隨著大語言模型(LLM)在各個領域的應用不斷擴大,它們適應數據、任務和用戶偏好的持續變化的能力變得至關重要。使用靜態數據集的傳統訓練方法不足以應對現實世界信息的動態特性。終身學習或持續學習通過使LLM能夠在其運行生命周期內持續學習和適應,整合新知識,同時保留先前學習的信息并防止災難性遺忘來解決這一問題。我們的綜述探討了終身學習的現狀,根據新知識的整合方式將策略分為兩類:內在知識,LLM通過完全或部分訓練將新知識吸收到其參數中;外部知識,通過將新知識作為外部資源(如維基百科或API)引入而不更新模型參數。我們的綜述的主要貢獻包括:(1)引入了一種新穎的分類法,將終身學習的大量文獻劃分為12種情景;(2)識別了所有終身學習情景中的常見技術,并將現有文獻分類到不同的技術組中;(3)強調了在LLM之前時代較少探索的模型擴展和數據選擇等新興技術。資源可在//github.com/qianlima-lab/awesome-lifelong-learningmethods-for-llm找到。
隨著大語言模型(LLM)在各個領域的應用不斷擴大,這些模型適應數據、任務和用戶偏好持續變化的能力變得至關重要。傳統的訓練方法依賴靜態數據集來訓練LLM,越來越無法應對現實世界信息的動態特性。終身學習(也稱為持續學習、增量學習),或LLM在其運行生命周期內持續和自適應學習的能力,解決了這一挑戰,通過整合新知識,同時保留先前學習的信息,從而防止災難性遺忘。圖1提供了終身學習的示意圖。 本綜述深入探討了終身學習的復雜領域,根據新知識的整合方式將策略分為兩大類:內在知識和外部知識。每個類別包含不同的方法,旨在增強LLM在各種情境下的適應性和有效性。圖2展示了LLM終身學習方法的分類。 內在知識類通過完全或部分訓練將新知識吸收到LLM的參數中,包括持續預訓練和持續微調等策略。例如,在工業應用中,常采用持續垂直領域預訓練,公司經常使用金融等領域的特定數據重新訓練其LLM。盡管這提高了特定領域的性能,但也有可能削弱模型的廣泛知識基礎,說明了在專業適應性和通用知識保留之間保持平衡的挑戰。持續微調涵蓋了特定情境的方法,如文本分類、命名實體識別、關系抽取和機器翻譯等,以及任務無關的方法,如指令微調、對齊和知識編輯。此外,在持續對齊中使用了人類反饋的強化學習,以確保LLM遵守人類價值觀,如安全和禮貌,突顯了所謂的“對齊稅”,即過于專注于特定價值觀可能會導致模型的通用能力下降。
外部知識類通過將新知識作為外部資源(如維基百科或API)引入,而不更新模型參數,包括基于檢索和工具的終身學習,利用外部數據源和計算工具來擴展模型的能力。基于檢索的策略,如檢索增強生成,通過提供上下文相關、準確和最新的外部數據庫(如維基百科)信息來增強文本生成,確保模型輸出隨時間保持相關性。同時,工具學習類借鑒人類工具使用的類比,模型學習使用外部計算工具,從而無需直接修改其核心知識庫,拓寬了其問題解決能力。
通過對這些組及其各自類別的詳細檢查,本文旨在強調將終身學習能力整合到LLM中,從而增強其在實際應用中的適應性、可靠性和整體性能。通過解決與終身學習相關的挑戰并探索該領域的創新,本綜述旨在為開發更強大和多功能的LLM做出貢獻,使其能夠在不斷變化的數字環境中蓬勃發展。
本綜述與現有綜述的差異。近年來,終身學習已成為一個越來越受歡迎的研究主題。大量綜述探討了神經網絡的終身學習。大多數現有綜述主要集中在卷積神經網絡(CNN)的終身學習,探討了CNN的各種終身學習情景,包括圖像分類、分割、目標檢測、自動系統、機器人和智慧城市。此外,一些綜述探討了圖神經網絡的終身學習。然而,只有少量文獻關注語言模型的終身學習。Biesialska等是關于自然語言處理(NLP)中終身學習的早期綜述,但他們只關注詞和句子表示、語言建模、問答、文本分類和機器翻譯。Ke等關注終身學習情景,包括情感分類、命名實體識別和摘要。他們還討論了知識轉移和任務間類分離的技術。Zhang等提供了關于將LLM與不斷變化的世界知識對齊的技術的全面回顧,包括持續預訓練、知識編輯和檢索增強生成。Wu等從持續預訓練、持續指令微調和持續對齊三個方面重新審視了終身學習。Shi等從垂直方向(或垂直持續學習)和水平方向(或水平持續學習)兩個方向研究了LLM的終身學習。Jovanovic等回顧了幾種實時學習范式,包括持續學習、元學習、參數高效學習和專家混合學習。雖然最近的綜述收集了終身學習的最新文獻,但它們沒有涵蓋持續文本分類、持續命名實體識別、持續關系抽取和持續機器翻譯等情景,并且對持續對齊、持續知識編輯、基于工具的終身學習和基于檢索的終身學習的討論較少。據我們所知,我們是第一個提供對LLM終身學習方法從12種情景進行徹底和系統檢查的綜述。
本綜述的貢獻。我們的綜述的主要貢獻包括:
-** 常見技術**:我們在所有終身學習情景中識別了常見技術,并將現有文獻分類到每個情景內的各種技術組中。
本綜述的組織結構如下。第二節介紹問題的形成、評價指標、常見技術、基準和數據集。第三節、第四節和第五節檢查了持續預訓練、持續微調和基于外部知識的終身學習的現有技術。第六節討論了LLM終身學習的現有挑戰、當前趨勢和未來方向,并總結了本綜述。
大型語言模型(LLMs)在許多不同的自然語言處理(NLP)任務中表現出色。提示工程在提升LLMs已有能力的基礎上,實現顯著性能提升方面發揮了關鍵作用。提示工程需要撰寫稱為提示的自然語言指令,以結構化方式引導LLMs挖掘知識。與之前的最新技術(SoTA)模型不同,提示工程不需要根據特定NLP任務進行廣泛的參數重新訓練或微調,而是完全依賴于LLMs的內嵌知識。此外,LLM愛好者可以通過基本的自然語言對話交流或提示工程,智能地提取LLMs的知識,使更多沒有深厚數學和機器學習背景的人也能嘗試使用LLMs。隨著提示工程在過去兩年中越來越受歡迎,研究人員提出了許多圍繞提示設計的工程技術,以提高從LLMs提取信息的準確性。在本文中,我們總結了不同的提示技術,并根據它們所應用的不同NLP任務進行分類。我們進一步細化地展示了這些提示策略在不同數據集上的性能,討論了所使用的相應LLMs,提供了一個分類圖,并探討了特定數據集可能的最新技術。總的來說,我們閱讀并總結了44篇研究論文,涵蓋了39種不同的提示方法,涉及29個不同的NLP任務,其中大多數論文在過去兩年內發表。
人工智能隨著大型語言模型(LLMs)的引入顯著進步。LLMs在包含數百萬和數十億個標記的大規模文本語料庫上進行訓練。研究表明,隨著模型參數數量的增加,機器學習模型的性能會提高,這也正是LLMs的情況。Chang等人(2023)的研究表明,LLMs在廣泛的NLP任務上取得了前所未有的性能,因此引起了學術界和包括醫學、法律、金融等在內的各個行業的廣泛關注。目前對LLMs的研究階段側重于通過提示(prompts)來提升其推理能力,而不僅僅是下一個標記的預測,這開啟了圍繞提示工程的新研究領域。
提示工程是指創建自然語言指令或提示,以有組織地從LLMs中提取知識的過程。與早期的傳統模型相比,提示工程僅依賴于LLMs的內嵌知識,而不需要根據基礎的NLP任務進行廣泛的參數重新訓練或微調。理解模型參數中所嵌入的現實世界知識超出了人類的能力,因此這個新的提示工程領域引起了大家的關注,因為它允許研究人員與LLMs之間進行自然語言交流,以實現基礎NLP任務的目標。
在這項工作中,我們列舉了幾種提示策略,并根據它們所應用的不同NLP任務進行分類。我們提供了一個分類圖,列出了在各種數據集上嘗試的提示技術,討論了所使用的LLMs,并列出了每個數據集的潛在最新技術(SoTA)方法。作為本次調查的一部分,我們總共審查并分析了44篇研究論文,其中大部分發表在過去兩年,涵蓋了39種提示技術,應用于29個不同的NLP任務。此前關于提示工程的系統性綜述并不多見。Sahoo等人(2024)調查了基于其應用的29篇提示技術論文。這是一種非常廣泛的分類,因為單一應用可以包含眾多NLP任務。例如,他們討論的一個應用是推理和邏輯,它可以包含大量NLP任務,如常識推理、數學問題解決、多跳推理等。這與我們的方法不同,我們根據NLP任務對提示策略進行更細致的分類。Edemacu和Wu(2024)提供了關于隱私保護提示方法的概述,因此側重于提示工程的一個相對較小的子領域。Chen等人(2023)將提示策略的討論限制在9-10種方法,并且沒有基于NLP任務對其進行分類。
本文的其余部分安排如下。第二節討論各種提示工程技術,第三節重點介紹不同的NLP任務。第三節的各個子部分討論了在給定NLP任務上應用的不同提示策略及其相應的結果。第四節總結全文。
在本節中,我們簡要討論了不同的提示方法,以及它們在發表時如何改進現有的性能。需要注意的是,大多數以下提示策略都在兩種不同的變體或設置下進行了實驗,這兩種變體包括零樣本和少樣本。有些提示技術可能本質上只存在于零樣本或少樣本變體中,不可能存在其他變體。
在零樣本設置中(Radford等,2019),沒有涉及訓練數據,通過提示指令要求LLM執行任務,完全依賴于其在預訓練階段學習的內嵌知識。另一方面,在少樣本變體中(Brown等,2020),提供少量訓練數據點以及基于任務的提示指令,以便更好地理解任務。各種提示工程工作的結果顯示,少樣本變體有助于提高性能,但這需要仔細準備少樣本數據點,因為LLM可能對精心編制的少樣本數據點表現出無法解釋的偏見。
不同的研究論文在將數據集分類為NLP任務時使用了不同的標準,這在不同的研究中有所不同。在本節中,我們嘗試標準化這些分類方法,通過定義不同的NLP任務并將不同的數據集歸入這些任務來構建一個結構。我們還討論了用于這些任務的各種提示方法。圖1展示了這種分類的一個示意圖。需要注意的是,一個數據集可能同時屬于不同的NLP任務,但這會導致復雜的結構化分析糾纏,不利于分析提示技術在各個NLP任務中的表現。因此,在我們的工作中,我們確保每個數據集只屬于一個與之最強相關的NLP任務。
以下各小節分別定義了不同的NLP任務、相應的數據集以及應用于這些數據集的各種提示策略。它們還包含每個數據集的潛在最新技術(SoTA)提示技術。提示方法的性能因使用的LLM而異。因此,我們還列出了在給定數據集上與提示策略一起使用的LLM列表。對于SoTA,我們只提及了提示方法的名稱,因為在許多情況下,特定的LLM尚未與給定的提示方法進行實驗,因此不清楚它是否能達到SoTA性能。因此,如果列表中的任何LLM與提示策略一起用于實驗,并在給定數據集中取得了最佳性能,我們將其指定為SoTA,而不論用于該技術的確切LLM是什么。另一個需要強調的點是,在許多研究中,作者使用了同一數據集的不同版本進行實驗,使得不同提示技術的絕對比較變得困難。基于我們的理解,我們考慮了上述所有因素,并在選擇每個數據集的SoTA時運用了最佳判斷。
近年來,我們見證了大型語言模型(LLM)的快速發展。基于強大的LLM,多模態LLM(MLLM)將模態從文本擴展到更廣泛的領域,因其廣泛的應用場景而引起廣泛關注。由于LLM和MLLM依賴大量的模型參數和數據來實現突現能力,數據的重要性正受到越來越廣泛的關注和認可。追蹤和分析最近針對MLLM的數據導向工作,我們發現模型和數據的發展并不是兩條獨立的路徑,而是相互關聯的。一方面,更大量和更高質量的數據有助于MLLM的更好表現;另一方面,MLLM可以促進數據的發展。多模態數據和MLLM的共同發展需要明確以下幾點:1)在MLLM的哪個發展階段可以采用哪些以數據為中心的方法來增強哪些能力,2)通過利用哪些能力和扮演哪些角色,模型可以對多模態數據作出貢獻。為了促進MLLM社區的數據-模型共同發展,我們系統地回顧了現有與MLLM相關的工作,從數據-模型共同發展的視角進行分析。本調查相關的一個定期維護的項目可以在 //github.com/modelscope/data-juicer/blob/main/docs/awesome llm data.md 訪問。
近年來,大型語言模型(LLM)在廣泛的任務中展示了令人印象深刻的性能,并且相關技術取得了顯著的進展。由于人類的感官不僅限于文本模態,多模態LLM(MLLM)逐漸進入視野,例如能夠處理超越文本模態輸入或輸出的Gemini-1.5 [1] 和 Sora [2],以及能夠在輸入和輸出之間進行多模態交互的GPT-4o [3] 和 NExT-GPT [4]。在過去兩年中,MLLM受到廣泛關注。正如圖1所示,自2023年初以來,與MLLM相關的研究正在以越來越快的速度涌現。 MLLM的卓越性能源于LLM在參數數量擴大帶來的解決一系列任務的突現能力[5]。許多研究表明,擴大模型規模需要更加海量的數據來補充[6], [7], [8],例如擴展法則[9], [10]。具體而言,研究表明,多模態模型需要指數級更多的數據才能在下游任務中實現線性零樣本改進[11]。鑒于此,一系列工作將重點從僅僅關注模型架構和訓練技術轉移到數據中心方法,專注于高質量數據的策劃[12], [13], [14], [15], [16], [17],以提供進一步釋放大型模型潛力的數據基礎。從圖1可以看出,在現有關注MLLM的論文中,與數據中心方法密切相關的論文也表現出強勁的增長趨勢,并占據了重要的部分。 隨著與MLLM相關的大量技術工作不斷涌現,一些針對MLLM的綜述也逐漸出現[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34]。這些綜述主要從模型中心的角度進行,而數據的重要性需要進一步強調。一項最近的綜述將數據中心的視角從單模態擴展到多模態,重點關注現有的數據中心方法,并根據所提出的數據管道階段進行組織[35]。實際上,數據和模型的發展是交織在一起的,而不是分開的。更大數量和更高質量的數據提高了模型性能,而從高質量數據中受益的良好訓練的模型可以進一步改進數據。這減少了人工成本,擴大了數據量,并通過使用需要標注的分割掩碼進行訓練的Segment Anything模型(SAM)[36]的訓練成功展示了這一點。隨著SAM在訓練中的熟練程度提高,它逐漸取代人在標注任務中的角色,從而形成一個改進模型和數據集的循環。這樣的漸進和良性循環促進了MLLM的發展,即受益于高質量數據集的MLLM可以幫助改進訓練數據,反過來進一步增強MLLM。 數據-模型共同發展范式很有前途,但尚未得到充分研究。根據我們的調查,目前還缺乏從數據-模型共同發展視角對MLLM的綜述。現有綜述尚未建立數據中心方法與MLLM能力之間的關系,也沒有清晰闡明MLLM的能力如何幫助構建數據集。實現MLLM數據-模型共同發展的關鍵在于闡明哪些數據方法可以增強每種特定的MLLM能力,以及了解模型可以扮演的角色,以改進多模態數據。因此,本綜述旨在通過綜合回顧回答以下研究問題,推進MLLM的數據-模型共同發展: * RQ1:在MLLM的生命周期中,哪些數據中心方法可以在哪個階段用于增強哪些MLLM能力? * RQ2:模型可以扮演哪些角色以促進不同的數據中心方法,并在每種情況下利用模型的哪些特定能力?
為了回答這兩個關鍵研究問題,我們首先提出一個基于MLLM數據-模型共同發展范式的新分類法。我們將先前的努力分為兩個主要類型:數據對模型的貢獻和模型對數據的互惠貢獻,建立其在MLLM能力中的深層連接。隨后,我們從數據-模型共同發展的視角對現有MLLM工作進行全面審查,揭示了推進數據-模型共同發展范式的巨大潛力,主要歸因于缺乏對數據和模型之間協同作用的專注。基于獲得的見解,我們描繪了若干進步的未來方向,以更好地利用數據和模型之間的互補,從基礎設施到各種自我增強程度的數據-模型共同發展。該綜述的主要貢獻有三點: * MLLM開發的新視角:我們提出了一種新分類法,強調多模態數據與MLLM之間的協同作用,旨在理解和挖掘數據和模型開發的互惠優勢。該分類法系統地基于開發MLLM所需的數據相關技術的層次結構進行組織,為研究人員和開發人員提供了推進MLLM的清晰視角。 * 從數據-模型共同發展視角對MLLM的最新綜述:我們系統地回顧了快速增長的MLLM工作,闡明1)哪些MLLM能力可以通過特定的數據中心方法增強,2)經過良好訓練的模型的能力如何反過來支持數據中心方法。據我們所知,這是第一篇從數據-模型共同發展視角對MLLM進行綜述的論文。 * MLLM未來的路線圖:我們提供了一個進步組織的路線圖,涵蓋若干先進和有前途的子方向,重點關注數據和MLLM之間的內部互動。通過這項工作,我們希望為學術研究人員和工業從業者在MLLM不斷發展的領域提供靈感和指導。
組織結構。本文余下部分的組織如下。第二節提供了背景,包括背景知識、分類法以及與現有相關綜述的定性比較。第三節介紹了擴展MLLM的數據中心方法。第四節總結了提高MLLM可用性的數據中心方法。第五節描述了模型直接幫助策劃MLLM數據集的能力。第六節整理了模型作為數據科學家輔助策劃MLLM數據集的應用。第七節列出了一些公開的MLLM數據集,并標明模型在數據策劃中的參與。第八節討論了MLLM未來發展的路線圖。
大型語言模型(LLMs)在各個領域展示了卓越的能力,吸引了學術界和工業界的廣泛關注。盡管它們表現出色,但LLMs的巨大規模和計算需求對實際部署帶來了相當大的挑戰,特別是在資源有限的環境中。壓縮語言模型同時保持其精度的努力已成為研究的重點。在各種方法中,知識蒸餾已成為一種有效的技術,可以在不大幅降低性能的情況下提高推理速度。本文從方法、評估和應用三個方面進行了詳細的調查,探討了專門為LLMs量身定制的知識蒸餾技術。具體來說,我們將方法分為白盒KD和黑盒KD,以更好地說明它們的差異。此外,我們還探討了不同蒸餾方法之間的評估任務和蒸餾效果,并提出了未來研究的方向。通過深入理解最新進展和實際應用,這項調查為研究人員提供了寶貴的資源,為該領域的持續進步鋪平了道路。
** 簡介**
大型語言模型(LLMs)[2, 17, 130, 146, 166] 的出現顯著提高了各種生成任務中的文本生成質量,成為人工智能領域一個關鍵且廣受討論的話題。與之前的模型相比,這些模型對未見數據的泛化能力更強。此外,它們還展示了小型模型所不具備的能力,如多步推理[47, 69, 83] 和指令執行[103, 144, 154]。LLMs的成功通常歸因于訓練數據的增加和模型參數數量的增加(例如,具有1750億參數的GPT-3[12])。然而,參數規模的擴展帶來了顯著的缺點,尤其是在高推理成本和大量內存需求方面,使得實際部署變得具有挑戰性。例如,GPT-3需要大約350GB的模型存儲(float16),并且推理至少需要5個每個80GB內存的A100 GPU,這對碳排放的影響顯著。為了解決這些挑戰,模型壓縮[30, 40] 已成為一種可行的解決方案。模型壓縮旨在將大型、資源密集型模型轉化為適合在受限移動設備上存儲的更緊湊版本。這一過程可能涉及優化以減少延遲以實現更快的執行,或在最小延遲和模型性能之間取得平衡。因此,在現實場景中應用這些高容量模型的一個關鍵目標是壓縮它們,減少參數數量,同時保持最大性能。
隨著減少計算資源需求的必要性日益重要,知識蒸餾(Knowledge Distillation, KD)[43] 作為一種有前景的技術出現。KD是一種機器學習方法,專注于通過從大型復雜模型向更小、更高效的模型傳遞知識來壓縮和加速模型。這種技術經常被用來將存儲在大型深度神經網絡模型中的知識濃縮到更小的模型中,從而減少計算資源需求并提高推理速度而不會大幅犧牲性能。從根本上講,知識蒸餾利用大型模型在大量數據集上獲得的廣泛知識來指導較小模型的訓練。這些知識通常包括輸出概率分布、中間層表示和大型模型的損失函數。在訓練過程中,較小的模型不僅要匹配原始數據標簽,還要模仿較大模型的行為。對于像GPT-4[2]這樣只能通過API訪問的高級模型,生成的指令和解釋可以幫助訓練學生模型[54]。隨著知識蒸餾的最新進展,許多研究綜合了各種蒸餾技術的最新進展。具體來說,Gou等[37] 對知識蒸餾進行了廣泛的綜述,涉及六個關鍵方面:知識類別、訓練方案、師生架構、蒸餾算法、性能比較和應用。同樣,Wang等[141] 詳細總結了與視覺任務相關的知識蒸餾技術的研究進展和技術細節。Alkhulaifi等[4] 介紹了一種創新的度量標準,稱為蒸餾度量標準,他們用它來評估不同的知識壓縮方法。此外,Hu等[48] 探討了跨多個蒸餾目標的各種師生架構,提出了不同的知識表示及其相應的優化目標,并系統地概述了師生架構,結合了代表性的學習算法和有效的蒸餾方案。
現有關于知識蒸餾的綜述為模型壓縮奠定了重要基礎并提供了寶貴的見解[13, 51, 64]。然而,LLMs的出現給KD帶來了若干新挑戰:1)大型語言模型設計并非僅用于單一任務如文本生成,而是廣泛應用于各種任務和未見數據,包括新興能力。因此,評估壓縮LLMs的泛化能力需要仔細和全面的評估。2)現有綜述僅是對現有工作的總結,未提供將KD技術應用于壓縮和部署LLMs的具體示例。這種案例研究可以幫助讀者為不同規模的LLMs選擇最佳的KD方案。
為應對這些挑戰,已經開發出各種專為LLMs設計的知識蒸餾算法。本文旨在提供這些方法的全面而有見地的指南。我們的調查的總體分類框架如圖1所示,從方法、評估和應用三個方面審視LLMs的蒸餾算法。為了清楚解釋這些方法,我們將其分為白盒KD和黑盒KD。白盒KD包括兩種不同類型:基于Logits的方法[43],在Logits層面傳遞知識,以及基于Hint的方法[109],通過中間特征傳遞知識。黑盒KD涉及一種基于API的方法,其中僅能訪問教師模型的輸出。此類別通常包括三種方法:上下文學習[52]、鏈式思維[69] 和指令執行[144]。此外,我們同時評估了上述兩種蒸餾算法在魯棒性基準上的有效性[94, 128, 138]。最后,我們討論了不同蒸餾方法之間的關系和應用場景,并提出了未來研究方向。
本文其余部分安排如下:第2節簡要回顧了知識蒸餾方法的定義。接下來,第3節深入探討了LLMs領域的蒸餾和評估方法。第4節展示了應用場景,第5節總結了知識蒸餾的挑戰并探討了未來研究方向。最后,第6節對本文進行了總結。
大語言模型(LLMs)與知識表示學習(KRL)的整合,標志著人工智能領域的重要進展,增強了捕捉和利用復雜知識結構的能力。這種協同作用利用了LLMs的高級語言和語境理解能力,以提升KRL的準確性、適應性和效能,從而擴展其應用和潛力。盡管有越來越多的研究集中在將LLMs嵌入到知識表示領域,但關于這些增強模型基本組件和過程的徹底審查明顯缺乏。我們的綜述通過基于三種不同的Transformer架構對這些模型進行分類,并分析來自各種KRL下游任務的實驗數據,以評估每種方法的優勢和劣勢。最后,我們確定并探討了這一新興但尚未深入探討的領域的潛在未來研究方向,提出了持續進展的路徑。
介紹
大語言模型(LLMs)(例如,BERT [18],LLaMA [59]),代表了一個不斷增長模型大小的方向,這些模型在更大的語料庫上進行預訓練,已經展示出在解決自然語言處理(NLP)任務中的強大能力,包括問答 [99],文本生成 [100] 和文檔理解 [101]。關于模型大小,沒有明確和靜態的閾值。早期的LLMs(例如BERT,RoBERTa)采用了編碼器架構,并展示了在文本表示學習和自然語言理解方面的能力。近年來,更多的關注點轉向了更大的編碼器-解碼器 [102] 或僅解碼器 [103] 架構。隨著模型大小的增加,這些LLMs還展示了推理能力甚至更高級的新興能力 [104],展示出對人工通用智能(AGI)的強大潛力。
這個拐點,隨著LLMs的到來,標志著從顯式知識表示向重新關注顯式知識和參數化知識混合表示的范式轉變。作為顯式知識表示的一種流行方法,知識圖譜(KGs)現在被廣泛研究,用于與基于Transformer的LLMs結合,包括預訓練的掩蔽語言模型(PLMs)如BERT和RoBERTa,以及更近期的生成式LLMs如GPT系列和LLaMA。一些工作利用LLMs來增強知識圖譜表示學習。在這篇綜述中,考慮到三個方向,即基于編碼器的方法、基于編碼器-解碼器的方法和基于解碼器的方法。我們對從顯式知識表示向重新關注顯式知識和參數化知識混合表示的轉變有了更深入的理解。
Cao等人 [22] 和Biswas等人 [40] 討論了知識圖譜表示學習的最新進展,但他們對與大型模型整合相關的方面處理不足。Pan等人 [42] 和Pan等人 [43] 探討了知識圖譜與大型模型的結合,特別是LLM4KG和KG4LLM;然而,他們在表示學習方面的覆蓋有限。因此,目前還沒有專門概述知識圖譜表示學習領域最新發展的綜述文章。
貢獻 本綜述的顯著貢獻總結如下:
組織結構 本綜述的結構如下:
大型語言模型(LLMs)在各個領域和智能代理應用中取得了顯著進展。然而,當前從人類或外部模型監督學習的LLMs成本高昂,并且隨著任務復雜性和多樣性的增加,可能面臨性能上限的挑戰。為了解決這個問題,自我進化方法使LLM能夠自主獲取、精煉和學習模型自身生成的經驗,正迅速發展。這種受人類經驗學習過程啟發的新訓練范式為將LLMs擴展到超級智能提供了潛力。在這項工作中,我們提出了對LLMs中自我進化方法的全面調查。首先,我們提出了一個自我進化的概念框架,并概述了演化過程,該過程由四個階段的迭代循環組成:經驗獲取、經驗精煉、更新和評估。其次,我們對LLMs和基于LLMs的代理的演化目標進行分類;然后,我們總結了文獻,并為每個模塊提供了分類法和見解。最后,我們指出了現有的挑戰,并提出了未來的方向,以改進自我進化框架,為研究人員提供關鍵的見解,加快自我進化LLMs的發展。我們對應的 GitHub 倉庫可以在 //github.com/AlibabaResearch/DAMOConvAI/tree/main/Awesome-Self-Evolutionof-LLM 獲取。
****隨著人工智能的快速發展,諸如GPT3.5(Ouyang等,2022)、GPT-4(Achiam等,2023)、Gemini(Team等,2023)、LLaMA(Touvron等,2023a,b)和Qwen(Bai等,2023)等大型語言模型(LLMs)標志著語言理解和生成方面的重大轉變。這些模型經歷了三個發展階段,如圖1所示:首先,在大規模和多樣化的語料庫上進行預訓練,以獲得對語言和世界知識的一般理解(Devlin等人,2018;Brown等人,2020),然后進行監督微調以引發下游任務的能力(Raffel等人,2020;Chung等人,2022)。最后,人類偏好對齊訓練使LLMs能夠以人類行為作出反應(Ouyang等,2022)。這種連續的訓練范 paradigms 取得了重大突破,使LLMs能夠執行一系列任務,具有顯著的零射擊和上下文能力,例如問答(Tan等,2023)、數學推理(Collins等,2023)、代碼生成(Liu等,2024b)以及需要與環境進行交互的任務解決(Liu等,2023b)。
盡管取得了這些進展,但人們預計新興一代的LLMs可以被賦予更高復雜度的任務,例如科學發現(Miret和Krishnan,2024)和未來事件預測(Schoenegger等,2024)。然而,由于現有訓練范 paradigms 中建模、標注和評估的固有困難,當前的LLMs在這些復雜任務中面臨挑戰(Burns等,2023)。此外,最近開發的Llama-3模型已經在包含15萬億標記的廣泛語料庫上進行了訓練。這是一個龐大的數據量,表明通過添加更多現實世界的數據來顯著擴展模型性能可能存在限制。這引起了人們對LLMs自我進化機制的興趣,類似于人類智能的自然演變,并由游戲中的人工智能發展所說明,例如從AlphaGo(Silver等,2016)到AlphaZero(Silver等,2017)的過渡。AlphaZero的自我對弈方法,無需標記數據,為LLMs超越當前限制并實現超人類表現提供了前進的道路。
受到上述范 paradigm 的啟發,LLMs的自我進化研究在模型發展的不同階段迅速增加,例如自我指導(Wang等,2023b)、自我對弈(Tu等,2024)、自我改進(Huang等,2022)和自我訓練(Gulcehre等,2023)。值得注意的是,DeepMind的AMIE系統(Tu等,2024)在診斷準確性方面超過了初級保健醫生,而微軟的WizardLM-2系統超過了GPT-4的初始版本的性能。這兩個模型都是使用具有自主學習能力的自我進化框架開發的,并代表了LLM培訓范 paradigm 的潛在轉變。然而,這些方法之間的關系仍然不清楚,缺乏系統的組織和分析。 因此,我們首先全面調查LLMs中的自我進化過程,并為其發展建立一個概念框架。
這種自我進化的特點是一個迭代循環,涉及經驗獲取、經驗改進、更新和評估,如圖2所示。在循環過程中,LLM通過不斷發展新任務和生成相應的解決方案來獲得經驗,隨后通過更新模型的重量或上下文來獲取更好的監督信號。在評估模型進展并設定新目標后,LLM最終被評估。 LLMs中自我進化的概念在各種研究社區中引起了相當大的興奮,承諾一個能夠自適應、學習和自主改進的模型新時代,類似于人類對不斷變化的環境和挑戰的演變。自我進化的LLMs不僅能夠超越當前靜態、數據約束的模型的局限,而且還標志著向更加動態、健壯和智能的系統的轉變。
通過提供一個結構化的概念框架,這項調查通過全面概述深化了對自我進化LLMs新興領域的理解。我們追溯了該領域從過去到最新的前沿方法和應用的演變,同時檢查了現有的挑戰并勾勒了未來的研究方向,為自我進化框架和下一代模型的開發鋪平了道路。
本調查分為以下幾個部分:我們首先介紹自我進化的概述(§2),包括背景和概念框架。我們總結了當前方法的現有進化能力和領域(§3)。然后,我們對自我進化過程的不同階段的最新進展進行了深入分析和討論,包括經驗獲取(§4)、經驗改進(§5)、更新(§6)和評估(§7)。最后,我們概述了開放性問題和未來方向(§8)。
大型語言模型(LLMs)在靜態、預先收集的通用數據集上的訓練取得的最近成功,已經引發了眾多研究方向和應用。其中一個方向解決了將預訓練的LLMs整合到動態數據分布、任務結構和用戶偏好中的非平凡挑戰。這個問題的主要挑戰在于平衡模型適應性和知識保存。為特定需求量身定制的預訓練LLMs經常在之前的知識領域經歷顯著的性能退化——這一現象被稱為“災難性遺忘”。雖然在持續學習(CL)社區進行了廣泛研究,但在LLMs領域呈現出新的表現形式。在這篇綜述中,我們提供了一個關于大型語言模型在持續學習背景下當前研究進展的全面概覽和詳細討論。除了介紹初步知識外,這篇綜述被分為四個主要部分:我們首先描述了持續學習LLMs的概覽,包括兩個連續性方向:垂直連續性(或垂直持續學習),即從一般到特定能力的持續適應;和水平連續性(或水平持續學習),即跨時間和領域的持續適應(第3節)。在垂直連續性之后,我們總結了在現代CL背景下學習LLMs的三個階段:持續預訓練(CPT)、領域適應性預訓練(DAP)和持續微調(CFT)(第4節)。然后我們提供了LLMs的持續學習評估協議的概覽,以及當前可用的數據來源(第5節)。最后,我們討論了有關LLMs持續學習的引人深思的問題(第6節)。這篇綜述揭示了持續預訓練、適應和微調大型語言模型這一相對未受到足夠研究的領域,表明需要社區更多的關注。需要立即關注的關鍵領域包括開發實用且易于訪問的評估基準,以及專門設計的方法論,以對抗遺忘和在不斷演變的LLM學習范式中啟用知識轉移。在這項綜述中檢查的完整論文列表可在//github.com/Wang-ML-Lab/llm-continual-learning-survey找到。
近期大型語言模型(LLMs)的進步顯示了實現人工普遍智能(AGI)的巨大潛力。研究人員觀察到,隨著參數規模的增加,多步驟推理、小樣本上下文學習和指令跟隨等復雜能力有所提高。LLMs的發展具有重大影響和革命性,促使機器學習從業者重新考慮傳統的計算范式,用于處理一些曾經具有挑戰性的人類水平任務,如問答、機器翻譯和對話系統。然而,LLMs通常在包含通用領域的靜態、預先收集的數據集上進行訓練,導致性能隨時間逐漸降低,并且在不同內容領域之間也會降低。此外,單一的預訓練大模型無法滿足每個用戶的需求,需要進一步的微調。盡管重新收集預訓練數據和根據額外的具體需求重新訓練模型是一種潛在的解決方案,但這種方法在現實世界場景中代價高昂且不切實際。為了有效地適應LLMs到下游任務,同時盡量減少對以前知識領域的性能退化,研究者采用了持續學習的方法,也稱為終身學習或增量學習。持續學習受到人類大腦中觀察到的增量學習模式的啟發,涉及按順序在一系列任務上訓練機器學習模型,期望在所有任務中保持性能。在訓練過程中,模型對以前的數據有限或無法訪問,這在保留過去知識時構成了一個挑戰,因為在當前任務學習時,來自未見過的以前數據的優化約束是不存在的。這一挑戰,被稱為災難性遺忘,自持續學習研究開始以來一直是研究的中心焦點。多年來,研究者探索了各種技術來減輕機器學習模型中的遺忘,這些技術包括基于重放的方法、參數規范化和模型架構擴展。這些技術共同顯著推進了在不同任務、模型架構和學習范式中實現零遺忘的持續學習目標。在順序訓練和適應LLMs的背景下,CL的重要性也正在發生自身的語義轉變。為了更好地突出這一持續的轉變,在這篇綜述中,我們提供了一個關于LLMs在CL背景下當前研究進展的全面概覽和詳細討論。對于持續學習LLMs的總體情況,我們將其分為兩個需要由從業者解決的連續性方向(第3節):
在圖1中,繼垂直連續性之后,我們勾畫了現代CL中LLM學習的三個關鍵階段:持續預訓練(CPT)、領域適應性預訓練(DAP)和持續微調(CFT)(第4節)。在CPT中,現有研究主要調查三種類型的分布式轉變:時間、內容層次和語言層次。每種都呈現出獨特的焦點和挑戰。在DAP中,雖然它主要被視為為下游任務準備LLMs的過程,但頻繁地使用CL評估和技術。然而,這些技術的多樣性明顯不足,考慮到傳統CL社區的成熟度。在CFT中,我們關注的是學習LLMs的新興領域,涵蓋持續指令調整(CIT)、持續模型精煉(CMR)、持續模型對齊(CMA)和持續多模態LLMs(CMLLMs)等主題。接下來,我們呈現了一系列公開可用的評估協議和基準(第5節)。我們總結我們的綜述,討論了LLMs持續學習的最新出現的特性,傳統增量學習類型和LLMs持續學習中的記憶約束的角色變化,以及這個主題的潛在研究方向(第6節)。總結而言,本文提供了一份詳盡的現有持續學習研究LLMs的綜述,顯著區別于相關主題的現有文獻。我們的綜述突出了持續開發LLMs的研究領域,特別是在持續預訓練(CPT)和領域適應性預訓練(DAP)領域的研究。我們強調需要社區更多的關注,迫切需要包括開發實用、易于訪問且廣為認可的評估基準。此外,需要定制方法來解決在新興的大型語言模型學習范式中的遺忘問題。我們希望這篇綜述能提供一個系統而新穎的持續學習視角,在迅速變化的LLMs領域中,幫助持續學習社區為開發更有效、可靠和可持續的LLMs做出貢獻。
組織結構
本文的其余部分安排如下。我們首先在第2節介紹大型語言模型和持續學習的背景和初步知識。然后我們在第3節展示了大型語言模型的現代持續學習概覽。從垂直角度來看,它可以大致分為三個階段的LLMs持續訓練,我們將在第4節逐一介紹每個階段。在4.3節中,將介紹持續微調LLMs的獨特方面,包括持續指令調整(4.3.3節)、持續模型精煉(4.3.4節)、持續模型對齊(4.3.5節)和持續多模態大型語言模型(4.3.6節)。在第5節中,我們提供了公開可用的LLMs持續學習評估協議和基準的全面介紹。最后,在第6節中,我們討論了在大型語言模型時代持續學習的角色,包括大規模持續LLMs的新興能力(6.1節)、三種類型的持續學習(6.2節)、LLMs持續學習中的記憶角色(6.3節)以及未來的研究方向(6.4節)。 持續學習與大型語言模型相遇:概覽****大型語言模型(LLMs)在多個維度上都非常龐大,包括模型參數的大小、預訓練數據集、計算資源、項目團隊和開發周期。LLMs的巨大規模為開發團隊帶來了顯著的挑戰,特別是在快速變化的環境中保持更新。舉例來說,2023年,用戶發布的新推文的平均每日流量超過5億,即使是在這么大量數據的“小”子集上進行訓練也是不可承受的。在考慮到它們對下游應用的連鎖影響時,有效且可靠地適應LLMs變得更為關鍵。下游用戶通常缺乏收集和存儲大規模數據、維護大規模硬件系統以及自行訓練LLMs的專業知識。《可回收調整》是首個明確概述現代LLM生產流水線供應商-消費者結構的先導研究。在供應商側,模型在一系列大規模未標記數據集上持續進行預訓練。每次預訓練模型發布后,消費者需要利用更新、更強大的上游模型以獲得更好的下游性能。為了提高下游消費者微調的效率,他們最初對持續預訓練的LLMs進行了幾項關鍵觀察,聚焦于模式連接性和功能相似性。此外,他們提出在上游預訓練LLM進行重大更新后,復用過時的微調組件。基于《可回收調整》引入的概念框架,我們在本綜述中提出了一個包含各種研究的現代生產流水線的全面框架,涉及持續LLM預訓練、適應和部署,如圖1所示。我們的框架與現有研究的不同之處在于融入了兩個連續性方向:垂直連續性和水平連續性。
結論
在這項工作中,我們提供了一份關于持續LLMs的綜述,從持續學習的角度總結了它們在訓練和部署方面的最新進展。我們根據它們在我們提出的現代分層持續學習LLMs的更廣框架內的位置,對問題和任務進行了分類。雖然這一領域在社區中的興趣廣泛且日益增長,但我們也注意到幾個缺失的基石,包括算法多樣性以及對大模型行為(如知識遺忘、轉移和獲取)的基本理解。通過全面而詳細的方法,我們希望這篇綜述能激勵更多從業者探索持續學習技術,最終有助于構建健壯和自我進化的人工智能系統。
數據可視化以圖表形式在數據分析中發揮著關鍵作用,提供關鍵洞察并輔助做出知情決策。隨著近年來大型基礎模型的興起,自動圖表理解取得了顯著進展。基礎模型,如生成預訓練變換器(Generative Pre-trained Transformers, GPT),已經革新了多種自然語言處理(NLP)任務,并越來越多地應用于圖表理解任務中。這篇綜述文章提供了這些基礎模型背景下圖表理解最近發展、挑戰和未來方向的全面概覽。文章從背景部分開始,定義圖表理解,概述問題表述,并討論研究圖表理解任務至關重要的基本構建塊,包括視覺編碼器、圖表到表格的翻譯、OCR模塊、文本編碼器和文本解碼器。在任務和數據集部分,我們探討了圖表理解內的各種任務,包括圖表問答、圖表字幕制作、圖表到表格轉換、圖表事實核查和圖表字幕事實錯誤校正。我們討論了評價指標和圖表及文本輸入的來源。然后檢視了建模策略,包括分類基礎和生成基礎的方法,以及增強圖表理解性能的工具增強技術。此外,我們討論了每項任務的最新性能并探討如何提升性能。在一個專門的部分中,我們討論了挑戰和未來方向,強調了諸如特定領域圖表、以及關于真實性、覆蓋范圍、相關性、穩健性、公平性和數據偏見的評價標準等問題。我們還深入探討了這些多模態基礎模型的組成部分,包括調整LM主干的必要性、多階段訓練過程的有效性,以及合成數據的潛在充分性。探索了與用戶或其他系統交互的代理導向設置。最后,我們討論了如自然圖像理解、表格理解和文檔理解等相關任務,提供了對視覺和文本數據理解更廣闊景觀的洞察。這篇綜述文章為自然語言處理、計算機視覺和數據分析領域的研究人員和實踐者提供了一個全面的資源,為利用大型基礎模型進行圖表理解的未來研究提供了寶貴的見解和方向。本文提及的研究以及新興的研究將持續更新于: //github.com/khuangaf/Awesome-Chart-Understanding。
在信息交流中圖表理解的重要性:在我們當代的多媒體信息世界里,數據的體量和復雜性持續膨脹,圖表在促進事實信息的連貫且富有洞察力的交流、傳達見解和做出決策中的角色至關重要。跨越學術界、科學研究、數字媒體和商業領域,圖表作為將原始數據轉換成可理解的視覺敘事的不可或缺的工具。它們能夠以簡潔直觀的格式封裝復雜的數據集,使決策者能夠迅速把握關鍵見解,輔助知情推理和戰略規劃。認識到圖表在現代信息傳播中的關鍵作用,計算社區持續對自動圖表理解表現出興趣,如自動圖表理解的大量研究所證明。特別是,關于圖表問答、圖表字幕制作、圖表到表格轉換、圖表事實核查和圖表字幕事實錯誤校正的工作奠定了探索圖表理解技術中圖表語義復雜性的基礎框架。
在大型基礎模型時代的圖表理解挑戰與機遇:傳統的圖表理解工作聚焦于微調方法,通常在領域可移植性和推理魯棒性方面遇到限制。令人興奮的是,大視覺-語言基礎模型(例如,GPT-4V、LLaVA)的出現引發了在自動推理能力上的范式轉變,催化了包括通過基于文本的提示實現強零/少次推理能力在內的各種多媒體認知任務的前所未有的進步。但在這一變革性創新的景觀中,圖表理解領域仍舊深陷固有的復雜性和巨大挑戰。圖表因其多面向的視覺表現和細膩的語義呈現出一系列獨特的障礙。從條形圖、折線圖到餅圖和散點圖,每種圖表類型都采用獨特的視覺語法來傳達數據關系,需要超越簡單的像素級模式識別的復雜解釋機制。圖表作為揭示如新興趨勢、挑戰假設的異常值和變量間可能不會從僅僅是表格形式的原始數據立即顯現的關系的深刻見解的渠道。它們使得可以進行跨數據點的比較分析,為簡潔地并置不同實體或時間段提供一個視覺平臺。此外,從簡單的數字關系到復雜的多維實體,底層數據集的內在多樣性為圖表理解任務增加了另一層復雜性。盡管面臨這些挑戰,自動圖表理解位于機遇與影響的交匯處,提供了一扇解鎖埋藏在視覺敘事像素中的可行動見解的大門。通過利用大型基礎模型的能力,圖表理解展示了在彌合原始視覺數據與有意義見解之間的差距方面的提升潛力,從而使技術可擴展地用于易于訪問的應用和增強人類認知。
盡管已有數項研究綜述了圖表理解研究的領域,但這些綜述往往在全面性或特定性上表現出一定的缺口。一些綜述沒有涵蓋在圖表理解研究中使用的現代數據集,以及最新的建模方法,如涉及預訓練的視覺-語言模型和大型基礎模型。相反,其他綜述主要集中在可視化方面(即數據轉換為圖表的過程),因此忽視了圖表解釋的細膩任務。本綜述旨在彌合這些缺口。我們首先在第2節定義自動圖表理解和問題表述的基本構建塊。我們討論了圖表理解的多面性,包括從解釋圖表視覺到分析底層數據的任務,以及概述了圖表理解的結構性建模組件,如視覺編碼器、OCR模塊、文本解碼器及其在將原始圖表圖像和文本查詢轉換為有意義見解中的角色。然后,在第3節,我們檢查了推動圖表理解研究的數據集和模型評估指標。本節分析了這些數據集的來源、多樣性和局限性,提供了對當前圖表理解數據景觀的見解。它還回顧了各種評估指標,強調了魯棒且細膩的評估方法的必要性。有了這些特征的見解,我們進一步提供了自動圖表理解的流行建模策略。第4節深入探討了圖表理解中的多樣化建模策略,包括從自然圖像理解、視覺-語言預訓練和基礎模型,如大型語言模型(LLMs)和大型視覺-語言模型(LVLMs)的調整。特別是,我們強調了視覺編碼器和文本解碼器在模型有效性上的選擇影響,并討論了工具增強在圖表理解中的作用。我們通過展示不同圖表理解任務上的最新性能以及我們如何改進它們來結束這一部分。最后,第5節討論了圖表理解中的挑戰和未來方向。我們強調了特定領域圖表的重要性、對全面評估指標的需求,以及對增強模型魯棒性和多功能性的敵對設置的潛力。我們還在第6節討論了圖表理解如何位于與自然圖像理解、表格理解和文檔理解相關工作的交匯處。本綜述文章通過確定未來研究的關鍵領域結束,如為復雜圖表開發模型、完善評估指標和多樣化數據集。我們不僅提供了對圖表理解當前狀態的深入概覽,而且為這一激動人心的數據可視化與機器學習交叉領域的未來進展奠定了基礎。
人類反饋強化學習(RLHF)是強化學習(RL)的一個變體,它從人類反饋中學習,而不是依賴于工程化的獎勵函數。建立在相關領域的偏好基強化學習(PbRL)的先前工作上,它位于人工智能和人機交互的交匯點。這一定位為提高智能系統的性能和適應性提供了有希望的途徑,同時也改善了它們的目標與人類價值觀的一致性。在近年來,大型語言模型(LLMs)的訓練已經令人印象深刻地展示了這一潛力,其中RLHF在使模型的能力針對人類目標方面發揮了決定性作用。本文提供了一個全面的RLHF基礎概述,探索了機器智能體和人類輸入之間復雜的動態。雖然最近的焦點是針對LLMs的RLHF,但我們的綜述采取了更廣泛的視角,考察了這項技術的多樣化應用和廣泛影響。我們深入探討支撐RLHF的核心原則,闡明算法與人類反饋之間的共生關系,并討論了該領域的主要研究趨勢。通過綜合當前RLHF研究的全景,本文旨在為研究人員和從業者提供對這一迅速發展領域的全面理解。
1 引言
在強化學習(RL)中,智能體傳統上通過環境導航,并試圖通過試錯過程做出最優的行動或決策。一個決策是否最優完全由獎勵信號決定。這些信號必須基于智能體性能的測量手動定義,以確保學習智能體接收到學習正確行為所需的信號。然而,手動設計獎勵函數是具有挑戰性的。在許多應用中,成功難以正式定義和衡量。除此之外,稀疏的成功信號可能不適合智能體學習——導致需要獎勵塑形(Ng等人,1999),即將獎勵信號轉化為更適合學習的形式。這通常使獎勵信號更容易受到假性相關的影響,即因通常與真正目標相關而被獎勵的行為,并不本身具有價值。這最終導致了獎勵黑客問題(Skalse等人,2022b),即學習智能體利用獎勵特定的漏洞以實現不希望的結果,同時仍然產生高獎勵。
作為對這些挑戰的回應,人類反饋強化學習(RLHF)作為一種實際意義上的替代方案出現,它在標準RL學習范式中引入了至關重要的人在循環中組件。簡而言之,RLHF與RL的不同之處在于,目標是由循環中的人定義并迭代完善的,而不是提前指定的。這種方法不僅有潛力克服經典RL方法的局限性和問題,而且對智能體對齊有潛在的好處,其中智能體的學習目標與人類價值觀更緊密對齊,促進倫理上健全和社會負責的AI系統。 自上一次類似的綜述(Wirth等人,2017)以來,RLHF在應用、方法論進展和理論見解方面取得了許多成功。應用范圍從大型語言模型(LLMs)(OpenAI 2022)到圖像生成(Lee等人,2023),連續控制(Christiano等人,2017)和游戲(Ibarz等人,2018)以及機器人(Hejna等人,2023a)。與此同時,自上次類似的綜述(Wirth等人,2017)以來,方法論也有了很多發展。方法論發展的例子包括使用數據增強和半監督學習方法來提高樣本復雜度(Park等人,2022),使用元學習快速適應學習的偏好到新任務(Ren等人,2022),融合多種反饋類型(Palan等人,2019),使用自監著表征學習提高反饋效率(Metcalf等人,2022),主動合成假設行為進行查詢(Reddy等人,2020),以及優化查詢以便于回答(B?y?k等人,2020b)。最后,RLHF領域也取得了一些理論成果,為基礎數學問題的建模提供了新的見解,但也提出了新的問題。
因此,在這項綜述中,我們討論了RLHF正在進行的研究的當前狀態,分類了當前的方法以及簡潔地描述了它們的主要特征,并對應用領域進行了簡要概述。
1.1 為何需要人類反饋 在傳統的RL中,代理的目標由其旨在最大化的獎勵函數定義(Sutton等人,2018)。特別是在復雜領域,指定這個獎勵函數可能是具有挑戰性的:對于在家庭環境中協助人類的機器人或在繁忙的城市環境中導航的自動駕駛汽車,合適的獎勵函數是什么樣的?此外,即使是定義良好的獎勵函數也可能由于分布變化或過度優化導致意外行為,引發實際和安全問題。從人類反饋中學習代理的目標,可以繞過獎勵工程挑戰,并促進穩健訓練,隨著代理學習,獎勵函數會動態地細化和調整,以適應分布變化。 反饋與示范 逆向RL旨在從人類示范中推斷出獎勵函數(Arora等人,2021)。雖然這可以部分解決獎勵工程挑戰,但它面臨內在困難:(i)通常不可能從示范中穩健地識別獎勵(Cao等人,2021a),(ii)僅適用于可以獲得良好示范的場景,(iii)難以超越示范者的表現,以及(iv)人類通常不會展示他們希望機器采用的行為(Basu等人,2017)。相比之下,交互式反饋可以使用主動查詢區分人類偏好和無關噪聲,比提供示范更容易,不要求人類評估者接近最優表現,并引導出人類更偏好的機器行為。交互式反饋也可以用來補充示范,在這種情況下,它可以用來塑造和完善通過初步訓練(如行為克隆)學到的能力,從而防止過擬合于示范行為(Abramson等人,2022)。 避免獎勵工程 在RL中的獎勵工程提出了重大挑戰,因為準確指定獎勵函數是眾所周知的困難(Amodei等人,2016; Knox等人,2023)。通過利用人類反饋,可以緩解這些挑戰,使代理能夠訓練難以手動定義的任務,并幫助避免由不匹配的獎勵引起的安全問題(Skalse等人,2022b)。與代理的目標和人類目標之間的不匹配相關的安全問題被研究為AI對齊問題(Gabriel 2020),特別是代理對齊和價值對齊(Kirchner等人,2022)。盡管RLHF在解決這些對齊問題的有效性仍存在爭議(Christiano 2023),但它提出了一個促進對齊的有希望的方法(Leike等人,2018)。 過度優化不良指定的獎勵通常會導致意外行為。代理可能會利用模擬缺陷獲得更高獎勵(Lehman等人,2020; Baker等人,2020)或參與獎勵黑客行為(Skalse等人,2022b),即行為最大化了指定獎勵但偏離了預期目標。這在代理專注于中間獎勵而沒有實現實際目標(Clark等人,2016)或為避免負面獎勵而過早退出游戲(Saunders等人,2018)的情況下顯而易見。這些問題的根源在于獎勵函數沒有正確反映實際學習任務。雖然這些問題在類似游戲的環境中可能看似微不足道,但在諸如醫療保健和自動駕駛等安全關鍵的環境中,其含義則更為嚴重。在這些環境中,防止不匹配的獎勵函數導致有害結果至關重要,比如護理機器人造成傷害或自動駕駛汽車危及道路安全。
1.2 人類反饋強化學習的起源
作為RL的一個子領域,從人類反饋中學習行為已經被研究了很長時間,但方法和術語隨時間發展而演變。如Knox(2012)更詳細討論的早期方法,側重于直接從人類獎勵中學習(Isbell等人,2001;Knox等人,2008)。然而,本綜述關注的是更間接的方法,即從人類反饋中推斷目標。 人類反饋強化學習(RLHF)的現代形式起源于偏好基強化學習(PbRL)的設置,最初由Akrour等人(2011)和Cheng等人(2011)獨立引入。PbRL的原始想法是從定性反饋中推斷目標,如行為或給定狀態下行動之間的成對偏好,而不是以數值獎勵形式的定量反饋。RLHF這個術語后來作為一個替代品被提出(Askell等人,2021;Ouyang等人,2022;OpenAI 2022),盡管最初指的是從相對反饋中學習行為的同一概念。 由于文獻中的使用重疊,PbRL和RLHF的區分具有挑戰性。例如,Christiano等人(2017)自己使用了PbRL這個術語,但卻常被引用為RLHF的開創性參考(Daniels-Koch等人,2022;Ouyang等人,2022)。這表明了這些術語的可互換性。實際上,RLHF通常與獎勵建模和深度RL相關聯,而PbRL通常與傳統RL設置中的直接策略優化聯系在一起。這一點由Jeon等人(2020)強調,他們將PbRL限定為僅從偏好直接進行策略學習。然而,這與其他來源不同,后者將獎勵學習包括在RLHF的范圍內(Christiano等人,2017;Wirth等人,2017)。
盡管存在重疊和有時存在沖突的使用,RLHF越來越被視為PbRL的一種泛化。盡管PbRL和RLHF都涉及使用人類反饋來定義RL目標,但PbRL主要關注相對反饋,如二元比較和排名。RLHF不僅包括這些方面,還擴展到更廣泛的反饋類型(Metz等人,2023)。表1提供了我們對這些術語的解釋性概述。
從人類反饋中學習行為長期以來被作為RL的一個子領域進行研究,但隨著時間的推移,方法和術語已經發展。早期方法,如Knox(2012)詳細討論的,側重于直接從人類獎勵中學習(Isbell等人,2001;Knox等人,2008)。然而,本綜述關注的是更間接的推斷目標的方法,即從人類反饋中推斷。 人類反饋強化學習(RLHF)的現代形式起源于偏好基強化學習(PbRL)的設置,最初由Akrour等人(2011)和Cheng等人(2011)獨立引入。PbRL的原始想法是從定性反饋中推斷目標,而不是使用定量的數值獎勵。RLHF這個術語后來作為一個替代品被提出(Askell等人,2021;Ouyang等人,2022;OpenAI 2022),盡管最初指的是從相對反饋中學習行為的同一概念。
由于文獻中的使用重疊,PbRL和RLHF的區分具有挑戰性。例如,Christiano等人(2017)自己使用了PbRL這個術語,但卻常被引用為RLHF的開創性參考(Daniels-Koch等人,2022;Ouyang等人,2022)。這表明了這些術語的可互換性。實際上,RLHF通常與獎勵建模和深度RL相關聯,而PbRL通常與傳統RL設置中的直接策略優化聯系在一起。Jeon等人(2020)將PbRL限定為僅從偏好直接進行策略學習,而Christiano等人(2017)和Wirth等人(2017)則將獎勵學習包括在RLHF的范圍內。
盡管存在重疊和有時存在沖突的使用,RLHF越來越被視為PbRL的一種泛化。PbRL和RLHF都涉及使用人類反饋來定義RL目標,但PbRL主要關注相對反饋,如二元比較和排名。RLHF不僅包括這些方面,還擴展到更廣泛的反饋類型(Metz等人,2023)。我們的綜述提供了這些術語的解釋性概述。
1.3 綜述范圍
本節概述了我們選擇RLHF領域方法的指導標準。我們關注的是那些依賴獎勵模型作為目標信息唯一來源的作品。這個獎勵模型應該以互動、在線、可擴展和異步的方式學習。以下將詳細描述這些標準。
獎勵建模 我們關注的是從人類反饋中學習獎勵模型,然后使用這個模型來訓練策略的方法。盡管可以直接從人類反饋中優化策略(Wirth等人,2017),但到目前為止,這種方法很少被實踐。獎勵學習和策略訓練的分解提供了許多概念上和實際上的好處。
人類定義 盡管有許多方法將人類包括在RL循環中,但在本綜述中,我們關注的是以人類反饋作為目標唯一真理來源的方法。這排除了獎勵塑形、特征工程和其他形式的人類指導。
互動和在線 我們還強調以互動、在線方式提供反饋。這排除了模仿學習、從示范學習和純逆向RL。 可擴展和異步 我們關注的是將人類包括在循環中,但代理不被人類反饋阻塞,人類也不需要持續存在的工作。 此外,我們主要關注2017年后發表的作品,因為更早的作品已由Wirth等人(2017)綜述。然而,為了闡述仍然是最新技術或已經顯著塑造了最新技術的某些概念,我們不時回顧這一時期的一些作品。如果使用的方法對RLHF方法有興趣,將會作出例外。
1.4 先前的綜述
根據上一節提到的標準,我們首先將我們的綜述與其他邊緣相關主題領域的綜述區分開來,這些領域共享人類參與RL的共同主題。然后,我們將描述我們的綜述與RLHF領域內存在的先前綜述或類似綜述文章的差異。
為了追求精度,深度學習模型框架的結構越來越復雜,網絡越來越深。參數量的增加意味著訓練模型需要更多的數據。然而人工標注數據的成本是高昂的,且受客觀原因所限,實際應用時可能難以獲得特定領域的數據,數據不足問題非常常見。數據增強通過人為地生成新的數據增加數據量來緩解這一問題。數據增強方法在計算機視覺領域大放異彩,讓人們開始關注類似方法能否應用在序列數據上。除了翻轉、裁剪等在時間域進行增強的方法外,也描述了在頻率域實現數據增強的方法;除了人們基于經驗或知識而設計的方法以外,對一系列基于GAN的通過機器學習模型自動生成數據的方法也進行了詳細的論述。介紹了應用在自然語言文本、音頻信號和時間序列等多種序列數據上的數據增強方法,亦有涉及它們在醫療診斷、情緒判斷等問題上的表現。盡管數據類型不同,但總結了應用在這些類型上的數據增強方法背后的相似的設計思路。以這一思路為線索,梳理應用在各類序列數據類型上的多種數據增強方法,并進行了一定的討論和展望。
//cea.ceaj.org/CN/abstract/abstract39198.shtml
近年來,深度學習技術被廣泛應用于各個領域,基于深度學習的預處理模型將自然語言處理帶入一個新時代。預訓練模型的目標是如何使預訓練好的模型處于良好的初始狀態,在下游任務中達到更好的性能表現。對預訓練技術及其發展歷史進行介紹,并按照模型特點劃分為基于概率統計的傳統模型和基于深度學習的新式模型進行綜述;簡要分析傳統預訓練模型的特點及局限性,重點介紹基于深度學習的預訓練模型,并針對它們在下游任務的表現進行對比評估;梳理出具有啟發意義的新式預訓練模型,簡述這些模型的改進機制以及在下游任務中取得的性能提升;總結目前預訓練的模型所面臨的問題,并對后續發展趨勢進行展望。