亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

大型語言模型(LLMs)在各個領域展示了卓越的能力,吸引了學術界和工業界的廣泛關注。盡管它們表現出色,但LLMs的巨大規模和計算需求對實際部署帶來了相當大的挑戰,特別是在資源有限的環境中。壓縮語言模型同時保持其精度的努力已成為研究的重點。在各種方法中,知識蒸餾已成為一種有效的技術,可以在不大幅降低性能的情況下提高推理速度。本文從方法、評估和應用三個方面進行了詳細的調查,探討了專門為LLMs量身定制的知識蒸餾技術。具體來說,我們將方法分為白盒KD和黑盒KD,以更好地說明它們的差異。此外,我們還探討了不同蒸餾方法之間的評估任務和蒸餾效果,并提出了未來研究的方向。通過深入理解最新進展和實際應用,這項調查為研究人員提供了寶貴的資源,為該領域的持續進步鋪平了道路。

** 簡介**

大型語言模型(LLMs)[2, 17, 130, 146, 166] 的出現顯著提高了各種生成任務中的文本生成質量,成為人工智能領域一個關鍵且廣受討論的話題。與之前的模型相比,這些模型對未見數據的泛化能力更強。此外,它們還展示了小型模型所不具備的能力,如多步推理[47, 69, 83] 和指令執行[103, 144, 154]。LLMs的成功通常歸因于訓練數據的增加和模型參數數量的增加(例如,具有1750億參數的GPT-3[12])。然而,參數規模的擴展帶來了顯著的缺點,尤其是在高推理成本和大量內存需求方面,使得實際部署變得具有挑戰性。例如,GPT-3需要大約350GB的模型存儲(float16),并且推理至少需要5個每個80GB內存的A100 GPU,這對碳排放的影響顯著。為了解決這些挑戰,模型壓縮[30, 40] 已成為一種可行的解決方案。模型壓縮旨在將大型、資源密集型模型轉化為適合在受限移動設備上存儲的更緊湊版本。這一過程可能涉及優化以減少延遲以實現更快的執行,或在最小延遲和模型性能之間取得平衡。因此,在現實場景中應用這些高容量模型的一個關鍵目標是壓縮它們,減少參數數量,同時保持最大性能。

隨著減少計算資源需求的必要性日益重要,知識蒸餾(Knowledge Distillation, KD)[43] 作為一種有前景的技術出現。KD是一種機器學習方法,專注于通過從大型復雜模型向更小、更高效的模型傳遞知識來壓縮和加速模型。這種技術經常被用來將存儲在大型深度神經網絡模型中的知識濃縮到更小的模型中,從而減少計算資源需求并提高推理速度而不會大幅犧牲性能。從根本上講,知識蒸餾利用大型模型在大量數據集上獲得的廣泛知識來指導較小模型的訓練。這些知識通常包括輸出概率分布、中間層表示和大型模型的損失函數。在訓練過程中,較小的模型不僅要匹配原始數據標簽,還要模仿較大模型的行為。對于像GPT-4[2]這樣只能通過API訪問的高級模型,生成的指令和解釋可以幫助訓練學生模型[54]。隨著知識蒸餾的最新進展,許多研究綜合了各種蒸餾技術的最新進展。具體來說,Gou等[37] 對知識蒸餾進行了廣泛的綜述,涉及六個關鍵方面:知識類別、訓練方案、師生架構、蒸餾算法、性能比較和應用。同樣,Wang等[141] 詳細總結了與視覺任務相關的知識蒸餾技術的研究進展和技術細節。Alkhulaifi等[4] 介紹了一種創新的度量標準,稱為蒸餾度量標準,他們用它來評估不同的知識壓縮方法。此外,Hu等[48] 探討了跨多個蒸餾目標的各種師生架構,提出了不同的知識表示及其相應的優化目標,并系統地概述了師生架構,結合了代表性的學習算法和有效的蒸餾方案。

現有關于知識蒸餾的綜述為模型壓縮奠定了重要基礎并提供了寶貴的見解[13, 51, 64]。然而,LLMs的出現給KD帶來了若干新挑戰:1)大型語言模型設計并非僅用于單一任務如文本生成,而是廣泛應用于各種任務和未見數據,包括新興能力。因此,評估壓縮LLMs的泛化能力需要仔細和全面的評估。2)現有綜述僅是對現有工作的總結,未提供將KD技術應用于壓縮和部署LLMs的具體示例。這種案例研究可以幫助讀者為不同規模的LLMs選擇最佳的KD方案。

為應對這些挑戰,已經開發出各種專為LLMs設計的知識蒸餾算法。本文旨在提供這些方法的全面而有見地的指南。我們的調查的總體分類框架如圖1所示,從方法、評估和應用三個方面審視LLMs的蒸餾算法。為了清楚解釋這些方法,我們將其分為白盒KD和黑盒KD。白盒KD包括兩種不同類型:基于Logits的方法[43],在Logits層面傳遞知識,以及基于Hint的方法[109],通過中間特征傳遞知識。黑盒KD涉及一種基于API的方法,其中僅能訪問教師模型的輸出。此類別通常包括三種方法:上下文學習[52]、鏈式思維[69] 和指令執行[144]。此外,我們同時評估了上述兩種蒸餾算法在魯棒性基準上的有效性[94, 128, 138]。最后,我們討論了不同蒸餾方法之間的關系和應用場景,并提出了未來研究方向。

本文其余部分安排如下:第2節簡要回顧了知識蒸餾方法的定義。接下來,第3節深入探討了LLMs領域的蒸餾和評估方法。第4節展示了應用場景,第5節總結了知識蒸餾的挑戰并探討了未來研究方向。最后,第6節對本文進行了總結。

付費5元查看完整內容

相關內容

近年來,我們見證了大型語言模型(LLM)的快速發展。基于強大的LLM,多模態LLM(MLLM)將模態從文本擴展到更廣泛的領域,因其廣泛的應用場景而引起廣泛關注。由于LLM和MLLM依賴大量的模型參數和數據來實現突現能力,數據的重要性正受到越來越廣泛的關注和認可。追蹤和分析最近針對MLLM的數據導向工作,我們發現模型和數據的發展并不是兩條獨立的路徑,而是相互關聯的。一方面,更大量和更高質量的數據有助于MLLM的更好表現;另一方面,MLLM可以促進數據的發展。多模態數據和MLLM的共同發展需要明確以下幾點:1)在MLLM的哪個發展階段可以采用哪些以數據為中心的方法來增強哪些能力,2)通過利用哪些能力和扮演哪些角色,模型可以對多模態數據作出貢獻。為了促進MLLM社區的數據-模型共同發展,我們系統地回顧了現有與MLLM相關的工作,從數據-模型共同發展的視角進行分析。本調查相關的一個定期維護的項目可以在 //github.com/modelscope/data-juicer/blob/main/docs/awesome llm data.md 訪問。

近年來,大型語言模型(LLM)在廣泛的任務中展示了令人印象深刻的性能,并且相關技術取得了顯著的進展。由于人類的感官不僅限于文本模態,多模態LLM(MLLM)逐漸進入視野,例如能夠處理超越文本模態輸入或輸出的Gemini-1.5 [1] 和 Sora [2],以及能夠在輸入和輸出之間進行多模態交互的GPT-4o [3] 和 NExT-GPT [4]。在過去兩年中,MLLM受到廣泛關注。正如圖1所示,自2023年初以來,與MLLM相關的研究正在以越來越快的速度涌現。 MLLM的卓越性能源于LLM在參數數量擴大帶來的解決一系列任務的突現能力[5]。許多研究表明,擴大模型規模需要更加海量的數據來補充[6], [7], [8],例如擴展法則[9], [10]。具體而言,研究表明,多模態模型需要指數級更多的數據才能在下游任務中實現線性零樣本改進[11]。鑒于此,一系列工作將重點從僅僅關注模型架構和訓練技術轉移到數據中心方法,專注于高質量數據的策劃[12], [13], [14], [15], [16], [17],以提供進一步釋放大型模型潛力的數據基礎。從圖1可以看出,在現有關注MLLM的論文中,與數據中心方法密切相關的論文也表現出強勁的增長趨勢,并占據了重要的部分。 隨著與MLLM相關的大量技術工作不斷涌現,一些針對MLLM的綜述也逐漸出現[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34]。這些綜述主要從模型中心的角度進行,而數據的重要性需要進一步強調。一項最近的綜述將數據中心的視角從單模態擴展到多模態,重點關注現有的數據中心方法,并根據所提出的數據管道階段進行組織[35]。實際上,數據和模型的發展是交織在一起的,而不是分開的。更大數量和更高質量的數據提高了模型性能,而從高質量數據中受益的良好訓練的模型可以進一步改進數據。這減少了人工成本,擴大了數據量,并通過使用需要標注的分割掩碼進行訓練的Segment Anything模型(SAM)[36]的訓練成功展示了這一點。隨著SAM在訓練中的熟練程度提高,它逐漸取代人在標注任務中的角色,從而形成一個改進模型和數據集的循環。這樣的漸進和良性循環促進了MLLM的發展,即受益于高質量數據集的MLLM可以幫助改進訓練數據,反過來進一步增強MLLM。 數據-模型共同發展范式很有前途,但尚未得到充分研究。根據我們的調查,目前還缺乏從數據-模型共同發展視角對MLLM的綜述。現有綜述尚未建立數據中心方法與MLLM能力之間的關系,也沒有清晰闡明MLLM的能力如何幫助構建數據集。實現MLLM數據-模型共同發展的關鍵在于闡明哪些數據方法可以增強每種特定的MLLM能力,以及了解模型可以扮演的角色,以改進多模態數據。因此,本綜述旨在通過綜合回顧回答以下研究問題,推進MLLM的數據-模型共同發展: * RQ1:在MLLM的生命周期中,哪些數據中心方法可以在哪個階段用于增強哪些MLLM能力? * RQ2:模型可以扮演哪些角色以促進不同的數據中心方法,并在每種情況下利用模型的哪些特定能力?

為了回答這兩個關鍵研究問題,我們首先提出一個基于MLLM數據-模型共同發展范式的新分類法。我們將先前的努力分為兩個主要類型:數據對模型的貢獻和模型對數據的互惠貢獻,建立其在MLLM能力中的深層連接。隨后,我們從數據-模型共同發展的視角對現有MLLM工作進行全面審查,揭示了推進數據-模型共同發展范式的巨大潛力,主要歸因于缺乏對數據和模型之間協同作用的專注。基于獲得的見解,我們描繪了若干進步的未來方向,以更好地利用數據和模型之間的互補,從基礎設施到各種自我增強程度的數據-模型共同發展。該綜述的主要貢獻有三點: * MLLM開發的新視角:我們提出了一種新分類法,強調多模態數據與MLLM之間的協同作用,旨在理解和挖掘數據和模型開發的互惠優勢。該分類法系統地基于開發MLLM所需的數據相關技術的層次結構進行組織,為研究人員和開發人員提供了推進MLLM的清晰視角。 * 從數據-模型共同發展視角對MLLM的最新綜述:我們系統地回顧了快速增長的MLLM工作,闡明1)哪些MLLM能力可以通過特定的數據中心方法增強,2)經過良好訓練的模型的能力如何反過來支持數據中心方法。據我們所知,這是第一篇從數據-模型共同發展視角對MLLM進行綜述的論文。 * MLLM未來的路線圖:我們提供了一個進步組織的路線圖,涵蓋若干先進和有前途的子方向,重點關注數據和MLLM之間的內部互動。通過這項工作,我們希望為學術研究人員和工業從業者在MLLM不斷發展的領域提供靈感和指導。

組織結構。本文余下部分的組織如下。第二節提供了背景,包括背景知識、分類法以及與現有相關綜述的定性比較。第三節介紹了擴展MLLM的數據中心方法。第四節總結了提高MLLM可用性的數據中心方法。第五節描述了模型直接幫助策劃MLLM數據集的能力。第六節整理了模型作為數據科學家輔助策劃MLLM數據集的應用。第七節列出了一些公開的MLLM數據集,并標明模型在數據策劃中的參與。第八節討論了MLLM未來發展的路線圖。

付費5元查看完整內容

隨著大語言模型(LLM)在各個領域的應用不斷擴大,它們適應數據、任務和用戶偏好的持續變化的能力變得至關重要。使用靜態數據集的傳統訓練方法不足以應對現實世界信息的動態特性。終身學習或持續學習通過使LLM能夠在其運行生命周期內持續學習和適應,整合新知識,同時保留先前學習的信息并防止災難性遺忘來解決這一問題。我們的綜述探討了終身學習的現狀,根據新知識的整合方式將策略分為兩類:內在知識,LLM通過完全或部分訓練將新知識吸收到其參數中;外部知識,通過將新知識作為外部資源(如維基百科或API)引入而不更新模型參數。我們的綜述的主要貢獻包括:(1)引入了一種新穎的分類法,將終身學習的大量文獻劃分為12種情景;(2)識別了所有終身學習情景中的常見技術,并將現有文獻分類到不同的技術組中;(3)強調了在LLM之前時代較少探索的模型擴展和數據選擇等新興技術。資源可在//github.com/qianlima-lab/awesome-lifelong-learningmethods-for-llm找到。

隨著大語言模型(LLM)在各個領域的應用不斷擴大,這些模型適應數據、任務和用戶偏好持續變化的能力變得至關重要。傳統的訓練方法依賴靜態數據集來訓練LLM,越來越無法應對現實世界信息的動態特性。終身學習(也稱為持續學習、增量學習),或LLM在其運行生命周期內持續和自適應學習的能力,解決了這一挑戰,通過整合新知識,同時保留先前學習的信息,從而防止災難性遺忘。圖1提供了終身學習的示意圖。 本綜述深入探討了終身學習的復雜領域,根據新知識的整合方式將策略分為兩大類:內在知識和外部知識。每個類別包含不同的方法,旨在增強LLM在各種情境下的適應性和有效性。圖2展示了LLM終身學習方法的分類。 內在知識類通過完全或部分訓練將新知識吸收到LLM的參數中,包括持續預訓練和持續微調等策略。例如,在工業應用中,常采用持續垂直領域預訓練,公司經常使用金融等領域的特定數據重新訓練其LLM。盡管這提高了特定領域的性能,但也有可能削弱模型的廣泛知識基礎,說明了在專業適應性和通用知識保留之間保持平衡的挑戰。持續微調涵蓋了特定情境的方法,如文本分類、命名實體識別、關系抽取和機器翻譯等,以及任務無關的方法,如指令微調、對齊和知識編輯。此外,在持續對齊中使用了人類反饋的強化學習,以確保LLM遵守人類價值觀,如安全和禮貌,突顯了所謂的“對齊稅”,即過于專注于特定價值觀可能會導致模型的通用能力下降。

外部知識類通過將新知識作為外部資源(如維基百科或API)引入,而不更新模型參數,包括基于檢索和工具的終身學習,利用外部數據源和計算工具來擴展模型的能力。基于檢索的策略,如檢索增強生成,通過提供上下文相關、準確和最新的外部數據庫(如維基百科)信息來增強文本生成,確保模型輸出隨時間保持相關性。同時,工具學習類借鑒人類工具使用的類比,模型學習使用外部計算工具,從而無需直接修改其核心知識庫,拓寬了其問題解決能力。

通過對這些組及其各自類別的詳細檢查,本文旨在強調將終身學習能力整合到LLM中,從而增強其在實際應用中的適應性、可靠性和整體性能。通過解決與終身學習相關的挑戰并探索該領域的創新,本綜述旨在為開發更強大和多功能的LLM做出貢獻,使其能夠在不斷變化的數字環境中蓬勃發展。

本綜述與現有綜述的差異。近年來,終身學習已成為一個越來越受歡迎的研究主題。大量綜述探討了神經網絡的終身學習。大多數現有綜述主要集中在卷積神經網絡(CNN)的終身學習,探討了CNN的各種終身學習情景,包括圖像分類、分割、目標檢測、自動系統、機器人和智慧城市。此外,一些綜述探討了圖神經網絡的終身學習。然而,只有少量文獻關注語言模型的終身學習。Biesialska等是關于自然語言處理(NLP)中終身學習的早期綜述,但他們只關注詞和句子表示、語言建模、問答、文本分類和機器翻譯。Ke等關注終身學習情景,包括情感分類、命名實體識別和摘要。他們還討論了知識轉移和任務間類分離的技術。Zhang等提供了關于將LLM與不斷變化的世界知識對齊的技術的全面回顧,包括持續預訓練、知識編輯和檢索增強生成。Wu等從持續預訓練、持續指令微調和持續對齊三個方面重新審視了終身學習。Shi等從垂直方向(或垂直持續學習)和水平方向(或水平持續學習)兩個方向研究了LLM的終身學習。Jovanovic等回顧了幾種實時學習范式,包括持續學習、元學習、參數高效學習和專家混合學習。雖然最近的綜述收集了終身學習的最新文獻,但它們沒有涵蓋持續文本分類、持續命名實體識別、持續關系抽取和持續機器翻譯等情景,并且對持續對齊、持續知識編輯、基于工具的終身學習和基于檢索的終身學習的討論較少。據我們所知,我們是第一個提供對LLM終身學習方法從12種情景進行徹底和系統檢查的綜述。

本綜述的貢獻。我們的綜述的主要貢獻包括

  • 新穎的分類法:我們引入了一個詳細且結構化的框架,將終身學習的廣泛文獻劃分為12種情景。

-** 常見技術**:我們在所有終身學習情景中識別了常見技術,并將現有文獻分類到每個情景內的各種技術組中。

  • 未來方向:我們強調了模型擴展和數據選擇等在LLM之前時代較少探索的新興技術。

本綜述的組織結構如下。第二節介紹問題的形成、評價指標、常見技術、基準和數據集。第三節、第四節和第五節檢查了持續預訓練、持續微調和基于外部知識的終身學習的現有技術。第六節討論了LLM終身學習的現有挑戰、當前趨勢和未來方向,并總結了本綜述。

付費5元查看完整內容

在過去的一年中,多模態大型語言模型(MLLMs)在視覺問答、視覺理解和推理等任務中表現出色。然而,龐大的模型規模和高昂的訓練與推理成本阻礙了MLLMs在學術界和工業界的廣泛應用。因此,研究高效且輕量級的MLLMs具有巨大的潛力,特別是在邊緣計算場景中。在這篇綜述中,我們對當前高效MLLMs的研究現狀進行了全面而系統的回顧。具體來說,我們總結了代表性高效MLLMs的時間線、高效結構和策略的研究現狀以及應用。最后,我們討論了當前高效MLLM研究的局限性和未來有前景的研究方向。更多詳情請參考我們的GitHub倉庫://github.com/lijiannuist/Efficient-Multimodal-LLMs-Survey。

大規模預訓練作為人工智能(AI)領域的一種領先方法,使得像大型語言模型和多模態模型這樣的通用模型在許多任務中超越了專門的深度學習模型。大型語言模型(LLM)的卓越能力激發了將它們與其他基于模態的模型結合起來以增強多模態能力的努力。這一概念得到了OpenAI的GPT-4V[1]和Google的Gemini[2]等專有模型顯著成功的進一步支持。因此,多模態大型語言模型(MLLMs)應運而生,包括mPLUG-Owl系列[3, 4]、InternVL[5]、EMU[6]、LLaVA[7]、InstructBLIP[8]、MiniGPT-v2[9]和MiniGPT-4[10]。這些模型通過有效利用每種模態的預訓練知識,繞過了從頭開始訓練的計算成本。MLLMs繼承了LLM的認知能力,展示了許多顯著特性,如強大的語言生成和遷移學習能力。此外,通過與其他基于模態的模型建立強大的表示連接和對齊,MLLMs能夠處理來自多種模態的輸入,顯著拓寬了它們的應用范圍。 MLLMs的成功主要歸因于規模定律:隨著數據、計算能力或模型規模等資源的增加,AI模型的性能會提高。然而,可擴展性伴隨著高資源需求,這阻礙了大型模型的發展和部署。例如,MiniGPT-v2的訓練需要基于NVIDIA A100 GPU計算出的總計超過800個GPU小時[9]。這對主要企業外的研究人員來說是一個巨大的費用負擔。除了訓練之外,推理也是MLLMs資源消耗的主要部分。考慮一個典型場景,模型輸入包括一個尺寸為336 × 336像素的圖像和一個長度為40個tokens的文本提示,使用LLaVA-1.5和Vicuna-13B LLM骨干進行推理需要18.2T的FLOPS和41.6G的內存使用量。大規模模型的資源密集型特性也引發了關于民主化和隱私保護的擔憂,因為當前主流的MLLMs,如GPT-4V和Gemini,由少數幾家主導企業控制,并在云端運行。如上述實驗所示,即使是開源的MLLMs,對計算資源的高要求也使得在邊緣設備上運行它們變得具有挑戰性。這進一步加劇了確保公平訪問和保護用戶隱私的挑戰。

鑒于這些挑戰,高效MLLMs的研究受到了越來越多的關注。這些努力的主要目標是減少MLLMs的資源消耗,擴大其適用性,同時盡量減少性能下降。高效MLLMs的研究始于用輕量級替代品替換大型語言模型,并進行典型的視覺指令微調。隨后,研究進一步通過以下方式增強了能力并擴展了用例:(1)引入更輕量的架構,注重效率,旨在減少參數數量或計算復雜度[25, 13, 18];(2)開發了更專業的組件,聚焦于高級架構的效率優化或賦予特定屬性,如局部性[19, 17, 12];(3)支持資源敏感任務,一些工作采用視覺token壓縮來提高效率,使MLLM的能力能夠轉移到資源密集型任務中,如高分辨率圖像和視頻理解[35, 39, 14, 40]。

在本綜述中,我們旨在呈現快速發展的高效MLLMs領域的最新進展,如圖2所示。我們將文獻組織成六個主要類別,涵蓋高效MLLMs的各個方面,包括架構、高效視覺、高效LLMs、訓練、數據和基準測試以及應用。Architecture 關注通過高效技術開發的MLLM框架,以降低計算成本。該架構由多個基于模態的基礎模型組成,具有不同于單模態模型的特征,從而促進了新技術的發展。

Efficient Vision 探討優化高效視覺特征提取策略,強調在保持準確性的同時提高效率的方法。它解決了集成高質量視覺數據以實現有效跨模態理解的問題。

Efficient LLMs 探索提高語言模型計算效率和可擴展性的策略。它研究了模型復雜性與性能之間的權衡,并提出了平衡這些競爭因素的有前景途徑。

Training 調查了對高效MLLMs開發至關重要的訓練方法的現狀。它解決了與預訓練階段、指令微調階段及整體訓練策略相關的挑戰,以實現最先進的結果。

Data and Benchmarks 評估用于多模態語言模型評估的數據集和基準測試的效率。它評估了數據集規模、復雜性和計算成本之間的權衡,同時倡導開發優先考慮效率和與現實世界應用相關性的基準測試。

Application 研究高效MLLMs在各個領域的實際影響,強調性能和計算成本之間的平衡。通過解決諸如高分辨率圖像理解和醫療問答等資源密集型任務,本節強調了高效MLLMs在拓寬其應用范圍和解決現實問題方面的潛力。

總之,這篇綜述深入探討了這些研究工作,探索了多種使MLLMs更具資源效率的策略。我們回顧了高效MLLMs的發展歷史,提供了高效MLLMs策略的分類法,并全面比較了現有高效MLLMs的性能。通過這一探索,我們希望提供對當前最先進技術的全面理解,從而揭示這一新興領域的復雜細微之處。此外,這篇綜述還充當了路線圖,突出了未來研究的潛在途徑,促進了對高效MLLMs領域挑戰和機遇的更深入理解。除了這篇綜述,我們還建立了一個GitHub倉庫,收錄了綜述中提到的論文,并按照相同的分類法進行整理,地址為:

按照標準的MLLM框架,高效MLLMs可以分為三個主要模塊:視覺編碼器g,負責接收和處理視覺輸入;預訓練語言模型,管理接收到的多模態信號并進行推理;視覺-語言投影器P,作為連接兩種模態的橋梁。為了提高通用MLLMs的效率,主要的優化在于處理高分辨率圖像、壓縮視覺令牌、實施高效結構以及使用緊湊的語言模型等策略。圖3展示了架構圖。表1概述了高效MLLMs的總結,包括基礎LLM、視覺編碼器、圖像分辨率和用于連接視覺和語言的投影器。這些高效MLLMs包括:MobileVLM[20]、LLaVA-Phi[21]、Imp-v1[22]、TinyLLaVA[23]、Bunny[24]、Gemini Nano-2[2]、MobileVLMv2[17]、MoE-LLaVA-3.6B[25]、Cobra[13]、Mini-Gemini[26]、Vary-toy[27]、TinyGPT-V[28]、SPHINX-Tiny[14]、ALLaVA[29]、MM1-3B[30]、LLaVA-Gemma[31]、Mipha-3B[32]、VLMamba[18]、MiniCPM-V2.0[70]、DeepSeek-VL[34]、KarmaVLM[71]、moondream2[72]。在本節中,我們將按順序全面概述這三個模塊以及其他高效組件。

Vision Transformer (ViT) [94] 架構在計算機視覺應用中獲得了顯著的關注并被廣泛使用。然而,隨著ViT模型規模的增長,可訓練參數和操作數量也隨之增加,影響了它們的部署和性能。此外,自注意力機制的計算和內存成本隨著圖像分辨率的增加呈二次增長。參考論文[95],本綜述旨在探索可用于高效MLLMs的最有效的視覺編碼方法。

付費5元查看完整內容

大型語言模型(LLMs)在各個領域和智能代理應用中取得了顯著進展。然而,當前從人類或外部模型監督學習的LLMs成本高昂,并且隨著任務復雜性和多樣性的增加,可能面臨性能上限的挑戰。為了解決這個問題,自我進化方法使LLM能夠自主獲取、精煉和學習模型自身生成的經驗,正迅速發展。這種受人類經驗學習過程啟發的新訓練范式為將LLMs擴展到超級智能提供了潛力。在這項工作中,我們提出了對LLMs中自我進化方法的全面調查首先,我們提出了一個自我進化的概念框架,并概述了演化過程,該過程由四個階段的迭代循環組成:經驗獲取、經驗精煉、更新和評估。其次,我們對LLMs和基于LLMs的代理的演化目標進行分類;然后,我們總結了文獻,并為每個模塊提供了分類法和見解。最后,我們指出了現有的挑戰,并提出了未來的方向,以改進自我進化框架,為研究人員提供關鍵的見解,加快自我進化LLMs的發展。我們對應的 GitHub 倉庫可以在 //github.com/AlibabaResearch/DAMOConvAI/tree/main/Awesome-Self-Evolutionof-LLM 獲取。

****隨著人工智能的快速發展,諸如GPT3.5(Ouyang等,2022)、GPT-4(Achiam等,2023)、Gemini(Team等,2023)、LLaMA(Touvron等,2023a,b)和Qwen(Bai等,2023)等大型語言模型(LLMs)標志著語言理解和生成方面的重大轉變。這些模型經歷了三個發展階段,如圖1所示:首先,在大規模和多樣化的語料庫上進行預訓練,以獲得對語言和世界知識的一般理解(Devlin等人,2018;Brown等人,2020),然后進行監督微調以引發下游任務的能力(Raffel等人,2020;Chung等人,2022)。最后,人類偏好對齊訓練使LLMs能夠以人類行為作出反應(Ouyang等,2022)。這種連續的訓練范 paradigms 取得了重大突破,使LLMs能夠執行一系列任務,具有顯著的零射擊和上下文能力,例如問答(Tan等,2023)、數學推理(Collins等,2023)、代碼生成(Liu等,2024b)以及需要與環境進行交互的任務解決(Liu等,2023b)。

盡管取得了這些進展,但人們預計新興一代的LLMs可以被賦予更高復雜度的任務,例如科學發現(Miret和Krishnan,2024)和未來事件預測(Schoenegger等,2024)。然而,由于現有訓練范 paradigms 中建模、標注和評估的固有困難,當前的LLMs在這些復雜任務中面臨挑戰(Burns等,2023)。此外,最近開發的Llama-3模型已經在包含15萬億標記的廣泛語料庫上進行了訓練。這是一個龐大的數據量,表明通過添加更多現實世界的數據來顯著擴展模型性能可能存在限制。這引起了人們對LLMs自我進化機制的興趣,類似于人類智能的自然演變,并由游戲中的人工智能發展所說明,例如從AlphaGo(Silver等,2016)到AlphaZero(Silver等,2017)的過渡。AlphaZero的自我對弈方法,無需標記數據,為LLMs超越當前限制并實現超人類表現提供了前進的道路。

受到上述范 paradigm 的啟發,LLMs的自我進化研究在模型發展的不同階段迅速增加,例如自我指導(Wang等,2023b)、自我對弈(Tu等,2024)、自我改進(Huang等,2022)和自我訓練(Gulcehre等,2023)。值得注意的是,DeepMind的AMIE系統(Tu等,2024)在診斷準確性方面超過了初級保健醫生,而微軟的WizardLM-2系統超過了GPT-4的初始版本的性能。這兩個模型都是使用具有自主學習能力的自我進化框架開發的,并代表了LLM培訓范 paradigm 的潛在轉變。然而,這些方法之間的關系仍然不清楚,缺乏系統的組織和分析。 因此,我們首先全面調查LLMs中的自我進化過程,并為其發展建立一個概念框架。

這種自我進化的特點是一個迭代循環,涉及經驗獲取、經驗改進、更新和評估,如圖2所示。在循環過程中,LLM通過不斷發展新任務和生成相應的解決方案來獲得經驗,隨后通過更新模型的重量或上下文來獲取更好的監督信號。在評估模型進展并設定新目標后,LLM最終被評估。 LLMs中自我進化的概念在各種研究社區中引起了相當大的興奮,承諾一個能夠自適應、學習和自主改進的模型新時代,類似于人類對不斷變化的環境和挑戰的演變。自我進化的LLMs不僅能夠超越當前靜態、數據約束的模型的局限,而且還標志著向更加動態、健壯和智能的系統的轉變。

通過提供一個結構化的概念框架,這項調查通過全面概述深化了對自我進化LLMs新興領域的理解。我們追溯了該領域從過去到最新的前沿方法和應用的演變,同時檢查了現有的挑戰并勾勒了未來的研究方向,為自我進化框架和下一代模型的開發鋪平了道路。

本調查分為以下幾個部分:我們首先介紹自我進化的概述(§2),包括背景和概念框架。我們總結了當前方法的現有進化能力和領域(§3)。然后,我們對自我進化過程的不同階段的最新進展進行了深入分析和討論,包括經驗獲取(§4)、經驗改進(§5)、更新(§6)和評估(§7)。最后,我們概述了開放性問題和未來方向(§8)。

付費5元查看完整內容

大型語言模型(LLMs)在靜態、預先收集的通用數據集上的訓練取得的最近成功,已經引發了眾多研究方向和應用。其中一個方向解決了將預訓練的LLMs整合到動態數據分布、任務結構和用戶偏好中的非平凡挑戰。這個問題的主要挑戰在于平衡模型適應性和知識保存。為特定需求量身定制的預訓練LLMs經常在之前的知識領域經歷顯著的性能退化——這一現象被稱為“災難性遺忘”。雖然在持續學習(CL)社區進行了廣泛研究,但在LLMs領域呈現出新的表現形式。在這篇綜述中,我們提供了一個關于大型語言模型在持續學習背景下當前研究進展的全面概覽和詳細討論。除了介紹初步知識外,這篇綜述被分為四個主要部分:我們首先描述了持續學習LLMs的概覽,包括兩個連續性方向:垂直連續性(或垂直持續學習),即從一般到特定能力的持續適應;和水平連續性(或水平持續學習),即跨時間和領域的持續適應(第3節)。在垂直連續性之后,我們總結了在現代CL背景下學習LLMs的三個階段:持續預訓練(CPT)、領域適應性預訓練(DAP)和持續微調(CFT)(第4節)。然后我們提供了LLMs的持續學習評估協議的概覽,以及當前可用的數據來源(第5節)。最后,我們討論了有關LLMs持續學習的引人深思的問題(第6節)。這篇綜述揭示了持續預訓練、適應和微調大型語言模型這一相對未受到足夠研究的領域,表明需要社區更多的關注。需要立即關注的關鍵領域包括開發實用且易于訪問的評估基準,以及專門設計的方法論,以對抗遺忘和在不斷演變的LLM學習范式中啟用知識轉移。在這項綜述中檢查的完整論文列表可在//github.com/Wang-ML-Lab/llm-continual-learning-survey找到。

近期大型語言模型(LLMs)的進步顯示了實現人工普遍智能(AGI)的巨大潛力。研究人員觀察到,隨著參數規模的增加,多步驟推理、小樣本上下文學習和指令跟隨等復雜能力有所提高。LLMs的發展具有重大影響和革命性,促使機器學習從業者重新考慮傳統的計算范式,用于處理一些曾經具有挑戰性的人類水平任務,如問答、機器翻譯和對話系統。然而,LLMs通常在包含通用領域的靜態、預先收集的數據集上進行訓練,導致性能隨時間逐漸降低,并且在不同內容領域之間也會降低。此外,單一的預訓練大模型無法滿足每個用戶的需求,需要進一步的微調。盡管重新收集預訓練數據和根據額外的具體需求重新訓練模型是一種潛在的解決方案,但這種方法在現實世界場景中代價高昂且不切實際。為了有效地適應LLMs到下游任務,同時盡量減少對以前知識領域的性能退化,研究者采用了持續學習的方法,也稱為終身學習或增量學習。持續學習受到人類大腦中觀察到的增量學習模式的啟發,涉及按順序在一系列任務上訓練機器學習模型,期望在所有任務中保持性能。在訓練過程中,模型對以前的數據有限或無法訪問,這在保留過去知識時構成了一個挑戰,因為在當前任務學習時,來自未見過的以前數據的優化約束是不存在的。這一挑戰,被稱為災難性遺忘,自持續學習研究開始以來一直是研究的中心焦點。多年來,研究者探索了各種技術來減輕機器學習模型中的遺忘,這些技術包括基于重放的方法、參數規范化和模型架構擴展。這些技術共同顯著推進了在不同任務、模型架構和學習范式中實現零遺忘的持續學習目標。在順序訓練和適應LLMs的背景下,CL的重要性也正在發生自身的語義轉變。為了更好地突出這一持續的轉變,在這篇綜述中,我們提供了一個關于LLMs在CL背景下當前研究進展的全面概覽和詳細討論。對于持續學習LLMs的總體情況,我們將其分為兩個需要由從業者解決的連續性方向(第3節):

  • 垂直連續性(或垂直持續學習),指的是LLMs從大規模通用領域到小規模特定領域的持續適應,涉及學習目標和執行實體的轉變。例如,醫療機構可能開發專門為醫療領域定制的LLMs,同時保留其一般推理和問答能力,以服務用戶。
  • 水平連續性(或水平持續學習),指的是跨時間和領域的持續適應,通常涉及多個訓練階段和對災難性遺忘的增加脆弱性。例如,社交媒體平臺不斷更新LLMs以反映最近的趨勢,確保精確地定位下游服務如廣告和推薦,同時為現有用戶提供無縫的用戶體驗。

在圖1中,繼垂直連續性之后,我們勾畫了現代CL中LLM學習的三個關鍵階段:持續預訓練(CPT)、領域適應性預訓練(DAP)和持續微調(CFT)(第4節)。在CPT中,現有研究主要調查三種類型的分布式轉變:時間、內容層次和語言層次。每種都呈現出獨特的焦點和挑戰。在DAP中,雖然它主要被視為為下游任務準備LLMs的過程,但頻繁地使用CL評估和技術。然而,這些技術的多樣性明顯不足,考慮到傳統CL社區的成熟度。在CFT中,我們關注的是學習LLMs的新興領域,涵蓋持續指令調整(CIT)、持續模型精煉(CMR)、持續模型對齊(CMA)和持續多模態LLMs(CMLLMs)等主題。接下來,我們呈現了一系列公開可用的評估協議和基準(第5節)。我們總結我們的綜述,討論了LLMs持續學習的最新出現的特性,傳統增量學習類型和LLMs持續學習中的記憶約束的角色變化,以及這個主題的潛在研究方向(第6節)。總結而言,本文提供了一份詳盡的現有持續學習研究LLMs的綜述,顯著區別于相關主題的現有文獻。我們的綜述突出了持續開發LLMs的研究領域,特別是在持續預訓練(CPT)和領域適應性預訓練(DAP)領域的研究。我們強調需要社區更多的關注,迫切需要包括開發實用、易于訪問且廣為認可的評估基準。此外,需要定制方法來解決在新興的大型語言模型學習范式中的遺忘問題。我們希望這篇綜述能提供一個系統而新穎的持續學習視角,在迅速變化的LLMs領域中,幫助持續學習社區為開發更有效、可靠和可持續的LLMs做出貢獻。

組織結構

本文的其余部分安排如下。我們首先在第2節介紹大型語言模型和持續學習的背景和初步知識。然后我們在第3節展示了大型語言模型的現代持續學習概覽。從垂直角度來看,它可以大致分為三個階段的LLMs持續訓練,我們將在第4節逐一介紹每個階段。在4.3節中,將介紹持續微調LLMs的獨特方面,包括持續指令調整(4.3.3節)、持續模型精煉(4.3.4節)、持續模型對齊(4.3.5節)和持續多模態大型語言模型(4.3.6節)。在第5節中,我們提供了公開可用的LLMs持續學習評估協議和基準的全面介紹。最后,在第6節中,我們討論了在大型語言模型時代持續學習的角色,包括大規模持續LLMs的新興能力(6.1節)、三種類型的持續學習(6.2節)、LLMs持續學習中的記憶角色(6.3節)以及未來的研究方向(6.4節)。 持續學習與大型語言模型相遇:概覽****大型語言模型(LLMs)在多個維度上都非常龐大,包括模型參數的大小、預訓練數據集、計算資源、項目團隊和開發周期。LLMs的巨大規模為開發團隊帶來了顯著的挑戰,特別是在快速變化的環境中保持更新。舉例來說,2023年,用戶發布的新推文的平均每日流量超過5億,即使是在這么大量數據的“小”子集上進行訓練也是不可承受的。在考慮到它們對下游應用的連鎖影響時,有效且可靠地適應LLMs變得更為關鍵。下游用戶通常缺乏收集和存儲大規模數據、維護大規模硬件系統以及自行訓練LLMs的專業知識。《可回收調整》是首個明確概述現代LLM生產流水線供應商-消費者結構的先導研究。在供應商側,模型在一系列大規模未標記數據集上持續進行預訓練。每次預訓練模型發布后,消費者需要利用更新、更強大的上游模型以獲得更好的下游性能。為了提高下游消費者微調的效率,他們最初對持續預訓練的LLMs進行了幾項關鍵觀察,聚焦于模式連接性和功能相似性。此外,他們提出在上游預訓練LLM進行重大更新后,復用過時的微調組件。基于《可回收調整》引入的概念框架,我們在本綜述中提出了一個包含各種研究的現代生產流水線的全面框架,涉及持續LLM預訓練、適應和部署,如圖1所示。我們的框架與現有研究的不同之處在于融入了兩個連續性方向:垂直連續性和水平連續性。

結論

在這項工作中,我們提供了一份關于持續LLMs的綜述,從持續學習的角度總結了它們在訓練和部署方面的最新進展。我們根據它們在我們提出的現代分層持續學習LLMs的更廣框架內的位置,對問題和任務進行了分類。雖然這一領域在社區中的興趣廣泛且日益增長,但我們也注意到幾個缺失的基石,包括算法多樣性以及對大模型行為(如知識遺忘、轉移和獲取)的基本理解。通過全面而詳細的方法,我們希望這篇綜述能激勵更多從業者探索持續學習技術,最終有助于構建健壯和自我進化的人工智能系統。

付費5元查看完整內容

提示 (Prompting) 已成為將大型語言模型(LLMs)適配到特定自然語言處理任務的主流范式。盡管這種方法為LLMs的上下文學習開啟了大門,但它帶來了模型推理的額外計算負擔和人力努力的手工設計提示,特別是在使用冗長和復雜的提示來指導和控制LLMs行為時。結果,LLM領域見證了高效提示方法的顯著增長。在本文中,我們提供了這些方法的全面綜述。從高層次來看,高效提示方法大致可以分為兩種途徑:具有高效計算的提示和具有高效設計的提示。前者涉及各種壓縮提示的方式,后者采用自動提示優化的技術。我們介紹了提示的基本概念,回顧了高效提示的進展,并突出了未來研究方向。

大型語言模型(LLMs)已顯著推進了各種自然語言處理(NLP)任務的最新進展,例如對話、機器翻譯和摘要生成(Brown et al., 2020; Touvron et al., 2023; Bubeck et al., 2023)。提示是人機交互的一個重要媒介,用于向LLMs明確傳達清晰的任務描述,然后通過類比學習生成用戶期望的響應。提示的內容在不同上下文中會有所變化,特別是包含指令、問題、帶有特定輸出格式的多重演示,以及額外要求,如復雜的推理過程和角色扮演命令。在本文中,“提示”一詞指的是用戶輸入給LLMs的內容。

然而,隨著LLMs的上下文學習(ICL)能力變得更強(Dong et al., 2022),為不同特定任務設計的提示傾向于多樣化和詳細化。超長的自然語言提示逐漸引發了兩個問題:1) 對LLM本身而言,上下文窗口是有限的,影響其處理過度冗長上下文的潛力;2) 對LLM用戶而言,它要求使用大量的計算資源來訓練開源模型,或者承擔調用閉源模型接口的高成本。從這個角度來看,LLM的使用成本在學術研究和商業部署場景中都相當巨大。顯然,性能出色的LLM不能被廣泛使用是一種遺憾。雖然模型結構有許多相關改進,如高效注意力機制(參見Xiao & Zhu, 2023; Wan et al., 2023的相關工作),可以有效減輕推理成本,在本文中,我們更側重于高效提示方法,以節省不必要的財務開銷。

考慮到財務和人力資源,效率可以從三個角度得到改善:1) 推理加速,2) 內存消耗下降,和3) 自動設計良好的提示。前兩個目標可以通過提示壓縮實現,而第三個目標可以基于提示工程而非手工設計,通過自動提示優化實現。據我們所知,文獻中關于高效提示方法的全面整合存在顯著差距。

在這篇綜述中,我們從第2節的提示背景介紹開始。隨后,我們從計算(第3節)和設計(第4節)的角度審查現有的高效提示方法。前者將提示壓縮組織為三個類別:知識蒸餾(第3.1節)、編碼(第3.2節)和過濾(第3.3節)。后者探討基于傳統梯度下降(第4.1節)和智能進化算法(第4.2節)的自動提示優化。特別地,我們將高效提示抽象為一個多目標優化問題,并從理論角度展望未來方向(第5節)。最后,我們在第6節總結了全文。此外,我們還包括了一個方便參考的開源項目列表A.2和高效提示方法的類型圖A.3。

總述

**提示范式 **

提示的出現與預訓練語言模型(PLMs)的演進和大型語言模型(LLMs)的進步密切相關。PLM演進 PLM范式的演化軌跡已從有效性轉向效率。自從Transformer(Vaswani et al., 2017)被提出以來,它已成為廣泛PLMs的基礎架構。Transformer內部的自監督學習機制已被證明在解決長序列問題上有效。為分別解決基本的自然語言理解(NLU)和自然語言生成(NLG)任務,主流PLMs逐漸演化成BERT(Devlin et al., 2019)和GPT(Radford et al., 2018)系列模型。有許多優化策略,如探索編碼方法(Su et al., 2021)、改進自監督學習機制(Roy et al., 2021)和精煉模型結構(Li et al., 2021),以實現PLMs在解決特定任務上的高效表現。NLP范式轉變 NLP訓練范式經歷了兩次關鍵轉變(Liu et al., 2023b),從“完全監督學習”演化為“預訓練與微調”,最終演化為“預訓練、提示和預測”(如圖1所示)。在這篇綜述中,我們將專注于目前最廣泛采用的提示范式,深入探討其最近的發展。值得注意的是,GPT-3(Brown et al., 2020)在引入硬提示方面發揮了開創性作用,使人類能夠使用自然語言與語言模型交互。這一突破得益于大規模參數,它使GPT-3具備了深入理解自然語言的能力,從而允許它利用復雜的硬提示進行少量樣本學習,無需微調。LLM進展 在GPT-3開創LLM時代之后,ChatGPT作為塑造當前主流范式“LLM + 提示”的重要里程碑而脫穎而出。其NLU和NLG能力的完美整合吸引了整個人工智能社區的關注。隨著規模法則(Wei et al., 2022a)展示了顯著的新興能力(例如,指令跟隨、上下文學習和復雜推理),研究人員持續探索提示的性能邊界,無論是開源還是閉源的LLMs。例如,像思維鏈(CoT)(Wei et al., 2022b)這樣的復雜提示通過大聲思考,增強了LLMs的潛在推理能力。隨著提示范式逐漸穩固其地位,LLM仍然面臨著由于其大規模參數而導致的計算和人力資源挑戰。因此,有效的提示方法以節約資源引起了廣泛興趣。

提示類型

本質上,提示的主要目標是實現有效的少量樣本學習,而不是不必要的全參數微調所消耗的資源。提示表達可以分為兩種主要類型,如圖2所示:離散的自然語言提示(稱為硬提示)和連續的可學習向量(稱為軟提示)。2.2.1 硬提示 硬提示特別適用于生成性語言模型,尤其是GPT系列模型的一個顯著例子。關注硬提示的原因有兩個方面。從積極的角度來看,由于大量的預訓練數據集成到LLMs中,人類可以通過母語輕松地與世界知識壓縮器(即LLM)交互,最終獲得有用的響應。從消極的角度來看,由于當前LLMs廣泛采用閉源性質,使得其參數權重不可訪問,用戶別無選擇,只能通過API調用與LLMs使用硬提示。盡管如此,LLM強大的指令跟隨能力為硬提示的發展奠定了堅實的基礎,而自然語言作為無縫人機交互的媒介指日可待。重要的是要強調硬提示之間的多樣性。最初,硬提示包括類似于Cloze任務設計的簡潔任務指令。然而,隨著LLMs的理解能力不斷提高,硬提示已演化為包含更廣泛元素的數組,最常見的包括演示和思維鏈,如圖3所示。當前NLP社區對硬提示的日益興趣,甚至是解鎖LLMs全部潛力的教程,表明了對人模型對齊導致人工通用智能(AGI)的渴望。2.2.2 軟提示 在提示相關研究的早期階段,軟提示以適配器(Houlsby et al., 2019)、前綴(Li & Liang, 2021)甚至是無法解釋的向量的形式出現。許多研究(Lester et al., 2021; Liu et al., 2022)探討了軟提示在通過探索不同嵌入位置來增強高效訓練的好處。標準方法涉及凍結原始模型參數,僅訓練軟提示以實現完整參數微調的效果。Ding et al.(2022)的工作中有更詳細的介紹。鑒于可學習向量可以與神經網絡參數一起更新,軟提示顯然更有利于LLMs有效理解提示。需要注意的是,本文討論的軟提示僅僅是LLMs的硬提示的向量表示,如圖2所示,而不是從零開始開發的抽象向量。一些努力涉及將較長的硬提示壓縮成顯著更短的軟提示(參見第3.1節和第3.2節以獲取詳細見解)。

挑戰

鑒于硬提示已被廣泛認可并應用于各種下游任務。設計的提示更加詳細以提高任務準確性,因此導致更長且更復雜的提示。在這篇綜述中,我們從效率的角度提出了硬提示面臨的兩個關鍵挑戰:長度問題 提示的長度通常取決于特定任務,演示越多,性能越好。例如,思維鏈(CoT)提示顯著增強了LLMs的邏輯推理能力,導致出現了各種基于CoT的方法。像Self-Ask(Press et al., 2022)和最少到最多提示(Zhou et al., 2022a)幫助LLMs將復雜問題分解為更簡單的子問題以進行逐步回答。Wang et al.(2022)采樣了多樣化的推理路徑,而Wang et al.(2023b)指導LLMs生成正確的PS(計劃和解決方案),然后選擇最終答案。然而,使用這種復雜提示的優勢伴隨著更高的財務負擔,以及LLMs的信息感知能力降低。難以設計的提示 由于自然語言的離散性質,早期可用的硬提示通常是手工設計的,然后通過反復試錯獲得。手工制作的提示模板嚴重依賴于經驗知識,并涉及明顯的人為主觀性。但是,人類解決問題的方法與神經網絡之間存在差異,換句話說,LLMs的可解釋性仍然是持續探索的話題,目前尚無公認的理論指導。因此,針對LLMs的提示設計面臨許多挑戰,包括LLMs對自然語言提示格式的高敏感性、語義相似提示的大性能差距、提示復雜性與任務難度之間的關聯,以及提示的模型和任務特定屬性。因此,面對不同模型和不同任務,手動設計高質量提示既耗時又費力。總之,提示有效地緩解了應用于下游任務時的參數冗余問題,從而節省了財務資源。然而,在LLMs時代,提示長度的增加帶來了更大的內存需求、更慢的推理速度和更高的勞動強度等挑戰,這偏離了提示的原始目的。因此,這篇綜述深入探討了當前在LLMs中使用的高效提示方法。

使用高效計算的提示

隨著大型語言模型(LLMs)規模的不斷擴大,“使用高效計算的提示”概念應運而生,旨在減輕長提示對開源和閉源LLMs帶來的經濟負擔。已觀察到,壓縮的提示可以被LLMs有效重構,并減少生成文本的長度(Jiang et al., 2023a)。在本節中,我們提供了與提示壓縮相關研究的見解,將其分類為文本到向量級別和文本到文本級別的方法。提示壓縮的主要目的是從原始提示中提取必要信息,以便LLMs能夠保持與原始提示相當的性能水平。

使用高效設計的提示

“使用高效設計的提示”概念是為了應對提示內容的日益復雜性而引入的。隨著耗時且勞力密集的手工設計提示方法逐漸退出歷史舞臺,以及梯度基礎的提示微調方法不再適用于閉源LLMs,基于提示工程(PE)的自動優化逐漸成為焦點。具體來說,本文提出的“離散”提示優化涉及在給定的搜索空間內找到最佳的“自然語言”提示,以最大化任務準確性。基于LLMs的強大通用能力,自動提示優化顯示出了有希望的進展,其工作流程大致如圖4所示。我們將從傳統數學優化和智能算法優化的視角深入探討這個問題,因此將本節分為基于梯度的方法和基于進化的方法。

結論

在這項工作中,我們總結了用于LLMs的高效提示方法,目的是提高LLM的效率和性能。我們回顧了具有高度認可的現有相關工作,揭示了各類別內部的固有聯系,并從理論角度深度抽象這些方法。最后,我們為LLM實踐者提供了一個開源項目清單A.2,以便在科學研究和商業部署中快速參考,以及一個類型學圖A.3,以概覽高效提示領域。

付費5元查看完整內容

數據可視化以圖表形式在數據分析中發揮著關鍵作用,提供關鍵洞察并輔助做出知情決策。隨著近年來大型基礎模型的興起,自動圖表理解取得了顯著進展。基礎模型,如生成預訓練變換器(Generative Pre-trained Transformers, GPT),已經革新了多種自然語言處理(NLP)任務,并越來越多地應用于圖表理解任務中。這篇綜述文章提供了這些基礎模型背景下圖表理解最近發展、挑戰和未來方向的全面概覽。文章從背景部分開始,定義圖表理解,概述問題表述,并討論研究圖表理解任務至關重要的基本構建塊,包括視覺編碼器、圖表到表格的翻譯、OCR模塊、文本編碼器和文本解碼器。在任務和數據集部分,我們探討了圖表理解內的各種任務,包括圖表問答、圖表字幕制作、圖表到表格轉換、圖表事實核查和圖表字幕事實錯誤校正。我們討論了評價指標和圖表及文本輸入的來源。然后檢視了建模策略,包括分類基礎和生成基礎的方法,以及增強圖表理解性能的工具增強技術。此外,我們討論了每項任務的最新性能并探討如何提升性能。在一個專門的部分中,我們討論了挑戰和未來方向,強調了諸如特定領域圖表、以及關于真實性、覆蓋范圍、相關性、穩健性、公平性和數據偏見的評價標準等問題。我們還深入探討了這些多模態基礎模型的組成部分,包括調整LM主干的必要性、多階段訓練過程的有效性,以及合成數據的潛在充分性。探索了與用戶或其他系統交互的代理導向設置。最后,我們討論了如自然圖像理解、表格理解和文檔理解等相關任務,提供了對視覺和文本數據理解更廣闊景觀的洞察。這篇綜述文章為自然語言處理、計算機視覺和數據分析領域的研究人員和實踐者提供了一個全面的資源,為利用大型基礎模型進行圖表理解的未來研究提供了寶貴的見解和方向。本文提及的研究以及新興的研究將持續更新于: //github.com/khuangaf/Awesome-Chart-Understanding。

在信息交流中圖表理解的重要性:在我們當代的多媒體信息世界里,數據的體量和復雜性持續膨脹,圖表在促進事實信息的連貫且富有洞察力的交流、傳達見解和做出決策中的角色至關重要。跨越學術界、科學研究、數字媒體和商業領域,圖表作為將原始數據轉換成可理解的視覺敘事的不可或缺的工具。它們能夠以簡潔直觀的格式封裝復雜的數據集,使決策者能夠迅速把握關鍵見解,輔助知情推理和戰略規劃。認識到圖表在現代信息傳播中的關鍵作用,計算社區持續對自動圖表理解表現出興趣,如自動圖表理解的大量研究所證明。特別是,關于圖表問答、圖表字幕制作、圖表到表格轉換、圖表事實核查和圖表字幕事實錯誤校正的工作奠定了探索圖表理解技術中圖表語義復雜性的基礎框架。

在大型基礎模型時代的圖表理解挑戰與機遇:傳統的圖表理解工作聚焦于微調方法,通常在領域可移植性和推理魯棒性方面遇到限制。令人興奮的是,大視覺-語言基礎模型(例如,GPT-4V、LLaVA)的出現引發了在自動推理能力上的范式轉變,催化了包括通過基于文本的提示實現強零/少次推理能力在內的各種多媒體認知任務的前所未有的進步。但在這一變革性創新的景觀中,圖表理解領域仍舊深陷固有的復雜性和巨大挑戰。圖表因其多面向的視覺表現和細膩的語義呈現出一系列獨特的障礙。從條形圖、折線圖到餅圖和散點圖,每種圖表類型都采用獨特的視覺語法來傳達數據關系,需要超越簡單的像素級模式識別的復雜解釋機制。圖表作為揭示如新興趨勢、挑戰假設的異常值和變量間可能不會從僅僅是表格形式的原始數據立即顯現的關系的深刻見解的渠道。它們使得可以進行跨數據點的比較分析,為簡潔地并置不同實體或時間段提供一個視覺平臺。此外,從簡單的數字關系到復雜的多維實體,底層數據集的內在多樣性為圖表理解任務增加了另一層復雜性。盡管面臨這些挑戰,自動圖表理解位于機遇與影響的交匯處,提供了一扇解鎖埋藏在視覺敘事像素中的可行動見解的大門。通過利用大型基礎模型的能力,圖表理解展示了在彌合原始視覺數據與有意義見解之間的差距方面的提升潛力,從而使技術可擴展地用于易于訪問的應用和增強人類認知。

盡管已有數項研究綜述了圖表理解研究的領域,但這些綜述往往在全面性或特定性上表現出一定的缺口。一些綜述沒有涵蓋在圖表理解研究中使用的現代數據集,以及最新的建模方法,如涉及預訓練的視覺-語言模型和大型基礎模型。相反,其他綜述主要集中在可視化方面(即數據轉換為圖表的過程),因此忽視了圖表解釋的細膩任務。本綜述旨在彌合這些缺口。我們首先在第2節定義自動圖表理解和問題表述的基本構建塊。我們討論了圖表理解的多面性,包括從解釋圖表視覺到分析底層數據的任務,以及概述了圖表理解的結構性建模組件,如視覺編碼器、OCR模塊、文本解碼器及其在將原始圖表圖像和文本查詢轉換為有意義見解中的角色。然后,在第3節,我們檢查了推動圖表理解研究的數據集和模型評估指標。本節分析了這些數據集的來源、多樣性和局限性,提供了對當前圖表理解數據景觀的見解。它還回顧了各種評估指標,強調了魯棒且細膩的評估方法的必要性。有了這些特征的見解,我們進一步提供了自動圖表理解的流行建模策略。第4節深入探討了圖表理解中的多樣化建模策略,包括從自然圖像理解、視覺-語言預訓練和基礎模型,如大型語言模型(LLMs)和大型視覺-語言模型(LVLMs)的調整。特別是,我們強調了視覺編碼器和文本解碼器在模型有效性上的選擇影響,并討論了工具增強在圖表理解中的作用。我們通過展示不同圖表理解任務上的最新性能以及我們如何改進它們來結束這一部分。最后,第5節討論了圖表理解中的挑戰和未來方向。我們強調了特定領域圖表的重要性、對全面評估指標的需求,以及對增強模型魯棒性和多功能性的敵對設置的潛力。我們還在第6節討論了圖表理解如何位于與自然圖像理解、表格理解和文檔理解相關工作的交匯處。本綜述文章通過確定未來研究的關鍵領域結束,如為復雜圖表開發模型、完善評估指標和多樣化數據集。我們不僅提供了對圖表理解當前狀態的深入概覽,而且為這一激動人心的數據可視化與機器學習交叉領域的未來進展奠定了基礎。

付費5元查看完整內容

表格推理旨在根據提供的表格以及可選的表格文本描述,按照用戶需求生成相應的問題答案,有效提高獲取信息的效率。近來,使用大型語言模型(LLMs)已成為表格推理的主流方法,因為它不僅顯著降低了注釋成本,還超過了以往方法的性能。然而,現有研究仍然缺乏基于LLM的表格推理工作的總結。由于現有研究的缺乏,哪些技術可以在LLMs時代提高表格推理性能、LLMs為何在表格推理上表現出色、以及如何在未來增強表格推理能力的問題,仍然大部分未被探索。這一差距顯著限制了研究進展。為了回答上述問題并推進LLMs下的表格推理研究,我們呈現了這篇綜述,以分析現有研究,激發未來的工作。在這篇論文中,我們分析了在LLM時代用于提高表格推理性能的主流技術,以及LLMs相比于LLMs之前的模型在解決表格推理問題時的優勢。我們從現有方法的改進和實際應用的擴展兩個方向提供研究指導,以激發未來的研究。

付費5元查看完整內容

近年來,大型語言模型(LLMs)因其出色的理解、分析和基于其廣泛知識和推理能力的文本生成能力,已經重塑了學術和工業領域。盡管如此,LLMs的一個主要缺點是由于其前所未有的參數量,其預訓練的計算成本相當高。當需要經常向預訓練的模型中引入新知識時,這一缺點會被放大。因此,開發有效且高效的技術來更新預訓練的LLMs至關重要。傳統方法通過直接微調將新知識編碼到預訓練的LLMs中。然而,重新訓練LLMs可能在計算上很密集,并且面臨退化與模型更新無關的寶貴預訓練知識。最近,基于知識的模型編輯(KME)受到了越來越多的關注,其目的是精確修改LLMs以納入特定的知識,而不負面影響其他無關的知識。在這次綜述中,我們旨在提供關于KME領域近期進展的全面且深入的概述。我們首先介紹KME的一般公式,以涵蓋不同的KME策略。之后,我們根據新知識如何被引入到預訓練的LLMs中提供了KME技術的創新分類,并研究現有的KME策略,同時分析每個類別的方法的關鍵見解、優點和局限性。此外,相應地介紹了KME的代表性指標、數據集和應用。最后,我們對KME的實用性和剩余挑戰進行了深入的分析,并建議在這一領域進一步發展的有前景的研究方向。

近期,大型語言模型(LLMs)已成為一個熱門話題,徹底改變了學術界和工業界[10, 78, 106, 122]。通過在大型語料庫上進行預訓練,獲得了大量的事實知識和推理能力,LLMs展示了對文本信息的前所未有的理解,能夠像人類專家一樣分析和生成文本。然而,LLMs的一個主要缺點是由于參數數量龐大,訓練過程的計算開銷極高。隨著世界的不斷進化,經常出現更新預訓練LLMs以糾正過時信息或納入新知識以保持其相關性的需求,這使得該問題進一步加劇[124]。例如,在圖1中,一個過時的LLM無法準確描述Lionel Messi的最新成就,這需要明確注入新知識以生成正確的答案。

更新預訓練的大型語言模型(LLMs)的一個可行而直接的策略是通過樸素的微調[15, 26, 103, 116],在此,預訓練LLMs的參數直接被優化,以從新數據中編碼新知識[5, 72, 80, 122]。例如,提出了各種基于指令調整的方法,以在新收集的語料庫上以有監督的學習方式微調預訓練的LLMs[73, 81, 112, 114]。盡管這樣的微調技術被廣泛使用,并且能夠將新知識注入到LLMs中,但它們因以下缺點而聞名:(1) 即使提出了一些參數高效策略來提高效率[66, 113, 120],微調LLMs可能仍需要大量的計算資源[70, 75, 123]。 (2) 細調模型可能會過擬合新數據,尤其是當用于細調的數據集規模較小時[19, 71, 74]。 (3) 更重要的是,微調LLMs會不受約束地改變預訓練的權重,這有可能喪失LLMs中的寶貴現有知識[24, 48, 69]。這些挑戰限制了使用微調技術更新LLMs新知識的實用性。

為了解決更新LLMs的微調的缺點,更多的注意力已被賦予基于知識的模型編輯(KME),也被稱為知識編輯。一般來說,KME旨在精確修改預訓練LLMs的行為,以更新特定的知識,而不負面影響與更新無關的其他預訓練知識[85, 111, 119]。在KME中,LLMs中特定知識的更新通常被制定為一個編輯,例如將“誰是美國總統?”的答案從“特朗普”更正為“拜登”。關于特定的編輯,KME策略通常通過引入輔助網絡(或一組參數)到預訓練模型[41, 63, 124],或更新(部分)參數以存儲新知識[16, 39, 40, 64]來修改模型輸出。通過這些策略,KME技術可以在內存中存儲新知識或在模型參數中定位它進行更新,從而精確地將知識注入模型。此外,某些方法還引入明確的損失以包含更新過程,從而使編輯后的模型在未修改的知識上保持一致的行為。借助這些優勢,KME技術可以提供一種高效且有效的方法,不斷地用新知識更新LLMs,而無需明確地重新訓練模型。

盡管KME與微調策略有某些相似之處,但它在更新LLMs方面具有獨特的優勢,值得深入研究。特別是,KME和模型微調都尋求通過注入新知識來更新預訓練的LLMs。然而,除了這一共同目標外,KME更加關注兩個關鍵屬性,這兩個屬性不能容易地由微調來解決。 (1) 局部性要求編輯過的模型不會無意中影響具有不同語義的其他不相關輸入的輸出。例如,當有關美國總統的編輯得到更新時,編輯過的模型不應改變其關于英國首相的知識。KME方法的實用性在很大程度上依賴于它們維持與不相關輸入的輸出的能力,這是KME和微調之間的主要區別[86]。 (2) 通用性代表編輯過的模型是否可以泛化到與編輯知識相關的更廣泛的輸入范圍。具體來說,它表示模型在具有語義相似性的輸入上表現出一致行為的能力。例如,當模型關于總統的部分被編輯時,對總統配偶的查詢的答案也應相應地改變。在實踐中,確保KME方法使編輯過的模型能夠很好地適應這些相關的輸入文本是很重要的。總之,由于這兩個獨特的目標,KME仍然是一個具有挑戰性的任務,需要特定的策略才能獲得令人滿意的有效性。

與現有綜述的區別:已經進行了幾次綜述來檢查(大型)語言模型的各個方面[11, 29, 51, 53, 104, 122]。盡管如此,仍然缺乏徹底的綜述,可以全面涵蓋現有的文獻和LLM編輯領域的持續進展。例如,最近的工作[73, 114]已經討論了在預訓練的LLMs中使用更多的數據樣本合并新知識的微調策略。然而,KME的獨特性,即局部性和普遍性,并沒有得到充分的討論,這將在這次綜述中得到徹底的分析。另外兩項綜述[30, 47]回顧了知識增強的語言模型。但是,他們的主要關注點是利用外部知識來增強預訓練的LLMs的性能,而沒有解決基于特定知識的編輯任務。據我們所知,與我們的綜述最相關的論文是[119],它提供了KME的簡要概述,并簡潔地討論了KME方法的優勢和它們的挑戰。盡管如此,這項綜述缺乏對KME的更多細節,例如分類、數據集和應用程序的徹底審查。另一項最近的工作[111]提出了一個統一了幾種代表性方法的KME框架。這項工作側重于KME技術的實現,而對不同策略的技術細節的重視較少。最近,一項工作[85]討論了KME方法在編輯模型的忠實性方面的局限性,而它相對較短,缺乏對所有現有方法的更全面的介紹。考慮到KME技術的快速進展,我們認為有必要回顧所有代表性KME方法的細節,總結共同點,同時討論每種方法的獨特性,并討論KME領域的開放挑戰和前瞻性方向,這將促進該領域的進一步發展。

本次綜述的貢獻:本次綜述提供了對預訓練LLMs的編輯技術、挑戰和機會的全面和深入的分析。我們首先提供了KME任務的概述,以及一個創新的公式化。特別是,我們將一般的KME任務公式化為一個受限制的優化問題,同時結合了準確性、局部性和普遍性的目標。然后,我們將現有的KME策略分類為三個主要類別,即外部記憶、全局優化和局部修改。重要的是,我們證明了每個類別中的方法都可以被公式化為一個專門的受限制的優化問題,其中的特性基于一般的公式化理論總結。此外,我們提供了關于每個類別中方法的有效性和可行性的有價值的見解,這可以幫助實踐者選擇最適合特定任務的KME方法。我們對KME方法的優點和缺點的分析也為KME研究社區的持續進展起到了催化劑作用。總之,我們的主要貢獻可以總結為以下三個方面:

?** 新的分類法**:我們引入了一個全面和結構化的分類框架,系統地總結了LLM編輯的現有工作。具體來說,基于如何將新知識引入預訓練的LLMs,我們的分類包括三個不同的類別:外部記憶、全局優化和局部修改,其中這些類別的共性和差異在這次調查中都得到了徹底的討論。

? 深入分析:我們將LLM編輯任務公式化為一個受約束的優化問題,其中每個類別的方法都可以被視為具有細化約束的特殊情況。此外,我們強調了每個類別的主要見解、優點和局限性。在這個背景下,我們深入研究了每個類別的代表性方法,并系統地分析了它們之間的聯系。 ? 未來方向:我們分析了現有KME技術在各種數據集和應用程序中的實用性。我們還全面討論了現有KME技術的挑戰,并提出了未來探索的有前景的研究方向。

本文的其余部分組織如下。第2部分介紹了LLM編輯的背景知識。第3部分提供了KME任務的一般公式,可以適應各種應用場景。第4部分為KME策略提供了一個全面的評價指標總結,這對于公正地比較各種方法至關重要。在深入探討具體方法之前,我們在第5.1節為現有方法提供了一個全面的分類,其中討論了它們的關系和差異。然后我們詳細介紹了三個類別中的方法,其中總結了每個類別的優點和局限性。第6部分介紹了廣泛使用的公共數據集。第7部分詳細介紹了可以從KME技術中受益的各種實際任務。第8部分討論了現有技術尚未解決的KME的潛在挑戰。這一部分還提供了一些可以激發未來研究的潛在方向。最后,我們在第9部分總結了這次綜述。

面對舊信息的快速折舊和新知識的出現,各種KME方法已經被提議來更新預先訓練的LLMs,以保持它們的最新性和相關性。KME確保新知識能夠高效地融入預訓練的LLMs,而不會負面影響與編輯無關的預訓練知識。 在這份調查中,我們將現有的KME方法分為以下三個主要類別:

? 基于外部記憶的方法利用外部存儲器來存儲新的知識,以進行編輯,而不修改預訓練的權重,其中預訓練的知識可以在LLM權重中完全保留。通過使用外部參數存儲新知識,基于記憶的策略能夠準確地表示新知識,并具有良好的可伸縮性,因為記憶容易擴展以融入新知識。

?** 全局優化方法通過優化在新知識的指導下尋求將新知識普遍地合并到預訓練的LLMs中**,其中引入了定制策略來限制其他預訓練知識的影響,與簡單的微調區分開來。然而,由于需要優化的參數數量眾多,這些方法在應用于LLMs時可能在編輯效率上有所不足。

? 基于局部修改的方法旨在找到LLMs中特定知識的相關參數,并相應地更新它以融入與編輯相關的新知識。局部修改的主要優勢是只可能更新模型參數的一小部分,從而與基于記憶的方法相比提供了相當的內存效率,并與全局優化相比提供了計算效率。

上述分類是基于新信息被引入LLM的位置(例如,外部參數或內部權重)和方式(例如,通過優化或直接合并)進行的。具體而言,每個類別的方法在Sec. 4中引入的四個關鍵評估指標方面都展現出不同的優勢和劣勢。例如,當計算資源有限而需要大量編輯時,外部記憶在場景中占優勢,因為記憶的大小可以控制以適應不同的要求。另一方面,當實踐者更關注編輯知識的普遍性時,全局優化是有利的,因為優化可以促進相關知識的學習[2]。該分類法在圖3中進行了直觀的說明,并在表2中總結了所有方法的具體特點。

在這次綜述中,我們對知識為基礎的模型編輯(KME)技術進行了全面而深入的調研,以準確且高效地更新預訓練LLMs中的新知識。我們首先將KME問題構建為一個受約束的優化目標,該目標同時確保編輯的準確性和保留,這適用于包括不同KME策略。接著,我們提供了KME的評估指標概述,這有助于了解編輯模型的理想屬性。隨后,我們提出了一個結構化的分類框架,以系統地分類現有的KME技術。在每個類別中,我們概述了核心挑戰,詳細說明了代表性方法,并討論了它們的優勢和劣勢。此外,我們總結了廣泛用于評估KME技術的數據集,強調某些技術需要特定的數據集結構進行訓練或評估。為了激勵研究人員設計更多的實際實現,我們還強調了KME技術的實際應用。最后,我們確定了未來研究的幾個潛在挑戰,并提供了有助于進一步推進該領域的有見地的方向。

付費5元查看完整內容

近年來,卷積神經網絡(CNN)憑借強大的特征提取和表達能力,在圖像分析領域的諸多應用中取得了令人矚目的成就。但是,CNN性能的不斷提升幾乎完全得益于網絡模型的越來越深和越來越大,在這個情況下,部署完整的CNN往往需要巨大的內存開銷和高性能的計算單元(如GPU)支撐,而在計算資源受限的嵌入式設備以及高實時要求的移動終端上,CNN的廣泛應用存在局限性。因此,CNN迫切需要網絡輕量化。目前解決以上難題的網絡壓縮和加速途徑主要有知識蒸餾、網絡剪枝、參數量化、低秩分解、輕量化網絡設計等。首先介紹了卷積神經網絡的基本結構和發展歷程,簡述和對比了五種典型的網絡壓縮基本方法;然后重點針對知識蒸餾方法進行了詳細的梳理與總結,并在CIFAR數據集上對不同方法進行了實驗對比;其后介紹了知識蒸餾方法目前的評價體系,給出多類型方法的對比分析和評價;最后對該技術未來的拓展研究給出了初步的思考。

//fcst.ceaj.org/CN/abstract/abstract2907.shtml

付費5元查看完整內容
北京阿比特科技有限公司