有幾個主要的主題貫穿全書。這些主題主要是對兩個不同類別的比較。當你閱讀的時候,很重要的一點是你要明白書的不同部分適合什么類別,不適合什么類別。
統計與因果。即使有無限多的數據,我們有時也無法計算一些因果量。相比之下,很多統計是關于在有限樣本中解決不確定性的。當給定無限數據時,沒有不確定性。然而,關聯,一個統計概念,不是因果關系。在因果推理方面還有更多的工作要做,即使在開始使用無限數據之后也是如此。這是激發因果推理的主要區別。我們在這一章已經做了這樣的區分,并將在整本書中繼續做這樣的區分。
識別與評估。因果效應的識別是因果推論所獨有的。這是一個有待解決的問題,即使我們有無限的數據。然而,因果推理也與傳統統計和機器學習共享估計。我們將主要從識別因果效應(在第2章中,4和6)之前估計因果效應(第7章)。例外是2.5節和節4.6.2,我們進行完整的例子估計給你的整個過程是什么樣子。
介入與觀察。如果我們能進行干預/實驗,因果效應的識別就相對容易了。這很簡單,因為我們可以采取我們想要衡量因果效應的行動,并簡單地衡量我們采取行動后的效果。觀測數據變得更加復雜,因為數據中幾乎總是引入混雜。
假設。將會有一個很大的焦點是我們用什么假設來得到我們得到的結果。每個假設都有自己的框來幫助人們注意到它。清晰的假設應該使我們很容易看到對給定的因果分析或因果模型的批評。他們希望,清晰地提出假設將導致對因果關系的更清晰的討論。
這是一本關于理論計算機科學的本科入門課程的教科書。這本書的教育目的是傳達以下信息:
? 這種計算出現在各種自然和人為系統中,而不僅僅是現代的硅基計算機中。 ? 類似地,除了作為一個極其重要的工具,計算也作為一個有用的鏡頭來描述自然,物理,數學,甚至社會概念。 ? 許多不同計算模型的普遍性概念,以及代碼和數據之間的二元性相關概念。 ? 一個人可以精確地定義一個計算的數學模型,然后用它來證明(有時只是猜測)下界和不可能的結果。 ? 現代理論計算機科學的一些令人驚訝的結果和發現,包括np完備性的流行、交互作用的力量、一方面的隨機性的力量和另一方面的去隨機化的可能性、在密碼學中“為好的”使用硬度的能力,以及量子計算的迷人可能性。
當前的深度學習研究以基準評價為主。如果一種方法在專門的測試集上有良好的經驗表現,那么它就被認為是有利的。這種心態無縫地反映在持續學習的重現領域,在這里研究的是持續到達的基準數據集。核心挑戰是如何保護之前獲得的表示,以免由于迭代參數更新而出現災難性地遺忘的情況。然而,各個方法的比較是與現實應用程序隔離的,通常通過監視累積的測試集性能來判斷。封閉世界的假設仍然占主導地位。假設在部署過程中,一個模型保證會遇到來自與用于訓練的相同分布的數據。這帶來了一個巨大的挑戰,因為眾所周知,神經網絡會對未知的實例提供過于自信的錯誤預測,并在數據損壞的情況下崩潰。在這個工作我們認為值得注意的教訓來自開放數據集識別,識別的統計偏差以外的數據觀測數據集,和相鄰的主動學習領域,數據增量查詢等預期的性能收益最大化,這些常常在深度學習的時代被忽略。基于這些遺忘的教訓,我們提出了一個統一的觀點,以搭建持續學習,主動學習和開放集識別在深度神經網絡的橋梁。我們的結果表明,這不僅有利于每個個體范式,而且突出了在一個共同框架中的自然協同作用。我們從經驗上證明了在減輕災難性遺忘、主動學習中查詢數據、選擇任務順序等方面的改進,同時在以前提出的方法失敗的地方展示了強大的開放世界應用。
//www.zhuanzhi.ai/paper/e5bee7a1e93a93ef97e1c
概述:
隨著實用機器學習系統的不斷成熟,社區發現了對持續學習[1]、[2]的興趣。與廣泛練習的孤立學習不同,在孤立學習中,系統的算法訓練階段被限制在一個基于先前收集的i.i.d數據集的單一階段,持續學習需要利用隨著時間的推移而到來的數據的學習過程。盡管這種范式已經在許多機器學習系統中找到了各種應用,回顧一下最近關于終身機器學習[3]的書,深度學習的出現似乎已經將當前研究的焦點轉向了一種稱為“災難性推理”或“災難性遺忘”的現象[4],[5],正如最近的評論[6],[7],[8],[9]和對深度持續學習[8],[10],[11]的實證調查所表明的那樣。后者是機器學習模型的一個特殊效應,機器學習模型貪婪地根據給定的數據群更新參數,比如神經網絡迭代地更新其權值,使用隨機梯度估計。當包括導致數據分布發生任何變化的不斷到達的數據時,學習到的表示集被單向引導,以接近系統當前公開的數據實例上的任何任務的解決方案。自然的結果是取代以前學到的表征,導致突然忘記以前獲得的信息。
盡管目前的研究主要集中在通過專門機制的設計來緩解持續深度學習中的這種遺忘,但我們認為,一種非常不同形式的災難性遺忘的風險正在增長,即忘記從過去的文獻中吸取教訓的危險。盡管在連續的訓練中保留神經網絡表示的努力值得稱贊,但除了只捕獲災難性遺忘[12]的度量之外,我們還高度關注了實際的需求和權衡,例如包括內存占用、計算成本、數據存儲成本、任務序列長度和訓練迭代次數等。如果在部署[14]、[15]、[16]期間遇到看不見的未知數據或小故障,那么大多數當前系統會立即崩潰,這幾乎可以被視為誤導。封閉世界的假設似乎無所不在,即認為模型始終只會遇到與訓練過程中遇到的數據分布相同的數據,這在真實的開放世界中是非常不現實的,因為在開放世界中,數據可以根據不同的程度變化,而這些變化是不現實的,無法捕獲到訓練集中,或者用戶能夠幾乎任意地向系統輸入預測信息。盡管當神經網絡遇到不可見的、未知的數據實例時,不可避免地會產生完全沒有意義的預測,這是眾所周知的事實,已經被暴露了幾十年了,但是當前的努力是為了通過不斷學習來規避這一挑戰。選擇例外嘗試解決識別不可見的和未知的示例、拒絕荒謬的預測或將它們放在一邊供以后使用的任務,通常總結在開放集識別的傘下。然而,大多數現有的深度連續學習系統仍然是黑盒,不幸的是,對于未知數據的錯誤預測、數據集的異常值或常見的圖像損壞[16],這些系統并沒有表現出理想的魯棒性。
除了目前的基準測試實踐仍然局限于封閉的世界之外,另一個不幸的趨勢是對創建的持續學習數據集的本質缺乏理解。持續生成模型(如[17]的作者的工作,[18],[19],[20],[21],[22]),以及類增量持續學習的大部分工作(如[12]中給出的工作,[23],[24],[25],[26],[27],[28])一般調查sequentialized版本的經過時間考驗的視覺分類基準如MNIST [29], CIFAR[30]或ImageNet[31],單獨的類只是分成分離集和序列所示。為了在基準中保持可比性,關于任務排序的影響或任務之間重疊的影響的問題通常會被忽略。值得注意的是,從鄰近領域的主動機器學習(半監督學習的一種特殊形式)中吸取的經驗教訓,似乎并沒有整合到現代的連續學習實踐中。在主動學習中,目標是學會在讓系統自己查詢接下來要包含哪些數據的挑戰下,逐步地找到與任務解決方案最接近的方法。因此,它可以被視為緩解災難性遺忘的對抗劑。當前的持續學習忙于維護在每個步驟中獲得的信息,而不是無休止地積累所有的數據,而主動學習則關注于識別合適的數據以納入增量訓練系統的補充問題。盡管在主動學習方面的早期開創性工作已經迅速識別出了通過使用啟發式[32]、[33]、[34]所面臨的強大應用的挑戰和陷阱,但后者在深度學習[35]、[36]、[37]、[38]的時代再次占據主導地位,這些挑戰將再次面臨。
在這項工作中,我們第一次努力建立一個原則性和鞏固的深度持續學習、主動學習和在開放的世界中學習的觀點。我們首先單獨回顧每一個主題,然后繼續找出在現代深度學習中似乎較少受到關注的以前學到的教訓。我們將繼續爭論,這些看似獨立的主題不僅從另一個角度受益,而且應該結合起來看待。在這個意義上,我們建議將當前的持續學習實踐擴展到一個更廣泛的視角,將持續學習作為一個總括性術語,自然地包含并建立在先前的主動學習和開放集識別工作之上。本文的主要目的并不是引入新的技術或提倡一種特定的方法作為通用的解決方案,而是對最近提出的神經網絡[39]和[40]中基于變分貝葉斯推理的方法進行了改進和擴展,以說明一種走向全面框架的可能選擇。重要的是,它作為論證的基礎,努力闡明生成建模作為深度學習系統關鍵組成部分的必要性。我們強調了在這篇論文中發展的觀點的重要性,通過實證證明,概述了未來研究的含義和有前景的方向。
本課程的教材是從機器學習的角度寫的,是為那些有必要先決條件并對學習因果關系基礎感興趣的人而開設的。我盡我最大的努力整合來自許多不同領域的見解,利用因果推理,如流行病學、經濟學、政治學、機器學習等。
有幾個主要的主題貫穿全課程。這些主題主要是對兩個不同類別的比較。當你閱讀的時候,很重要的一點是你要明白書的不同部分適合什么類別,不適合什么類別。
統計與因果。即使有無限多的數據,我們有時也無法計算一些因果量。相比之下,很多統計是關于在有限樣本中解決不確定性的。當給定無限數據時,沒有不確定性。然而,關聯,一個統計概念,不是因果關系。在因果推理方面還有更多的工作要做,即使在開始使用無限數據之后也是如此。這是激發因果推理的主要區別。我們在這一章已經做了這樣的區分,并將在整本書中繼續做這樣的區分。
識別與評估。因果效應的識別是因果推論所獨有的。這是一個有待解決的問題,即使我們有無限的數據。然而,因果推理也與傳統統計和機器學習共享估計。我們將主要從識別因果效應(在第2章中,4和6)之前估計因果效應(第7章)。例外是2.5節和節4.6.2,我們進行完整的例子估計給你的整個過程是什么樣子。
介入與觀察。如果我們能進行干預/實驗,因果效應的識別就相對容易了。這很簡單,因為我們可以采取我們想要衡量因果效應的行動,并簡單地衡量我們采取行動后的效果。觀測數據變得更加復雜,因為數據中幾乎總是引入混雜。
假設。將會有一個很大的焦點是我們用什么假設來得到我們得到的結果。每個假設都有自己的框來幫助人們注意到它。清晰的假設應該使我們很容易看到對給定的因果分析或因果模型的批評。他們希望,清晰地提出假設將導致對因果關系的更清晰的討論。
為工程師寫的機器學習簡介(A Brief Introduction to Machine Learning for Engineers)
摘要
本專著的目標是介紹機器學習領域內的關鍵概念、算法和理論框架,涵蓋了監督學習與無監督學習、統計學習理論、概率圖模型和近似推斷等方向。本專著的目標讀者是具有概率學和線性代數背景的電氣工程師。本書基于第一原理(first principle)寫作,并按照有清晰定義的分類方式對其中的主要思想進行了組織,其中的類別包含鑒別式模型和生成式模型、頻率論者和貝葉斯方法、準確推斷和近似推斷、有向模型和無向模型、凸優化和非凸優化。本書中的數學框架使用了信息論的描述方式,以便工具具有統一性。書中提供了簡單且可重復的數值示例,以便讀者了解相關的關鍵動機和結論。本專著的目的并不是要為每個特定類別中已有的大量解決方案提供詳盡的細節描述(這些描述讀者可參閱教科書和論文了解),而是為了給工程師提供一個切入點,以便他們能借此進一步深入機器學習相關文獻。
【導讀】紐約大學的Andrew Gordon Wilson和Pavel Izmailov在論文中從概率角度的泛化性對貝葉斯深度學習進行了探討。貝葉斯方法的關鍵區別在于它是基于邊緣化,而不是基于最優化的,這為它帶來了許多優勢。
貝葉斯方法的關鍵區別是邊緣化,而不是使用單一的權重設置。貝葉斯邊緣化可以特別提高現代深度神經網絡的準確性和校準,這是典型的不由數據完全確定,可以代表許多令人信服的但不同的解決方案。我們證明了深度集成為近似貝葉斯邊緣化提供了一種有效的機制,并提出了一種相關的方法,通過在沒有顯著開銷的情況下,在吸引域邊緣化來進一步改進預測分布。我們還研究了神經網絡權值的模糊分布所隱含的先驗函數,從概率的角度解釋了這些模型的泛化性質。從這個角度出發,我們解釋了那些對于神經網絡泛化來說神秘而獨特的結果,比如用隨機標簽來擬合圖像的能力,并證明了這些結果可以用高斯過程來重現。最后,我們提供了校正預測分布的貝葉斯觀點。
對因果推理的簡明和自成體系的介紹,在數據科學和機器學習中越來越重要。
因果關系的數學化是一個相對較新的發展,在數據科學和機器學習中變得越來越重要。這本書提供了一個獨立的和簡明的介紹因果模型和如何學習他們的數據。在解釋因果模型的必要性,討論潛在的因果推論的一些原則,這本書教讀者如何使用因果模型:如何計算干預分布,如何從觀測推斷因果模型和介入的數據,和如何利用因果思想經典的機器學習問題。所有這些主題都將首先以兩個變量的形式進行討論,然后在更一般的多元情況下進行討論。對于因果學習來說,二元情況是一個特別困難的問題,因為經典方法中用于解決多元情況的條件獨立不存在。作者認為分析因果之間的統計不對稱是非常有意義的,他們報告了他們對這個問題十年來的深入研究。
本書對具有機器學習或統計學背景的讀者開放,可用于研究生課程或作為研究人員的參考。文本包括可以復制和粘貼的代碼片段、練習和附錄,其中包括最重要的技術概念摘要。
首先,本書主要研究因果關系推理子問題,這可能被認為是最基本和最不現實的。這是一個因果問題,需要分析的系統只包含兩個可觀測值。在過去十年中,作者對這個問題進行了較為詳細的研究。本書整理這方面的大部分工作,并試圖將其嵌入到作者認為對研究因果關系推理問題的選擇性至關重要的更大背景中。盡管先研究二元(bivariate)案例可能有指導意義,但按照章節順序,也可以直接開始閱讀多元(multivariate)章節;見圖一。
第二,本書提出的解決方法來源于機器學習和計算統計領域的技術。作者對其中的方法如何有助于因果結構的推斷更感興趣,以及因果推理是否能告訴我們應該如何進行機器學習。事實上,如果我們不把概率分布描述的隨機實驗作為出發點,而是考慮分布背后的因果結構,機器學習的一些最深刻的開放性問題就能得到最好的理解。