。一個著名的例子是旅行商問題(TSP),它要求在一個完全連通的圖中找到一個哈密頓回路,使得路徑長度總和最小化。
近年來,機器學習(ML)開始作為解決組合優化問題的有價值工具而興起,研究人員預計其影響將是革命性的(Bengio et al., 2021; Cappart et al., 2021)。特別是,強化學習(RL)的范式已顯示出通過試錯發現能夠勝過傳統精確方法和(元)啟發式方法的算法的潛力。一個常見的模式是將感興趣的問題表達為一個馬爾可夫決策過程(MDP),在其中,一個代理逐步構建解決方案,并根據其優化目標函數的能力獲得獎勵。從MDP公式開始,可以透明地應用各種RL算法,這使得這種方法在可以解決的問題類型上非常靈活。與此同時,開始出現了使用RL解決圖組合優化問題的工作,涵蓋了從化學(You et al., 2018a),計算機科學(Valadarsky et al., 2017),經濟學(Darvariu et al., 2021b)到統計學(Zhu et al., 2020)等多種科學領域。
本綜述的目標是提出一個統一框架,我們稱之為圖強化學習(Graph RL),用于處理圖上的決策問題。我們將綜合可以在這個新興范式的背景下解釋的各種方法。我們將討論幾個組合優化問題,重點是那些通常不知道有效、高性能算法的非典型問題。事實上,最近的綜述關注的是應用RL解決典型問題的作品,我們使用“典型問題”這一術語來指代可能已經被研究了幾十年的問題。例如,僅關于解決上述TSP的研究就可以追溯到近70年前Dantzig等人的論文(1954),并且存在非常有效的算法可以最優地(Applegate et al., 2009)或近似地(Lin & Kernighan, 1973; Helsgaun, 2000)解決多達數千萬節點的實例。其他值得注意的典型問題包括最大獨立集(Ahn et al., 2020)、最大割(Khalil et al., 2017; Ahn et al., 2020)以及諸如車輛路徑問題(VRP)(Kool et al., 2019; Kim & Park, 2021)等路由問題。除了少數例外,盡管在這些基準問題上的工作對于推動基于ML方法的極限很重要,但目前它們還不能直接與成熟的、高度優化的啟發式和精確求解器競爭。因此,本文與其他綜述(Mazyavkina et al., 2021; Wang & Tang, 2021)和觀點(Bengio et al., 2021; Cappart et al., 2021)相輔相成,無論是在提出統一范式還是關注非典型問題方面。
本文的其余部分如下組織。在第2節中,我們提供了關于圖上的組合優化問題及其使用RL方法的相關技術背景。隨后,在第3節中,我們回顧了考慮優化圖結構的工作(即,從頭開始創建圖或修改現有圖)以使目標函數最大化。然后,在第4節中,我們綜述了在固定圖結構下優化過程的論文。第5節討論了在應用這些技術時面臨的常見挑戰,這些也可以視為未來工作中需要解決的重要研究問題,此外還總結了一些關鍵的應用領域。我們在第6節以圖強化學習作為解決圖上組合優化問題的統一范式的討論來結束本文。
圖結構優化在機器學習(ML)處理典型圖組合優化問題的工作中,一個共有的特點是它們通常不涉及對圖的拓撲結構進行改變。具體來說,需要在假設網絡結構保持固定的情況下找到解決方案。學習構建圖或修改其結構以優化給定目標函數的問題在ML文獻中相對較少關注。在這一部分,我們回顧了處理修改圖拓撲結構以優化感興趣的量的問題的工作,并使用強化學習(RL)來發現實施這一過程的策略。這是通過與環境的互動來執行的。
在高層次上,這類問題可以被表述為尋找滿足argmaxG∈G F(G)的圖G,其中G是要搜索的可能圖的集合,F如前所述,是目標函數。我們在圖2中示意了這一過程。精確的框架取決于問題,并可能涉及從一個空圖開始還是從一個現有的圖開始選擇,以及對圖的有效性如空間限制、非循環性或平面性施加約束。如圖3所示,動作空間的設計也可以變化。代理可能被允許進行邊的添加、移除和重連,或者這些操作的某種組合。 鑒于范圍的自然限制,我們只考慮那些(1)使用圖表示問題;(2)通過RL訓練策略進行結構優化的工作。讓我們簡要討論一下相關但不在討論范圍內的一系列工作。ML文獻中的幾項工作考慮了生成與提供的數據集具有類似屬性的圖。這通常使用深度生成模型執行,并可被視為經典圖生成模型的基于ML的替代方法,例如Barabási & Albert(1999)的模型。這些工作主要使用最終圖(即“成品”)的示例數據集,并不使用中間的,從某種意義上說,對應于生成過程本身的步驟。它們還需要大量相關的示例集合,這些可能并不總是可用的,具體取決于領域。
在這一領域,使用自回歸模型(如LSTM或GRU)的工作類似于MDP公式;例如添加邊的決策可以被視為序列中的一個標記,由模型學習。這一領域的一些值得注意的工作包括Li等人(2018)提出的技術,GraphRNN(You等人,2018b),以及圖重復注意網絡(Liao等人,2019)。其他類型的生成模型,如變分自編碼器和生成對抗網絡,也被用于生成分子(Kusner等人,2017; Guimaraes等人,2018; De Cao & Kipf, 2018; Jin等人,2018)。
本節的其余部分深入回顧了相關論文,按問題家族分組。我們涵蓋了旨在學習如何攻擊GNN、設計網絡結構、發現因果圖和構建分子圖的工作。考慮的論文根據其采用的技術和特點在表1中進行了總結。 在這項綜述中,我們討論了圖強化學習這一新興領域,這是一種通過試錯學習來解決圖上計算挑戰性優化問題的方法。我們特別關注那些尚未知曉高效算法的問題,以及傳統的啟發式和元啟發式算法通常無法提供滿意性能的問題。我們將這些工作分為兩類。第一類是圖結構優化,包括需要找到最優圖結構的問題,這在對抗性攻擊圖神經網絡、網絡設計、因果發現和分子優化等領域有顯著應用。第二類是圖過程優化,將圖結構視為固定不變,代理在離散的可能控制行動空間中進行搜索,以優化過程的結果。這包括網絡路由、游戲、傳播過程和圖搜索等問題。最后,我們討論了該領域面臨的主要挑戰,其解決可能具有非常重大的影響。
將文本和視覺模態連接起來在生成智能中扮演著至關重要的角色。因此,受到大型語言模型成功的啟發,大量研究努力正被投入到多模態大型語言模型(MLLMs)的開發中。這些模型能夠無縫整合視覺和文本模態,無論是作為輸入還是輸出,同時提供基于對話的界面和遵循指令的能力。在這篇論文中,我們提供了近期基于視覺的MLLMs的全面回顧,分析它們的架構選擇、多模態對齊策略和訓練技巧。我們還對這些模型在廣泛的任務范圍內進行了詳細分析,包括視覺定位、圖像生成和編輯、視覺理解和領域特定應用。此外,我們編制并描述了訓練數據集和評估基準,就性能和計算需求在現有模型之間進行了比較。總的來說,這篇綜述提供了當前藝術狀態的全面概述,為未來MLLMs的發展奠定了基礎。
//www.zhuanzhi.ai/paper/3c58ed684809b9b936259fd61a4bb074
注意力操作符和Transformer架構(Vaswani et al., 2017)的引入,使得創建能夠處理各種模態的模型成為可能,并且這種處理能力在不斷擴大的規模上得到應用。這一進步很大程度上歸功于操作符的多功能性和架構的適應性。最初,這一突破被用于語言特定模型(Devlin et al., 2018; Brown et al., 2020),但很快擴展到支持視覺處理骨干(Dosovitskiy et al., 2021),最終用于集成多種模態的模型(Radford et al., 2021)。復雜大型語言模型(LLMs)的涌現,特別是它們進行上下文學習的能力,鼓勵研究人員將這些模型的應用范圍拓寬到多模態,包括作為輸入和輸出。這一擴展導致了如GPT-4V(Achiam et al., 2023)和Gemini(Anil et al., 2023)等尖端模型的開發,展示了最先進的性能。多模態大型語言模型(MLLMs)的開發涉及將視覺和語言的單模態架構合并,通過視覺到語言的適配器建立它們之間的有效連接,并設計創新的訓練方法。這些方法對于確保模態對齊和準確遵循指令的能力至關重要。在新模型快速發布的背景下,我們的目標是提供關于MLLM領域的全面概述,重點關注利用視覺模態的模型。這一概述既是對當前狀態的更新,也是對未來發展的靈感來源。我們確定了定義這些模型的三個核心方面:它們的架構、訓練方法以及它們被設計來執行的任務。我們首先詳細介紹了流行的視覺編碼器選擇和為LLMs裝備跨模態能力的適配器模塊。接著,我們深入訓練過程和使用的數據。然后,我們探索MLLMs處理的任務范圍。綜述以對該領域持續存在的挑戰和未來研究的有希望方向的討論結束。關于訓練數據、評估數據集以及性能和計算要求的進一步細節在補充材料中報告。
賦予大型語言模型多模態能力
** 前言**
大型語言模型。Brown等人(2020)發現上下文學習,即在提示前附加一些示例以演示大型語言模型(LLM)的期望輸出(Chowdhery等人,2023;Hoffmann等人,2022;Tay等人,2022),可以提高其性能,特別是在未見過的任務上。通過為每個訓練樣本提供所需任務的自然語言描述,可以進一步提高泛化能力。這種技術,稱為指令調優(Chung等人,2022;Wang等人,2022b,a;Jiang等人,2024),對于使LLM的行為與人類的行為對齊至關重要,目前賦能了最先進的LLM,最終通過來自人類反饋的強化學習(RLHF)(Ouyang等人,2022;Achiam等人,2023;Chen等人,2023j;Bai等人,2023a)得到提升。PEFT。當一個預訓練的LLM需要適應特定領域或應用時,參數高效微調(PEFT)方案代表了訓練整個LLM的一個重要替代方案,因為這些策略只引入少量新參數。其中,提示調優(Hambardzumyan等人,2021;Lester等人,2021;Li和Liang,2021;Liu等人,2023j)學習一小組向量作為軟提示在輸入文本之前輸入模型。不同的是,LoRA(Hu等人,2021)通過學習低秩矩陣限制了新權重的數量。這種技術與如QLoRA(Dettmers等人,2023)等量化方法正交,進一步減少了LLM的內存占用,與通常的半精度權重相比。走向多模態LLM。MLLM的發展與LLM的發展路徑類似,Flamingo(Alayrac等人,2022)是首個在視覺-語言領域探索大規模上下文學習的模型。然后,視覺指令調優(Liu等人,2023e)迅速成為多模態領域中最突出的訓練范式,以及使用PEFT技術微調LLM。任何MLLM至少包含三個組件(圖1):作為與用戶接口的LLM主干,一個(或多個)視覺編碼器,以及一個或多個視覺到語言的適配器模塊。對LLM主干的流行選擇通常屬于LLaMA家族(Touvron等人,2023a,b),鑒于它們的權重是自由可獲取的,它們僅在公開數據上進行了訓練,并且它們擁有不同的大小以適應各種用例。此外,它們的衍生版本也很受歡迎,例如Alpaca(Taori等人,2023)和Vicuna(Chiang等人,2023)。前者在GPT-3編寫的指令上微調LLaMA,而后者利用用戶與ChatGPT(OpenAI,2022)的共享對話。其他選擇包括OPT(Zhang等人,2022b),Magneto(Wang等人,2023b),MPT(MosaicML,2023),以及經過指令調優(Chung等人,2022)或多語言(Xue等人,2020)版本的T5(Raffel等人,2020),一種為多個任務預訓練的編解碼器語言模型。 本調查中涵蓋的MLLM的總結報告在表1中,指出每個模型基于哪個LLM,視覺編碼器,用于連接視覺和語言組件的適配器,MLLM是否經過視覺指令調優訓練,以及主要任務和能力的簡短列表。視覺編碼器在MLLM中,一個關鍵組件是視覺編碼器,它專門設計用于為LLM提供提取的視覺特征。通常采用凍結的預訓練視覺編碼器,同時只訓練一個可學習的接口,將視覺特征與底層LLM連接起來。最常用的視覺編碼器基于預訓練的Vision Transformer(ViT)模型,具有CLIP-based目標,以利用CLIP嵌入的固有對齊。流行的選擇包括CLIP(Radford等人,2021)的ViT-L模型,OpenCLIP(Wortsman等人,2022)的ViT-H主干,以及EVA-CLIP(Fang等人,2023)的ViT-g版本。CLIP和OpenCLIP編碼器在從網絡收集的圖像上訓練,采用對比方法對正確的圖像-文本對進行對齊。相反,EVA-CLIP是一系列模型,提供了訓練CLIP模型的實用有效解決方案。特別是,EVA模型預訓練為重建被遮擋的圖像-文本對齊視覺特征,條件是可見的圖像塊。 正如(Li等人,2023f)所示,更強大的圖像編碼器導致更好的性能。基于這一見解,Lin等人(2023b)和Gao等人(2024)提出了一個凍結視覺主干的集合,以捕獲魯棒的視覺表示和不同級別的信息粒度。同時,PaLI模型(Chen等人,2023i,g),注意到語言和視覺參數之間的不平衡,分別提出將視覺主干擴展到4億和220億參數的ViT。使用如此大且強大的模型是通過在訓練期間保持視覺編碼器凍結的常見做法變得可行的,如(Li等人,2023f;Huang等人,2023a;Gao等人,2023;Chen等人,2023f)中所觀察到的。然而,使用凍結的視覺編碼器有一些局限性,主要是由于參數數量有限,導致視覺和語言模態之間對齊不足。具體來說,從視覺模型提取的密集特征可能會碎片化細粒度圖像信息,并由于輸入語言模型的長序列而帶來大量計算。為了緩解這個問題,其他方法(Ye等人,2023c,d)采用兩階段訓練范式。在第一階段,他們結合了可訓練的視覺主干,同時保持預訓練的LLM凍結。根據他們的發現,使視覺編碼器可訓練可以提高諸如視覺問題回答或視覺描述等任務的性能。然而,它可能導致其他任務的性能下降,表明一定程度的遺忘和對通用視覺表示的損害。
視覺到語言的適配器
來自不同模態的輸入的同時存在強調了需要納入一個能夠勾畫出這些單模態領域內潛在對應關系的模塊的必要性。這些模塊,稱為“適配器”,旨在促進視覺和文本領域之間的互操作性。在常見的MLLM中使用了不同適配器的范圍,從基本架構(如線性層或MLP)到高級方法(如基于Transformer的解決方案),如Q-Former模型,以及添加到LLM的條件交叉注意力層。線性和MLP投影。將視覺輸入投影到文本嵌入中的最直接方法涉及學習線性映射,將視覺特征轉換為與文本對應部分相同的維度。一些方法,如LLaMA-Adapter(Gao等人,2023)和FROMAGe(Koh等人,2023b)只使用單個線性層來執行多模態連接,而LLaVA-1.5(Liu等人,2023d)采用了兩層MLP,顯示出改進的多模態能力。盡管在早期MLLM中廣泛采用線性投影,但即使在對視覺輸入有更深入理解的最新方法中,線性投影的使用也被證明非常有效(Chen等人,2023f;Lin等人,2023a;Wang等人,2023c;You等人,2023;Zhao等人,2023a)。因此,它是一種簡單而有效的技術,用于將視覺特征與文本對應部分對齊。不同的方法(Cha等人,2023)提議用卷積層替換線性層,顯示出適度的改進。 Q-Former。它是BLIP-2(Li等人,2023f)中提出的基于Transformer的模型,然后在幾種其他方法(Chen等人,2023d;Dai等人,2023;Hu等人,2024)中使用。它的特點是具有可適應的架構,由兩個共享相互注意力層的Transformer塊組成,促進視覺和文本表示之間的對齊過程。它涉及一組可學習的查詢,在自注意力層內部交互,并通過交叉注意力機制與視覺特征接口。文本和視覺元素通過模塊內的共享自注意進行通信。從Q-Former中汲取靈感,引入了各種修改版本。在這方面,mPLUG-Owl模型(Ye等人,2023c,d)簡化了Q-Former架構,并提出了一個視覺抽象器組件,通過將視覺信息壓縮為不同的可學習令牌來操作,以獲得更富語義的視覺表示。同一線上,Qwen-VL(Bai等人,2023b)使用具有可學習查詢的單層交叉注意力模塊壓縮視覺特征,還結合了2D位置編碼。附加交叉注意力層。這種方法在Flamingo(Alayrac等人,2022)中被提出,通過在現有預訓練LLM層中集成密集交叉注意力塊。新添加的層通常與零初始化的tanh門控機制結合使用,以確保在初始化時,條件模型的行為如其原始版本。使用附加交叉注意力層需要從頭開始訓練它們,與其他替代方案相比,增加了可訓練參數的數量。為了減少計算復雜性,這種策略通常與基于Perceiver的組件(Jaegle等人,2021)配對使用,該組件在將視覺令牌輸入LLM之前減少了它們的數量。自從引入以來,幾個模型(Awadalla等人,2023;Chen等人,2023b;Lauren?on等人,2023;Li等人,2023a)采用這種技術將視覺模態與底層LLM連接起來,顯示出提高了訓練穩定性和改善了性能。
多模態訓練
從預訓練的LLM開始,MLLM的訓練經歷了單階段或兩階段過程。在這兩種情況下,都使用標準的交叉熵損失來預測下一個令牌,作為自回歸目標。 單階段訓練。這種可能性由LLaMA-Adapter(Gao等人,2023)探索,它引入了額外的可訓練參數以封裝視覺知識并同時管理僅文本指令學習。為了實現這一點,模型使用圖像-文本對和指令進行聯合訓練,操作獨立的參數。同時,(Koh等人,2023b)中提出的模型通過整合兩個對比損失來適應最終損失函數,用于圖像-文本檢索。在訓練期間,只更新三個線性層。另一方面,Kosmos-1(Huang等人,2023a)考慮了一個凍結的視覺主干,并從頭開始訓練1.3B參數的語言模型。 Flamingo(Alayrac等人,2022)及其開源變體(Awadalla等人,2023;Lauren?on等人,2023),相反,訓練交叉注意力層和基于Perceiver的組件以將視覺特征與凍結的LLM塊連接起來。此外,Otter(Li等人,2023a)擴展了Flamingo的訓練以增加其上下文能力。 鑒于目前可用的訓練數據量,像SPHINX-X(Gao等人,2024)這樣的方法選擇執行單一的一體化訓練階段,在此階段更新所有模型組件,可能還使用僅文本數據以保留LLM的對話能力。
兩階段訓練。在兩個訓練階段中的第一個,目標是將圖像特征與文本嵌入空間對齊。經過這一階段后,輸出往往是碎片化的且不連貫的。因此,進行第二步以提高多模態對話能力。LLaVA(Liu等人,2023e,d)是首批引入視覺指令遵循訓練方案的方法之一,作為第二訓練階段執行,更新多模態適配器和LLM的參數。在第一階段,相反,只有多模態適配器是可訓練的。不同的是,MiniGPT4(Zhu等人,2023a)值得注意的是,在兩個階段中僅訓練負責多模態對齊的線性層。在第二階段,它使用經過模型自身在第一階段后收集和精煉的過濾數據。
另一種方法,如InstructBLIP(Dai等人,2023)所示,涉及凍結視覺編碼器和LLM。在兩個訓練階段中,只有Q-Former和連接模塊是可訓練的。與之前保持視覺主干凍結的方法相比,mPLUG-Owl(Ye等人,2023c,d)在初始階段更新它,便于捕獲低層次和高層次的視覺信息。此外,在第二階段聯合使用僅文本和多模態數據以增加對齊。不同地,Shikra(Chen等人,2023f)在兩個階段中更新所有權重,唯一的例外是視覺主干保持凍結。
訓練數據。在第一階段(或單一階段)訓練中,通常使用來自不同來源的圖像-文本對,使用的數據集包括LAION-2B(Schuhmann等人,2022)、LAION-400M(Schuhmann等人,2021)、Conceptual Captions(Sharma等人,2018)、COYO-700M(Byeon等人,2022)和DataComp(Gadre等人,2023)。一些方法(Lin等人,2023a)將這些與一個或多個數據集結合使用,這些數據集的特點是文本與圖像交錯,通常從網絡上抓取,如WebLI(Chen等人,2023i)、MMC4(Zhu等人,2023d)、MMDialog(Feng等人,2023b)和OBELICS(Lauren?on等人,2023)。
為了解決以前數據集中的偏差和噪聲問題,StableLLaVA(Li等人,2023h)引入了在第一階段使用的新收集數據。這種方法利用ChatGPT生成包含圖像生成提示和基于內容的對話的數據,并使用Stable Diffusion(Rombach等人,2022)生成相應的圖像。隨后的階段則利用數據集進行視覺指令調優。其中,常用的LLaVA-Instruct(Liu等人,2023e)擴展了COCO(Lin等人,2014)并加入了由GPT-4生成的指令。遵循這一趨勢,Zhao等人(2023a)通過結合手動生成的數據和高質量多樣性的數據,擴大了尺寸。此外,還提出了其他多輪對話數據集,如(Dai等人,2023)中介紹的將26個公開可用數據集轉換為其視覺指令遵循版本的數據集,LRV-Instruction(Liu等人,2023c)旨在通過更穩健的指令減少幻覺,而LLaVAR(Zhang等人,2023h)則專注于文本豐富的圖像。
用多模態大型語言模型處理視覺任務
標準的多模態大型語言模型可以處理視覺理解任務,例如視覺問答(VQA)、圖像描述和多輪對話。然而,最近對處理更細粒度的視覺任務,如視覺定位和圖像生成,有了更大的興趣。
結論與未來方向
在本綜述中,我們提供了最近多模態大型語言模型(MLLMs)進化的全面概述,首先關注如何為LLMs裝備多模態能力,然后探討這些模型處理的主要任務。基于所呈現的分析,以下我們概述了重要的開放挑戰和有前景的未來研究方向,以進一步增強MLLMs的能力。 修正幻覺現象。幾項研究(Liu等人,2023b;Zhu等人,2023a)表明MLLMs傾向于展現高幻覺率,特別是在生成較長的描述時。盡管一些解決方案正在出現以緩解這個問題(Liu等人,2023b;Wang等人,2023a;Wu等人,2023c;Yin等人,2023a),但理解和糾正幻覺的根本原因仍然是一個重要的開放挑戰,值得解決,以允許這些模型在更關鍵的背景中(例如,醫學)應用,并保證它們的準確性和可信度。 預防有害和有偏見的生成。確保大規模模型的安全性和公平性是社區的基本興趣。近期工作表明,基于網絡爬取數據訓練的模型傾向于生成不適當和有偏見的內容。盡管最近正在努力在文本到圖像生成模型中減少這種現象(Schramowski等人,2023;Friedrich等人,2023),但需要進一步探索以防止MLLMs中出現相同的行為(Pi等人,2024)。 減少計算負荷。如補充材料所示,MLLMs高度依賴于計算。需要有效的策略(Chu等人,2024)來減少計算需求,使MLLMs的開發更加易于獲取。可能的方向包括減少訓練要求,無論是在模型規模還是數據量方面,以及優化推理階段。
近期在基礎模型上的發展,如大型語言模型(LLMs)和視覺-語言模型(VLMs),它們基于大量數據訓練,促進了跨不同任務和模態的靈活應用。它們的影響覆蓋了多個領域,包括健康護理、教育和機器人技術。本文提供了基礎模型在現實世界機器人應用中的概覽,主要強調在現有機器人系統中替換特定組件。總結包括了基礎模型中輸入輸出關系的視角,以及它們在機器人技術領域內的感知、運動規劃和控制中的作用。本文最后討論了實際機器人應用面臨的未來挑戰和含義。
近期在人工智能領域的進步顯著擴展了機器人的操作能力,使它們能夠承擔多種多樣的活動【1-5】。雖然最初機器人的部署主要限于大規模生產環境【6-11】,但現在工業機器人的適用性已經擴展到小批量和高多樣性生產領域,包括室內空間和災難現場【12-15】。這種擴散不僅僅限于環境多樣性的增加;它還擴展到了任務范圍的擴大,包括日常活動,如整理【16-18】、洗滌【19,20】、擦拭【21,22】和烹飪【23,24】。機器學習為滿足這些機器人系統的需求提供了一種方式。然而,僅僅在特定領域數據上訓練每個模型對于多樣的機器人、任務和環境來說是不夠的。越來越多地需要開發可以使用單一的、預訓練的系統或模塊應用于各種機體、任務和環境的機器人。 解決這一挑戰的一個方案是引入基礎模型【25】。基礎模型是在大量數據上訓練的模型,可以通過上下文學習、微調或甚至零樣本的方式輕松應用于廣泛的下游任務【26,27】。顯著的例子包括大型語言模型(LLMs)如GPT【27】和視覺-語言模型(VLMs)如CLIP【28】,其中語言是結合各種類型模態的粘合劑。這些基礎模型的影響是顯著的,有幾篇綜述文章討論了它們在不同領域的影響【29-32】。Wang等人【29】和Zeng等人【30】進行了關于大型語言模型在機器人學中應用的綜述,而Firoozi等人【31】和Hu等人【32】進行了更廣泛的綜述,關注于基礎模型在機器人學中的應用。在本文中,我們總結了基礎模型對現實世界機器人的適用性,旨在加速它們在實際機器人應用中的采用。與其他綜述文章相比,我們提供了如何從基礎模型的輸入輸出關系以及機器人學中的感知、運動規劃和控制的角度,用基礎模型替換現有機器人系統中的特定組件的總結。 本研究的結構如圖1所示。在第2節中,我們將描述基礎模型本身。特別地,我們將根據它們使用的模態類型,例如視覺【33,34】、語言【35-41】等,以及它們可以應用的下游任務類型進行分類。在第3節中,我們將基于當前應用【2,3,42】描述如何將基礎模型應用于機器人學。一般來說,機器人需要配備感知模塊、規劃模塊和控制模塊。從這個角度,我們分類了可以將基礎模型應用于現實世界機器人學的方式,包括低級感知、高級感知、高級規劃和低級規劃。此外,我們還將解釋在訓練直接連接低級感知和低級規劃的映射時,對機器人學的數據增強。在第4節中,我們將描述包括機器人實體在內的基礎模型,即機器人基礎模型,包括關于如何就模型架構、數據集和學習目標制作這些機器人基礎模型的討論。在第5節中,我們將描述使用基礎模型的機器人、任務和環境。我們將任務分類為導航、操縱、帶有操縱的導航、運動和交流。最后,我們將討論未來的挑戰并提出我們的結論。
“基礎模型”一詞最初在【25】中被引入。在這項綜述中,我們將簡單描述在機器人應用中使用的基礎模型的類型,以及下游任務,將關于基礎模型本身的討論推遲到【25】。在2012年,深度學習因ILSVRC-2012比賽的獲勝模型而獲得機器學習社區的主流關注【43】。2017年,由【44】介紹的Transformer模型,促進了自然語言處理(NLP)【45】和計算機視覺【46】領域的重大進步。到2021年,一個經過大量數據訓練、能夠輕松應用于廣泛下游任務的模型被稱為“基礎模型”【25】。基礎模型的特點主要有三個:
上下文學習 * 規模定律 * 同質化
上下文學習使得僅用幾個例子就能完成新任務成為可能,無需重新訓練或微調。規模定律允許隨著數據、計算資源和模型大小的增加而持續提升性能。同質化允許某些基礎模型架構以統一的方式處理多種模態。 在這一章中,我們從在機器人學中的適用性的角度對基礎模型進行分類。機器人利用基礎模型的最關鍵標準是選擇使用哪些模態。本章從語言、視覺、音頻、3D表示和各種其他模態的角度討論了基礎模型的類型和它們可以執行的下游任務。在利用每種模態的背景下,我們進一步從網絡輸入和輸出的角度對基礎模型進行分類。概覽顯示在圖2中。請注意,我們的目標不是在這里全面覆蓋基礎模型;我們的重點仍然在于解決模態差異和基礎模型的分類。
通常,機器人的行為由感知、規劃和控制組成。在本研究中,我們將感知分為兩個類別:低級感知和高級感知。同時,我們將規劃和控制分別稱為高級規劃和低級規劃。加上對學習這些組成部分的數據增強,我們將機器人對基礎模型的利用分為以下五個類別。 * 低級感知 * 高級感知 * 高級規劃 * 低級規劃 * 數據增強
這些類別之間的關系如圖3所示。用于低級感知的基礎模型包括在圖像或3D表示中的語義分割和邊界框提取,以及在各種模態中的特征提取。用于高級感知的基礎模型涉及將從低級感知獲得的結果轉換和利用成如地圖、獎勵和運動約束等形式。用于高級規劃的基礎模型執行更高級別的抽象任務規劃,不包括直接控制。用于低級規劃的基礎模型執行較低級別的運動控制,包括關節和末端執行器控制。用于數據增強的基礎模型在執行連接低級感知和低級規劃的學習時,通過數據增強增強魯棒性。 在實踐中,通過組合這五種利用方法創建了各種應用。主要分為四種類型,如圖4所示。 (i) 進行低級感知,然后用高級規劃規劃行為。 (ii) 通過低級感知和高級感知提取獎勵和運動約束,并用于強化學習和軌跡優化。 (iii) 通過低級感知和高級感知生成地圖、場景圖等,并將它們作為任務規劃的基礎。 (iv) 使用數據增強,穩健地進行直接關聯低級感知的特征提取和控制輸入的端到端學習。 值得注意的是,也有一些研究方法不適用于這一框架。 從這些角度出發,我們選取了幾篇具有代表性的論文并在表1中進行了總結。
大型模型,包括大型語言模型和擴散模型,已在接近人類智能方面展現出卓越的潛力,引起了學術界和工業界的極大興趣。然而,這些大型模型的訓練需要大量的高質量數據,而且隨著這些模型的持續更新,現有的高質量數據資源可能很快就會耗盡。這一挑戰促使人們大量研究數據增強方法。利用大型模型,這些數據增強技術已超越傳統方法。本文提供了一篇關于大型模型驅動的數據增強方法的全面綜述。我們首先建立了相關研究的分類,分為三個主要類別:**圖像增強、文本增強和配對數據增強。**接著,我們深入探討了與基于大型模型的數據增強相關的各種數據后處理技術。我們的討論隨后擴展到這些數據增強方法在自然語言處理、計算機視覺和音頻信號處理等領域的應用范圍。我們繼續評估基于大型模型的數據增強在不同場景中的成功與局限性。在我們的綜述中,我們突出了數據增強領域未來探索的潛在挑戰和途徑。我們的目標是為研究人員提供關鍵洞察,最終有助于更復雜大型模型的發展。我們持續維護相關的開源材料在: //github.com/MLGroup-JLU/LLM-data-aug-survey。
數據增強,作為機器學習中的關鍵策略,解決了用有限的標記數據訓練不同任務模型的挑戰。它涉及增強訓練樣本的充足性和多樣性,而無需顯式收集新數據,因此在提高模型泛化方面起著至關重要的作用(Feng et al., 2021; Shorten and Khoshgoftaar, 2019)。數據增強的本質在于通過各種變換改變現有數據點來生成新數據。這防止了模型記憶無關的數據模式,增強的數據緊密反映了真實數據的分布(Cubuk et al., 2019; Wei and Zou, 2019)。這些技術直接適用于監督學習(Liu et al., 2021c)并且可以通過一致性規則化(Zhang et al., 2021a)在半監督學習中用于未標記數據。最初為計算機視覺(CV)開發的數據增強方法通過裁剪、旋轉和色彩調整等操作創建人工圖像(Kanwal et al., 2022; Krell and Kim, 2017; Takahashi et al., 2019)。在自然語言處理(NLP)中,類似的方法包括隨機字符插入、單詞刪除和同義詞替換(Liu et al., 2020; Shorten and Khoshgoftaar, 2019)。
數據增強的重要性在學術和工業領域引起了廣泛關注。作為一個活躍的研究領域,它解決了機器學習中對大量高質量標記數據的日益增長的需求,這一需求在現實世界中往往無法滿足。盡管在過去幾十年中,特別是在深度學習技術方面,數據增強取得了顯著進展,但這些方法仍然難以捕捉現實世界數據的復雜性(Feng et al., 2021),生成可擴展數據(Yang et al., 2022),并抵御對抗性示例(Qiu et al., 2020)。
為了應對這些限制,當前研究正在探索創新技術來增強數據增強方法的效果和多樣性。其中,大型模型,包括大型語言模型(Zhao et al., 2023)和擴散模型(Yang et al., 2023),顯示出相當大的潛力。大型語言模型(LLMs),如GPT-4(OpenAI, 2023a)和Llama2(Touvron et al., 2023b),已經革新了NLP。這些模型以Transformer架構(Vaswani et al., 2017)為特點,并在廣泛的語料庫上進行訓練,擅長理解和生成類似人類的文本,標志著機器學習能力的重大進步(Zhao et al., 2023)。這些擁有數十億參數的模型可以承擔包括代碼生成(Zhang et al., 2023b)和數據增強(Dai et al., 2023)在內的多樣化和復雜任務,為人工通用智能(AGI)的實現鋪平了道路。
擴散模型(Ho et al., 2020; Song et al., 2020),一種新的最先進的生成模型家族,在計算機視覺中的圖像合成方面超越了長期占據主導地位的生成對抗網絡(GANs)(Goodfellow et al., 2014)(Dhariwal and Nichol, 2021; Ho et al., 2020)。與變分自編碼器(VAEs)(Kingma and Welling, 2013)和GANs等先前模型不同,擴散模型通過迭代添加和逆轉噪聲來生成高質量的合成圖像,并已實現文本到圖像的生成(Saharia et al., 2022),擴展了數據增強的范圍。
方法論
大型模型的出現徹底改變了數據增強的方式,提供了與傳統方法相比更具多樣性的創新和有效手段來生成訓練數據。本節將現有的方法基于目標數據類型分為三個不同的類別:圖像增強、文本增強和配對數據增強。圖像增強涉及擴展圖像數據,文本增強涉及擴展文本數據,而配對數據增強則涉及兩者。這些方法反映了數據增強的最新趨勢,突出了大型模型的重要作用。
圖像增強圖像增強通過額外信息的指導來合成逼真的圖像。我們將這些技術分為基于提示的和基于主題的方法:在基于提示的類別中包括文本、視覺和多模態方法;在基于主題的類別中包括針對特定主題的策略。文本提示驅動的方法從文本描述中生成圖像,視覺提示驅動的方法使用視覺線索,而多模態提示驅動的方法結合了文本描述和視覺指導。基于主題的方法為特定主題量身定制增強。這些方法提升了深度學習任務的性能,有助于更加健壯的訓練體驗。現有方法在表3中總結。
文本增強
文本增強著重于利用大型模型的先進能力來增強文本數據集,包括兩種策略:基于標簽的和基于生成內容的。在基于標簽的方法中,模型被用于注釋文本數據,有效地豐富了文本數據集,增加了更多的標記實例。基于生成內容的策略指導模型合成新的文本數據,從而擴展了數據集,增加了新生成的文本材料。現有方法在表4中展示。
配對數據增強
MixGen(Hao et al., 2023)是一種用于視覺-語言表示學習的數據增強方法,通過圖像插值和文本連接生成具有保留語義關系的圖像-文本對。Bakhtiarnia等人(2023)提出了一種名為PromptMix的方法,該方法從現有數據集中提取文本描述,使用提取的文本作為輸入到潛在擴散模型以生成類似于現有數據集中的圖像,使用高性能的重量級網絡對生成的圖像進行注釋,并將這個假數據集與真實數據混合,以改善輕量級深度神經網絡的訓練。為了解決視覺語言數據集中的報告偏差問題,特別是對象屬性關聯對訓練模型的潛在有害影響,Wu等人(2023b)提出了一種稱為BigAug的雙模態增強方法。這種方法利用對象屬性解耦來合成不同的視覺語言示例,并創建跨模態的硬否定。LLM和基礎對象檢測器的整合有助于提取目標對象,其中LLM為每個對象提供詳細的屬性描述。這些描述以及相應的硬否定接著被用來通過修補模型生成圖像。這個明確的過程引入了缺失的對象和屬性以供學習,其中硬否定指導模型區分對象屬性。
總結
在本節中,我們提供了對我們在第3、4和5節中審查的主要發現的綜合概述。 基于大型模型的數據增強仍然是一個充滿機會和挑戰的領域。本調查旨在全面審查基于大型模型的數據增強方法,伴隨的數據后處理技術以及在下游任務中的應用。 它還仔細分類了現有的基于大型模型的數據增強方法。通過總結和分析當前的研究工作,我們確定了當前方法的成功和失敗,并辨別了基于大型模型的數據增強的新趨勢。此外,我們總結了用于評估基于大型模型的數據增強的現有方法。最重要的是,這些總結可以幫助提出未來研究的新挑戰和機會。
開放領域生成系統在會話人工智能領域(例如生成式搜索引擎)引起了廣泛關注。本文對這些系統,特別是大型語言模型所采用的歸因機制進行了全面回顧。盡管歸因或引用可以提高事實性和可驗證性,但模糊的知識庫、固有偏見以及過度歸因的缺點等問題可能會妨礙這些系統的有效性。本綜述的目標是為研究人員提供有價值的見解,幫助改進歸因方法,以增強開放領域生成系統生成的響應的可靠性和真實性。我們認為這個領域仍處于初級階段,因此我們維護了一個倉庫,以跟蹤正在進行的研究,網址為
//github.com/HITsz-TMG/awesome-llm-attributions。
自從由大型語言模型(LLMs)驅動的開放領域生成系統出現以來(Anil等人,2023;OpenAI,2022,2023),解決潛在不準確或虛構內容的連貫生成一直是一個持續存在的挑戰(Rawte等人,2023;葉等人,2023;張等人,2023b)。社區通常將這種問題稱為“幻覺”問題,其中生成的內容呈現出扭曲或虛構的事實,缺乏可信的信息來源(Peskoff和Stewart,2023)。這在信息搜索和知識問答場景中尤為明顯,用戶依賴大型語言模型獲取專業知識(Malaviya等人,2023)。
幻覺問題的實質可能源于事先訓練的模型是從廣泛、未經過濾的現實世界文本中獲取的(Penedo等人,2023)。這些人類生成的文本固有地包含不一致性和虛假信息。事先訓練的目標僅僅是預測下一個單詞,而不是明確建模生成內容的真實性。即使在利用人類反饋的強化學習之后(Ouyang等人,2022),模型仍然可能出現外部幻覺(Bai等人,2022)。為了解決外部幻覺的問題,研究人員已經開始采用外部參考文獻等措施來增強聊天機器人的真實性和可靠性(Thoppilan等人,2022;Menick等人,2022;Nakano等人,2021)。顯式歸因和強化學習之間的區別不僅在于需要人工驗證和遵從,還在于認識到生成的內容可能隨著時間變化而變得過時或無效。歸因可以利用實時信息來確保相關性和準確性。然而,歸因的基本挑戰圍繞著兩個基本要求(Liu等人,2023):
考慮到這些要求,我們可以將模型處理歸因的主要方式分為三種類型:
超越對文本幻覺的一般討論(Zhang等人,2023b;葉等人,2023;Rawte等人,2023),我們的研究深入探討了大型語言模型的歸因問題。我們探討了它的起源、支撐技術以及評估標準。此外,我們也涉及了諸如偏見和過度引用的挑戰。我們相信,通過關注這些歸因問題,我們可以使模型更加可信賴和容易理解。我們這項研究的目標是以一種更加清晰的方式來闡述歸因問題,鼓勵對這一主題進行更深入的思考。
歸因是指一個實體(如文本模型)生成并提供證據的能力,這些證據通常以引用或參考文獻的形式出現,用以支撐它所產生的聲明或陳述。這些證據來源于可識別的源頭,確保這些聲明可以從一個基礎語料庫中邏輯推斷出來,使得它們對于普通受眾而言是可以理解和驗證的。歸因本身與搜索任務相關(Brin 和 Page, 1998;Page 等人, 1999;Tay 等人, 2022),在這種任務中只有幾個網頁會被返回。然而,歸因的主要目的包括使用戶能夠驗證模型所做的聲明,促進生成與引用源高度一致的文本以提高準確性和減少錯誤信息或幻覺,以及建立一個結構化的框架來評估支持證據的完整性和相關性,與所提出的聲明相比較。歸因的準確性核心在于所產生的陳述是否完全由引用源支持。Rashkin 等人(2021)還提出了歸因于已識別來源(AIS)的評估框架,以評估特定陳述是否由所提供的證據支持。Bohnet 等人(2022)提出了歸因問答,模型在這里接受一個問題,并產生一對配對的回答,即答案字符串及其從特定語料庫,如段落中得到的支持證據。
直接生成的歸因 來自參數化知識的直接生成歸因可以幫助減少幻覺現象并提高生成文本的真實性。通過要求模型進行自我檢測和自我歸因,一些研究發現生成的文本更加基于事實,并且在下游任務中的表現也有所提升。最近,研究人員發現,大型語言模型在回答特定領域的知識性問題時,不能清楚地提供知識來源或證據(Peskoff 和 Stewart, 2023; Zuccon 等人, 2023)。在大多數情況下,模型只能提供一個與問題中的關鍵詞松散相關或與當前主題無關的知識來源。即使模型正確回答了問題,它提供的證據仍然可能存在錯誤。Weller 等人(2023)嘗試通過提出根據提示方法,將模型生成的文本基于其預訓練數據,發現這種方法可以影響模型的根據性,從而影響信息尋求任務的表現。Anonymous(2023)引入了一個中間規劃模塊,要求模型生成一系列問題作為當前問題的藍圖。模型首先提出一個藍圖,然后結合基于藍圖問題生成的文本作為最終答案。藍圖模型允許在每個回答問題的步驟中采用不同形式的歸因,可以期望更具解釋性。
**檢索后回答 **
多篇研究論文已經調查了歸因的檢索后回答方法(Chen 等人,2017年;Lee 等人,2019年;Khattab 和 Zaharia,2020年)。SmartBook 框架(Reddy 等人,2023年)提出了一種方法,該方法利用大量新聞數據自動生成結構化的情況報告。SmartBook 確定了情況分析的關鍵問題,并從新聞文章中檢索相關信息。報告按時間線組織,每個時間線包括重大事件、戰略問題和由事實證據支持的概括性總結。為了解決用戶查詢和存儲知識之間的不一致問題,MixAlign(張等人,2023a)提出了一個框架,該框架結合了自動問題知識對齊和用戶澄清,增強了檢索增強生成模型的性能,并減輕了語言模型的幻覺。此外,SearChain(徐等人,2023年)引入了一個新穎的框架,它將大型語言模型(LLMs)與信息檢索(IR)結合起來,提高了復雜知識密集型任務的準確性、可信度和可追溯性。SearChain 采用檢索然后回答的方法,通過生成全球推理鏈(CoQ)并利用 IR 來驗證答案和提供缺失的知識。
生成后歸因
為了在不損害最新一代模型所提供的強大優勢的情況下促進準確的歸因,一些研究致力于生成后的歸因,這些研究使用搜索引擎或文檔檢索系統,基于輸入問題和生成的答案來搜索證據。這種方法允許研究人員評估或提高答案的事實性,而無需直接訪問模型的參數。生成后歸因的工作流程如圖3所示。RARR(高等,2023a)自主識別任何文本生成模型輸出的歸因,并執行后期編輯以糾正不支持的內容,同時努力在最大程度上保留原始輸出。在霍等人(2023)的工作中,材料是基于粗粒度的句子或細粒度的事實陳述從語料庫中檢索的。然后利用這些檢索到的材料提示LLM,以驗證生成的回應與檢索到的材料之間的一致性,并進行必要的編輯以減少幻覺。陳等人(2023b)介紹了一個全自動化的管道,旨在驗證復雜的政治聲明,這是通過從網上檢索原始證據、生成聚焦聲明的摘要并利用它們進行聲明驗證來實現的。
深度模型融合/合并是一種新興的技術,它將多個深度學習模型的參數或預測合并成一個。它結合了不同模型的能力,以補償單一模型的偏差和錯誤,以實現更好的性能。然而,對于大規模深度學習模型(例如,LLMs 和基礎模型)的深度模型融合面臨著幾個挑戰,包括高計算成本、高維參數空間、不同異構模型之間的干擾等。盡管模型融合由于其解決復雜實際任務的潛力而引起了廣泛關注,但關于這種技術的完整和詳細的調查研究仍然缺乏。因此,為了更好地理解模型融合方法并推動其發展,我們提出了一項全面的調查以總結最近的進展。具體來說,我們將現有的深度模型融合方法分類為四種:(1)“模式連接”,通過非遞增損失的路徑連接權重空間中的解,以獲得模型融合的更好初始化;(2)“對齊”匹配神經網絡之間的單元以為融合創造更好的條件;(3)“權重平均”,一種經典的模型融合方法,對多個模型的權重進行平均,以獲得更接近最優解的精確結果。 (4)**“集成學習”**結合了多種模型的輸出,這是一種改善最終模型的準確性和魯棒性的基礎技術。另外,我們分析了深度模型融合面臨的挑戰,并提出了未來模型融合的可能研究方向。我們的評論對于深入理解不同模型融合方法之間的關系和實際應用方法是有幫助的,這可以啟發深度模型融合領域的研究。
//www.zhuanzhi.ai/paper/43bab5b376b2213134e1f99b305d4deb
近年來,深度神經網絡(DNNs)[129] 取得了顯著的發展,廣泛應用于計算機視覺(CV)[175]、自然語言處理(NLP)[30] 等領域。一般來說,單一深度學習模型通常具有一定的局限性,不能完全捕獲復雜網絡背后的所有潛在信息[195]。因此,經典的集成學習[15, 193, 198] 合并多個模型的輸出,以改善深度學習(DL)中模型的最終性能。但在測試時存儲和運行多個模型的成本很高[65, 204],尤其是模型的復雜性和大小增加時。例如,GPT-3[172] 有數十億參數,PaLM[31] 甚至達到5400億參數和7800億令牌。此外,從深度神經網絡[134, 196] 的損失景觀的角度來看,梯度優化的解通常聚集在寬平區域的邊界附近的點,而不是中心點[99]。這意味著經過訓練的網絡并不完全接近具有最小測試錯誤的最優解。需要融合相對最優點附近的解,以得到更好的結果。這激發了研究人員不僅將融合范圍限制于預測(例如,logits等),而且還包括模型參數的融合,而無需訪問訓練數據或保持所有單獨模型[110]。因此,深度模型融合[111, 159] 旨在將多個DNNs融合成一個網絡,保留其原始功能,甚至超越多任務訓練[3, 135]。此外,深度模型融合可以減少單一模型過度擬合特定樣本或噪聲的傾向,從而提高預測的準確性、多樣性和穩健性[207, 223]。由于數據隱私和實際節約資源的問題,深度模型融合引起了越來越多的關注。盡管深度模型融合的發展帶來了許多技術突破,但它也產生了一系列的挑戰,例如高計算負荷、模型異構性和通過組合優化對齊的速度慢[133, 204]等。
有些方法僅限于特定場景[227, 254],這激發了研究人員研究不同案例中模型融合的原理。然而,目前缺乏綜合評論來總結方法,以指示深度模型融合的內部機制。一些工作只關注從單一視角(例如,特征融合等)[45, 195] 和特定場景[213] 的模型融合,或者不同方式的信息融合(多模態融合[1, 103])而不是參數的融合。為了給開發者深入了解深度模型融合,我們分析了深度模型融合的原理和方法。此外,我們回顧了最近的進展和代表性應用,例如聯邦學習(FL)[160] 和微調[29] 等。我們的調查旨在說明深度模型融合的最新趨勢和潛在方向,并為研究人員提供指南,以提高性能和降低成本。因此,我們根據內部機制和目的將方法分為四類,如圖1所示。對于相互之間不在附近的獨立訓練的模型,“模式連接”和“對齊”使解更加接近,以獲得更好的平均原始條件。對于權重空間中存在某些差異的類似模型,“權重平均(WA)”傾向于直接平均模型,并在損失函數值較低的參數空間區域獲得更接近最優點的解[118]。此外,對于現有模型的預測,“集成學習”集成了模型的不同形式的預測,以獲得更好的結果。具體來說,這四個類別如下:
模式連接性指的是通過基于梯度的優化得到的解可以在權重空間中通過一條無障礙的路徑(連接器)進行連接。我們可以沿著低損失路徑獲得更適合模型融合的其他模型。根據路徑的數學形式和連接器所在的空間,我們將此部分劃分為“線性模式連接性”,“非線性模式連接性”和“子空間中的模式連接性”。模式連接性可以在訓練過程中解決局部優化問題。模式連接性的路徑的幾何關系也可以用來加速優化過程,如隨機梯度下降(SGD)的收斂、穩定性和準確性。簡而言之,模式連接性為解釋和理解模型融合的行為提供了一個新的視角。但是,特別是在大數據集上訓練模型時,應解決計算復雜性和參數調整的困難。
對齊是將多個模型的單元進行匹配,并對模型進行平均以獲得最終模型。對齊后,不同模型之間的特定數學度量(例如,歐幾里得距離)可以更為接近,從而減小模型之間的差異,進而增強深度模型融合的效果。對齊可分為“激活匹配”和“權重匹配”,取決于是否需要考慮數據分布。此外,Re-basin基于對齊引入,探討解決方案可以通過排列不變性被傳輸到一個單一的盆地(即,參數空間中相對低損失的區域)。然而,對齊通常面臨著計算量大、組合優化速度慢和架構差異的障礙,使得它不易擴展到具有不同目標的其他場景。例如,伴隨圖匹配而來的記憶負擔限制了深度模型融合的應用。
權重平均是將幾個母網絡融合成一個單一網絡的最直接和高效的方式。與模式連接性和對齊相比,權重平均不需要額外的計算復雜性或訓練來找到一個優越的起點,在模型包含一定程度的相似性時表現良好。根據聚合空間,權重平均可分為“權重平均”和“子空間中的平均”。此外,典型的方法“模型湯”,“模型算術”和“隨機權重平均”也對現有方法進行了顯著改進。然而,當參數被規范化和合并時,可能會在模型結構或參數數量存在較大差異的情況下引入一些偏差。盡管如此,權重平均仍然是深度模型融合的主流方法,因為它簡單且高效。
集成學習結合了幾種不同模型的輸出,以改善預測性能和魯棒性。我們專注于深度學習中的集成學習。基于集成學習,“模型重用”為每個模型提供了規格,這樣在給定新的學習任務時,有用的模型可以從模型池中被識別和合并。集成學習具有各種框架和便捷的界面,經常用于實際領域,例如物體檢測等。盡管集成學習需要維護多個訓練過的模型并在測試時運行每個模型,但它仍然是在深度學習中被廣泛采用的強大技術之一。
作為一項提高深度模型的準確性和魯棒性的技術,模型融合促進了許多應用領域的改進。聯邦學習,一種在中央服務器上聚合客戶端模型的應用,使得各方可以貢獻數據到功能的計算中(例如,各種統計、分類器),而無需泄露隱私。微調對預訓練模型進行小的調整,結合模型融合以減少訓練成本并適應特定任務或領域的需求。模型融合還涉及到“蒸餾”。即,將來自多個復雜模型的軟目標知識結合起來,為特定要求訓練一個小模型。模型融合在foundation/LLMs上的應用包括在大型基礎模型或大型語言模型(LLMs)上的工作,例如視覺變壓器(ViT)和GPT等。模型融合的應用幫助開發人員適應各種任務和領域的需求,并促進深度學習的發展。簡而言之,我們的調查回顧了深度模型融合技術。在前三節“模式連接性”,“對齊”和“權重平均”中,我們主要從模型參數融合的角度進行全面研究。在“集成學習”中,我們主要從模型輸出聚合的角度探討了這個問題。
本工作的主要貢獻總結如下:
? 我們從“模式連接性”,“對齊”,“權重平均”和“集成學習”的角度提出了一種新的深度模型融合分類方法,該方法涵蓋了模型融合的理論綜合方法,并為實現DNNs的高泛化和準確訓練提供了指導。
? 我們比較了融合方法的優缺點,并解釋了它們之間的機制和關系,為未來設計先進的模型融合方法提供了靈感。
? 我們總結了深度模型融合的廣泛應用。我們還討論了當前的研究趨勢,以便在未來引起更多的關注和反思。此外,本文的其余部分組織如下:在第2節到第5節,我們根據“模式連接性”、“對齊”、“權重平均”和“集成學習”的四個角度介紹深度模型融合的方法。第6節介紹了深度模型融合的應用:“聯邦學習”、“微調”、“蒸餾”和“在foundation/LLMs上的模型融合”。最后,在第7節中,我們總結了深度模型融合,并討論了未來的挑戰和潛在方向。另外,我們在全文中說明了符號及其相應的定義。Wi是第i個具有權重Wi ∈ R^d(i = 1, 2, ...k)和偏置項b的神經網絡。λ表示加權參數。σ表示非線性神經元激活函數。L是損失函數,用于量化預測值和實際值之間的差異。
大型語言模型(LLMs)展示了出色的泛化能力,這促進了眾多模型的發展。這些模型提出了各種新的架構,微調了現有架構的訓練策略,增加了上下文長度,使用了高質量的訓練數據,并增加了訓練時間,以此超越基線性能。分析新的發展對于識別那些能提高LLMs訓練穩定性和改善泛化能力的變化至關重要。這篇綜述論文全面分析了LLMs的架構及其分類,訓練策略,訓練數據集,性能評估,并討論了未來的研究方向。此外,這篇論文還討論了LLMs背后的基本構建模塊和概念,然后對LLMs的重要特性和功能進行了全面概述。最后,這篇論文總結了LLMs研究的重要發現,并整合了開發高級LLMs的重要架構和訓練策略。鑒于LLMs的持續發展,我們打算定期更新這篇論文,通過添加新的部分并展示最新的LLMs模型。
//www.zhuanzhi.ai/paper/c50ae8aa97761c357e5a03b701379652
1. 引言
語言在人類的交流和自我表達中起著基礎性的作用,同樣,通信對于機器與人類和其他系統的互動也極為重要。大型語言模型(LLMs)已經成為處理和生成文本的尖端人工智能系統,旨在進行連貫的交流[1]。對LLMs的需求源于對機器處理復雜語言任務的日益增長的需求,包括翻譯,摘要,信息檢索和對話交互。最近,語言模型方面取得了顯著的突破,主要歸功于深度學習技術,像transformers這樣的神經結構的進步,增加的計算能力,以及從互聯網中提取的訓練數據的可獲取性[2]。這些發展引起了革命性的轉變,使得能夠創建在某些評估基準上接近人類水平表現的大型語言模型(LLMs)成為可能[3],[4]。尤其是預訓練語言模型(PLM),在大規模文本語料庫的自監督設置下訓練,展示了對于文本理解和生成任務的巨大泛化能力[5],[6],[7]。當預訓練語言模型(PLMs)微調用于下游任務時,其性能顯著提升,超越了從頭開始訓練的模型的表現。這些語言模型的特性激勵了研究者在更大的數據集上訓練更大的PLMs,他們發現,進一步擴大模型和數據集的規模可以提高泛化能力。
如今,現代LLMs能夠在多個領域進行諸如代碼生成、文本生成、工具操作、推理和理解等多種任務,在零樣本和少樣本的情況下,甚至不需要在下游任務上進行任何微調就能做到這一點[8],[9],[10]。以前,較小的模型無法達到這樣的泛化,這標志著語言建模的重大進步。這一發展在研究社區中激發了對LLM架構和訓練策略改進的熱情和興奮,導致了眾多LLMs的開發[11],[12],[13],[8],[9],[10],[14]。圖1展示的圖表顯示了隨著時間的推移,發布的LLMs數量(包括開源和閉源模型)的增加趨勢。此外,圖2突出顯示了各種LLMs的重要發布名稱。在大型語言模型(LLMs)的早期階段,許多研究工作都集中在為下游任務開發轉移學習的模型[11],[12],[15],直到像GPT-3這樣的模型的出現[8],即使不進行微調也表現出了令人印象深刻的性能。由于GPT-3的閉源性質,人們對開源替代品有需求,這導致了各種模型的開發[9],[10],這些模型與GPT-3的規模相當,并在廣泛的基于網絡的數據集上進行訓練[16],[17],[18],[19]。隨后,研究人員提出了幾種架構設計和訓練策略,這些設計和策略在各種任務上顯示出優于GPT-3的性能[15],[14],[20],[21]。
LLMs的性能可以通過指令微調進一步提高,超越了在各種基準測試中預訓練的LLMs的表現[22],[23]。LLMs的指令微調指的是在微調階段引入額外的提示或指令的特定訓練方法,以指導輸出,從而使用戶能夠更細粒度地控制LLMs的輸出。這些提示可以是自然語言指令,也可以是根據任務需求的示例演示。在文獻中,已經為指令微調策略整理了不同的數據集。這些數據集包含更多的實例和任務,進一步提高了對基線的性能[24],[23],[25],[26]。進行指令微調時,需要更新所有的模型參數。然而,參數效率微調采取了不同的方法,只更新少數參數,同時仍然保持良好的性能。這種方法保持原模型不變,而在模型的不同位置添加少量額外的參數[27],[28],[29],[30],[31]。這種方法有助于實現高效的微調,同時最小化對模型總體性能的影響。文獻中介紹了采用各種方法的眾多預訓練和微調模型用于LLMs。一些綜述論文提供了LLMs中增強技術的概述[32]。此外,還有一篇全面的評論可供參考,涵蓋了架構,微調,新能力,以及LLMs的可用性[33]。另一篇綜述提供了基礎模型的歷史記錄[34]。然而,這些評論論文并未深入探討個別模型的具體細節,只提供了對架構和訓練方法的表面理解。相反,我們的論文旨在通過討論細節,提供更深入的分析單個LLMs。
大型語言模型(LLMs)的架構、訓練數據集以及其他顆粒度方面的細節,特別是從歷史的角度來看,缺乏全面和詳細的討論,這激勵我們進行一項詳盡的調查。本次調查旨在對LLMs進行深入且全面的分析,深入探討其開發、架構、訓練數據集和相關組件的細節。
據我們所知,這是第一篇討論LLMs細節的全面調查論文。 我們對各種LLMs架構及其分類進行了深入分析。此外,我們還討論了LLMs的基礎知識,以使對LLMs不熟悉的讀者能夠自給自足,從而使論文更具生產力。 我們的論文側重于為每一個LLM模型提供全面的細節,并涵蓋了如架構修改、訓練目標、使用的數據集、穩定訓練的策略、關鍵發現、建議以及訓練過程中遇到的挑戰等方面。 我們的目標是在我們的論文中總結這些關鍵細節,以幫助研究人員在他們的工作中確定更好的架構和訓練方法。
我們的論文補充了一篇關于LLMs的最新綜述論文[33],其中涵蓋了數據預處理、數據清洗、規模定律、新出現的能力、調整調優和利用等主題。盡管該綜述論文提供了關于架構的信息,但并未深入探討架構變化、訓練目標和提出的LLMs的具體發現的細節。我們討論的LLMs模型的參數至少有100億個,或者更多,類似于論文[33]。我們的論文中并未討論小于這個規模的模型。可以參考[35],[36],[32]等綜述論文來探索較小的模型。本論文的結構如下。第二部分討論了LLMs的背景,簡潔地概述了構成這些模型的基本構建模塊。我們討論了架構風格、微調策略、庫以及分布式訓練方法。該部分作為理解后續對LLMs討論的基礎。第三部分重點介紹了LLMs的概覽、架構以及訓練管道和策略。第四部分提出了每個LLM的關鍵發現。第五部分強調了在這些模型的功能中起關鍵作用的配置和參數。在第六部分討論了LLM的訓練和評估基準,然后在結論部分給出了總結和未來方向。