深度模型融合/合并是一種新興的技術,它將多個深度學習模型的參數或預測合并成一個。它結合了不同模型的能力,以補償單一模型的偏差和錯誤,以實現更好的性能。然而,對于大規模深度學習模型(例如,LLMs 和基礎模型)的深度模型融合面臨著幾個挑戰,包括高計算成本、高維參數空間、不同異構模型之間的干擾等。盡管模型融合由于其解決復雜實際任務的潛力而引起了廣泛關注,但關于這種技術的完整和詳細的調查研究仍然缺乏。因此,為了更好地理解模型融合方法并推動其發展,我們提出了一項全面的調查以總結最近的進展。具體來說,我們將現有的深度模型融合方法分類為四種:(1)“模式連接”,通過非遞增損失的路徑連接權重空間中的解,以獲得模型融合的更好初始化;(2)“對齊”匹配神經網絡之間的單元以為融合創造更好的條件;(3)“權重平均”,一種經典的模型融合方法,對多個模型的權重進行平均,以獲得更接近最優解的精確結果。 (4)**“集成學習”**結合了多種模型的輸出,這是一種改善最終模型的準確性和魯棒性的基礎技術。另外,我們分析了深度模型融合面臨的挑戰,并提出了未來模型融合的可能研究方向。我們的評論對于深入理解不同模型融合方法之間的關系和實際應用方法是有幫助的,這可以啟發深度模型融合領域的研究。
//www.zhuanzhi.ai/paper/43bab5b376b2213134e1f99b305d4deb
近年來,深度神經網絡(DNNs)[129] 取得了顯著的發展,廣泛應用于計算機視覺(CV)[175]、自然語言處理(NLP)[30] 等領域。一般來說,單一深度學習模型通常具有一定的局限性,不能完全捕獲復雜網絡背后的所有潛在信息[195]。因此,經典的集成學習[15, 193, 198] 合并多個模型的輸出,以改善深度學習(DL)中模型的最終性能。但在測試時存儲和運行多個模型的成本很高[65, 204],尤其是模型的復雜性和大小增加時。例如,GPT-3[172] 有數十億參數,PaLM[31] 甚至達到5400億參數和7800億令牌。此外,從深度神經網絡[134, 196] 的損失景觀的角度來看,梯度優化的解通常聚集在寬平區域的邊界附近的點,而不是中心點[99]。這意味著經過訓練的網絡并不完全接近具有最小測試錯誤的最優解。需要融合相對最優點附近的解,以得到更好的結果。這激發了研究人員不僅將融合范圍限制于預測(例如,logits等),而且還包括模型參數的融合,而無需訪問訓練數據或保持所有單獨模型[110]。因此,深度模型融合[111, 159] 旨在將多個DNNs融合成一個網絡,保留其原始功能,甚至超越多任務訓練[3, 135]。此外,深度模型融合可以減少單一模型過度擬合特定樣本或噪聲的傾向,從而提高預測的準確性、多樣性和穩健性[207, 223]。由于數據隱私和實際節約資源的問題,深度模型融合引起了越來越多的關注。盡管深度模型融合的發展帶來了許多技術突破,但它也產生了一系列的挑戰,例如高計算負荷、模型異構性和通過組合優化對齊的速度慢[133, 204]等。
有些方法僅限于特定場景[227, 254],這激發了研究人員研究不同案例中模型融合的原理。然而,目前缺乏綜合評論來總結方法,以指示深度模型融合的內部機制。一些工作只關注從單一視角(例如,特征融合等)[45, 195] 和特定場景[213] 的模型融合,或者不同方式的信息融合(多模態融合[1, 103])而不是參數的融合。為了給開發者深入了解深度模型融合,我們分析了深度模型融合的原理和方法。此外,我們回顧了最近的進展和代表性應用,例如聯邦學習(FL)[160] 和微調[29] 等。我們的調查旨在說明深度模型融合的最新趨勢和潛在方向,并為研究人員提供指南,以提高性能和降低成本。因此,我們根據內部機制和目的將方法分為四類,如圖1所示。對于相互之間不在附近的獨立訓練的模型,“模式連接”和“對齊”使解更加接近,以獲得更好的平均原始條件。對于權重空間中存在某些差異的類似模型,“權重平均(WA)”傾向于直接平均模型,并在損失函數值較低的參數空間區域獲得更接近最優點的解[118]。此外,對于現有模型的預測,“集成學習”集成了模型的不同形式的預測,以獲得更好的結果。具體來說,這四個類別如下:
模式連接性指的是通過基于梯度的優化得到的解可以在權重空間中通過一條無障礙的路徑(連接器)進行連接。我們可以沿著低損失路徑獲得更適合模型融合的其他模型。根據路徑的數學形式和連接器所在的空間,我們將此部分劃分為“線性模式連接性”,“非線性模式連接性”和“子空間中的模式連接性”。模式連接性可以在訓練過程中解決局部優化問題。模式連接性的路徑的幾何關系也可以用來加速優化過程,如隨機梯度下降(SGD)的收斂、穩定性和準確性。簡而言之,模式連接性為解釋和理解模型融合的行為提供了一個新的視角。但是,特別是在大數據集上訓練模型時,應解決計算復雜性和參數調整的困難。
對齊是將多個模型的單元進行匹配,并對模型進行平均以獲得最終模型。對齊后,不同模型之間的特定數學度量(例如,歐幾里得距離)可以更為接近,從而減小模型之間的差異,進而增強深度模型融合的效果。對齊可分為“激活匹配”和“權重匹配”,取決于是否需要考慮數據分布。此外,Re-basin基于對齊引入,探討解決方案可以通過排列不變性被傳輸到一個單一的盆地(即,參數空間中相對低損失的區域)。然而,對齊通常面臨著計算量大、組合優化速度慢和架構差異的障礙,使得它不易擴展到具有不同目標的其他場景。例如,伴隨圖匹配而來的記憶負擔限制了深度模型融合的應用。
權重平均是將幾個母網絡融合成一個單一網絡的最直接和高效的方式。與模式連接性和對齊相比,權重平均不需要額外的計算復雜性或訓練來找到一個優越的起點,在模型包含一定程度的相似性時表現良好。根據聚合空間,權重平均可分為“權重平均”和“子空間中的平均”。此外,典型的方法“模型湯”,“模型算術”和“隨機權重平均”也對現有方法進行了顯著改進。然而,當參數被規范化和合并時,可能會在模型結構或參數數量存在較大差異的情況下引入一些偏差。盡管如此,權重平均仍然是深度模型融合的主流方法,因為它簡單且高效。
集成學習結合了幾種不同模型的輸出,以改善預測性能和魯棒性。我們專注于深度學習中的集成學習。基于集成學習,“模型重用”為每個模型提供了規格,這樣在給定新的學習任務時,有用的模型可以從模型池中被識別和合并。集成學習具有各種框架和便捷的界面,經常用于實際領域,例如物體檢測等。盡管集成學習需要維護多個訓練過的模型并在測試時運行每個模型,但它仍然是在深度學習中被廣泛采用的強大技術之一。
作為一項提高深度模型的準確性和魯棒性的技術,模型融合促進了許多應用領域的改進。聯邦學習,一種在中央服務器上聚合客戶端模型的應用,使得各方可以貢獻數據到功能的計算中(例如,各種統計、分類器),而無需泄露隱私。微調對預訓練模型進行小的調整,結合模型融合以減少訓練成本并適應特定任務或領域的需求。模型融合還涉及到“蒸餾”。即,將來自多個復雜模型的軟目標知識結合起來,為特定要求訓練一個小模型。模型融合在foundation/LLMs上的應用包括在大型基礎模型或大型語言模型(LLMs)上的工作,例如視覺變壓器(ViT)和GPT等。模型融合的應用幫助開發人員適應各種任務和領域的需求,并促進深度學習的發展。簡而言之,我們的調查回顧了深度模型融合技術。在前三節“模式連接性”,“對齊”和“權重平均”中,我們主要從模型參數融合的角度進行全面研究。在“集成學習”中,我們主要從模型輸出聚合的角度探討了這個問題。
本工作的主要貢獻總結如下:
? 我們從“模式連接性”,“對齊”,“權重平均”和“集成學習”的角度提出了一種新的深度模型融合分類方法,該方法涵蓋了模型融合的理論綜合方法,并為實現DNNs的高泛化和準確訓練提供了指導。
? 我們比較了融合方法的優缺點,并解釋了它們之間的機制和關系,為未來設計先進的模型融合方法提供了靈感。
? 我們總結了深度模型融合的廣泛應用。我們還討論了當前的研究趨勢,以便在未來引起更多的關注和反思。此外,本文的其余部分組織如下:在第2節到第5節,我們根據“模式連接性”、“對齊”、“權重平均”和“集成學習”的四個角度介紹深度模型融合的方法。第6節介紹了深度模型融合的應用:“聯邦學習”、“微調”、“蒸餾”和“在foundation/LLMs上的模型融合”。最后,在第7節中,我們總結了深度模型融合,并討論了未來的挑戰和潛在方向。另外,我們在全文中說明了符號及其相應的定義。Wi是第i個具有權重Wi ∈ R^d(i = 1, 2, ...k)和偏置項b的神經網絡。λ表示加權參數。σ表示非線性神經元激活函數。L是損失函數,用于量化預測值和實際值之間的差異。
多模態3D場景理解由于其在自動駕駛和人機交互等多個領域的廣泛應用而受到了廣泛關注。與傳統的單一模態3D理解相比,引入額外的模態不僅提高了場景解釋的豐富性和精確性,而且確保了更為魯棒和有彈性的理解。在多變和具有挑戰性的環境中,這尤為重要,因為僅依賴3D數據可能是不夠的。盡管在過去三年中,多模態3D方法的發展呈現上升趨勢,尤其是那些整合多攝像頭圖像(3D+2D)和文本描述(3D+語言)的方法,但值得注意的是,缺乏一個全面且深入的綜述。在這篇文章中,我們提供了最近進展的系統性調研,以填補這一空白。我們首先簡要介紹一個背景,正式定義各種3D多模態任務并總結其固有的挑戰。之后,我們提出了一個新穎的分類法,根據模態和任務對現有方法進行了全面分類,探索了它們各自的優勢和局限性。此外,我們還提供了最近方法在幾個基準數據集上的比較結果,以及深入的分析。最后,我們討論了尚未解決的問題,并為未來的研究提供了幾個可能的方向。
//www.zhuanzhi.ai/paper/db0ef107bb8313585581f0bab52ab996
給定一個3D點云和來自另一模態的信息,如2D圖像和自然語言,多模態3D場景理解旨在理解每個物體及其周圍環境的語義含義 [1], [2], [3]。對3D場景的全面理解使代理能夠識別實體的類別和位置,并創建場景的新品牌內容和風格。與僅使用3D點云相比,2D圖像的加入提供了額外的顏色和紋理信息,而自然語言的引入則實現了人機交互。因此,多模態3D場景理解已成為計算機視覺中的一個重要研究領域,應用于自動駕駛[4]、機器人導航[5]和人機交互[6]。
多模態3D場景理解可進一步分為:(1) 3D+2D場景理解。3D LiDAR點云提供了充足的深度和幾何結構信息,這有助于獲得3D物體的形狀和姿態。但它們缺乏顏色信息和紋理細節,對于遠距離的物體往往稀疏而無序[7], [8], [9], [10], [11]。相反,2D相機圖像通常包含豐富的顏色、紋理和背景,但缺乏幾何信息,且易受天氣和光線條件的影響[12], [13], [14], [15]。自然地,利用LiDAR點云和相機圖像之間的互補性可以更好地、更完整地感知3D環境。但這兩種傳感器捕獲的同一個3D場景的表示之間經常會出現差異,因為LiDAR傳感器通過360度旋轉捕獲點云,而相機從透視視圖捕獲圖像,沒有深度感[16]。為了解決這個問題,提出了一些3D+2D場景理解方法,通過基于幾何的對齊[17]和基于語義的對齊[18]來進行LiDAR-相機融合。基于融合的特征,這些方法可以進一步執行3D物體檢測和分割[19], [20], [21],這通常用于自動駕駛和機器人導航。(2) 3D+語言場景理解。傳統的3D場景理解通常要求用戶具有專業知識,這對普通用戶不友好[22], [23], [24], [25], [26], [27]。用戶現在期望有一種更便捷的方式將他們的意圖傳達給計算機,實現信息交換并獲得個性化的結果。為了實現便捷的人機交互,研究人員提出了3D+語言場景理解。它結合3D視覺信息和自然語言作為輸入[28], [29], [30],因為自然語言可以作為背景知識和查詢條件來反映用戶意圖。通過多模態交互,經常采用如Transformer[31], [32]或圖神經網絡[33], [34]等技術,3D+語言場景理解方法不僅可以定位用戶提到的實體(例如,視覺定位和開放詞匯識別),還可以生成用戶所需的內容(例如,密集字幕,視覺問題回答,場景生成)。
盡管近年來出現了眾多方法,但多模態3D場景理解的很大一部分仍然分散在不同的任務中,并且沒有此類系統的調查存在。因此,有必要系統地總結近期的研究,全面評估不同方法的性能,并有前瞻性地指出未來的研究方向。這激發了本次調查,將填補這一空白。本文的主要貢獻可以總結為:
? 關于多模態3D場景理解的系統性調查。據我們所知,這是第一篇全面討論多模態3D場景理解近期進展的調查。為了使讀者對我們的文章有清晰的理解,我們從所需數據模態和目標下游任務的角度將算法分類為不同的分類,如圖1所示。
? 全面的性能評估和分析。我們比較了幾個公開可用的數據集上現有的多模態3D場景理解方法。我們的深入分析可以幫助研究者為其特定應用選擇合適的基線,同時也提供了關于修改現有方法的有價值的見解。
?** 對未來前景的有洞察力的討論**。基于系統調查和全面的性能比較,討論了一些有前途的未來研究方向,包括大規模3D基礎模型、數據高效訓練、3D建模的計算效率以及添加額外模態。
本文的結構組織如下。第2節總結了多模態3D場景理解中的問題定義和主要挑戰。第3節和第4節分別對3D+2D和3D+語言場景理解中用于不同下游任務的典型方法進行了深入探討。第5節介紹了基準數據集、評估指標以及不同技術的比較分析。最后,第6節總結了這篇文章并討論了未來研究的有前途的方向。
3D+2D多模態場景理解可以細分為多模態室外/室內3D對象檢測和多模態室外/室內3D語義分割。從2020年至今的現有3D+2D多模態方法的時間性概述如圖2所示。
3D+語言多模態場景理解可以分為3D視覺錨定、3D密集標注、3D問題回答、文本驅動的3D場景生成、開放詞匯的3D識別以及其他類別。從2020年至今的現有3D+語言多模態方法的時間性概述如圖5所示。
**結論與展望 **
本綜述為您提供了多模態3D場景理解的最新深入了解。我們首先總結了3D+2D和3D+語言情況下的任務定義和固有挑戰。接著是對每個任務的關鍵技術的結構化分類。此外,我們提供了對幾個基準數據集的最新進展的比較結果,并提供了有洞察力的觀察。我們希望這項調查能為新手和經驗豐富的從業者提供一個全面的指導。在多模態3D場景理解中,仍有許多進一步探索的可能性。以下提供了一些有前途的未來研究方向。 大規模3D-語言基礎模型。基于2D到3D轉移的當前3D VLMs在零射擊能力和下游應用中受到限制,主要是由于數據規模有限和幾何信息保留不足[41]。這強調了大規模3D-語言基礎模型的必要性。解決這一挑戰的主要解決方案在于創建可以支持從零開始訓練VLMs的大型數據集。此外,高效的遷移學習方法,包括像提示調整[177]和LORA[178]這樣的技術,通過利用預訓練的知識為特定任務提供了很大的應用前景。
數據高效訓練。考慮到與數據收集和注釋相關的顯著成本,當前的許多研究都局限于小規模數據集。因此,強調為有限數據量量身定制的健壯模型訓練和優化的開發變得越來越重要,從而減少對大規模數據集的依賴。最近的研究已經在解決數據注釋挑戰方面展現出了有前途的結果,通過無監督和弱監督學習方法。此外,使用文本到圖像或文本到3D生成合成逼真樣本有望進一步被研究,這可能緩解數據收集問題。
3D建模的計算效率。鑒于點云的大量體積,計算需求可能會顯著增加。因此,計算效率高的3D模型變得至關重要。為了應對這一挑戰,采用模型壓縮技術,如量化[179]、修剪[180]和高效結構[181],對于減少計算復雜性至關重要。此外,利用硬件優化如Flash attention[182]可以促進應用在邊緣設備上的部署,為提高效率提供另一種途徑。
納入其他模式。盡管在多模態3D建模方面取得了令人印象深刻的進展,但主要的重點仍然是圖像和語言。我們設想將更多的模式,如音頻,納入一個綜合模型來適應它們的聯合分布,這對于理解復雜的3D場景更為有助。鑒于訓練新模型時的復雜訓練要求和成對數據的稀缺,提高現有的多模態3D模型的效果可能更為有效,通過集成其他模式。一個可行的方法[183]是使用最小的成對數據集對齊每一個定義良好的、特定模式的模型。
人工智能(AI)的歷史見證了高質量數據對各種深度學習模型的重大影響,例如ImageNet對于AlexNet和ResNet。最近,AI社區的關注點已從設計更復雜的神經結構(即模型為中心的方法)轉移到了數據為中心的方法,這種方法重點在于更好地處理數據以增強神經模型的能力。圖學習,操作于無處不在的拓撲數據上,也在深度學習時代中起到了重要作用**。在這次綜述中,我們從數據為中心的角度全面回顧了圖學習方法,并旨在回答兩個關鍵問題**:(1)何時修改圖數據以及(2)如何修改圖數據以發掘各種圖模型的潛力。因此,我們提出了一個基于圖學習流程中的階段的新分類法,并強調了圖數據中不同數據結構的處理方法,即拓撲、特征和標簽。此外,我們分析了嵌入在圖數據中的一些潛在問題,并討論了如何以數據為中心的方式解決它們。最后,我們為數據為中心的圖學習提供了一些建議的未來方向。
最近在非歐幾里得領域的進展引起了人工智能(AI)社區的大量關注。圖,作為典型的非歐幾里得數據,在現實世界中無處不在,并已在許多領域中得到廣泛應用,例如推薦、安全、生物信息學等。在過去的十年中,由于圖模型的創新,圖相關研究得到了推動,從圖核心[1][2]到圖嵌入[3][4],再到最新的圖神經網絡(GNNs)[5][6]。相反,關于圖數據的固有方面的研究較少,包括質量、多樣性、安全性等。 通常,AI的革命始終是由大量高質量數據的可用性引發的,隨后是強大的模型。一個顯著的例子是ImageNet[7]的成功,它為深度卷積神經網絡的發展做出了重要貢獻,例如AlexNet[8]和ResNet[9]。隨著數據的重要性得到越來越多的認可,最近,AI社區的關注點從以模型為中心的方法轉移到了以數據為中心的方法[10][11]。
新興的以數據為中心的AI強調產生適當的數據以提高給定模型的性能。“如何處理圖數據以發揮圖模型的全部潛力?”一個了解情況的答案可以幫助我們理解圖數據與圖模型之間的關系。然而,與圖像和表格數據等歐幾里得數據不同,圖的不規則性為以數據為中心的圖學習提出了幾個問題:首先,在什么時候我們應該修改圖數據以使圖模型受益?數據修改可能會在圖學習的不同階段發生。例如,我們可以在訓練之前啟發式地擾動邊,而在訓練期間我們也可以從節點表示中估計新的圖結構。其次,我們應該修改圖數據的哪一部分?圖數據涉及各種結構,包括邊、節點、特性和標簽,每一個都在圖表示學習中起到了重要作用。第三,如何防止圖模型受到有問題的圖數據的影響?由于手工定義的關系和特性,圖數據可能不可避免地引入噪聲和偏見,這使得模型變得不可靠。 本綜述系統地調研和分類了從數據中心的角度存在的圖學習方法。具體地說,為了回答第一個問題,我們將圖學習過程分為四個階段:準備、預處理、訓練和推斷,如圖1所示。我們討論了每個階段對圖數據的重要性。接下來,我們進一步從結構的角度對現有方法進行分類,以解決第二個問題。具體來說,我們考慮如何處理圖數據的拓撲、特征和標簽。最后,我們分析了現有圖數據中的潛在問題,包括脆弱性、不公平性、選擇偏見和異質性。并進一步討論如何從數據為中心的方式解決這些問題。
本文的貢獻可以總結如下:
? 新的分類法。我們按圖學習流程中的各個階段對現有的數據中心圖學習方法進行分類,包括預處理、訓練和推理。對于每個階段,我們都介紹了其在數據中心圖學習中的目標和重要性。 ? 多角度觀察。我們強調如何處理圖數據中的不同數據結構,包括拓撲、特征和標簽,以發揮給定圖模型的潛力。 ? 全面的討論。我們分析了有問題的圖數據對圖模型的潛在影響,并討論了如何以數據為中心的方式緩解這些問題。此外,我們提出了四個可能的數據中心圖學習的未來方向,這可能有助于這個領域的發展。 組織. 本調查的其余部分組織如下:第2節概述了數據中心圖學習的背景,并描述了如何手動處理圖數據。第3-5節分別介紹了預處理、訓練和推理階段的數據中心圖學習方法。第6節介紹了圖數據的潛在問題,并討論了如何處理這些問題。最后,第7節對本文進行了總結,并提出了一些有前途的未來方向。
2. 預處理階段
在本節中,我們將討論圖數據預處理階段的數據中心方法。具體來說,我們將現有的方法分為兩類:基于修改的方法和基于分布的方法。第一類旨在通過修改圖數據實例來提高圖模型的性能。第二類則著重于幫助圖模型捕捉數據集的分布,同時保持圖實例不變。此外,我們還考慮了不同的數據結構,包括拓撲、特征和標簽。相關方法列示在表1中。
圖的簡化 (Graph Reduction)
隨著圖的規模的增大,其計算所消耗的時間和空間也會增加。因此,如何在不失去太多有用信息的前提下減少圖的節點或邊成為了一個有價值的問題。圖的簡化可以加速模型的訓練,減少過擬合,并允許在更簡單的硬件條件下對模型進行訓練。圖的簡化可以分為兩大類:邊的簡化和節點的簡化。邊的簡化指的是圖的稀疏化,而節點的簡化包括圖的粗糙化和圖的凝縮。
圖的增強 (Graph Augmentation)
在深度學習中,數據增強被認為是非常重要的。由于圖數據的稀缺性和稀疏性相當嚴重,因此一個好的增強方法的重要性更為明顯。與其他數據形式相比,直接操作圖結構的圖增強是最具特色的圖數據增強類型。在這里,我們將介紹一些脫離訓練的啟發式方法。它們可能很簡單,但證明是非常有效和受歡迎的。 特征增強 (Feature Augmentation)
通過創建或修改節點特征,特征增強可以使后續模型避免過擬合并提高其性能。 對于已經有特征的圖,我們可以做一些直觀的調整來加強它們,例如特征損壞 [143]-[145],特征洗牌,特征掩碼 [66], [87], [146],特征添加,特征重寫 [147], [148],特征傳播,特征混合 [149]等 [15]。 對于最初沒有特征的節點,有適當生成特征的方法。為了獲取結構信息,Perozzi 提出了基于 word2vec [150] 的 deepwalk [3],它從每個節點開始,多次隨機走動,最后使用所有路徑為節點通過 word2vec [150]c 生成節點嵌入。接著,node2vec [4] 來自 deepwalk [3],它為節點添加了一個隨機行走的概率。另一條與隨機行走無關的線是 SDNE [151]。他們通過編碼器-解碼器架構得到圖的結構。具體來說,他們將鄰接矩陣的每一列作為初始節點嵌入,這是編碼器的輸入。并計算模型在初始嵌入和解碼嵌入之間的損失。 在非標記圖中,特征增強是通過無監督學習實現的。例如,GREET [211] 將原始圖分割成兩個子圖,一個包含同質邊,另一個包含異質邊,然后通過兩個單獨的 GNN 得到子圖嵌入,再連接這些子圖嵌入來獲取節點特征。 總的來說,特征增強是多種多樣和任意的,特殊的特征增強可以根據特定問題的需要進行定制。 位置編碼 (Position Encoding)
眾所周知,信息傳遞神經網絡 (MPNNs) 的表達能力受到1-Weisfeiler-Lehman (WL) 測試的限制,不能區分同構圖 [212]。為了打破這個限制,一個受歡迎的方法是用一些位置信息來增強節點特征,這被稱為位置編碼。在本節中,我們將介紹兩種類型的位置編碼:絕對方法和相對方法。 標簽混合 (Label Mixing)
標簽混合旨在將帶有標簽或嵌入的兩個不同實例混合為一個新的實例,并使用這些混合的實例來訓練模型。這樣得到的模型更具泛化性,不容易過擬合。 Mixup 在圖分類和節點分類任務中都扮演著重要的角色。一方面,面對圖分類任務,我們可以采用各種方法來增強模型。一種方法 [174] 涉及混合多個預先存在的圖嵌入。或者,我們可以隨機選擇一個子圖,并用另一個圖中的相應子圖替代它,同時保留原始圖的嵌入,使模型更好地集中于數據的相關方面 [175], [176]。另一方面,一些工作 [177] 提議將鄰近節點的標簽或嵌入進行混合,用于節點分類任務。 圖的課程學習 (Graph Curriculum Learning) 課程學習 (CL) [215] 是一種模仿人類學習過程的訓練策略,主張模型從簡單樣本開始學習,然后逐漸過渡到復雜樣本。這種策略可以幫助模型更快地收斂,并提高模型的泛化能力。圖的課程學習 (Graph CL) [216] 是一種基于圖的課程學習方法,主要用于圖神經網絡的訓練和優化。大多數 CL 方法有兩個重要功能,難度測量器和訓練調度器。難度測量器可以評估訓練數據的難度,以給予學習優先權,而訓練調度器決定如何從簡單到困難地進行學習。根據這兩者是否自動設計,CL 方法可以分為兩類,即預定義的 CL 和自動的 CL。在本節中,我們將介紹預定義的 Graph CL。 圖采樣 (Graph Sampling) 圖采樣方法使用不同的策略對節點進行采樣,并在計算節點的表示時僅聚合部分節點的信息,這加速了模型的收斂并減少了內存開銷。在這部分中,我們將討論啟發式采樣方法,這些方法可以進一步劃分為兩個類別:隨機采樣和重要性采樣。 圖生成 (Graph Generation) 在現實世界中,某些圖數據集對于圖模型來說太小,無法有效地理解其分布。圖生成器 [219], [220] 可以通過生成額外的圖數據來幫助緩解這個問題。圖生成的方法可以分為兩種類型:自回歸 (autoregressive) 和一次性生成 (one-shot)。 3. 訓練階段 (TRAINING STAGE)
在本節中,我們介紹了訓練階段的圖數據修改方法,其中數據修改模塊和信息傳遞模塊合作以提高性能。具體而言,我們介紹了三種模型-數據協同的訓練范式,包括聯合訓練 (joint training)、自訓練 (self training) 和雙層訓練 (bi-level training)。相關方法可以在表格 1 (Table 1) 中查看。 4. 推斷階段 (INFERENCE STAGE)
推斷階段是指使用預訓練的圖模型進行下游任務的階段。在這個階段,我們重新定義下游任務為一個統一的模板,以與我們的預訓練模型對齊。這有助于彌合我們的預文本任務與下游任務之間的差距,實現高質量的知識轉移和多任務適應。此外,推斷數據是指在預訓練模型的推斷階段使用的圖數據。從數據中心的角度看,調整推斷數據作為提示可以幫助在不改變模型參數的情況下獲得期望的目標。在本節中,我們討論了在圖的背景下逐漸受到歡迎的提示學習方法。為了詳細說明,我們將現有的圖提示方法分為兩類:預提示 (pre-prompt) 和后提示 (post-prompt),這取決于任務特定的提示是在信息傳遞模塊之前還是之后操作,如圖 1 (Figure 1) 所示。 結論 (CONCLUSION)
在這篇綜述中,我們對數據中心的圖學習進行了全面的回顧。我們從兩個角度對現有方法進行分類:一個是學習階段,包括預處理、訓練和推斷;另一個是數據結構,包括拓撲、特征和標簽。通過這兩個視角,我們仔細解釋了何時修改圖數據以及如何修改圖數據,以釋放圖模型的潛力。此外,我們還介紹了圖數據的一些潛在問題,并討論了如何用數據中心的方法解決它們。最后,我們提出了該領域的幾個有前景的未來方向。總的來說,我們相信數據中心的人工智能是通向一般人工智能的可行路徑,并且數據中心的圖學習將在圖數據挖掘中發揮重要作用。
終身學習(LLL)作為一種新興方法打破了傳統機器學習的局限性,并賦予了模型能夠像人類一樣在學習 過程中不斷積累、優化并轉移知識的能力。近年來,隨著深度學習的廣泛應用,越來越多的研究致力于解決深度神經 網絡中出現的災難性遺忘問題和擺脫穩定性-可塑性困境,并將LLL方法應用于各種各樣的實際場景中,以推進人工 智能由弱向強的發展。針對計算機視覺領域,首先,在圖像分類任務中將LLL方法歸納為四大類型:基于數據驅動的 方法、基于優化過程的方法、基于網絡結構的方法和基于知識組合的方法;然后,介紹了 LLL方法在其他視覺任務中 的典型應用和相關評估指標;最后,針對現階段LLL方法的不足之處進行討論并提出了LLL方法未來發展的方向。
傳統的機器學習總是被限制在一個封閉的靜態環境中, 通常被稱為孤立學習,這種學習方式不考慮任務以外的信 息,即針對一個任務,模型的訓練和推理只在符合獨立同分 布假設的數據上進行;然而這樣的學習方式是低效的,畢竟 現實場景顯然是一個開放的動態環境,人類在這種環境下會 不斷地積累知識并優化形成經驗,用于幫助解決出現的 問題[1] 。 終身學習(LifeLong Learning, LLL)范式是通過模仿人類 的學習過程抽象而來。人類擁有強大的獲取、調整和遷移知 識的能力,例如會騎自行車的人能夠很快學會騎摩托車,在 遇到新任務或者新問題時會很快產生聯想并無縫地將這些 知識遷移,然后根據特定的問題進行特別的學習。這樣的學 習方式是高效且自然的,這也是終身學習過程中最為重要的 一環。
在計算機視覺領域,以深度學習為代表的學習框架尚未 達到終身學習范式的要求。例如要單獨訓練一個過參數化 的深度模型,就必須為每個任務收集大量的數據和進行繁瑣 的人工預處理等,這使得學習成本隨著任務量大幅增加,這 無疑是耗時且低效的方式,尤其是在一些對時間和性能有特 殊要求的應用場景下甚至是不被允許的。深度學習獨特的 訓練和推理模式使得深度學習模型還遠遠達不到人類的學 習效果,例如要融入終身學習范式目前還存在著兩個嚴峻的挑戰:1)災難性遺忘,即網絡在學習了新的知識之后,可能會 徹底遺忘在先前任務上學到的知識[2] ;2)概念漂移,即網絡 對屬于同類但是不同分布的新數據表現效果差[3] 。因此要 求深度學習模型既要滿足一定的可塑性以適應新數據的輸 入,又要具備一定的穩定性以避免在整合新知識的同時產生 大量的遺忘,即擺脫穩定性-可塑性困境[4] 。 此外,一個簡單的思路是融合所有的數據訓練一個大規 模模型,即聯合訓練或者多任務學習,但這并不在本文定義 的終身學習范式內;因為把時間線拉長,無休止地存儲所有 數據必然無法實現,所以需要對它進行一定程度的限制,其 次每當接受新任務時就要重新訓練所有的數據也不符合人 類的學習方式。針對深度學習的框架,直觀上聯合訓練或許 是終身學習方法的一個上界,因為深度學習是一個優化問 題,聯合訓練更有可能找到所有任務的全局最優解。 為滿足對模型存儲上的限制要求,大量的研究者從深度 學習的框架入手,從多個角度探索終身學習的解決方式,并 在多個應用方向展現了它的可行性。本文調研并跟蹤了近 年來的終身學習相關文獻,相較于文獻[5-6],本文增加了評 估終身學習模型性能的相關指標,不僅考慮了模型在終身學 習過程中識別的能力,同時考慮了存儲即資源利用的能力; 相較于文獻[7-8],本文不僅在圖像分類中詳細調研了終身 學習的相關應用,還介紹了終身學習在其他計算機視覺如目 標檢測等中的應用。終身學習不僅要解決實際應用環境中 的成本問題,更有可能是現階段弱人工智能邁向未來強人工 智能的重要一步。
1 終身學習的定義
終身學習是一個連續學習的過程。假設在時間點 t模型 Mt 已經完成了 N 個學習任務 T1,T2,?,TN,其中每個任務都 有對應的數據集 D1,D2,?,DN,任務之間沒有嚴格的約束并 且此時模型積累了源自這 N 個任務的知識并存儲于知識庫 中。當面對新的任務 TN + 1 及其數據 DN + 1 時,Mt 可以利用知 識庫中積累的先驗知識幫助學習 TN + 1,并且在學習 TN + 1 后, Mt能夠根據從 TN + 1中學到的知識進行同步更新為 Mt + 1以供 未來繼續使用,同時 Mt + 1 能最大限度地保留在先前 N 個任 務上的性能。由此可見,終身學習的關鍵是持續地學習和不 斷積累知識,即 Mt 如何利用先驗知識學習 TN + 1 和如何存儲 新知識演化為 Mt + 1。在這個定義下,還額外需增加一個存儲 限制,即知識庫不能保留所有的訓練數據,否則將會與多任 務學習無異,違背終身學習的初衷。
2 終身學習方法的分類
計算機視覺作為深度學習最為成功的應用,框架一般可 以拆解為輸入、優化和結構這 3 個部分,用于積累和再應用 的知識就可以以這 3 個部分作為切入點,同時也可以組合使 用它們。本文將從知識的角度對終身學習方法進行分類與 歸納,如表 1所示。
3 終身學習的其他應用
終身學習不僅在解決基礎問題中開闊了研究空間,也逐 漸 助 力 于 目 標 檢 測(Object Detection)[77-81] 、語 義 分 割 (Semantic Segmentation)[77-81] 、圖像生成[90-95] 和其他[96-102] 等各 類計算機視覺的研究方向。
4 結語 本文主要回顧了終身學習在圖像分類任務上的基本方 法,介紹了在其他計算機視覺任務上的成功應用,最后簡要 探討了在未來可以進一步推動終身學習發展的方向。終身 學習給予了模型在動態環境中更多更強大的學習能力,雖然 目前仍處于起步階段,但不可置疑這是人工智能發展的重要 一環,無論是理論上的研究,還是工業界的落地都具有非常 大的意義。
最近機器學習領域取得了重大的進展,其中序列模型是深度學習模型的核心,這些模型在科學應用中取得了廣泛的成功。然而,現有的方法需要針對不同任務、模態和能力進行大量的專門化,存在計算效率瓶頸,并且在建模更復雜的序列數據(例如涉及長依賴性的情況)時存在困難。因此,繼續開發有原則和實用性的建模通用序列的方法仍然具有基本重要性。本論文提出了一種使用狀態空間模型進行深度序列建模的新方法,該方法具有理論基礎、計算效率高,并在各種數據模態和應用中取得了強大的結果。首先,我們引入了一類具有多種表示和屬性的模型,它們綜合了標準深度序列模型(如循環神經網絡和卷積神經網絡)的優勢。然而,我們表明計算這些模型可能具有挑戰性,并且開發了一類在現代硬件上非常快速的結構化狀態空間,無論是在長序列的擴展上還是在其他設置(如自回歸推斷)上。最后,我們提出了一種新穎的數學框架,用于逐步建模連續信號,它可以與狀態空間模型相結合,賦予它們具有原則性的狀態表示,并提高其對長程依賴關系的建模能力。總的來說,這種新的方法類為機器學習模型提供了有效且多功能的構建模塊,特別是在大規模處理通用序列數據方面具有重要意義。
深度學習模型通常限定在固定數據集中進行訓練,訓練完成之后模型無法隨著時間而擴展其行為. 將已訓練好的模型在新數據上訓練會出現災難性遺忘現象. 持續學習是一種能夠緩解深度學習模型災難性遺 忘的機器學習方法,它旨在不斷擴展模型的適應能力,讓模型能夠在不同時刻學習不同任務的知識. 目前,持 續學習算法主要分為 4 大方面,分別是正則化方法、記憶回放方法、參數孤立方法和綜合方法. 對這 4 大方面 方法的研究進展進行了系統總結與分析,梳理了衡量持續學習算法性能的評估方法,討論了持續學習的新興 研究趨勢. //www.yndxxb.ynu.edu.cn/yndxxbzrkxb/article/doi/10.7540/j.ynu.20220312?viewType=HTML 得益于更大的數據集、更強的計算能力以及 網絡結構創新,深度學習在圖像分類[1]、人臉識別[2] 等任務上已經實現了接近人類甚至超越人類的性 能. 然而大多數神經網絡只能在預先知道所有類的 批量學習設定下進行訓練直至擬合,當有新數據出 現時,必須使用全部數據重新訓練模型,以適應數 據分布變化[3] . 隨著移動設備和互聯網的飛速發展, 人們每天都會拍攝和分享大量圖片和視頻. 而從零 開始重新訓練模型是耗時且低效的,這就要求模型 擁有以序列方式進行持續學習和更新的能力,以適 應每天新產生的數據. 神經網絡從原來的批量學習模式轉變為序列 學習模式時,很容易出現對舊知識的遺忘,這意味 著,在使用新數據更新模型后,模型在先前學習的 任務中所達到的性能會急劇下降[4],出現災難性遺 忘. 早在 30 多年前,人們就在多層感知器中發現了 災難性遺忘現象[5],產生災難性遺忘的根本原因是 新任務訓練過程需要改變神經網絡權值,這不可避 免地修改了某些對于舊任務來說至關重要的權重, 使得模型不再適用于舊任務. 與此相反,人類可以 不斷學習和適應新知識,并且在自身積累新知識的 同時,也會對原有知識進行了補充和修正,學習新 知識很少會導致人類災難性地忘記之前的知識[6] . 如自然視覺系統,先前的知識得到了保留的同時, 新的視覺信息被不斷地整合到已有知識中. 為了克服災難性遺忘,學習系統一方面要在新 任務上表現出獲取新知識和提煉現有知識的能力, 另一方面要防止新任務對現有知識的顯著干擾. 持 續學習,也稱為終身學習,它建立在不斷學習外部 世界的想法之上,神經網絡通過持續學習算法能夠 漸進地學習新知識,并且保留過去學習的內容. 近 年來,如圖 1 所示,持續學習在計算機視覺領域獲 得了蓬勃發展,同時各單位也如火如荼開展著持續 學習的相關比賽[7] . 鑒于持續學習深刻的應用場景 和該領域飛速的發展,本文對持續學習的研究工作 進行綜述,從而幫助讀者掌握持續學習研究的最新 趨勢.
圖像融合技術旨在將不同源圖像中的互補信息整合到單幅融合圖像中以全面表征成像場景,并促進后續的視覺任務。隨著深度學習的興起,基于深度學習的圖像融合算法如雨后春筍般涌現,特別是自編碼器、生成對抗網絡以及Transformer等技術的出現使圖像融合性能產生了質的飛躍。本文對不同融合任務場景下的前沿深度融合算法進行全面論述和分析。首先,介紹圖像融合的基本概念以及不同融合場景的定義。針對多模圖像融合、數字攝影圖像融合以及遙感影像融合等不同的融合場景,從網絡架構和監督范式等角度全面闡述各類方法的基本思想,并討論各類方法的特點。其次,總結各類算法的局限性,并給出進一步的改進方向。再次,簡要介紹不同融合場景中常用的數據集,并給出各種評估指標的具體定義。對于每一種融合任務,從定性評估、定量評估和運行效率等多角度全面比較其中代表性算法的性能。本文提及的算法、數據集和評估指標已匯總至//github.com/Linfeng-Tang/Image-Fusion。最后,給出了本文結論以及圖像融合研究中存在的一些嚴峻挑戰,并對未來可能的研究方向進行了展望。
強化學習是一種從試錯過程中發現最優行為策略的技術,已經成為解決環境交互問題的通用方法.然而,作為一類機器學習算法,強化學習也面臨著機器學習領域的公共難題,即難以被人理解.缺乏可解釋性限制了強化學習在安全敏感領域中的應用,如醫療、駕駛等,并導致強化學習在環境仿真、任務泛化等問題中缺乏普遍適用的解決方案.為了克服強化學習的這一弱點,涌現了大量強化學習可解釋性(Explainable Reinforcement Learning,XRL)的研究.然而,學術界對XRL尚缺乏一致認識.因此,本文探索XRL的基礎性問題,并對現有工作進行綜述.具體而言,本文首先探討了父問題——人工智能可解釋性,對人工智能可解釋性的已有定義進行了匯總;其次,構建了一套可解釋性領域的理論體系,從而描述XRL與人工智能可解釋性的共同問題,包括界定智能算法和機械算法、定義解釋的含義、討論影響可解釋性的因素、劃分了解釋的直觀性;然后,根據強化學習本身的特征,定義了XRL的三個獨有問題,即環境解釋、任務解釋、策略解釋;之后,對現有方法進行了系統的歸類,并對XRL的最新進展進行綜述;最后,展望了XRL領域的潛在研究方向.
//www.jos.org.cn/jos/article/abstract/6485
人工智能(Artificial Intelligence, AI)和機器學習(Machine Learning, ML) 在計算機視覺[1] 、自然語言處理 [2] 、智能體策略[3] 等研究領域都取得了突破,并逐漸融入人的生活.雖然 ML 算法對于很多問題具有良好表 現,但由于算法缺乏可解釋性,模型實際使用中常受到質疑[4] [5] ,尤其在安全敏感的應用領域,如自動駕駛、醫 療等.缺乏可解釋性的問題已經成為機器學習的瓶頸問題之一.
強化學習(Reinforcement Learning, RL)被驗證適用于復雜的環境交互類問題[6]-[8] ,如機器人控制[9] ,游 戲 AI[10] 等.但作為機器學習的一類方法,RL 同樣面臨著缺乏可解釋性的問題,主要表現在如下 4 個方面:
(1) 安全敏感領域中的應用受限.由于缺乏可解釋性,RL 策略難以保證其可靠性,存在安全隱患.這一問題 在安全敏感任務(如醫療、駕駛等)中難以被忽略.因此,為避免模型不可靠帶來的危險,RL 在安全敏感 任務中大多局限于輔助人類的決策,如機器人輔助手術[11] ,輔助駕駛[12] 等;
(2) 真實世界知識的學習困難.雖然目前 RL 應用在一些仿真環境中具有優異表現,如 OpenAI gym[13] , 但這些仿真環境以簡單游戲為主,與真實世界存在較大差異.另外,RL 應用難以避免對環境的過擬合. 當過擬合發生時,模型學到環境的背景信息,而非真正的知識.這導致了兩難的問題,一方面,在真實世 界中訓練 RL 模型通常消耗巨大,另一方面,難以確定在虛擬環境中訓練的模型學到了真實的規律.
(3) 相似任務的策略泛化困難.RL 策略通常與環境存在強耦合,難以被應用到相似環境中.甚至在同樣的 環境下,環境參數的微小變化也會極大影響模型性能.這一問題影響了模型的泛化能力,難以確定模 型在相似任務中的表現.
(4) 對抗攻擊的安全隱患難于應對.對抗攻擊[14] 是一種針對模型輸入的攻擊技術,通過將微小的惡意擾 動加入到模型的輸入中生成對抗樣本.對人而言,對抗樣本不影響判斷,甚至難以察覺,然而對于模型 而言,對抗樣本會使模型的輸出產生極大的偏差.對抗攻擊從深度學習擴展到 RL[15] [16] ,成為 RL 算 法的安全隱患.對抗攻擊的有效性進一步暴露了 RL 缺乏可解釋性的問題,同時也進一步說明 RL 模 型并未學到真正的知識.
解釋對模型的設計者和使用者都具有重要的意義.對于模型的設計者,解釋能體現模型所學的知識,便于 通過人的經驗驗證模型是否學到魯棒的知識,從而使人高效地參與到模型的設計和優化中;對于特定領域的專 家使用者,解釋提供模型的內部邏輯,當模型表現優于人時,便于從模型中提取知識以指導人在該領域內的實 踐.對于普通用戶,解釋呈現模型的決策的原因,從而加深用戶對模型的理解,增強用戶對模型的信心.
強化學習可解釋性(Explainable Reinforcement Learning, XRL),或可解釋強化學習,是人工智能可解釋性 (Explainable Artificial Intelligence, XAI)的子問題,用于增強人對模型理解,優化模型性能,從而解決上述缺乏可 解釋性導致的 4 類問題. XRL 與 XAI 之間存在共性,同時 XRL 具備自身的獨特性.
一方面,XRL 與 XAI 存在共性.首先,提供解釋的對象是智能算法而非機械算法.機械算法,如排序、查找 等,其特點是完備的輸入,固定的解法以及明確的解.而智能算法因為輸入的不完備以及解法的不確定,導致算 法必須在解空間中尋找較優的解;其次,人和模型是兩個直接面對的關鍵實體.與其他技術不同,可解釋性方法 關注人對模型的理解.由于人對大量條例混亂的數據缺乏理解,因此解釋通常對模型內在邏輯的抽象,這一過程 必然伴隨對模型策略的簡化.其中的難點是,如何在向人提供解釋時,保證該解釋與模型主體邏輯的一致性;最 后,解釋的難度是相對的,同時由問題規模和模型結構兩個因素決定,并且這兩個因素在一定條件下相互轉化. 例如,結構簡單的模型(如決策樹、貝葉斯網絡等)在通常可以直觀的展示輸入和輸出之間的邏輯關系,但面對由 大量簡單結構組成的龐大模型,其錯綜復雜的邏輯關系仍然導致模型的整體不可理解.同時,雖然結構復雜的模 型(如神經網絡)通常難以被理解,但當模型被極致約減時(如將神經網絡塌縮為具有少數變量的復合函數),模型本身仍然可以被人所理解。
另一方面,XRL 也具備自身的獨特性.強化學習問題由環境、任務、智能體策略三個關鍵因素組成,因此, 解決 XRL 問題必須同時考慮這三個關鍵因素.由于 XRL 的發展仍處于初步階段,大部分方法直接從 XAI 的研 究中繼承,導致現有研究集中于對智能體策略的解釋,即解釋智能體行為的動機及行為之間的關聯.然而,缺乏 對環境和任務的認識使得一些關鍵問題無從解決:缺乏對環境的認識使人在面臨復雜任務時,缺乏對環境內部 規律的理解,導致對環境狀態進行抽象時忽略有利信息,使智能體難以學到真實的規律;缺乏對任務的解釋使任 務目標與過程狀態序列之間的關聯不明確,不利于智能體策略與環境的解耦合,影響強化學習智能體策略在相 似任務或動態環境中的泛化能力.因此,對環境、任務和策略的解釋存在強關聯,是實現強化學習解釋必然面臨 的問題.
目前,XRL 已經成為 AI 領域的重要議題,雖然研究者們為提高強化學習模型的可解釋性做出了大量工作, 但學術界對 XRL 尚且缺乏一致的認識,導致所提方法也難以類比.為了解決這一問題,本文探索 XRL 的基礎性 問題,并對現有工作進行總結.首先,本文從 XAI 出發,對其通用觀點進行總結,作為分析 XRL 問題的基礎;然后, 分析 XRL 與 XAI 的共同問題,構建出一套可解釋性領域的理論體系,包括界定智能算法和機械算法、定義解釋 的含義、討論影響可解釋性的因素、劃分解釋的直觀性;其次,探討 XRL 問題的獨特性,提出包括環境解釋、任 務解釋和策略解釋的三個 XRL 領域的獨有問題;隨后,對現有 XRL 領域的研究進展進行總結.以技術類別和解 釋效果為依據將對現有方法進行分類,對于每個分類,根據獲取解釋的時間、解釋的范圍、解釋的程度和 XRL 的獨有問題,確定每類方法的屬性;最后,展望了 XRL 領域的潛在研究方向,重點對環境和任務的解釋、統一的 評估標準兩個方向進行展開.
1 人工智能可解釋性的觀點總結
對 XRL 的研究不能脫離 XAI 的基礎.一方面,XRL 是 XAI 的子領域,其方法和定義密切相關,因此 XRL 的 現有研究廣泛借鑒了 XAI 在其他方向(如視覺)的成果;另一方面,XRL 目前仍處于起步階段,對其針對性的討論 較少,而對于 XAI,研究者們長期以來進行了廣泛的研究和討論[17] -[24] ,具有深刻的借鑒意義.基于上述原因, 本文從 XAI 的角度探討可解釋性問題,整理出學術界對 XAI 的共識,以此作為 XRL 的研究基礎.
雖然學者們從不同角度對 XAI 的定義在特定情況下指導著一類研究.然而,缺乏精確而統一的定義使得學 術界對 XAI 的認識存在一定差異.本文對 XAI 相關的定義進行總結,并將其分為形而上的概念描述、形而下的 概念描述兩類.
形而上的概念描述使用抽象概念對可解釋性進行定義[25] -[28] .這些文獻使用抽象的詞描述可解釋性算法,例如可信性(trustworthy),可靠性(reliability)等.其中可信性意味著人以較強的信心相信模型所做的決定,而可 靠性意味著模型不同場景下總是能保持其性能.雖然這樣抽象的概念不夠精確,只能產生直觀的解釋,但仍然可以使人準確了解可解釋性的目標、對象和作用,建立對可解釋性的直覺認知.這些概念表明,可解釋性算法具備 兩個關鍵實體,即人和模型.換而言之,可解釋性是一項以模型為對象,以人為目標的技術.
形而下的概念描述從哲學、數學等的觀點出發,基于解釋的現實意義對其進行定義.如 Páez 等人[17] 從哲 學角度出發,認為解釋所產生的理解并不完全等同于知識,同時理解的過程也不一定建立在真實的基礎上.我們 認為,解釋作為媒介存在,這個媒介通過呈現模型的真實知識或構建虛擬邏輯的方式,增強人對模型的理解.同 時,人對模型的理解不必建立在完全掌握模型的基礎上,只要求掌握模型的主要邏輯,并能對結果進行符合認知 的預測. Doran 等人[29] 認為,可解釋性系統使人們不僅能看到,更能研究和理解模型輸入和輸出之間的數學映 射. 一般而言,AI 算法的本質是一組由輸入到輸出的數學映射,而解釋則是將這樣的數學映射以人類可理解和 研究的方式展現出來.雖然數學映射也是人們為描述世界而創造的一種方式,但對于復雜的數學映射(如用于表 示神經網絡的高維多層嵌套函數),人們卻無法將其與生活中的直觀邏輯相聯系. Tjoa 等人[19] 認為,可解釋性 是用于解釋算法做出的決策,揭示算法運作機制中的模式以及為系統提供連貫的數學模型或推導.這一解釋也 基于數學表達,反映出人們更多地通過模型的決策模式來理解模型,而非數學上的可重現性.
一些觀點與上述文獻存在微小出入,但仍具有借鑒意義.例如,Arrieta 等人[21] 認為可解釋性是模型的被動 特征,指示模型被人類觀察者理解的程度.這個觀點將模型的可解釋性視為被動特征,忽略了模型為了更強的可 解釋性而主動提出解釋的可能. Das 等人[23] 認為,解釋是一種用于驗證 AI 智能體或 AI 算法的方式.這一觀點 傾向于關注模型的結果,其目的是為了確保模型一貫的性能.然而該描述忽略了一個事實,即模型本身意味著知 識,可解釋性不僅是對模型結果的驗證,同時也有助于從模型中提取人們尚未掌握的知識,促進人類實踐的發 展.雖存在較小出入,但上述觀點也提出了獨特的角度,例如,可以將模型的可解釋性視為模型的一個特性,而評 估模型的性能是解釋的重要功能.
雖然對 XAI 的定義眾多,但就整體而言,學術界對 XAI 的基本概念仍然是一致的.本文嘗試提取其中的共 性作為研究 XRL 問題的理論基礎.通過對以上文獻的分析,我們總結出學術界對 XAI 的共識:
(1) 人與模型是可解釋性直接面對的兩個關鍵的實體,可解釋性是一項以模型為對象,以人為目標的技 術; (2) 解釋作為理解的媒介存在,該媒介可以是真實存在的事物,也可以是理想構建的邏輯,亦或是二者并 舉,達到讓人能夠理解模型的目的; (3) 人的對模型的理解不需要建立在完全掌握模型的基礎上; (4) 可準確重現的數學推導不可取代可解釋性,人對模型的理解包括感性和理性的認知; (5) 可解釋性是模型的特性,這一特性可用于驗證模型的性能.
2 強化學習可解釋性與人工智能可解釋性的共同問題
在對 XAI 定義進行總結的基礎上,本節討論 XRL 與 XAI 面臨的共同問題.由于 XRL 與 XAI 之間存在強 耦合,因此本節內容既適用于 XAI,同時也是 XRL 的基礎問題.
2.1 智能算法和機械算法界定
可解釋性的對象是智能算法而非機械算法.傳統認知中的機械算法,如排序、查找等,面對確定的任務目標, 同時具有固定的算法程序.強化學習作為一種智能算法,在與環境動態交互的過程中尋找最優的策略,最大化獲 得的獎賞.界定智能算法和機械算法可用于確定被解釋的對象,進而回答“什么需要被解釋”的問題.一方面,智能 算法與機械算法存在差異,而解釋只在面向智能算法時存在必要性;另一方面,即使對于強化學習,也無需對其 所有過程產生解釋,而應針對其具有智能算法特性的部分進行解釋,如動作生成、環境狀態轉移等.因此,在討論 可解釋性問題前,有必要區分智能算法和機械算法.
本文根據算法對已知條件的獲取程度和建模的完整性,定義“完全知識”和“完全建模”:
完全知識:已知足夠任務相關的有效知識,具備以機械過程獲得最優解的條件;
完全建模:進行完整的問題建模,具備完成任務所需的計算能力;
完全知識是以機械方法確定最優解的前提.例如,求解系數矩陣的秩為 的線性方程組,完全知識表示其增 廣矩陣的秩大于等于系數矩陣的秩,此時可以根據當前知識,獲得確定的解或者確定其無解;完全建模意味著對 現有知識的充分利用,換言之,完全建模從建模者的角度出發,表示在解決任務的過程中有能力(包括程序設計 者的設計能力和硬件的算力)利用所有的知識.例如,在 19×19 圍棋游戲中,存在理論上的最優解法,但目前尚不具備足夠的計算能力在有限時間內獲取最優解.
根據上述對完全知識和完全建模的定義,本文進一步提出“任務完全”的概念來確定機械算法與智能算法 之間的邊界:
任務完全:對特定任務,具備完全知識并進行完全建模.
任務完全必須在完全知識的前提下進行完全建模.滿足任務完全的條件后,算法的優劣取僅決于建模方式 和使用者的實際需求.任務完全的定義考慮了知識和建模兩方面因素(圖 1).
任務完全的概念可以用來區分機械算法和智能算法.機械算法是任務完全的,具體來說,算法已知足夠的 知識,并進行了無簡化的建模.此時,算法具備獲取最優解的條件,因此算法的過程是確定的,獲得的解也是可預期的.例如,經典排序算法、傳統數據查詢、3×3 井字棋游戲算法等都屬于機械算法.智能算法是任務不完全的, 這意味著算法不具備足夠的知識,或者采取了簡化的建模方式.智能算法無法直接獲取最優解,通常在解空間中 尋找較優的解.如基于貪心策略的算法,線性回歸方法,19×19 傳統圍棋策略,機器學習類算法等。
導致任務不完全的可能有二,即知識不完全和建模不完全.在知識不完全的情況下,算法無法直接確定最 優解,因此只能在解空間中逼近最優解.此時,智能算法的實際作用是在解空間中進行解的選擇.導致知識不完 全的因素通常是客觀的,如環境狀態無法被完全觀測,任務目標不可預知,任務評價指標的不可知,任務始終點 不可知等等;在建模不完全的情況下,算法通常忽略某些知識,導致算法過程沒有充分利用知識,從而無法獲得 最優解.建模不完全的原因有客觀和主觀兩方面,客觀原因如建模偏差,不完全建模等,主觀原因包括降低硬件 需求,模型提速等.在強化學習中,并非所有過程具備任務不完全的特點,因此只有部分需要進行解釋,如策略生 成、環境狀態轉移等.
2.2 對“解釋”的定義
在漢語詞典中,解釋有“分析、闡明”的含義.這不僅符合生活中對該詞的理解,同時也與可解釋性研究中“解 釋”的含義相近.然而,具體到可解釋性的研究中,這一含義顯得寬泛.我們希望結合對可解釋性的理解,細化“解 釋”的含義,使之具有更強的指導意義.以強化學習模型為例,模型學習使獎勵最大化的策略,其中包含著環境、獎 勵和智能體之間的隱式知識,而 XRL 算法則是將這些隱式知識顯式地表現出來.本文將多個知識視為集合,稱 為知識體系,從知識體系相互之間關系的角度,對“解釋”做出如下定義:
解釋:知識體系之間的簡潔映射.簡潔映射是在不引入新知識的條件下對目標知識進行表達;
具體來說,解釋是將基于原知識體系的表達轉換為目標知識體系表達的過程,這個過程僅使用目標知識體 系的知識,而不引入新的知識.而 XRL 算法的目的在于產生解釋,從而使原知識體系能夠被目標知識體系簡潔 的表達出來.在 XRL 中,原知識體系通常指代強化學習模型,而目標知識體系通常指人的認知,模型和人是可解 釋性的兩個關鍵實體.本文將原知識體系看作由多個元知識及其推論構成的集合.以 表示元知識, 表示知識 體系,則 .假設智能體習得的知識屬于知識體系 ,而人類能夠理解的知識屬于知識體系 ,則解釋 是將知識體系 轉換為知識體系 表達的過程.對于解釋而言,簡潔映射是必要的,非簡潔的映射可能提升解釋 本身的被理解難度,進而導致解釋本身讓人無法理解(見 2.3 ).
在對知識進行轉換表達的過程中,待解釋的知識可能無法完全通過目標知識體系進行描述,這時只有部分 知識可以被解釋.本文使用“完全解釋”和“部分解釋”的概念描述這一情況:
完全解釋:待解釋的知識完全被目標知識體系表達.其中,被解釋的知識屬于目標知識體系是其必要條件;
部分解釋:待解釋的知識的部分被目標知識體系表達.
具體來說,完全解釋和部分解釋描述的是知識體系之間的包含情況(圖 2).只有當待解釋的知識體系完全 被目標知識體系所包含時,才可能進行完全解釋,否則只能進行部分解釋.在 XRL 中,完全解釋通常是不必要的.
一方面,待解釋知識體系和目標知識體系的邊界難以確定,導致完全解釋難度高且耗費巨大;另一方面,實現對 模型的解釋通常不需要建立在對模型完全掌握的基礎上.因此,部分解釋是大部分可解釋性研究中采用的方法, 即只描述算法的主要決策邏輯.
2.3 可解釋性的影響因素
一個觀點認為,傳統 ML(RL 為其子集)方法是易于解釋的,而深度學習的引入使得可解釋性產生了短板,導 致 ML難于解釋,因此 ML 解釋的本質是對深度學習的解釋[21] .這與可解釋性領域的認知相悖[28] .這一觀點只 關注模型而忽略了人在可解釋性中的地位.對于人而言,即使是理論上可被理解的模型,當規模擴張到一定程度 時,仍然會導致整體的不可理解.本文對可解釋性的影響因素進行如下定義:
透明度:待解釋模型結構的簡潔程度;
模型規模:待解釋模型包含的知識量和知識組合多樣化程度;
本文認為,可解釋性是對模型組件透明度和模型規模的綜合描述.透明度和模型規模是影響可解釋性的兩 個主要因素.具體來說,可解釋性強意味著同時具備高透明度和低復雜度,而單一因素,如復雜度高或透明度低 將導致模型的弱可解釋性(圖 3).
在不同語境下,“透明”一詞具有不同的含義.例如,在軟件結構中,透明指的是對底層過程的抽象程度,意味 著上層程序無需關注底層的實現.類似的,透明度在可解釋性領域也存在不同的含義,如文獻[26] [27] 認為透明 度是模型可以被理解的程度,將透明度與可解釋性等價.以強化學習為例,基于值表的強化學習算法在規模一定 時通常具有更強的可解釋性,而使用深度學習擬合值表則可解釋性更弱,這是因為通過查詢值表而產生策略的 過程符合人的直觀理解,但神經網絡傳播過程僅在數學上可被準確描述,于人而言透明度更低.然而,這一思考 將構建模型的基礎結構作為可解釋性的重點,而忽略了模型規模對解釋帶來的難度,并忽略了解釋的目標—— 人.因此,為突出模型規模對解釋的影響,我們僅將透明度狹義理解為待解釋模型的結構的簡潔程度.
模型規模從人理解能力的角度衡量解釋的難度.具體來說,假設模型中的知識由一系列元知識構成,則模 型規模表示元知識總量和知識之間組合的多樣化程度,而解釋的難度一定程度上取決于模型規模,當模型規模 超過特定范圍(人的理解能力)時模型將無法被理解.例如,線性加性模型、決策樹模型、貝葉斯模型,由于計算過 程簡潔,使我們能夠輕易了解模型基于何因素得到何種結果,因此被認為是易于理解的.然而,當模型規模逐漸 龐大時,各因素之間的邏輯不可避免地相互交織,變得錯綜復雜,使我們最終無法抓住其主從關系.對于以簡潔 結構(如決策樹分支)構成的大規模模型,雖然所有結果在理論上有跡可循,但當模型規模已超越人類的理解能 力,導致系統整體將仍然不具備可解釋性.
2.4 可解釋性的程度劃分
人的學習過程與強化學習過程存在一定的相似性,因此,如果將人腦看作目前最先進的智能模型,則人對 模型的理解不僅僅是人對模型的直觀感受,也是一個先進的智能體對強化學習模型的綜合評估.然而,一個無法 理解的模型不可能被有效評估,因此對模型的解釋成為人理解模型的媒介.作為人和模型之間媒介,可解釋性算 法不同程度的具備兩個相互平衡特點:接近模型和接近人的感知.具體來說,不同的解釋有的更注重準確的描述 模型,而另一些更注重與人的感知一致.基于這一概念,本文將可解釋性分為如下三個層次:
(1) 數學表達: 通過理想化的數學推導解釋模型.數學表達是使用數學語言簡化模型的表達.由于強化學 習模型建立在數學理論的基礎上,因此通過數學表達可以準確地描述和重構模型.雖然數學理論體 系是人描述世界的一種重要方式,但其與人的普遍直覺之間存在較大差異.以深度學習為例,雖然存 在大量文章論證了其在數學上的合理性,但深度學習方法仍然被認為是不可解釋的.因此,數學的表 達能夠在微觀(參數)層面對模型進行描述,但難以遷移至人類知識體系;
(2) 邏輯表達: 通過將模型轉換為顯性的邏輯規律解釋模型.邏輯表達是對模型中主體策略的提取,即忽 略其細微分支,凸顯主體邏輯.一方面,邏輯表達保留了模型的主體策略,因此與模型真實決策結果相 近,解釋本身可以部分重現模型的決策;另一方面,邏輯表達簡化了模型,符合人的認知.邏輯表達是較 為直觀的解釋,但需要人具備特定領域的知識,是面對人類專家的解釋,而對一般用戶尚不夠直觀;
(3) 感知表達: 通過提供符合人類直覺感知的規律解釋模型.感知表達基于模型生成符合人類感知的解 釋,由于不需要人具備特定領域的知識,因此易于理解.例如,可視化關鍵輸入、示例對比等解釋形式 都屬于感知表達的范疇.然而,感知表達通常是對模型策略的極大精簡,因為無法重現模型的決策,導 致其只解釋決策的合理性.
在可解釋性的三個層次中,數學表達作為第一個層次,也是構建強化學習算法的理論基礎.在已知模型所 有參數的情況下,數學表達通常可以較為準確的推斷出模型的結果,然而,數學上的合理性不意味著能被人所理 解;邏輯表達介于數學表達和感知表達之間,是對模型策略的近似,但邏輯表達方法產生的解釋通常要求用戶具 備特定領域的專業知識;感知表達對模型決策的重要因素進行篩選,并使用清晰、簡潔的形式進行呈現,雖然結 果易于理解,但已經不具備重構策略的能力.總而言之,不同的解釋在接近模型和接近人類感知之間存在著平 衡,難以兼顧.
3 強化學習可解釋性的獨有問題
與其他 ML 方法不同,RL 問題由環境、任務、智能體三個關鍵因素組成.其中,環境為給定的具有一定內部規律的黑盒系統;任務為智能體為最大化其平均獎賞的而擬合的目標函數;策略是智能體行為的依據和一系 列行為之間的關聯.根據強化學習的三個關鍵組成因素,本文歸納出 XRL 的三個獨有問題,即環境解釋,任務解 釋,策略解釋.三個獨有問題之間存在著密切的關聯,與整個強化學習過程密不可分,是實現強化學習解釋直接 面臨的問題.
4 強化學習可解釋性研究現狀
由于 XRL 涉及的領域廣泛,學者從各領域的角度出發,導致所提出的方法具有較大差異.因此,本節分兩步 對相關方法進行總結.首先,根據技術類別和解釋的展現形式,將現有方法分為視覺和語言輔助解釋、策略模仿、 可解釋模型、邏輯關系提取和策略分解五個類別.然后,在通用分類方法(即獲取解釋的時間、解釋的范圍)的基 礎上,結合本文所提出的分類依據(即解釋的程度,面對的關鍵科學問題),確定不同類別方法的屬性.
在可解釋性領域中,分類通常基于獲取解釋的時間和解釋的范圍兩個因素[31] .具體而言,根據獲取解釋的 時間,可解釋性方法被分為固有(intrinsic)解釋和事后(post-hoc)解釋.固有解釋通過限制模型的表達,使模型在運 行時生成具備可解釋性的輸出.例如,基于較強可解釋性的原理和組件(決策樹、線性模型等)構造模型,或者通過 增加特定過程使模型生成可解釋性的輸出;事后解釋是通過對模型行為的分析,總結模型的行為模式,從而達到 解釋的目的.通常而言,固有解釋是策略產生過程中的解釋,特定于某個模型,而事后解釋是策略產生后的解釋, 與模型無關.根據解釋的范圍,可解釋性方法被分為全局(global)解釋和局部(local)解釋,全局解釋忽略模型的微 觀結構(如參數、層數等因素),從宏觀層面提供對模型的解釋,局部解釋從微觀入手,通過分析模型的微觀結構獲 得對模型的解釋.
除上述可解釋性的通用分類之外,本文基于解釋與模型和人類感知的符合程度,將可解釋性方法分為數學 表達、邏輯表達和感知表達三類(見 2.4 ).這三類可解釋性方法體現出可解釋性算法在解釋的形式、解釋與模 型結果的近似程度和解釋的直觀度等方面的區別.前文(見 3 )分析了 XRL 面臨的 3 個關鍵問題,即環境解釋, 任務解釋和策略解釋.目前,單個 XRL 方法難以同時解決三類問題,因此,我們也以此為依據,對當前 XRL 方法所 著眼的問題進行區分.
綜上所述,本文以“獲取解釋的時間”、“解釋的范圍”、“解釋的程度”以及“關鍵問題”為依據,對 XRL 方法 進行分類(見表 1).由于算法多樣,表 1 僅顯示大類別算法的特點,部分算法可能不完全符合
總結
本文以 XRL 的問題為中心,討論了該領域的基礎問題,并對現有方法進行總結.由于目前在 XRL 領域,乃至 整個 XAI 領域尚未形成完整、統一的共識,導致不同研究的基礎觀點存在較大差異,難于類比.本文針對該領域 缺乏一致認知的問題,進行了較為深入的研究工作.首先,本文參考 XRL 領域的父問題——XAI,收集 XAI 領域 的現有觀點,并整理出 XAI 領域較為通用的認識;其次,以 XAI 領域的定義為基礎,討論 XAI 與 XRL 面臨的共同 問題;然后,結合強化學習自身的特點,提出 XRL 面臨的獨有問題;最后,總結了相關的研究方法,并對相關方法進 行分類.分類中包括作者明確指出為 XRL 的方法,也包括作者雖未著重強調,但實際對 XRL 有重要意義的方法. XRL 目前尚處于初步階段,因此存在大量亟待解決的問題.本文重點提出環境和任務的解釋、統一的評估標準 兩類問題.本文認為這兩類問題是為類 XRL 領域的基石,是值得重視的研究領域.
目標檢測的任務是從圖像中精確且高效地識別、定位出大量預定義類別的物體實例。隨著深度學習的廣泛應用,目標檢測的精確度和效率都得到了較大提升,但基于深度學習的目標檢測仍面臨改進與優化主流目標檢測算法的性能、提高小目標物體檢測精度、實現多類別物體檢測、輕量化檢測模型等關鍵技術的挑戰。針對上述挑戰,本文在廣泛文獻調研的基礎上,從雙階段、單階段目標檢測算法的改進與結合的角度分析了改進與優化主流目標檢測算法的方法,從骨干網絡、增加視覺感受野、特征融合、級聯卷積神經網絡和模型的訓練方式的角度分析了提升小目標檢測精度的方法,從訓練方式和網絡結構的角度分析了用于多類別物體檢測的方法,從網絡結構的角度分析了用于輕量化檢測模型的方法。此外,對目標檢測的通用數據集進行了詳細介紹,從4個方面對該領域代表性算法的性能表現進行了對比分析,對目標檢測中待解決的問題與未來研究方向做出預測和展望。目標檢測研究是計算機視覺和模式識別中備受青睞的熱點,仍然有更多高精度和高效的算法相繼提出,未來將朝著更多的研究方向發展。
模態是指事物發生或存在的方式,如文字、語言、聲音、圖形等。多模態學習是指學習多個模態中各個模態的信息,并且實現各個模態的信息的交流和轉換。多模態深度學習是指建立可以完成多模態學習任務的神經網絡模型。多模態學習的普遍性和深度學習的熱度賦予了多模態深度學習鮮活的生命力和發展潛力。旨在多模態深度學習的發展前期,總結當前的多模態深度學習,發現在不同的多模態組合和學習目標下,多模態深度學習實現過程中的共有問題,并對共有問題進行分類,敘述解決各類問題的方法。具體來說,從涉及自然語言、視覺、聽覺的多模態學習中考慮了語言翻譯、事件探測、信息描述、情緒識別、聲音識別和合成,以及多媒體檢索等方面研究,將多模態深度學習實現過程中的共有問題分為模態表示、模態傳譯、模態融合和模態對齊四類,并對各問題進行子分類和論述,同時列舉了為解決各問題產生的神經網絡模型。最后論述了實際多模態系統,多模態深度學習研究中常用的數據集和評判標準,并展望了多模態深度學習的發展趨勢。