在過去的一年中,多模態大型語言模型(MLLMs)在視覺問答、視覺理解和推理等任務中表現出色。然而,龐大的模型規模和高昂的訓練與推理成本阻礙了MLLMs在學術界和工業界的廣泛應用。因此,研究高效且輕量級的MLLMs具有巨大的潛力,特別是在邊緣計算場景中。在這篇綜述中,我們對當前高效MLLMs的研究現狀進行了全面而系統的回顧。具體來說,我們總結了代表性高效MLLMs的時間線、高效結構和策略的研究現狀以及應用。最后,我們討論了當前高效MLLM研究的局限性和未來有前景的研究方向。更多詳情請參考我們的GitHub倉庫://github.com/lijiannuist/Efficient-Multimodal-LLMs-Survey。
大規模預訓練作為人工智能(AI)領域的一種領先方法,使得像大型語言模型和多模態模型這樣的通用模型在許多任務中超越了專門的深度學習模型。大型語言模型(LLM)的卓越能力激發了將它們與其他基于模態的模型結合起來以增強多模態能力的努力。這一概念得到了OpenAI的GPT-4V[1]和Google的Gemini[2]等專有模型顯著成功的進一步支持。因此,多模態大型語言模型(MLLMs)應運而生,包括mPLUG-Owl系列[3, 4]、InternVL[5]、EMU[6]、LLaVA[7]、InstructBLIP[8]、MiniGPT-v2[9]和MiniGPT-4[10]。這些模型通過有效利用每種模態的預訓練知識,繞過了從頭開始訓練的計算成本。MLLMs繼承了LLM的認知能力,展示了許多顯著特性,如強大的語言生成和遷移學習能力。此外,通過與其他基于模態的模型建立強大的表示連接和對齊,MLLMs能夠處理來自多種模態的輸入,顯著拓寬了它們的應用范圍。 MLLMs的成功主要歸因于規模定律:隨著數據、計算能力或模型規模等資源的增加,AI模型的性能會提高。然而,可擴展性伴隨著高資源需求,這阻礙了大型模型的發展和部署。例如,MiniGPT-v2的訓練需要基于NVIDIA A100 GPU計算出的總計超過800個GPU小時[9]。這對主要企業外的研究人員來說是一個巨大的費用負擔。除了訓練之外,推理也是MLLMs資源消耗的主要部分。考慮一個典型場景,模型輸入包括一個尺寸為336 × 336像素的圖像和一個長度為40個tokens的文本提示,使用LLaVA-1.5和Vicuna-13B LLM骨干進行推理需要18.2T的FLOPS和41.6G的內存使用量。大規模模型的資源密集型特性也引發了關于民主化和隱私保護的擔憂,因為當前主流的MLLMs,如GPT-4V和Gemini,由少數幾家主導企業控制,并在云端運行。如上述實驗所示,即使是開源的MLLMs,對計算資源的高要求也使得在邊緣設備上運行它們變得具有挑戰性。這進一步加劇了確保公平訪問和保護用戶隱私的挑戰。
鑒于這些挑戰,高效MLLMs的研究受到了越來越多的關注。這些努力的主要目標是減少MLLMs的資源消耗,擴大其適用性,同時盡量減少性能下降。高效MLLMs的研究始于用輕量級替代品替換大型語言模型,并進行典型的視覺指令微調。隨后,研究進一步通過以下方式增強了能力并擴展了用例:(1)引入更輕量的架構,注重效率,旨在減少參數數量或計算復雜度[25, 13, 18];(2)開發了更專業的組件,聚焦于高級架構的效率優化或賦予特定屬性,如局部性[19, 17, 12];(3)支持資源敏感任務,一些工作采用視覺token壓縮來提高效率,使MLLM的能力能夠轉移到資源密集型任務中,如高分辨率圖像和視頻理解[35, 39, 14, 40]。
在本綜述中,我們旨在呈現快速發展的高效MLLMs領域的最新進展,如圖2所示。我們將文獻組織成六個主要類別,涵蓋高效MLLMs的各個方面,包括架構、高效視覺、高效LLMs、訓練、數據和基準測試以及應用。Architecture 關注通過高效技術開發的MLLM框架,以降低計算成本。該架構由多個基于模態的基礎模型組成,具有不同于單模態模型的特征,從而促進了新技術的發展。
Efficient Vision 探討優化高效視覺特征提取策略,強調在保持準確性的同時提高效率的方法。它解決了集成高質量視覺數據以實現有效跨模態理解的問題。
Efficient LLMs 探索提高語言模型計算效率和可擴展性的策略。它研究了模型復雜性與性能之間的權衡,并提出了平衡這些競爭因素的有前景途徑。
Training 調查了對高效MLLMs開發至關重要的訓練方法的現狀。它解決了與預訓練階段、指令微調階段及整體訓練策略相關的挑戰,以實現最先進的結果。
Data and Benchmarks 評估用于多模態語言模型評估的數據集和基準測試的效率。它評估了數據集規模、復雜性和計算成本之間的權衡,同時倡導開發優先考慮效率和與現實世界應用相關性的基準測試。
Application 研究高效MLLMs在各個領域的實際影響,強調性能和計算成本之間的平衡。通過解決諸如高分辨率圖像理解和醫療問答等資源密集型任務,本節強調了高效MLLMs在拓寬其應用范圍和解決現實問題方面的潛力。
總之,這篇綜述深入探討了這些研究工作,探索了多種使MLLMs更具資源效率的策略。我們回顧了高效MLLMs的發展歷史,提供了高效MLLMs策略的分類法,并全面比較了現有高效MLLMs的性能。通過這一探索,我們希望提供對當前最先進技術的全面理解,從而揭示這一新興領域的復雜細微之處。此外,這篇綜述還充當了路線圖,突出了未來研究的潛在途徑,促進了對高效MLLMs領域挑戰和機遇的更深入理解。除了這篇綜述,我們還建立了一個GitHub倉庫,收錄了綜述中提到的論文,并按照相同的分類法進行整理,地址為:
按照標準的MLLM框架,高效MLLMs可以分為三個主要模塊:視覺編碼器g,負責接收和處理視覺輸入;預訓練語言模型,管理接收到的多模態信號并進行推理;視覺-語言投影器P,作為連接兩種模態的橋梁。為了提高通用MLLMs的效率,主要的優化在于處理高分辨率圖像、壓縮視覺令牌、實施高效結構以及使用緊湊的語言模型等策略。圖3展示了架構圖。表1概述了高效MLLMs的總結,包括基礎LLM、視覺編碼器、圖像分辨率和用于連接視覺和語言的投影器。這些高效MLLMs包括:MobileVLM[20]、LLaVA-Phi[21]、Imp-v1[22]、TinyLLaVA[23]、Bunny[24]、Gemini Nano-2[2]、MobileVLMv2[17]、MoE-LLaVA-3.6B[25]、Cobra[13]、Mini-Gemini[26]、Vary-toy[27]、TinyGPT-V[28]、SPHINX-Tiny[14]、ALLaVA[29]、MM1-3B[30]、LLaVA-Gemma[31]、Mipha-3B[32]、VLMamba[18]、MiniCPM-V2.0[70]、DeepSeek-VL[34]、KarmaVLM[71]、moondream2[72]。在本節中,我們將按順序全面概述這三個模塊以及其他高效組件。
Vision Transformer (ViT) [94] 架構在計算機視覺應用中獲得了顯著的關注并被廣泛使用。然而,隨著ViT模型規模的增長,可訓練參數和操作數量也隨之增加,影響了它們的部署和性能。此外,自注意力機制的計算和內存成本隨著圖像分辨率的增加呈二次增長。參考論文[95],本綜述旨在探索可用于高效MLLMs的最有效的視覺編碼方法。
隨著大語言模型(LLM)在各個領域的應用不斷擴大,它們適應數據、任務和用戶偏好的持續變化的能力變得至關重要。使用靜態數據集的傳統訓練方法不足以應對現實世界信息的動態特性。終身學習或持續學習通過使LLM能夠在其運行生命周期內持續學習和適應,整合新知識,同時保留先前學習的信息并防止災難性遺忘來解決這一問題。我們的綜述探討了終身學習的現狀,根據新知識的整合方式將策略分為兩類:內在知識,LLM通過完全或部分訓練將新知識吸收到其參數中;外部知識,通過將新知識作為外部資源(如維基百科或API)引入而不更新模型參數。我們的綜述的主要貢獻包括:(1)引入了一種新穎的分類法,將終身學習的大量文獻劃分為12種情景;(2)識別了所有終身學習情景中的常見技術,并將現有文獻分類到不同的技術組中;(3)強調了在LLM之前時代較少探索的模型擴展和數據選擇等新興技術。資源可在//github.com/qianlima-lab/awesome-lifelong-learningmethods-for-llm找到。
隨著大語言模型(LLM)在各個領域的應用不斷擴大,這些模型適應數據、任務和用戶偏好持續變化的能力變得至關重要。傳統的訓練方法依賴靜態數據集來訓練LLM,越來越無法應對現實世界信息的動態特性。終身學習(也稱為持續學習、增量學習),或LLM在其運行生命周期內持續和自適應學習的能力,解決了這一挑戰,通過整合新知識,同時保留先前學習的信息,從而防止災難性遺忘。圖1提供了終身學習的示意圖。 本綜述深入探討了終身學習的復雜領域,根據新知識的整合方式將策略分為兩大類:內在知識和外部知識。每個類別包含不同的方法,旨在增強LLM在各種情境下的適應性和有效性。圖2展示了LLM終身學習方法的分類。 內在知識類通過完全或部分訓練將新知識吸收到LLM的參數中,包括持續預訓練和持續微調等策略。例如,在工業應用中,常采用持續垂直領域預訓練,公司經常使用金融等領域的特定數據重新訓練其LLM。盡管這提高了特定領域的性能,但也有可能削弱模型的廣泛知識基礎,說明了在專業適應性和通用知識保留之間保持平衡的挑戰。持續微調涵蓋了特定情境的方法,如文本分類、命名實體識別、關系抽取和機器翻譯等,以及任務無關的方法,如指令微調、對齊和知識編輯。此外,在持續對齊中使用了人類反饋的強化學習,以確保LLM遵守人類價值觀,如安全和禮貌,突顯了所謂的“對齊稅”,即過于專注于特定價值觀可能會導致模型的通用能力下降。
外部知識類通過將新知識作為外部資源(如維基百科或API)引入,而不更新模型參數,包括基于檢索和工具的終身學習,利用外部數據源和計算工具來擴展模型的能力。基于檢索的策略,如檢索增強生成,通過提供上下文相關、準確和最新的外部數據庫(如維基百科)信息來增強文本生成,確保模型輸出隨時間保持相關性。同時,工具學習類借鑒人類工具使用的類比,模型學習使用外部計算工具,從而無需直接修改其核心知識庫,拓寬了其問題解決能力。
通過對這些組及其各自類別的詳細檢查,本文旨在強調將終身學習能力整合到LLM中,從而增強其在實際應用中的適應性、可靠性和整體性能。通過解決與終身學習相關的挑戰并探索該領域的創新,本綜述旨在為開發更強大和多功能的LLM做出貢獻,使其能夠在不斷變化的數字環境中蓬勃發展。
本綜述與現有綜述的差異。近年來,終身學習已成為一個越來越受歡迎的研究主題。大量綜述探討了神經網絡的終身學習。大多數現有綜述主要集中在卷積神經網絡(CNN)的終身學習,探討了CNN的各種終身學習情景,包括圖像分類、分割、目標檢測、自動系統、機器人和智慧城市。此外,一些綜述探討了圖神經網絡的終身學習。然而,只有少量文獻關注語言模型的終身學習。Biesialska等是關于自然語言處理(NLP)中終身學習的早期綜述,但他們只關注詞和句子表示、語言建模、問答、文本分類和機器翻譯。Ke等關注終身學習情景,包括情感分類、命名實體識別和摘要。他們還討論了知識轉移和任務間類分離的技術。Zhang等提供了關于將LLM與不斷變化的世界知識對齊的技術的全面回顧,包括持續預訓練、知識編輯和檢索增強生成。Wu等從持續預訓練、持續指令微調和持續對齊三個方面重新審視了終身學習。Shi等從垂直方向(或垂直持續學習)和水平方向(或水平持續學習)兩個方向研究了LLM的終身學習。Jovanovic等回顧了幾種實時學習范式,包括持續學習、元學習、參數高效學習和專家混合學習。雖然最近的綜述收集了終身學習的最新文獻,但它們沒有涵蓋持續文本分類、持續命名實體識別、持續關系抽取和持續機器翻譯等情景,并且對持續對齊、持續知識編輯、基于工具的終身學習和基于檢索的終身學習的討論較少。據我們所知,我們是第一個提供對LLM終身學習方法從12種情景進行徹底和系統檢查的綜述。
本綜述的貢獻。我們的綜述的主要貢獻包括:
-** 常見技術**:我們在所有終身學習情景中識別了常見技術,并將現有文獻分類到每個情景內的各種技術組中。
本綜述的組織結構如下。第二節介紹問題的形成、評價指標、常見技術、基準和數據集。第三節、第四節和第五節檢查了持續預訓練、持續微調和基于外部知識的終身學習的現有技術。第六節討論了LLM終身學習的現有挑戰、當前趨勢和未來方向,并總結了本綜述。
視覺-語言基礎模型(VLFMs)在圖像字幕生成、圖文檢索、視覺問答和視覺定位等各種多模態任務上取得了顯著進展。然而,大多數方法依賴于使用通用圖像數據集進行訓練,缺乏地理空間數據導致在地球觀測方面表現不佳。最近提出了許多地理空間圖文對數據集和在其上進行微調的VLFMs。這些新方法旨在利用大規模多模態地理空間數據構建具有多樣地理感知能力的多功能智能模型,我們稱之為視覺-語言地理基礎模型(VLGFMs)。本文全面回顧了VLGFMs,匯總并分析了該領域的最新發展。特別是,我們介紹了VLGFMs興起的背景和動機,突出了其獨特的研究意義。然后,我們系統總結了VLGFMs采用的核心技術,包括數據構建、模型架構和各種多模態地理空間任務的應用。最后,我們總結了關于未來研究方向的見解、問題和討論。據我們所知,這是VLGFMs的首次綜合文獻綜述。我們持續追蹤相關工作:
//github.com/zytx121/Awesome-VLGFM。
在過去的十年中,研究人員在幾乎所有地理空間任務上都取得了顯著進展,例如場景分類[1]、目標檢測[2][3]、變化檢測[4]、去噪[5]、土地利用分割[6]、災害管理[7]和地理空間定位[8],這些進步是由深度學習和其他人工智能技術推動的。然而,這些模型是專門為特定任務設計和訓練的,因此難以直接應用于其他任務。即使是相似的任務,這些模型通常也表現出較差的泛化能力。
例如,遙感目標檢測是地球觀測的核心任務之一。它需要手動標注每個目標的位置和類別,這是一個耗時且勞動密集的過程。遙感圖像(RSIs)是由天基或空基傳感器從上方視角拍攝的,與自然圖像相比,這些圖像呈現了獨特的視角,導致了定向目標檢測的發展。由于該任務使用旋轉邊界框來表示目標,因此需要帶有旋轉邊界框標注的遙感數據集,如DOTA[9],來支持其訓練。此外,模型架構[10]、損失函數[11]、后處理函數和加速操作器[12]也必須基于標準目標檢測[13]進行修改。從這個角度來看,特定模型的應用場景似乎相當有限,缺乏跨任務甚至是相似任務之間的泛化能力。
為了減少為每個任務從頭開始訓練特定模型所浪費的資源,基礎模型[14]應運而生。這些模型在大規模圖像上進行預訓練,使它們能夠通過微調小規模的定制數據集來處理各種視覺任務。在遙感領域,先前對純視覺基礎模型的研究揭示了地球觀測通用模型的巨大潛力,稱為視覺地理基礎模型(VGFMs)。VGFMs在從單模態到多模態、從靜態到時態的全面評估中表現出顯著的泛化能力。盡管這些模型表現出強大的感知能力,但它們缺乏像人類一樣進行推理的能力。例如,沒有相應的標注樣本支持VGFM訓練,它無法通過考慮周圍環境和常識來確定遙感圖像中建筑物的具體功能,而人類則可以。類似地,沒有標注樣本,VGFM無法根據航空影像中的特征識別汽車的品牌或型號,而人類可以。
近年來,大型語言模型(LLMs)的發展徹底改變了人機交互。像BERT[16]這樣的LLMs利用大量文本數據來開發推理能力,顯示出在自然語言處理的各種任務中的顯著泛化能力。然而,LLMs只處理離散的文本數據,無法處理圖像,而視覺基礎模型雖然能夠處理圖像數據,但缺乏推理能力。為了彌合這些差距,引入了視覺-語言基礎模型(VLFMs)的概念。這些創新模型旨在進行感知和推理,整合來自文本和圖像的輸入。自從GPT-4 Vision發布以來,VLFMs的研究熱度不斷高漲,受到其強大能力的啟發。VLFMs的研究主要分為對比、對話和生成范式。下面,我們將簡要介紹三個方向中最具影響力的工作。具體而言,CLIP[17]采用對比范式,將視覺和文本信息投射到統一的表示空間,從而促進了下游視覺-語言任務的橋梁。LLaVA[18]體現了對話范式,使LLMs能夠在文本和視覺模態中進行上下文感知對話。Stable Diffusion[19],作為生成范式的代表,利用深度學習從文本描述中生成高質量、詳細的圖像,從而提升了圖像合成和創意視覺應用的能力。 當VLFMs應用于地球觀測時,本文將其稱為視覺-語言地理基礎模型(VLGFMs)。截至目前,VLGFMs也可以分為對比型、對話型和生成型。圖1列出了開發的代表性VLGFM及其發布時間。可以看出,VLGFMs首次出現在2023年第二季度。目前,相關工作的數量正處于快速增長期。值得注意的是,目前VLGFM的創新主要集中在收集訓練數據上,對模型架構的修改相對較少。大多數工作涉及基于LLaVA[18]和MiniGPT-4[20]框架,使用定制的遙感指令跟隨數據集進行微調。
隨著VLGFM的快速發展并展示出令人印象深刻的成果,追蹤和比較VLGFM的最新研究是值得的。它通過自然語言對話實現了人類與計算機的端到端交互,改變了依賴于預定義程序接口的傳統人機交互方式。據我們所知,目前沒有綜述全面總結VLGFMs的最新進展,包括數據管道、架構、基準和能力。我們的工作旨在填補這一空白。
貢獻。鑒于VLGFM的快速進展和令人鼓舞的成果,我們編寫了這篇綜述,旨在使研究人員了解VLGFMs的基本概念、主要方法和當前進展。這篇綜述提取了共同的技術細節,并涵蓋了VLGFMs領域最具代表性的工作。它還對背景和相關概念,包括VGFMs和遙感LLM驅動的代理進行了比較分析。此外,我們將VLGFMs的表現能力分為三個層次。據我們所知,這是關于VLGFMs的首次綜述。
綜述流程。在第2節中,我們提供了背景知識,包括定義、數據集、指標和相關研究領域。在第3節中,我們對基于不同數據收集方法、網絡架構和能力的各種方法進行了全面回顧。在第4節中,我們識別了挑戰和未來方向。
大型語言模型(LLMs)在各種與代碼相關的任務中取得了顯著進展,特別是在從自然語言描述生成源代碼的代碼生成任務中,這些模型被稱為代碼LLMs。由于其在軟件開發中的實際意義(例如GitHub Copilot),這個新興領域吸引了學術研究人員和行業專業人士的廣泛關注。盡管從自然語言處理(NLP)或軟件工程(SE)或兩者的角度,研究人員對各種代碼任務的LLMs進行了積極探索,但目前缺乏一篇專門針對代碼生成LLM的全面且最新的文獻綜述。在本綜述中,我們旨在彌補這一空白,通過提供一篇系統的文獻綜述,為研究人員調查代碼生成LLM的最新進展提供有價值的參考。我們引入了一個分類法,對代碼生成LLM的最新發展進行分類和討論,涵蓋數據整理、最新進展、性能評估和實際應用等方面。此外,我們還提供了代碼生成LLM發展的歷史概覽,并使用廣泛認可的HumanEval和MBPP基準進行經驗比較,以突出代碼生成LLM能力的逐步提升。我們識別了學術界與實際開發之間的關鍵挑戰和有前景的機會。此外,我們建立了一個專門的資源網站(//codellm.github.io),以持續記錄和傳播該領域的最新進展。
引言
大型語言模型(LLMs),例如ChatGPT[171]的出現,深刻改變了自動化代碼相關任務的格局[45],包括代碼補全[78, 152, 233, 244]、代碼翻譯[48, 121, 211]和代碼修復[109, 170, 176]。LLMs一個特別有趣的應用是代碼生成,這項任務涉及從自然語言描述中生成源代碼。盡管各研究對其定義有所不同[47, 191, 204, 232],但在本綜述中,我們采用一致的定義,將代碼生成定義為自然語言到代碼(NL2Code)任務[15, 16, 264]。這一領域因其在學術界和工業界都引起了廣泛興趣,開發了如GitHub Copilot[45]、CodeGeeX[275]和Amazon CodeWhisperer等工具,這些工具利用先進的代碼LLMs來促進軟件開發。 最初對代碼生成的研究主要利用啟發式規則或專家系統,例如基于概率文法的框架[9, 57, 113]和專門的語言模型[59, 74, 106]。這些早期技術通常較為僵化且難以擴展。然而,基于Transformer的大型語言模型的引入改變了這一范式,使其成為首選方法,因其具備更高的能力和靈活性。LLMs的一個顯著特點是其跟隨指令的能力[51, 164, 173, 238, 250],即使是新手程序員也可以通過簡單表達需求來編寫代碼。這一新興能力使編程變得更加大眾化,使更廣泛的受眾能夠接觸編程[264]。在代碼生成任務中的LLMs表現出顯著改進,如HumanEval排行榜所示,從PaLM 8B[49]的3.6%到LDB[279]的95.1%在Pass@1指標上的提升。由此可見,HumanEval基準[45]已成為評估LLMs代碼能力的事實標準[45]。
為了提供全面的時間演變概覽,我們展示了LLMs用于代碼生成的發展概覽,如圖1所示。代碼生成LLMs的格局由一系列模型組成,其中一些模型如ChatGPT[173]、GPT4[5]、LLaMA[217, 218]和Claude 3[13]用于通用應用,而其他如StarCoder[132, 151]、Code LLaMA[196]、DeepSeek-Coder[79]和Code Gemma[54]則專門針對代碼任務。代碼生成與最新LLM進展的融合尤為關鍵,特別是當編程語言可以被視為多語言自然語言的不同方言時[15, 275]。這些模型不僅符合軟件工程(SE)的要求,還推動了LLMs向實際生產的進步[271]。
盡管近期的綜述從自然語言處理(NLP)、軟件工程(SE)或兩者結合的視角對代碼LLMs進行了探討[91, 264, 271, 278],它們通常涵蓋了廣泛的代碼相關任務。仍然缺乏專門回顧代碼生成高級主題的文獻,如精細數據整理、指令調優、與反饋對齊、提示技術、自主編碼代理的發展、檢索增強代碼生成、LLM作為代碼生成的評審等。一個相關的重要研究[15, 264]也集中在文本到代碼生成(NL2Code)的LLMs上,但主要考察了2020年至2022年發布的模型。因此,這一顯著的時間差距導致了缺乏考慮最新進展的最新文獻綜述,包括如CodeQwen[215]、WizardCoder[154]和PPOCoder[204]等模型,以及前述高級主題的全面探索。
鑒于需要一個專門且最新的文獻綜述,本綜述旨在填補這一空白。我們提供了一篇系統綜述,為研究人員快速探索代碼生成LLMs的最新進展提供了基礎性參考。我們引入了一個分類法,對最近的進展進行分類和審視,涵蓋數據整理[154, 231, 240]、高級主題[42, 47, 94, 125, 146, 152, 164, 166, 177, 205, 266]、評估方法[45, 85, 111, 284]和實際應用[45, 275]。這一分類法與代碼生成LLM的完整生命周期相一致。此外,我們指出了關鍵挑戰并識別了橋接研究與實際應用之間的有前景機會。因此,本綜述使NLP和SE研究人員能夠全面了解代碼生成LLM,突出前沿方向和當前的障礙與前景。 綜述的其余部分按照我們在圖3中概述的分類法結構組織。在第2節中,我們介紹了LLM與Transformer架構的基礎知識,并制定了代碼生成LLM的任務。接下來在第3節中,我們提出了一種分類法,對代碼生成LLMs的完整過程進行分類。在第4節中,我們在該分類框架內深入探討代碼生成LLMs的具體細節。在第5節中,我們強調了橋接研究與實際應用差距的關鍵挑戰和有前景的機會,并在第6節總結本工作。
分類
近期大型語言模型(LLMs)開發的激增導致大量這些模型通過持續預訓練或微調被重新用于代碼生成任務。這一趨勢在開源模型領域尤為明顯。例如,Meta AI最初公開了LLaMA [217]模型,隨后發布了專為代碼生成設計的Code LLaMA [196]。類似地,DeepSeeker開發并發布了DeepSeek LLM [25],隨后擴展為專門用于代碼生成的變體DeepSeek Coder [79]。Qwen團隊基于其原始的Qwen [19]模型開發并發布了Code Qwen [215]。微軟則推出了WizardLM [250],并正在探索其面向編程的對應模型WizardCoder [154]。谷歌也加入了這一行列,發布了Gemma [214],隨后發布了Code Gemma [54]。除了簡單地將通用LLMs適用于代碼相關任務外,還出現了大量專門為代碼生成設計的模型。值得注意的例子包括StarCoder [132]、OctoCoder [164]和CodeGen [169]。這些模型強調了以代碼生成為重點開發的LLMs的趨勢。 認識到這些發展的重要性,我們提出了一種分類法,對代碼生成LLMs的最新進展進行分類和評估。此分類法如圖3所示,作為研究人員快速熟悉該動態領域最新技術的全面參考。 在接下來的章節中,我們將對與代碼生成相關的每個類別進行深入分析。這將包括問題的定義、要解決的挑戰以及對最突出的模型及其性能評估的比較。
大型語言模型(LLMs)與Transformer架構在多個領域引發了革命性變革,其在代碼生成中的應用尤為顯著。這些模型遵循一個全面的過程,從代碼數據的整理和合成開始,然后是包括預訓練和微調在內的結構化訓練方法,并使用復雜的提示工程技術。最近的進展包括集成了庫級和檢索增強的代碼生成,以及自主編碼代理的發展。此外,評估LLMs的編碼能力已成為該研究領域的重要組成部分。 在接下來的章節中,我們將詳細探討這些與代碼生成相關的LLMs各個方面。第4.1節將介紹在LLMs開發的各個階段中使用的數據整理和處理策略。第4.2節將討論旨在緩解高質量數據稀缺性的數據合成方法。第4.3節將概述用于代碼生成的LLMs的流行模型架構。第4.4節將探討全參數微調和參數高效微調的技術,這些技術對于將LLMs調整為代碼生成任務至關重要。第4.5節將通過強化學習和利用反饋的力量,闡述提升代碼質量的方法。第4.6節將深入研究通過策略性使用提示來最大化LLMs的編碼能力。第4.7和4.8節將分別詳細說明庫級和檢索增強代碼生成的創新方法。此外,第4.9節將討論自主編碼代理這一令人興奮的領域。最后,第4.11節將提供一些利用LLMs進行代碼生成的實際應用見解,展示這些復雜模型的現實世界影響。通過這一全面探索,我們旨在強調LLMs在自動化代碼生成領域的意義和潛力。 結論
在本綜述中,我們提供了一篇系統的文獻綜述,為研究代碼生成LLMs最新進展的研究人員提供了寶貴的參考。我們詳細介紹和分析了數據整理、最新進展、性能評估和實際應用。此外,我們還展示了近年來代碼生成LLMs演變的歷史概覽,并使用廣泛認可的HumanEval和MBPP基準進行經驗比較,以突出代碼生成LLMs能力的漸進提升。我們還識別了學術界與實際開發之間的關鍵挑戰和有前景的機會,以供未來研究。此外,我們建立了一個專門的資源網站,以持續記錄和傳播該領域的最新進展。我們希望本綜述能夠為代碼生成LLMs提供一個全面而系統的概覽,促進其蓬勃發展。我們樂觀地相信,LLMs最終將改變編碼的各個方面,自動編寫安全、有用、準確、可信且可控的代碼,如同專業程序員一樣,甚至解決當前人類無法解決的編碼問題。
視覺變換器(Vision Transformers,ViTs)最近引起了相當大的關注,作為卷積神經網絡(CNNs)的有希望替代品,在幾個與視覺相關的應用中顯現出來。然而,它們龐大的模型尺寸以及高計算和內存需求阻礙了部署,特別是在資源受限的設備上。這強調了針對ViTs的算法-硬件協同設計的必要性,旨在通過定制算法結構和底層硬件加速器來優化它們的性能,以彼此的優勢為依托。模型量化通過將高精度數值轉換為低精度,減少了ViTs的計算需求和內存需求,允許創建專門為這些量化算法優化的硬件,提高效率。本文提供了ViTs量化及其硬件加速的全面綜述。我們首先深入探討ViTs的獨特架構屬性及其運行特性。隨后,我們檢查模型量化的基本原理,接著是對ViTs最先進量化技術的比較分析。此外,我們探索了量化ViTs的硬件加速,強調了硬件友好算法設計的重要性。最后,本文將討論持續的挑戰和未來研究方向。我們在
//github.com/DD-DuDa/awesome-vit-quantization-acceleration 上持續維護相關的開源材料。
在計算機視覺領域,卷積神經網絡(CNNs)歷來是基石,已在眾多任務中展示出顯著的效果。然而,隨著變換器(Transformer)架構的出現,情況開始發生變化。變換器在自然語言處理(NLP)中取得了巨大成功之后,被適配用于計算機視覺,形成了視覺變換器(Vision Transformers,ViTs)。ViTs的關鍵特性是自注意力(self-attention),它允許模型通過學習圖像標記序列中元素之間的復雜關系,從而在上下文中分析視覺數據。這種把握更廣泛上下文及圖像內部依賴關系的能力,推動了基于變換器的視覺模型的迅速發展,并隨后將它們確立為多種任務的新基礎,包括圖像分類、對象檢測、圖像生成、自動駕駛和視覺問題回答,展示了它們在計算機視覺中的多功能性和變革性影響。 盡管ViTs具備卓越的能力,但由于其本質上龐大的模型尺寸以及自注意力機制導致的計算和內存需求呈二次方增長,特別是在圖像分辨率提高時,這些因素顯著阻礙了其在計算和內存資源受限的設備上的部署,尤其是在如自動駕駛和虛擬現實等實時應用中,滿足低延遲需求和提供高質量用戶體驗至關重要。這強調了對模型壓縮技術如剪枝、量化、知識蒸餾和低秩分解等進步的迫切需要。此外,ViTs的迅速采用不僅歸功于算法創新和數據可用性,還歸功于處理器性能的提升。雖然CPU和GPU提供廣泛的計算多樣性,但它們固有的靈活性可能導致效率低下。鑒于ViTs的重復性但又獨特的操作特性,利用專門設計的硬件來優化數據重用,從而提高ViT部署的效率,存在明顯的機會。 量化是一種將高精度映射為低精度的技術,已成功地促進了輕量級和計算效率高的模型的創建,增強了算法與硬件的交互。在算法方面,有多種專門為ViTs設計的技術,旨在在數據壓縮至較低位寬后保持應用的準確性。其中一些技術被設計得更符合硬件友好,考慮到現有的架構,如GPU的INT8/FP8 Tensorcore。在硬件方面,高級量化算法的優化推動了更高效處理器的設計,可能包括更有效的數據重用模塊,用于并行處理低位數據。算法和硬件的共同設計是現代硬件加速器開發中的常見方法,顯著提高了它們的性能。 然而,近年來發布的大量相關工作使得初學者難以獲得全面的概述和清晰的比較結果。此外,一些在不考慮實際硬件的情況下模擬算法設計的方法,在部署時可能導致意外的精度低下。迫切需要一項全面的綜述,總結、分析并比較這些方法。本文力求填補這一空白,提供了關于ViTs量化及其硬件加速的廣泛回顧。具體而言,我們深入探討了ViTs量化的細微挑戰,從算法和硬件兩個角度出發,提供了不同量化方法的縱向比較,并在圖1中進行了說明。此外,我們展示了先進的硬件設計解決方案,并推測未來的趨勢和潛在機會。與近期的綜述相比——有些專注于各種高效技術但不考慮硬件,有些僅限于推理優化且算法細節有限,還有些提供了主要針對大型語言模型的模型壓縮的廣泛概覽——本文提供了詳細的描述和比較,以協同的方式處理算法與硬件的相互作用,從而提供了對ViTs量化領域更清晰、更有結構的洞見。 本文的組織結構如下所述。第二部分深入探討了視覺變換器的架構,介紹了其變體,并通過分析其運行特性和瓶頸進行了剖析。第三部分闡述了模型量化的基本原理。隨后,第四部分檢查了與ViTs量化相關的迫切挑戰,并提供了先前方法性能的比較回顧。第五部分探索了可用于硬件加速的方法范圍。最后,第六部分總結了本文,突出了潛在的機會和挑戰。
大型語言模型(LLMs)在靜態、預先收集的通用數據集上的訓練取得的最近成功,已經引發了眾多研究方向和應用。其中一個方向解決了將預訓練的LLMs整合到動態數據分布、任務結構和用戶偏好中的非平凡挑戰。這個問題的主要挑戰在于平衡模型適應性和知識保存。為特定需求量身定制的預訓練LLMs經常在之前的知識領域經歷顯著的性能退化——這一現象被稱為“災難性遺忘”。雖然在持續學習(CL)社區進行了廣泛研究,但在LLMs領域呈現出新的表現形式。在這篇綜述中,我們提供了一個關于大型語言模型在持續學習背景下當前研究進展的全面概覽和詳細討論。除了介紹初步知識外,這篇綜述被分為四個主要部分:我們首先描述了持續學習LLMs的概覽,包括兩個連續性方向:垂直連續性(或垂直持續學習),即從一般到特定能力的持續適應;和水平連續性(或水平持續學習),即跨時間和領域的持續適應(第3節)。在垂直連續性之后,我們總結了在現代CL背景下學習LLMs的三個階段:持續預訓練(CPT)、領域適應性預訓練(DAP)和持續微調(CFT)(第4節)。然后我們提供了LLMs的持續學習評估協議的概覽,以及當前可用的數據來源(第5節)。最后,我們討論了有關LLMs持續學習的引人深思的問題(第6節)。這篇綜述揭示了持續預訓練、適應和微調大型語言模型這一相對未受到足夠研究的領域,表明需要社區更多的關注。需要立即關注的關鍵領域包括開發實用且易于訪問的評估基準,以及專門設計的方法論,以對抗遺忘和在不斷演變的LLM學習范式中啟用知識轉移。在這項綜述中檢查的完整論文列表可在//github.com/Wang-ML-Lab/llm-continual-learning-survey找到。
近期大型語言模型(LLMs)的進步顯示了實現人工普遍智能(AGI)的巨大潛力。研究人員觀察到,隨著參數規模的增加,多步驟推理、小樣本上下文學習和指令跟隨等復雜能力有所提高。LLMs的發展具有重大影響和革命性,促使機器學習從業者重新考慮傳統的計算范式,用于處理一些曾經具有挑戰性的人類水平任務,如問答、機器翻譯和對話系統。然而,LLMs通常在包含通用領域的靜態、預先收集的數據集上進行訓練,導致性能隨時間逐漸降低,并且在不同內容領域之間也會降低。此外,單一的預訓練大模型無法滿足每個用戶的需求,需要進一步的微調。盡管重新收集預訓練數據和根據額外的具體需求重新訓練模型是一種潛在的解決方案,但這種方法在現實世界場景中代價高昂且不切實際。為了有效地適應LLMs到下游任務,同時盡量減少對以前知識領域的性能退化,研究者采用了持續學習的方法,也稱為終身學習或增量學習。持續學習受到人類大腦中觀察到的增量學習模式的啟發,涉及按順序在一系列任務上訓練機器學習模型,期望在所有任務中保持性能。在訓練過程中,模型對以前的數據有限或無法訪問,這在保留過去知識時構成了一個挑戰,因為在當前任務學習時,來自未見過的以前數據的優化約束是不存在的。這一挑戰,被稱為災難性遺忘,自持續學習研究開始以來一直是研究的中心焦點。多年來,研究者探索了各種技術來減輕機器學習模型中的遺忘,這些技術包括基于重放的方法、參數規范化和模型架構擴展。這些技術共同顯著推進了在不同任務、模型架構和學習范式中實現零遺忘的持續學習目標。在順序訓練和適應LLMs的背景下,CL的重要性也正在發生自身的語義轉變。為了更好地突出這一持續的轉變,在這篇綜述中,我們提供了一個關于LLMs在CL背景下當前研究進展的全面概覽和詳細討論。對于持續學習LLMs的總體情況,我們將其分為兩個需要由從業者解決的連續性方向(第3節):
在圖1中,繼垂直連續性之后,我們勾畫了現代CL中LLM學習的三個關鍵階段:持續預訓練(CPT)、領域適應性預訓練(DAP)和持續微調(CFT)(第4節)。在CPT中,現有研究主要調查三種類型的分布式轉變:時間、內容層次和語言層次。每種都呈現出獨特的焦點和挑戰。在DAP中,雖然它主要被視為為下游任務準備LLMs的過程,但頻繁地使用CL評估和技術。然而,這些技術的多樣性明顯不足,考慮到傳統CL社區的成熟度。在CFT中,我們關注的是學習LLMs的新興領域,涵蓋持續指令調整(CIT)、持續模型精煉(CMR)、持續模型對齊(CMA)和持續多模態LLMs(CMLLMs)等主題。接下來,我們呈現了一系列公開可用的評估協議和基準(第5節)。我們總結我們的綜述,討論了LLMs持續學習的最新出現的特性,傳統增量學習類型和LLMs持續學習中的記憶約束的角色變化,以及這個主題的潛在研究方向(第6節)。總結而言,本文提供了一份詳盡的現有持續學習研究LLMs的綜述,顯著區別于相關主題的現有文獻。我們的綜述突出了持續開發LLMs的研究領域,特別是在持續預訓練(CPT)和領域適應性預訓練(DAP)領域的研究。我們強調需要社區更多的關注,迫切需要包括開發實用、易于訪問且廣為認可的評估基準。此外,需要定制方法來解決在新興的大型語言模型學習范式中的遺忘問題。我們希望這篇綜述能提供一個系統而新穎的持續學習視角,在迅速變化的LLMs領域中,幫助持續學習社區為開發更有效、可靠和可持續的LLMs做出貢獻。
組織結構
本文的其余部分安排如下。我們首先在第2節介紹大型語言模型和持續學習的背景和初步知識。然后我們在第3節展示了大型語言模型的現代持續學習概覽。從垂直角度來看,它可以大致分為三個階段的LLMs持續訓練,我們將在第4節逐一介紹每個階段。在4.3節中,將介紹持續微調LLMs的獨特方面,包括持續指令調整(4.3.3節)、持續模型精煉(4.3.4節)、持續模型對齊(4.3.5節)和持續多模態大型語言模型(4.3.6節)。在第5節中,我們提供了公開可用的LLMs持續學習評估協議和基準的全面介紹。最后,在第6節中,我們討論了在大型語言模型時代持續學習的角色,包括大規模持續LLMs的新興能力(6.1節)、三種類型的持續學習(6.2節)、LLMs持續學習中的記憶角色(6.3節)以及未來的研究方向(6.4節)。 持續學習與大型語言模型相遇:概覽****大型語言模型(LLMs)在多個維度上都非常龐大,包括模型參數的大小、預訓練數據集、計算資源、項目團隊和開發周期。LLMs的巨大規模為開發團隊帶來了顯著的挑戰,特別是在快速變化的環境中保持更新。舉例來說,2023年,用戶發布的新推文的平均每日流量超過5億,即使是在這么大量數據的“小”子集上進行訓練也是不可承受的。在考慮到它們對下游應用的連鎖影響時,有效且可靠地適應LLMs變得更為關鍵。下游用戶通常缺乏收集和存儲大規模數據、維護大規模硬件系統以及自行訓練LLMs的專業知識。《可回收調整》是首個明確概述現代LLM生產流水線供應商-消費者結構的先導研究。在供應商側,模型在一系列大規模未標記數據集上持續進行預訓練。每次預訓練模型發布后,消費者需要利用更新、更強大的上游模型以獲得更好的下游性能。為了提高下游消費者微調的效率,他們最初對持續預訓練的LLMs進行了幾項關鍵觀察,聚焦于模式連接性和功能相似性。此外,他們提出在上游預訓練LLM進行重大更新后,復用過時的微調組件。基于《可回收調整》引入的概念框架,我們在本綜述中提出了一個包含各種研究的現代生產流水線的全面框架,涉及持續LLM預訓練、適應和部署,如圖1所示。我們的框架與現有研究的不同之處在于融入了兩個連續性方向:垂直連續性和水平連續性。
結論
在這項工作中,我們提供了一份關于持續LLMs的綜述,從持續學習的角度總結了它們在訓練和部署方面的最新進展。我們根據它們在我們提出的現代分層持續學習LLMs的更廣框架內的位置,對問題和任務進行了分類。雖然這一領域在社區中的興趣廣泛且日益增長,但我們也注意到幾個缺失的基石,包括算法多樣性以及對大模型行為(如知識遺忘、轉移和獲取)的基本理解。通過全面而詳細的方法,我們希望這篇綜述能激勵更多從業者探索持續學習技術,最終有助于構建健壯和自我進化的人工智能系統。
將文本和視覺模態連接起來在生成智能中扮演著至關重要的角色。因此,受到大型語言模型成功的啟發,大量研究努力正被投入到多模態大型語言模型(MLLMs)的開發中。這些模型能夠無縫整合視覺和文本模態,無論是作為輸入還是輸出,同時提供基于對話的界面和遵循指令的能力。在這篇論文中,我們提供了近期基于視覺的MLLMs的全面回顧,分析它們的架構選擇、多模態對齊策略和訓練技巧。我們還對這些模型在廣泛的任務范圍內進行了詳細分析,包括視覺定位、圖像生成和編輯、視覺理解和領域特定應用。此外,我們編制并描述了訓練數據集和評估基準,就性能和計算需求在現有模型之間進行了比較。總的來說,這篇綜述提供了當前藝術狀態的全面概述,為未來MLLMs的發展奠定了基礎。
//www.zhuanzhi.ai/paper/3c58ed684809b9b936259fd61a4bb074
注意力操作符和Transformer架構(Vaswani et al., 2017)的引入,使得創建能夠處理各種模態的模型成為可能,并且這種處理能力在不斷擴大的規模上得到應用。這一進步很大程度上歸功于操作符的多功能性和架構的適應性。最初,這一突破被用于語言特定模型(Devlin et al., 2018; Brown et al., 2020),但很快擴展到支持視覺處理骨干(Dosovitskiy et al., 2021),最終用于集成多種模態的模型(Radford et al., 2021)。復雜大型語言模型(LLMs)的涌現,特別是它們進行上下文學習的能力,鼓勵研究人員將這些模型的應用范圍拓寬到多模態,包括作為輸入和輸出。這一擴展導致了如GPT-4V(Achiam et al., 2023)和Gemini(Anil et al., 2023)等尖端模型的開發,展示了最先進的性能。多模態大型語言模型(MLLMs)的開發涉及將視覺和語言的單模態架構合并,通過視覺到語言的適配器建立它們之間的有效連接,并設計創新的訓練方法。這些方法對于確保模態對齊和準確遵循指令的能力至關重要。在新模型快速發布的背景下,我們的目標是提供關于MLLM領域的全面概述,重點關注利用視覺模態的模型。這一概述既是對當前狀態的更新,也是對未來發展的靈感來源。我們確定了定義這些模型的三個核心方面:它們的架構、訓練方法以及它們被設計來執行的任務。我們首先詳細介紹了流行的視覺編碼器選擇和為LLMs裝備跨模態能力的適配器模塊。接著,我們深入訓練過程和使用的數據。然后,我們探索MLLMs處理的任務范圍。綜述以對該領域持續存在的挑戰和未來研究的有希望方向的討論結束。關于訓練數據、評估數據集以及性能和計算要求的進一步細節在補充材料中報告。
賦予大型語言模型多模態能力
** 前言**
大型語言模型。Brown等人(2020)發現上下文學習,即在提示前附加一些示例以演示大型語言模型(LLM)的期望輸出(Chowdhery等人,2023;Hoffmann等人,2022;Tay等人,2022),可以提高其性能,特別是在未見過的任務上。通過為每個訓練樣本提供所需任務的自然語言描述,可以進一步提高泛化能力。這種技術,稱為指令調優(Chung等人,2022;Wang等人,2022b,a;Jiang等人,2024),對于使LLM的行為與人類的行為對齊至關重要,目前賦能了最先進的LLM,最終通過來自人類反饋的強化學習(RLHF)(Ouyang等人,2022;Achiam等人,2023;Chen等人,2023j;Bai等人,2023a)得到提升。PEFT。當一個預訓練的LLM需要適應特定領域或應用時,參數高效微調(PEFT)方案代表了訓練整個LLM的一個重要替代方案,因為這些策略只引入少量新參數。其中,提示調優(Hambardzumyan等人,2021;Lester等人,2021;Li和Liang,2021;Liu等人,2023j)學習一小組向量作為軟提示在輸入文本之前輸入模型。不同的是,LoRA(Hu等人,2021)通過學習低秩矩陣限制了新權重的數量。這種技術與如QLoRA(Dettmers等人,2023)等量化方法正交,進一步減少了LLM的內存占用,與通常的半精度權重相比。走向多模態LLM。MLLM的發展與LLM的發展路徑類似,Flamingo(Alayrac等人,2022)是首個在視覺-語言領域探索大規模上下文學習的模型。然后,視覺指令調優(Liu等人,2023e)迅速成為多模態領域中最突出的訓練范式,以及使用PEFT技術微調LLM。任何MLLM至少包含三個組件(圖1):作為與用戶接口的LLM主干,一個(或多個)視覺編碼器,以及一個或多個視覺到語言的適配器模塊。對LLM主干的流行選擇通常屬于LLaMA家族(Touvron等人,2023a,b),鑒于它們的權重是自由可獲取的,它們僅在公開數據上進行了訓練,并且它們擁有不同的大小以適應各種用例。此外,它們的衍生版本也很受歡迎,例如Alpaca(Taori等人,2023)和Vicuna(Chiang等人,2023)。前者在GPT-3編寫的指令上微調LLaMA,而后者利用用戶與ChatGPT(OpenAI,2022)的共享對話。其他選擇包括OPT(Zhang等人,2022b),Magneto(Wang等人,2023b),MPT(MosaicML,2023),以及經過指令調優(Chung等人,2022)或多語言(Xue等人,2020)版本的T5(Raffel等人,2020),一種為多個任務預訓練的編解碼器語言模型。 本調查中涵蓋的MLLM的總結報告在表1中,指出每個模型基于哪個LLM,視覺編碼器,用于連接視覺和語言組件的適配器,MLLM是否經過視覺指令調優訓練,以及主要任務和能力的簡短列表。視覺編碼器在MLLM中,一個關鍵組件是視覺編碼器,它專門設計用于為LLM提供提取的視覺特征。通常采用凍結的預訓練視覺編碼器,同時只訓練一個可學習的接口,將視覺特征與底層LLM連接起來。最常用的視覺編碼器基于預訓練的Vision Transformer(ViT)模型,具有CLIP-based目標,以利用CLIP嵌入的固有對齊。流行的選擇包括CLIP(Radford等人,2021)的ViT-L模型,OpenCLIP(Wortsman等人,2022)的ViT-H主干,以及EVA-CLIP(Fang等人,2023)的ViT-g版本。CLIP和OpenCLIP編碼器在從網絡收集的圖像上訓練,采用對比方法對正確的圖像-文本對進行對齊。相反,EVA-CLIP是一系列模型,提供了訓練CLIP模型的實用有效解決方案。特別是,EVA模型預訓練為重建被遮擋的圖像-文本對齊視覺特征,條件是可見的圖像塊。 正如(Li等人,2023f)所示,更強大的圖像編碼器導致更好的性能。基于這一見解,Lin等人(2023b)和Gao等人(2024)提出了一個凍結視覺主干的集合,以捕獲魯棒的視覺表示和不同級別的信息粒度。同時,PaLI模型(Chen等人,2023i,g),注意到語言和視覺參數之間的不平衡,分別提出將視覺主干擴展到4億和220億參數的ViT。使用如此大且強大的模型是通過在訓練期間保持視覺編碼器凍結的常見做法變得可行的,如(Li等人,2023f;Huang等人,2023a;Gao等人,2023;Chen等人,2023f)中所觀察到的。然而,使用凍結的視覺編碼器有一些局限性,主要是由于參數數量有限,導致視覺和語言模態之間對齊不足。具體來說,從視覺模型提取的密集特征可能會碎片化細粒度圖像信息,并由于輸入語言模型的長序列而帶來大量計算。為了緩解這個問題,其他方法(Ye等人,2023c,d)采用兩階段訓練范式。在第一階段,他們結合了可訓練的視覺主干,同時保持預訓練的LLM凍結。根據他們的發現,使視覺編碼器可訓練可以提高諸如視覺問題回答或視覺描述等任務的性能。然而,它可能導致其他任務的性能下降,表明一定程度的遺忘和對通用視覺表示的損害。
視覺到語言的適配器
來自不同模態的輸入的同時存在強調了需要納入一個能夠勾畫出這些單模態領域內潛在對應關系的模塊的必要性。這些模塊,稱為“適配器”,旨在促進視覺和文本領域之間的互操作性。在常見的MLLM中使用了不同適配器的范圍,從基本架構(如線性層或MLP)到高級方法(如基于Transformer的解決方案),如Q-Former模型,以及添加到LLM的條件交叉注意力層。線性和MLP投影。將視覺輸入投影到文本嵌入中的最直接方法涉及學習線性映射,將視覺特征轉換為與文本對應部分相同的維度。一些方法,如LLaMA-Adapter(Gao等人,2023)和FROMAGe(Koh等人,2023b)只使用單個線性層來執行多模態連接,而LLaVA-1.5(Liu等人,2023d)采用了兩層MLP,顯示出改進的多模態能力。盡管在早期MLLM中廣泛采用線性投影,但即使在對視覺輸入有更深入理解的最新方法中,線性投影的使用也被證明非常有效(Chen等人,2023f;Lin等人,2023a;Wang等人,2023c;You等人,2023;Zhao等人,2023a)。因此,它是一種簡單而有效的技術,用于將視覺特征與文本對應部分對齊。不同的方法(Cha等人,2023)提議用卷積層替換線性層,顯示出適度的改進。 Q-Former。它是BLIP-2(Li等人,2023f)中提出的基于Transformer的模型,然后在幾種其他方法(Chen等人,2023d;Dai等人,2023;Hu等人,2024)中使用。它的特點是具有可適應的架構,由兩個共享相互注意力層的Transformer塊組成,促進視覺和文本表示之間的對齊過程。它涉及一組可學習的查詢,在自注意力層內部交互,并通過交叉注意力機制與視覺特征接口。文本和視覺元素通過模塊內的共享自注意進行通信。從Q-Former中汲取靈感,引入了各種修改版本。在這方面,mPLUG-Owl模型(Ye等人,2023c,d)簡化了Q-Former架構,并提出了一個視覺抽象器組件,通過將視覺信息壓縮為不同的可學習令牌來操作,以獲得更富語義的視覺表示。同一線上,Qwen-VL(Bai等人,2023b)使用具有可學習查詢的單層交叉注意力模塊壓縮視覺特征,還結合了2D位置編碼。附加交叉注意力層。這種方法在Flamingo(Alayrac等人,2022)中被提出,通過在現有預訓練LLM層中集成密集交叉注意力塊。新添加的層通常與零初始化的tanh門控機制結合使用,以確保在初始化時,條件模型的行為如其原始版本。使用附加交叉注意力層需要從頭開始訓練它們,與其他替代方案相比,增加了可訓練參數的數量。為了減少計算復雜性,這種策略通常與基于Perceiver的組件(Jaegle等人,2021)配對使用,該組件在將視覺令牌輸入LLM之前減少了它們的數量。自從引入以來,幾個模型(Awadalla等人,2023;Chen等人,2023b;Lauren?on等人,2023;Li等人,2023a)采用這種技術將視覺模態與底層LLM連接起來,顯示出提高了訓練穩定性和改善了性能。
多模態訓練
從預訓練的LLM開始,MLLM的訓練經歷了單階段或兩階段過程。在這兩種情況下,都使用標準的交叉熵損失來預測下一個令牌,作為自回歸目標。 單階段訓練。這種可能性由LLaMA-Adapter(Gao等人,2023)探索,它引入了額外的可訓練參數以封裝視覺知識并同時管理僅文本指令學習。為了實現這一點,模型使用圖像-文本對和指令進行聯合訓練,操作獨立的參數。同時,(Koh等人,2023b)中提出的模型通過整合兩個對比損失來適應最終損失函數,用于圖像-文本檢索。在訓練期間,只更新三個線性層。另一方面,Kosmos-1(Huang等人,2023a)考慮了一個凍結的視覺主干,并從頭開始訓練1.3B參數的語言模型。 Flamingo(Alayrac等人,2022)及其開源變體(Awadalla等人,2023;Lauren?on等人,2023),相反,訓練交叉注意力層和基于Perceiver的組件以將視覺特征與凍結的LLM塊連接起來。此外,Otter(Li等人,2023a)擴展了Flamingo的訓練以增加其上下文能力。 鑒于目前可用的訓練數據量,像SPHINX-X(Gao等人,2024)這樣的方法選擇執行單一的一體化訓練階段,在此階段更新所有模型組件,可能還使用僅文本數據以保留LLM的對話能力。
兩階段訓練。在兩個訓練階段中的第一個,目標是將圖像特征與文本嵌入空間對齊。經過這一階段后,輸出往往是碎片化的且不連貫的。因此,進行第二步以提高多模態對話能力。LLaVA(Liu等人,2023e,d)是首批引入視覺指令遵循訓練方案的方法之一,作為第二訓練階段執行,更新多模態適配器和LLM的參數。在第一階段,相反,只有多模態適配器是可訓練的。不同的是,MiniGPT4(Zhu等人,2023a)值得注意的是,在兩個階段中僅訓練負責多模態對齊的線性層。在第二階段,它使用經過模型自身在第一階段后收集和精煉的過濾數據。
另一種方法,如InstructBLIP(Dai等人,2023)所示,涉及凍結視覺編碼器和LLM。在兩個訓練階段中,只有Q-Former和連接模塊是可訓練的。與之前保持視覺主干凍結的方法相比,mPLUG-Owl(Ye等人,2023c,d)在初始階段更新它,便于捕獲低層次和高層次的視覺信息。此外,在第二階段聯合使用僅文本和多模態數據以增加對齊。不同地,Shikra(Chen等人,2023f)在兩個階段中更新所有權重,唯一的例外是視覺主干保持凍結。
訓練數據。在第一階段(或單一階段)訓練中,通常使用來自不同來源的圖像-文本對,使用的數據集包括LAION-2B(Schuhmann等人,2022)、LAION-400M(Schuhmann等人,2021)、Conceptual Captions(Sharma等人,2018)、COYO-700M(Byeon等人,2022)和DataComp(Gadre等人,2023)。一些方法(Lin等人,2023a)將這些與一個或多個數據集結合使用,這些數據集的特點是文本與圖像交錯,通常從網絡上抓取,如WebLI(Chen等人,2023i)、MMC4(Zhu等人,2023d)、MMDialog(Feng等人,2023b)和OBELICS(Lauren?on等人,2023)。
為了解決以前數據集中的偏差和噪聲問題,StableLLaVA(Li等人,2023h)引入了在第一階段使用的新收集數據。這種方法利用ChatGPT生成包含圖像生成提示和基于內容的對話的數據,并使用Stable Diffusion(Rombach等人,2022)生成相應的圖像。隨后的階段則利用數據集進行視覺指令調優。其中,常用的LLaVA-Instruct(Liu等人,2023e)擴展了COCO(Lin等人,2014)并加入了由GPT-4生成的指令。遵循這一趨勢,Zhao等人(2023a)通過結合手動生成的數據和高質量多樣性的數據,擴大了尺寸。此外,還提出了其他多輪對話數據集,如(Dai等人,2023)中介紹的將26個公開可用數據集轉換為其視覺指令遵循版本的數據集,LRV-Instruction(Liu等人,2023c)旨在通過更穩健的指令減少幻覺,而LLaVAR(Zhang等人,2023h)則專注于文本豐富的圖像。
用多模態大型語言模型處理視覺任務
標準的多模態大型語言模型可以處理視覺理解任務,例如視覺問答(VQA)、圖像描述和多輪對話。然而,最近對處理更細粒度的視覺任務,如視覺定位和圖像生成,有了更大的興趣。
結論與未來方向
在本綜述中,我們提供了最近多模態大型語言模型(MLLMs)進化的全面概述,首先關注如何為LLMs裝備多模態能力,然后探討這些模型處理的主要任務。基于所呈現的分析,以下我們概述了重要的開放挑戰和有前景的未來研究方向,以進一步增強MLLMs的能力。 修正幻覺現象。幾項研究(Liu等人,2023b;Zhu等人,2023a)表明MLLMs傾向于展現高幻覺率,特別是在生成較長的描述時。盡管一些解決方案正在出現以緩解這個問題(Liu等人,2023b;Wang等人,2023a;Wu等人,2023c;Yin等人,2023a),但理解和糾正幻覺的根本原因仍然是一個重要的開放挑戰,值得解決,以允許這些模型在更關鍵的背景中(例如,醫學)應用,并保證它們的準確性和可信度。 預防有害和有偏見的生成。確保大規模模型的安全性和公平性是社區的基本興趣。近期工作表明,基于網絡爬取數據訓練的模型傾向于生成不適當和有偏見的內容。盡管最近正在努力在文本到圖像生成模型中減少這種現象(Schramowski等人,2023;Friedrich等人,2023),但需要進一步探索以防止MLLMs中出現相同的行為(Pi等人,2024)。 減少計算負荷。如補充材料所示,MLLMs高度依賴于計算。需要有效的策略(Chu等人,2024)來減少計算需求,使MLLMs的開發更加易于獲取。可能的方向包括減少訓練要求,無論是在模型規模還是數據量方面,以及優化推理階段。
大型語言模型(LLMs)在廣泛的任務中取得了顯著的成功。由于LLMs令人印象深刻的規劃和推理能力,它們被用作自動執行許多任務的自主智能體。最近,基于將一個LLM作為單一規劃或決策智能體的發展,基于LLM的多智能體系統在復雜問題解決和世界模擬方面取得了相當的進展。為了向社區提供這一動態領域的概覽,我們呈現這篇綜述,以提供關于基于LLM的多智能體系統的基本方面及挑戰的深入討論。我們的目標是讓讀者對以下問題獲得實質性的見解:基于LLM的多智能體模擬哪些領域和環境?這些智能體如何被描述,它們如何通信?什么機制有助于智能體能力的增長?對于那些有興趣深入研究這一領域的人,我們還總結了常用的數據集或基準,以便他們方便地訪問。為了讓研究人員了解最新的研究,我們維護一個開源的GitHub倉庫,致力于概述基于LLM的多智能體系統的研究。
1 引言
最近,大型語言模型(LLMs)展現出了達到與人類相當的推理和規劃能力的顯著潛力。這種能力完全符合人類對能夠感知周圍環境、做出決策并作出響應的自主智能體的期待[Xi等,2023;Wooldridge和Jennings,1995;Russell和Norvig,2009;Guo等,2023;Liang等,2023]。因此,基于LLM的智能體已被研究和快速發展,以理解和生成類似人類的指令,促進在廣泛的上下文中進行復雜的互動和決策[Yao等,2023;Shinn等,2023;Li等,2023d]。及時的綜述文章系統地總結了基于LLM的智能體的進展,如在文獻[Xi等,2023;Wang等,2023b]中所見。
基于單個LLM智能體的啟發性能力,已提出基于LLM的多智能體,以利用多個智能體的集體智能和專業化輪廓及技能。與使用單一LLM驅動的智能體的系統相比,多智能體系統通過1) 將LLMs專業化為具有不同能力的各種不同智能體,以及2) 使這些多樣化的智能體之間進行互動,有效地模擬復雜的現實世界環境,提供了先進的能力。在這一背景下,多個自主智能體協作參與規劃、討論和決策,反映了人類團隊工作在解決問題任務中的合作本質。這種方法利用了LLMs的溝通能力,借助它們生成文本進行交流和對文本輸入的響應能力。此外,它利用了LLMs在各個領域的廣泛知識和專門化特定任務的潛力。最近的研究已經展示了使用基于LLM的多智能體解決各種任務的有希望的結果,如軟件開發[Hong等,2023; Qian等,2023]、多機器人系統[Mandi等,2023; Zhang等,2023c]、社會模擬[Park等,2023; Park等,2022]、政策模擬[Xiao等,2023; Hua等,2023]以及游戲模擬[Xu等,2023c; Wang等,2023c]。由于這個領域的跨學科研究性質,它吸引了來自社會科學、心理學和政策研究等不同背景的研究者,研究論文的數量正在迅速增加,如圖1所示(受[Gao等,2023b]設計的啟發),從而擴大了基于LLM的多智能體研究的影響。盡管如此,早期的工作是獨立進行的,導致缺乏系統回顧以總結它們,建立這個領域的全面藍圖,并檢查未來的研究挑戰。這強調了我們工作的重要性,并作為呈現這篇綜述論文的動機,致力于基于LLM的多智能體系統的研究。
我們期望我們的綜述能對LLMs的研究和開發以及利用LLMs進行的更廣泛的跨學科研究做出重大貢獻。讀者將獲得關于基于LLM的多智能體(LLM-MA)系統的全面概覽,把握基于LLMs建立多智能體系統所涉及的基本概念,并捕捉到這一動態領域中最新的研究趨勢和應用。我們認識到這個領域正處于初級階段,并且隨著新方法和應用的迅速發展。為了提供一種持續的資源來補充我們的綜述論文,我們維護了一個開源的GitHub倉庫。我們希望我們的綜述能激發進一步的探索和創新,以及在廣泛的研究領域中的應用。
為了幫助來自不同背景的個人理解LLM-MA技術,并補充現有的綜述通過解決未解決的問題,我們以以下方式組織了我們的綜述論文。在第2節中闡述背景知識后,我們提出了一個關鍵問題:LLM-MA系統如何與協作任務解決環境對齊?為了回答這個問題,我們在第3節提出了一個全面的框架,用于定位、區分和連接LLM-MA系統的各個方面。我們通過討論: 1)智能體-環境界面,詳細說明智能體如何與任務環境互動; 2)智能體輪廓,解釋一個智能體如何被LLM描述以以特定方式行為; 3)智能體通信,考察智能體如何交換信息和協作;以及 4)智能體能力獲取,探索智能體如何發展其解決問題的能力。
關于LLM-MA研究的另一個視角是它們的應用。在第4節,我們將當前應用分為兩個主要流:用于問題解決的多智能體和用于世界模擬的多智能體。為了指導個人識別合適的工具和資源,我們在第5節提出了用于研究LLM-MA的開源實現框架,以及可用的數據集和基準。基于前面的總結,我們在第6節開放了對未來研究挑戰和機會的討論。結論在第7節中總結。
解析LLM-MA系統:界面、輪廓、通信和能力
在本節中,我們深入探討LLM-MA系統的復雜性,其中多個自主智能體參與類似于人類群體動力學的協作活動,應對問題解決場景。我們要解決的一個關鍵問題是,這些LLM-MA系統如何與它們的操作環境以及它們旨在實現的集體目標對齊。為了闡明這一點,我們在圖2中展示了這些系統的通用架構。我們的分析解剖了這些系統的操作框架,重點關注四個關鍵方面:智能體-環境界面、智能體輪廓、智能體通信和智能體能力獲取。
應用
LLM-MA系統已在廣泛的應用中被使用。我們在表1中總結了兩類應用:問題解決和世界模擬。我們將在下面詳細闡述這些應用。請注意,這是一個快速發展的研究領域,幾乎每天都有新應用出現。我們維護一個開源倉庫來報告最新的工作。
使用LLM-MA進行問題解決的主要動機是利用具有專門專業知識的智能體的集體能力。這些智能體,每個都作為個體行動,協作以有效地解決復雜問題,例如軟件開發、具體化智能體、科學實驗和科學辯論。 LLM-MA的另一個主流應用場景是世界模擬。這一領域的研究正在迅速增長,涵蓋了包括社會科學、游戲、心理學、經濟學、政策制定等在內的多種領域。在世界模擬中使用LLM-MA的關鍵原因在于它們出色的角色扮演能力,這對于現實地描繪模擬世界中的各種角色和觀點至關重要。世界模擬項目的環境通常被設計來反映被模擬的特定場景,智能體以各種輪廓設計以匹配這一背景。與專注于智能體合作的問題解決系統不同,世界模擬系統涉及多種智能體管理和通信方法,反映了現實世界交互的復雜性和多樣性。
結論
基于LLM的多智能體展現了激勵人心的集體智能,并迅速在研究者中獲得了越來越多的興趣。在這篇綜述中,我們首先系統回顧了LLM-MA系統的發展,通過從不同方面定位、區分和連接它們,涉及智能體-環境界面、LLMs對智能體的描述、管理智能體通信的策略以及能力獲取的范式。我們還總結了LLM-MA在問題解決和世界模擬中的應用。通過突出常用的數據集和基準,并討論挑戰和未來機會,我們希望這篇綜述能成為各個研究領域的研究者們的有用資源,激發未來的研究去探索基于LLM的多智能體的潛力。
多模態(視覺-語言)模型,如CLIP,正逐漸取代傳統的監督預訓練模型(例如,基于ImageNet的預訓練)成為新一代的視覺基礎模型。這些模型通過從數十億個互聯網圖像-文本對中學習,形成了強大且一致的語義表示,并可以在零樣本的情況下應用于各種下游任務。然而,在醫學成像和遙感等一些細粒度領域,多模態基礎模型的性能往往不盡人意。因此,許多研究者開始探索這些模型的少樣本適應方法,逐漸衍生出三種主要技術途徑:1)基于提示的方法;2)基于適配器的方法;3)基于外部知識的方法。盡管如此,這一迅速發展的領域產生了大量結果,但尚無全面的綜述來系統地整理研究進展**。因此,在這篇綜述中,我們介紹并分析了多模態模型少樣本適應方法的研究進展,總結了常用的數據集和實驗設置,并比較了不同方法的結果**。此外,由于現有方法缺乏可靠的理論支持,我們推導了多模態模型的少樣本適應泛化誤差界限。該定理揭示了多模態基礎模型的泛化誤差受三個因素的約束:域間差異、模型容量和樣本大小。基于此,我們從以下幾個方面提出了三種可能的解決方案:1)自適應領域泛化;2)自適應模型選擇;3)自適應知識利用。
人工智能正在越來越多地應用于廣泛的關鍵行業,包括語音識別、圖像識別、自動駕駛、智能制造、醫學診斷、金融風險控制等。在用人工智能技術賦能各個領域的過程中,經常會遇到與碎片化和多樣化需求相關的挑戰。過去,模型通常具有較小的參數規模和有限的泛化能力。一個模型只能應對單一場景,導致成本高昂和泛化性能差。近年來,越來越多的研究者開始關注具有更強泛化能力的預訓練基礎模型。
自2018年以來,如BERT [1]、盤古 [2]、PaLM [3]、GPT4 [4]等基礎模型的訓練數據和參數規模呈指數級增長,導致在各種自然語言理解任務中的性能顯著提高。與此同時,基礎模型的發展也逐漸從單一模態(如文本、語音、視覺等)演變為多模態融合。越來越多的研究機構開始關注多模態預訓練基礎模型,如ViLBERT [5]、CLIP [6]、DeCLIP [7]、FILIP [8]、PyramidCLIP [9]、OFA [10]、BEiT-3 [11]、ERNIE-ViL [12]和Data2vec [13]。
2021年初,OpenAI發布了CLIP,這是一個大規模的多模態模型,用于對齊圖像和文本,它使用數十億互聯網數據進行預訓練,通過對比學習獲得豐富的視覺語言知識。雖然預訓練的CLIP模型可以在推理階段通過使用文本特征作為分類權重來實現零樣本預測,但這種方法通常只在諸如ImageNet之類的通用領域中表現出色,在處理某些細粒度領域的數據時表現不佳。這是因為這些模型在預訓練階段主要使用通用領域的數據,而在面對特定的下游任務時,數據分布往往與預訓練數據不同。因此,有必要使用下游任務的特定數據對模型進行微調。為了通過微調提高模型的泛化性能,研究人員首先提出了基于提示的微調適應方法(例如,CoOp [14]),該方法將CLIP文本端的固定文本輸入視為可學習的向量,然后使用少量樣本進行微調,以適應下游任務。另一種常用于增強少樣本適應能力的方法是基于適配器的微調,如CLIP-Adapter [15]。這種方法涉及在預訓練模型中添加簡單的適配器結構,然后使用少量樣本數據微調適配器參數,使基礎模型適應下游任務。此外,引入基礎語言模型或外部知識(如知識圖譜,例如,CuPL [16])的方法可以幫助模型更好地處理未見樣本,增強其語義理解和魯棒性,從而提高其在少樣本適應任務中的性能。上述三種方法已廣泛用于各種下游適應任務,但缺乏一個全面的綜述來系統地整理這些方法。因此,我們詳細闡述并比較這些方法,并探索它們的未來發展方向,以進一步提高預訓練模型的性能和泛化能力。
本文的貢獻如下:
? 我們全面回顧和整理了多模態少樣本適應方法,并將現有方法分類為基于提示的微調適應方法、基于適配器的微調適應方法、基于外部知識的適應方法以及其他方法。在基于提示的微調適應方法中,我們進一步將其細分為文本提示微調、視覺提示微調、多模態提示和多任務提示方法。關于基于適配器的微調適應方法,我們將其分類為單模態適配器微調和多模態適配器微調。在使用外部知識的方法中,我們區分了帶有外部知識的預訓練方法和利用外部知識的下游適應方法。
? 我們回顧了11個常用數據集,用于評估多模態基礎模型的下游泛化性能。我們提供了四種實驗設置的詳細描述,以驗證多模態基礎模型在少樣本條件下的適應性能。展示了四種不同設置的實驗結果,并對這些結果進行了比較分析。我們強調了不同類型方法能有效提高多模態基礎模型泛化性能的原因。
? 我們討論了現有多模態基礎模型的少樣本適應方法的共同缺點,并分析了域適應問題。從統計機器學習理論中跨域泛化的誤差界限出發,我們推導了多模態基礎模型的少樣本適應誤差界限,揭示了現有方法面臨的主要挑戰是上游和下游域分布的無效適應、模型選擇的適應性不足以及數據和知識利用不足。
II. 多模態基礎模型的預訓練
近年來,大規模預訓練模型已受到學術界和工業界的廣泛關注。最初,基礎模型預訓練的相關工作主要集中在自然語言處理領域,在這個領域,如BERT [1]和GPT [17]這樣的自監著學習語言模型展現出比傳統方法更好的自然語言理解和生成能力。在計算機視覺領域,范式也從監督預訓練轉變為自監督預訓練。自監督預訓練的視覺模型性能顯著提高,從最初基于數據增強的模型(如SimCLR [18]和MoCo [19])演變到最近基于隨機掩蔽方法的模型(如MAE [20]和BEiT [21])。然而,預訓練的語言模型無法接收視覺輸入,導致它們無法將語言理解的優勢擴展到多模態下游任務(如視覺問答VQA)。另一方面,用于視覺預訓練的監督信號通常僅限于數據增強和隨機掩蔽,這阻止了它們在開放世界中學習更豐富的語義表征。因此,我們最近見證了大規模預訓練多模態模型的迅速發展,這些模型結合了視覺和語言模態,如表I所示。
III. 多模態基礎模型的少樣本適應方法
為了有效提高模型在特定領域的泛化性能,有必要使用有限的樣本對多模態基礎模型進行微調,使其具有更廣泛的應用。這些方法可以定義為多模態基礎模型的少樣本適應方法。本章將分為四個部分,提供現有多模態基礎模型方法的詳細概述,即:基于提示的微調適應方法、基于適配器的微調適應方法、基于外部知識的適應方法,以及其他方法。
A. 基于提示的微調適應方法
文本提示基微調適應:在自然語言處理領域,基于提示的微調適應[34]–[38]是解決大型語言模型少樣本泛化問題的經典方法。它涉及將文本輸入的一部分作為可學習向量,并使用下游任務數據對其參數進行微調,使模型能夠適應特定的下游任務。這種方法的優勢在于它避免了文本提示的手動設計,有效地通過僅對模型輸入的特定部分進行微調來減輕過擬合風險。受此啟發,一些研究人員也開始為多模態基礎模型設計基于提示的微調適應方法。CoOp [14]首次將提示學習的思想納入多模態預訓練基礎模型的下游任務適應中。它使用可學習的詞嵌入來自動構建上下文提示,而不是為每個任務手動設計提示模板。如圖1所示,單個類別標簽{object}被轉換為綜合文本提示“[V]1, [V]2, ..., [V]m, {object}”。其中,[V]i代表可調整的詞向量。然后計算分類損失以使用下游任務數據微調這些詞向量,使模型能夠自主獲取適應下游任務的文本輸入。隨后,Zhou等人[39]引入了條件性上下文優化(CoCoOp),該方法構建了一個元網絡來學習圖像的特征。這些特征然后與提示向量結合以增強CoOp在新類別數據上的泛化性能。為了有效利用預訓練模型的零樣本能力,Huang等人[40]提出了無監督提示學習(UPL)。它選擇高置信度的零樣本預測結果作為偽標簽來監督提示向量的學習。類似地,Prompt-aligned Gradient(ProGrad)[41]使用零樣本預測結果來約束模型梯度更新的方向,從而避免少樣本模型與泛化知識之間的沖突,并減輕過擬合問題。然而,由于視覺信息的豐富多樣性,學習僅一個文本提示難以匹配復雜的視覺數據。為解決這一問題,Chen等人[42]提出了使用最優傳輸的提示學習(PLOT)。它用于學習多個不同的文本提示,其中不同的文本提示被視為圖像位置的描述,使用最優傳輸理論來匹配文本提示與局部圖像特征。Lu等人[43]引入了提示分布學習(ProDA),以學習提示分布并從這些分布中采樣不同的文本提示。此外,為了充分利用多任務數據之間的相關性,Ding等人[44]提出了用于提示調整的軟上下文共享(SoftCPT),該方法設計了一個任務共享元網絡,將預定義任務名稱和可學習的元提示作為輸入,以借助多任務數據微調提示。
視覺提示基微調適應:上述所有方法僅微調CLIP的文本部分,而CLIP作為多模態模型,視覺和文本兩方面同等重要。僅微調文本提示無法改善視覺編碼器提取特征的能力,提取的視覺特征可能與下游任務的目標特征不匹配。因此,受到文本提示微調適應的啟發,一系列視覺提示微調適應方法應運而生。現有的視覺提示微調適應方法主要包括令牌級微調適應和像素級微調適應。視覺提示調整(VPT)[45]引入了以令牌形式的可學習視覺提示。類感知視覺提示調整(CAVPT)[46]在此基礎上進一步包括一個交叉注意模塊,使視覺提示更加關注下游任務的目標。與基于令牌的方法相反,Bahng等人[47]建議直接在圖像周圍以填充格式添加像素級視覺提示,以增強視覺提示。Wu等人[48]進一步提出了增強視覺提示(EVP),通過縮放和填充而不是直接在原始圖像周圍填充。
多模態提示基微調適應:除了單獨學習文本和視覺提示外,還可以同時學習多模態提示,以更好地對齊文本和視覺特征。文本和視覺特征具有固有的差異,為了在學習多模態提示時加強它們之間的聯系,多模態提示學習(MAPLE)[49]使用copula函數將文本提示轉換為視覺提示。統一提示調整(UPT)[50]首先學習一個通用提示,然后將其分解為文本和視覺提示。另一方面,多任務視覺語言提示調整(MVLPT)[51]引入了多任務學習的概念,使用跨任務知識微調文本和視覺提示。
B. 基于適配器的微調適應方法
1. 單模態適配器基微調適應:在自然語言處理(NLP)領域,適配器的概念最初由谷歌團隊于2019年引入,用于微調大型語言模型[52]。在下游任務訓練中,該方法凍結原始語言模型的參數,僅更新作為適配器模塊添加的少量參數。由于其參數效率高、設計靈活性和高魯棒性等優點,這種方法近年來在NLP領域受到了廣泛的研究關注[53]。最近,基于適配器的方法也被應用于計算機視覺領域的視覺變換器(ViTs)中。Jie等人[54]通過引入卷積旁路(Convpass)解決了ViTs中適配器結構缺乏歸納偏置的問題。此外,他們提出了因子調整(FacT,引用為[55]),以進一步提高參數效率的遷移學習效率,以滿足實際應用中的存儲約束。
2. 多模態適配器基微調適應:上述基于適配器的方法都適用于自然語言處理或計算機視覺中的單模態基礎模型。近年來,基于適配器的方法也被擴展到多模態基礎模型中,以增強下游泛化能力。Gao等人[15]引入了CLIP-Adapter,該適配器在凍結骨干網絡后添加了一個全連接層適配器來學習額外知識。然后,它基于殘差連接將這些知識與零樣本預測結果合并,如圖2所示。基于這些發展,張等人引入了Tip-Adapter[56]。該方法基于下游少樣本訓練數據構建分類器,并以線性加權方式將其預測與原始零樣本分類器的結果結合,以增強模型的預測性能。SVL-Adapter[57]在適配器之前融合了一個預訓練的自監督視覺編碼器,以提取更魯棒的視覺特征。然而,上述方法僅使用跨模態對比損失,沒有考慮少樣本數據集的視覺特定對比損失。為解決這一問題,彭等人[58]提出了語義引導的視覺適應(SgVA-CLIP),通過隱式知識蒸餾引導視覺適配器的參數更新,以確保圖像-文本關系的一致性。為了增強適配器的跨模態交互能力,CALIP[59]利用注意力圖融合文本和圖像特征,并在融合前后插入兩個可微調的線性層。此外,跨模態適配器(CMA)[60]和多模態視頻適配器(MV-Adapter)[61]通過在兩種模態之間共享適配器權重實現跨模態交互。這些方法考慮了單模態和多模態場景,但沒有充分整合每種模態的優勢。為解決這一問題,陸等人[62]提出了UniAdapter,以統一單模態和多模態適配器。
C. 基于外部知識的適應方法
1. 基于外部知識的預訓練方法:預訓練基礎模型通過從互聯網上大量數據中挖掘相關信息,具有學習通用表征的能力。然而,在這些數據驅動的模型中,知識通常是隱性的,沒有明確鏈接到人類對世界的理解或常識性知識。近年來,數據和知識驅動的預訓練方法不斷涌現,研究人員開始探索將更全面的外部知識,如知識圖譜,融入基礎模型中。這種整合旨在使這些模型更加魯棒、可靠和可解釋。ERNIE[63]融合了一個知識編碼器,用于實體知識提取和異構信息融合。K-BERT[64]檢索與模型輸入相關的外部知識,并構建具有豐富上下文知識的句子樹作為模型輸入。近年來,一些工作也開始為多模態基礎模型的預訓練注入知識。例如,ERNIE-ViL[65]整合了來自場景圖的知識,KM-BART[66]通過創建額外的預訓練任務來模擬一般視覺知識,K-LITE[67]融合了包括WordNet和維基百科定義在內的各種外部知識源。
2. 基于外部知識的下游適應方法:上述方法在預訓練階段引入外部知識。然而,在數據樣本有限的下游少樣本適應場景中,也有必要增強外部知識以確保模型的性能。最常見的方法之一是通過查詢大型語言模型為每個類別生成更豐富的文本描述。圖3展示了這種方法的示例。通過語言模型定制提示(CuPL)[16]是第一個將外部知識融入多模態基礎模型下游泛化過程的方法。CuPL通過向GPT-3提問生成每個類別的多個描述性陳述,豐富類別的語義,從而提高零樣本分類性能。然而,CuPL使用GPT-3生成的句子可能存在描述性差和可靠性問題。為解決這些問題,Menon等人[68]進一步完善了基于GPT-3的知識增強過程。他們提示GPT-3以短語形式生成語義屬性描述,增強了模型的可解釋性。為了在可解釋性和性能之間取得平衡,語言引導瓶頸(LaBo)[69]使用GPT-3生成大量候選特征描述符空間,同時考慮特征相對于其他類別的區分性和當前類別的覆蓋率。它篩選出最佳子描述符空間以進行分類決策,從而揭示模型的決策邏輯。ELEVATER[70]還融合了來自GPT-3、WordNet和維基詞典等來源的定義。實驗結果表明,外部知識可以增強多模態基礎模型的下游泛化性能。然而,不同知識來源有不同的側重點和特性。例如,WordNet具有相對豐富和準確的知識,但覆蓋率較低,而GPT-3具有更廣泛的知識覆蓋范圍,但可能缺乏可靠性。此外,與上述使用外部知識增強文本語義的方法不同,SuS-X[71]專注于增強多模態模型的視覺樣本。
隨著ChatGPT的成功普及,基于Transformer的大型語言模型(LLMs)為通往人工通用智能(AGI)鋪平了一條革命性的道路,并已在諸多領域中得到應用,比如作為知識庫、人機界面和動態代理。然而,一個普遍的限制存在:許多當前的LLMs,由于資源的限制,主要是在較短的文本上進行預訓練的,這使得它們在處理更長上下文的提示時效果不佳,而這種情況在現實世界中是常見的。在本文中,我們提供了一份綜述,專注于基于Transformer的LLMs模型架構的進步,以優化從預訓練到推理的所有階段的長上下文處理能力。首先,我們描述并分析了當前基于Transformer模型處理長上下文輸入和輸出的問題。然后,我們主要提供了一個全面的分類,以解決這些問題的Transformer升級架構的領域。之后,我們提供了對長上下文LLMs廣泛使用的評估必需品的調查,包括數據集、度量標準和基線模型,以及一些驚人的優化工具包,如庫、系統和編譯器,以提高LLMs在不同階段的效率和效果。最后,我們進一步討論了這一領域的主要挑戰和未來研究的潛在途徑。此外,我們建立了一個存儲庫,在 //github.com/Strivin0311/long-llms-learning 處實時更新相關文獻。
近年來,借助深度學習技術[93],特別是基于Transformer的模型(如BERT [45]、GPT [134, 135, 17]及其變體[97, 105, 137])的興起,自然語言處理(NLP)已經取得了顯著進步,使機器能夠理解和生成人類語言[170, 98],從而在自然語言理解(NLU)的眾多任務中引起了革命,例如情感分析[206],自然語言生成(NLG)如文檔摘要[51],以及其他領域如計算機視覺[81]和自動駕駛[67]。此外,在ChatGPT [121]、PaLM [36]、GPT4 [123, 122]等的推動下,基于Transformer的大型語言模型(LLMs),其規模擴大到1B~100B參數以激發新能力[183],已顯示出通向人工通用智能(AGI)[18]的新興路線,并迅速被應用于眾多人機交互應用中,如聊天機器人[146, 95]、編程助手[184, 196]和教育導師[1, 117]。 Transformer是一個精密的深度神經網絡模型,它結合了許多偉大的先前設計[8, 65, 7],并包含多種新穎的組件,最初是為了解決機器翻譯中的序列到序列語言建模問題[175]。當代的LLMs大多基于Transformer架構的基礎上,采用其全部或部分模塊[45, 134, 137]。在這些組件中,基于Transformer的LLMs主要因其核心設計良好的注意力機制而成功,該機制捕獲整個輸入中每對標記之間的全局依賴性,使模型能夠處理具有復雜關系的序列。雖然注意力機制提供了顯著的性能,但其與輸入序列長度成二次方的時間和空間復雜度導致了顯著的計算資源瓶頸,這不僅限制了訓練期間允許的輸入文本長度,而且由于生成標記增加時的效率不足和昂貴的緩存內存消耗,也限制了提示的有效上下文窗口。對于推理來說更糟糕的是,當LLMs面對比訓練中的序列更長的序列時,也會因為輸入長度的普遍化機制設計不良而性能下降。
然而,隨著LLMs在需要長上下文理解[193, 87]和生成[106, 68]的各種應用中深入人心,對能夠有效和高效地理解和生成極長序列的長上下文LLMs的需求變得越來越必不可少和迫切。因此,研究人員投入了大量努力來增強Transformer架構,以解決LLMs中的長上下文問題,包括對注意力效率的優化(第3節)、通過額外內存機制擴展上下文窗口(第4節)、通過外推位置嵌入實現有效的長度泛化(第5節)、上下文預/后處理(第6節),以及其他雜項方法(第7節),如特定的預訓練目標、專家混合、量化、并行等。
這段文字是關于長上下文語言模型(LLMs)領域的一篇綜述。它提到了長上下文LLMs是一個非常熱門且發展迅速的研究領域,其中一些現有的綜述文獻匯總了相關文獻工作。這些綜述中,有的提供了關于長文檔摘要的概述,但沒有深入探討長文本建模的內在技術。其他綜述主要集中在提高長文本場景下Transformer的計算效率上。還有的綜述強調LLMs在處理長序列時面臨的挑戰,討論的方法主要與高效的Transformer相關。最近的一項工作更接近于這篇綜述的研究,介紹了長文本建模和Transformer應用的方法,涵蓋了預處理技術、部分高效的Transformer和長文檔的特殊特性。然而,目前還缺乏全面的研究來回顧文獻,探索從操作角度改進Transformer架構,以打破上下文長度的限制,實現更復雜、可擴展的基于Transformer的LLMs。
這篇綜述的目標是全面回顧文獻中關于擴大現有基于Transformer的LLMs有效上下文窗口長度的架構演變。主要貢獻包括:
建立了一個全面的分類法,將Transformer架構分解為五部分,并探討在每個階段(包括預訓練、微調、推理和預/后處理)增強長上下文LLMs的現有方法。
探索廣泛使用的評估需求,包括數據集、度量標準和特別評估LLMs長上下文能力的基線,以及一些流行的優化工具包,以提高LLMs在訓練和推理過程中的效率和效果。
確定改造Transformer結構以處理廣泛上下文的關鍵挑戰,并提出相應的未來方向以推動前沿。
考慮到這個領域的極速發展,構建了一個收集該特定領域相關文獻的倉庫,并將持續更新,幫助讀者跟上最新進展。
綜述的組織結構如下:第2節概述了長上下文LLMs,包括語言建模的目標和階段、基于Transformer的LLMs的關鍵組成部分、LLMs處理長上下文的結構限制分析以及現有努力提升Transformer架構的分類。接下來的五個部分(第3、4、5、6、7節)主要深入討論分類中的每一部分方法。第8節總結了長上下文能力評估的必要條件,并收集了一些流行的優化工具包,以提高LLMs在訓練和推理過程中的效果和效率。第9節探討了關鍵挑戰及其帶來的潛在機遇,并從現有突破中得出洞見。最后,第10節以對這個領域全景的總體結論以及這項研究的動機結束了這篇綜述。
總述
在本節中,我們首先從基礎語言模型目標、典型模型階段到變換器(Transformer)基礎的僅解碼器大型語言模型(LLMs)中關鍵的架構模塊進行初步介紹(見圖1 (a))。隨后,我們對于當LLMs遇到廣泛上下文窗口時的架構限制進行了簡要分析(見2.2節)。最后,我們提出了一個全面的方法學分類(見2.3節),旨在通過架構創新提高LLMs的長上下文處理能力(見圖1 (b))。此分類將作為接下來的五個部分——第3、4、5、6、7節的指導方針。
基于2.1節所提出的基礎見解和2.2節討論的限制,有多種途徑可以探索,以提升變換器(Transformer)結構,賦予大型語言模型(LLMs)更強的長上下文處理能力。例如,通過減少訓練期間的注意力復雜性、設計高效的記憶機制、增強長度外推能力,正如[129]所概述的那樣,模型在短序列上進行訓練,但在推理時測試更長的序列。因此,在本文中,我們提供了對最近旨在改善LLMs長上下文能力的方法學進展的全面回顧,并將它們組織成統一的分類法,如圖1 (b)所示。具體來說,這些方法被分為以下五個主要類別: ? 高效注意力(第3節):這些方法側重于實施計算需求降低的高效注意力機制,甚至實現線性復雜性。通過這樣做,它們在預訓練階段直接增加了Lmax,從而擴展了LLMs在推理期間有效上下文長度邊界。 第一類方法致力于優化注意力機制,特別是關注那些使變換器(Transformer)模塊成為計算瓶頸的核心操作(見公式4)。這種方法在推理過程中通過直接增加預訓練階段的超參數Lmax,使大型語言模型(LLMs)的有效上下文長度邊界得以擴展。我們進一步將這些方法分為五種不同的策略,每種都有特定的焦點:局部注意力(第3.1節)、分層注意力(第3.2節)、稀疏注意力(第3.3節)、近似注意力(第3.4節)和IO-感知注意力(第3.5節)。
? 長期記憶(第4節):為了解決上下文工作記憶的限制,一些方法旨在設計明確的記憶機制,以彌補LLMs中高效和有效的長期記憶的缺乏。 由于在上下文工作記憶中的作用,Transformer架構通常難以捕捉長期依賴性,正如第2.2節所強調的。研究人員探索了兩個主要途徑來應對這一挑戰,同時不損害全注意力的優勢。首先,受到RNNs的啟發,一些研究者將遞歸機制引入到注意力中,通過將內部記憶緩存整合進注意力層。這種方法使模型能夠在更長的序列上維護和檢索信息,彌補了內建長期記憶的固有缺乏。其次,另一種方法涉及利用現有模型作為外部知識庫的接口,如特定文檔或數據集。在推理過程中,模型可以從這些知識庫中讀取信息以豐富其上下文輸入,并且可以根據用戶的響應向它們寫入信息以刷新其長期記憶。通過以這種方式整合外部知識,模型獲得了訪問更廣泛上下文的能力,從而有效提升其處理長期依賴性的能力。
? 外推性位置編碼(第5節):最近的努力旨在通過改進現有位置編碼方案的外推性能力,提高LLMs的長度泛化能力。 認識到需要將推理長度的邊界推向超出Lmax的范圍,研究社區在這方面做出了顯著努力。值得注意的是,根據[5],他們已經確定,在偶數任務的長度泛化中失敗的主要原因是分心因素。然而,通過像scratchpad提示[120]這樣的方法,這些問題可以被大幅度減輕。盡管如此,在本節中,我們的重點仍然在于當前位置編碼(PEs)在更普遍場景中長度泛化中不可否認的作用。
? 上下文處理(第6節):除了提升特定低級變換器模塊的方法外,一些方法涉及將現成的LLMs與額外的上下文預/后處理相結合。這些方法確保每次調用時提供給LLMs的輸入始終滿足最大長度要求,并通過引入多次調用開銷來打破上下文窗口限制。 早前討論的許多方法論提出了圍繞Transformer架構中的注意力模塊的復雜設計,包括高效的注意力核心(第3節)、長期記憶機制(第4節)和外推性位置編碼(PEs)(第5節)。相比之下,還存在一些更簡單、更直接的方法,將預訓練的大型語言模型(LLMs)視為黑盒或灰盒模型。這些方法通過多次調用模型來解決處理超出模型長度限制的長上下文輸入的挑戰,確保每次調用時提供給LLM的實際輸入不超過Lmax。盡管這些方法沒有顯式地增強LLMs處理長上下文的固有能力,但它們利用LLMs顯著的在上下文中的學習能力來解決這個問題,盡管代價是增加了計算量和可能減少了答案的準確性。 ? 其他(第7節):這一部分探索了各種不完全符合前四個類別的通用且有價值的方法,為在LLMs中提高長上下文能力提供了更廣泛的視角。
結論
在這篇綜述中,我們全面地導航了基于Transformer的大型語言模型(LLMs)的架構進步領域,以增強在各個發展階段處理廣泛上下文窗口的能力,采用了一個全面的分類法,將這些針對Transformer中不同模塊設計的方法論進行分類。然后,我們探討了長文本任務特有的評估必要性以及一些集成了多種工具的優化工具包,用以增強LLMs的效率和有效性。我們進一步確定了關鍵挑戰及其對應的未來方向。此外,我們的存儲庫確保讀者能夠及時了解這一動態領域的最新研究。隨著LLMs的快速發展,我們真誠地希望我們的綜述能成為研究人員的寶貴資源,幫助他們利用LLMs的力量構建強大的長上下文LLMs,最終推動走向通用人工智能(AGI)時代的追求。
多模態3D場景理解由于其在自動駕駛和人機交互等多個領域的廣泛應用而受到了廣泛關注。與傳統的單一模態3D理解相比,引入額外的模態不僅提高了場景解釋的豐富性和精確性,而且確保了更為魯棒和有彈性的理解。在多變和具有挑戰性的環境中,這尤為重要,因為僅依賴3D數據可能是不夠的。盡管在過去三年中,多模態3D方法的發展呈現上升趨勢,尤其是那些整合多攝像頭圖像(3D+2D)和文本描述(3D+語言)的方法,但值得注意的是,缺乏一個全面且深入的綜述。在這篇文章中,我們提供了最近進展的系統性調研,以填補這一空白。我們首先簡要介紹一個背景,正式定義各種3D多模態任務并總結其固有的挑戰。之后,我們提出了一個新穎的分類法,根據模態和任務對現有方法進行了全面分類,探索了它們各自的優勢和局限性。此外,我們還提供了最近方法在幾個基準數據集上的比較結果,以及深入的分析。最后,我們討論了尚未解決的問題,并為未來的研究提供了幾個可能的方向。
//www.zhuanzhi.ai/paper/db0ef107bb8313585581f0bab52ab996
給定一個3D點云和來自另一模態的信息,如2D圖像和自然語言,多模態3D場景理解旨在理解每個物體及其周圍環境的語義含義 [1], [2], [3]。對3D場景的全面理解使代理能夠識別實體的類別和位置,并創建場景的新品牌內容和風格。與僅使用3D點云相比,2D圖像的加入提供了額外的顏色和紋理信息,而自然語言的引入則實現了人機交互。因此,多模態3D場景理解已成為計算機視覺中的一個重要研究領域,應用于自動駕駛[4]、機器人導航[5]和人機交互[6]。
多模態3D場景理解可進一步分為:(1) 3D+2D場景理解。3D LiDAR點云提供了充足的深度和幾何結構信息,這有助于獲得3D物體的形狀和姿態。但它們缺乏顏色信息和紋理細節,對于遠距離的物體往往稀疏而無序[7], [8], [9], [10], [11]。相反,2D相機圖像通常包含豐富的顏色、紋理和背景,但缺乏幾何信息,且易受天氣和光線條件的影響[12], [13], [14], [15]。自然地,利用LiDAR點云和相機圖像之間的互補性可以更好地、更完整地感知3D環境。但這兩種傳感器捕獲的同一個3D場景的表示之間經常會出現差異,因為LiDAR傳感器通過360度旋轉捕獲點云,而相機從透視視圖捕獲圖像,沒有深度感[16]。為了解決這個問題,提出了一些3D+2D場景理解方法,通過基于幾何的對齊[17]和基于語義的對齊[18]來進行LiDAR-相機融合。基于融合的特征,這些方法可以進一步執行3D物體檢測和分割[19], [20], [21],這通常用于自動駕駛和機器人導航。(2) 3D+語言場景理解。傳統的3D場景理解通常要求用戶具有專業知識,這對普通用戶不友好[22], [23], [24], [25], [26], [27]。用戶現在期望有一種更便捷的方式將他們的意圖傳達給計算機,實現信息交換并獲得個性化的結果。為了實現便捷的人機交互,研究人員提出了3D+語言場景理解。它結合3D視覺信息和自然語言作為輸入[28], [29], [30],因為自然語言可以作為背景知識和查詢條件來反映用戶意圖。通過多模態交互,經常采用如Transformer[31], [32]或圖神經網絡[33], [34]等技術,3D+語言場景理解方法不僅可以定位用戶提到的實體(例如,視覺定位和開放詞匯識別),還可以生成用戶所需的內容(例如,密集字幕,視覺問題回答,場景生成)。
盡管近年來出現了眾多方法,但多模態3D場景理解的很大一部分仍然分散在不同的任務中,并且沒有此類系統的調查存在。因此,有必要系統地總結近期的研究,全面評估不同方法的性能,并有前瞻性地指出未來的研究方向。這激發了本次調查,將填補這一空白。本文的主要貢獻可以總結為:
? 關于多模態3D場景理解的系統性調查。據我們所知,這是第一篇全面討論多模態3D場景理解近期進展的調查。為了使讀者對我們的文章有清晰的理解,我們從所需數據模態和目標下游任務的角度將算法分類為不同的分類,如圖1所示。
? 全面的性能評估和分析。我們比較了幾個公開可用的數據集上現有的多模態3D場景理解方法。我們的深入分析可以幫助研究者為其特定應用選擇合適的基線,同時也提供了關于修改現有方法的有價值的見解。
?** 對未來前景的有洞察力的討論**。基于系統調查和全面的性能比較,討論了一些有前途的未來研究方向,包括大規模3D基礎模型、數據高效訓練、3D建模的計算效率以及添加額外模態。
本文的結構組織如下。第2節總結了多模態3D場景理解中的問題定義和主要挑戰。第3節和第4節分別對3D+2D和3D+語言場景理解中用于不同下游任務的典型方法進行了深入探討。第5節介紹了基準數據集、評估指標以及不同技術的比較分析。最后,第6節總結了這篇文章并討論了未來研究的有前途的方向。
3D+2D多模態場景理解可以細分為多模態室外/室內3D對象檢測和多模態室外/室內3D語義分割。從2020年至今的現有3D+2D多模態方法的時間性概述如圖2所示。
3D+語言多模態場景理解可以分為3D視覺錨定、3D密集標注、3D問題回答、文本驅動的3D場景生成、開放詞匯的3D識別以及其他類別。從2020年至今的現有3D+語言多模態方法的時間性概述如圖5所示。
**結論與展望 **
本綜述為您提供了多模態3D場景理解的最新深入了解。我們首先總結了3D+2D和3D+語言情況下的任務定義和固有挑戰。接著是對每個任務的關鍵技術的結構化分類。此外,我們提供了對幾個基準數據集的最新進展的比較結果,并提供了有洞察力的觀察。我們希望這項調查能為新手和經驗豐富的從業者提供一個全面的指導。在多模態3D場景理解中,仍有許多進一步探索的可能性。以下提供了一些有前途的未來研究方向。 大規模3D-語言基礎模型。基于2D到3D轉移的當前3D VLMs在零射擊能力和下游應用中受到限制,主要是由于數據規模有限和幾何信息保留不足[41]。這強調了大規模3D-語言基礎模型的必要性。解決這一挑戰的主要解決方案在于創建可以支持從零開始訓練VLMs的大型數據集。此外,高效的遷移學習方法,包括像提示調整[177]和LORA[178]這樣的技術,通過利用預訓練的知識為特定任務提供了很大的應用前景。
數據高效訓練。考慮到與數據收集和注釋相關的顯著成本,當前的許多研究都局限于小規模數據集。因此,強調為有限數據量量身定制的健壯模型訓練和優化的開發變得越來越重要,從而減少對大規模數據集的依賴。最近的研究已經在解決數據注釋挑戰方面展現出了有前途的結果,通過無監督和弱監督學習方法。此外,使用文本到圖像或文本到3D生成合成逼真樣本有望進一步被研究,這可能緩解數據收集問題。
3D建模的計算效率。鑒于點云的大量體積,計算需求可能會顯著增加。因此,計算效率高的3D模型變得至關重要。為了應對這一挑戰,采用模型壓縮技術,如量化[179]、修剪[180]和高效結構[181],對于減少計算復雜性至關重要。此外,利用硬件優化如Flash attention[182]可以促進應用在邊緣設備上的部署,為提高效率提供另一種途徑。
納入其他模式。盡管在多模態3D建模方面取得了令人印象深刻的進展,但主要的重點仍然是圖像和語言。我們設想將更多的模式,如音頻,納入一個綜合模型來適應它們的聯合分布,這對于理解復雜的3D場景更為有助。鑒于訓練新模型時的復雜訓練要求和成對數據的稀缺,提高現有的多模態3D模型的效果可能更為有效,通過集成其他模式。一個可行的方法[183]是使用最小的成對數據集對齊每一個定義良好的、特定模式的模型。