亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

為工程師寫的機器學習簡介(A Brief Introduction to Machine Learning for Engineers)

//arxiv.org/abs/1709.02840

摘要

本專著的目標是介紹機器學習領域內的關鍵概念、算法和理論框架,涵蓋了監督學習與無監督學習、統計學習理論、概率圖模型和近似推斷等方向。本專著的目標讀者是具有概率學和線性代數背景的電氣工程師。本書基于第一原理(first principle)寫作,并按照有清晰定義的分類方式對其中的主要思想進行了組織,其中的類別包含鑒別式模型和生成式模型、頻率論者和貝葉斯方法、準確推斷和近似推斷、有向模型和無向模型、凸優化和非凸優化。本書中的數學框架使用了信息論的描述方式,以便工具具有統一性。書中提供了簡單且可重復的數值示例,以便讀者了解相關的關鍵動機和結論。本專著的目的并不是要為每個特定類別中已有的大量解決方案提供詳盡的細節描述(這些描述讀者可參閱教科書和論文了解),而是為了給工程師提供一個切入點,以便他們能借此進一步深入機器學習相關文獻。

付費5元查看完整內容

相關內容

管理統計和數據科學的原理包括:數據可視化;描述性措施;概率;概率分布;數學期望;置信區間;和假設檢驗。方差分析;簡單線性回歸;多元線性回歸也包括在內。另外,本書還提供了列聯表、卡方檢驗、非參數方法和時間序列方法。

教材:

  • 包括通常在入門統計學課程中涵蓋的學術材料,但與數據科學扭曲,較少強調理論
  • 依靠Minitab來展示如何用計算機執行任務
  • 展示并促進來自開放門戶的數據的使用
  • 重點是發展對程序如何工作的直覺
  • 讓讀者了解大數據的潛力和目前使用它的失敗之處
付費5元查看完整內容

在復雜的以人為中心的系統中,每天的決策都具有決策相關信息不完全的特點。現有決策理論的主要問題是,它們沒有能力處理概率和事件不精確的情況。在這本書中,我們描述了一個新的理論的決策與不完全的信息。其目的是將決策分析和經濟行為的基礎從領域二價邏輯轉向領域模糊邏輯和Z約束,從行為決策的外部建模轉向組合狀態的框架。

這本書將有助于在模糊邏輯,決策科學,人工智能,數學經濟學,和計算經濟學的專業人員,學者,經理和研究生。

讀者:專業人士,學者,管理者和研究生在模糊邏輯,決策科學,人工智能,數學經濟學,和計算經濟學。

付費5元查看完整內容

這本教科書通過提供實用的建議,使用直接的例子,并提供相關應用的引人入勝的討論,以一種容易理解的方式介紹了基本的機器學習概念。主要的主題包括貝葉斯分類器,最近鄰分類器,線性和多項式分類器,決策樹,神經網絡,和支持向量機。后面的章節展示了如何通過“推進”的方式結合這些簡單的工具,如何在更復雜的領域中利用它們,以及如何處理各種高級的實際問題。有一章專門介紹流行的遺傳算法。

這個修訂的版本包含關于工業中機器學習的實用應用的關鍵主題的三個全新的章節。這些章節研究了多標簽域,無監督學習和它在深度學習中的使用,以及歸納邏輯編程的邏輯方法。許多章節已經被擴展,并且材料的呈現已經被增強。這本書包含了許多新的練習,許多解決的例子,深入的實驗,和獨立工作的計算機作業。

//link.springer.com/book/10.1007/978-3-319-63913-0#about

付費5元查看完整內容

本書涵蓋了這些領域中使用Python模塊演示的概率、統計和機器學習的關鍵思想。整本書包括所有的圖形和數值結果,都可以使用Python代碼及其相關的Jupyter/IPython Notebooks。作者通過使用多種分析方法和Python代碼的有意義的示例,開發了機器學習中的關鍵直覺,從而將理論概念與具體實現聯系起來。現代Python模塊(如panda、y和Scikit-learn)用于模擬和可視化重要的機器學習概念,如偏差/方差權衡、交叉驗證和正則化。許多抽象的數學思想,如概率論中的收斂性,都得到了發展,并用數值例子加以說明。本書適合任何具有概率、統計或機器學習的本科生,以及具有Python編程的基本知識的人。

付費5元查看完整內容

高斯過程(GPs)為核機器的學習提供了一種有原則的、實用的、概率的方法。在過去的十年中,GPs在機器學習社區中得到了越來越多的關注,這本書提供了GPs在機器學習中理論和實踐方面長期需要的系統和統一的處理。該書是全面和獨立的,針對研究人員和學生在機器學習和應用統計學。

這本書處理監督學習問題的回歸和分類,并包括詳細的算法。提出了各種協方差(核)函數,并討論了它們的性質。從貝葉斯和經典的角度討論了模型選擇。討論了許多與其他著名技術的聯系,包括支持向量機、神經網絡、正則化網絡、相關向量機等。討論了包括學習曲線和PAC-Bayesian框架在內的理論問題,并討論了幾種用于大數據集學習的近似方法。這本書包含說明性的例子和練習,和代碼和數據集在網上是可得到的。附錄提供了數學背景和高斯馬爾可夫過程的討論。

付費5元查看完整內容

概率圖模型是機器學習中的一種技術,它使用圖論的概念來簡明地表示和最佳地預測數據問題中的值。

圖模型為我們提供了在數據中發現復雜模式的技術,廣泛應用于語音識別、信息提取、圖像分割和基因調控網絡建模等領域。

這本書從概率論和圖論的基礎開始,然后繼續討論各種模型和推理算法。所有不同類型的模型都將與代碼示例一起討論,以創建和修改它們,并在它們上運行不同的推理算法。有一整章是關于樸素貝葉斯模型和隱馬爾可夫模型的。這些模型已經通過實際例子進行了詳細的討論。

你會學到什么

  • 掌握概率論和圖論的基本知識
  • 使用馬爾可夫網絡
  • 實現貝葉斯網絡
  • 圖模型中的精確推理技術,如變量消除算法
  • 了解圖模型中的近似推理技術,如消息傳遞算法

圖模型中的示例算法 通過真實的例子來掌握樸素貝葉斯的細節 使用Python中的各種庫部署PGMs 獲得隱馬爾可夫模型的工作細節與現實世界的例子

詳細 概率圖模型是機器學習中的一種技術,它使用圖論的概念來簡潔地表示和最佳地預測數據問題中的值。在現實問題中,往往很難選擇合適的圖模型和合適的推理算法,這對計算時間和精度有很大的影響。因此,了解這些算法的工作細節是至關重要的。

這本書從概率論和圖論的基礎開始,然后繼續討論各種模型和推理算法。所有不同類型的模型都將與代碼示例一起討論,以創建和修改它們,并在它們上運行不同的推理算法。有一個完整的章節專門討論最廣泛使用的網絡樸素貝葉斯模型和隱馬爾可夫模型(HMMs)。這些模型已經通過實際例子進行了詳細的討論。

風格和方法 一個易于遵循的指南,幫助您理解概率圖模型使用簡單的例子和大量的代碼例子,重點放在更廣泛使用的模型。

付費5元查看完整內容

本文采用了一種獨特的機器學習方法,它包含了對進行研究、開發產品、修補和玩耍所必需的所有基本概念的全新的、直觀的、但又嚴謹的描述。通過優先考慮幾何直觀,算法思維,和實際應用的學科,包括計算機視覺,自然語言處理,經濟學,神經科學,推薦系統,物理,和生物學,這篇文章為讀者提供了一個清晰的理解基礎材料以及實際工具需要解決現實世界的問題。通過深入的Python和基于MATLAB/ octave的計算練習,以及對前沿數值優化技術的完整處理,這是學生的基本資源,也是從事機器學習、計算機科學、電子工程、信號處理和數值優化的研究人員和實踐者的理想參考。其他資源包括補充討論主題、代碼演示和練習,可以在官方教材網站mlrefined.com上找到。

  • 建立在清晰的幾何直覺上的講述
  • 最先進的數值優化技術的獨特處理
  • 邏輯回歸和支持向量機的融合介紹
  • 將功能設計和學習作為主要主題
  • 通過函數逼近的視角,先進主題的無與倫比的呈現
  • 深度神經網絡和核方法的細化描述
付費5元查看完整內容

對因果推理的簡明和自成體系的介紹,在數據科學和機器學習中越來越重要。

因果關系的數學化是一個相對較新的發展,在數據科學和機器學習中變得越來越重要。這本書提供了一個獨立的和簡明的介紹因果模型和如何學習他們的數據。在解釋因果模型的必要性,討論潛在的因果推論的一些原則,這本書教讀者如何使用因果模型:如何計算干預分布,如何從觀測推斷因果模型和介入的數據,和如何利用因果思想經典的機器學習問題。所有這些主題都將首先以兩個變量的形式進行討論,然后在更一般的多元情況下進行討論。對于因果學習來說,二元情況是一個特別困難的問題,因為經典方法中用于解決多元情況的條件獨立不存在。作者認為分析因果之間的統計不對稱是非常有意義的,他們報告了他們對這個問題十年來的深入研究。

本書對具有機器學習或統計學背景的讀者開放,可用于研究生課程或作為研究人員的參考。文本包括可以復制和粘貼的代碼片段、練習和附錄,其中包括最重要的技術概念摘要。

首先,本書主要研究因果關系推理子問題,這可能被認為是最基本和最不現實的。這是一個因果問題,需要分析的系統只包含兩個可觀測值。在過去十年中,作者對這個問題進行了較為詳細的研究。本書整理這方面的大部分工作,并試圖將其嵌入到作者認為對研究因果關系推理問題的選擇性至關重要的更大背景中。盡管先研究二元(bivariate)案例可能有指導意義,但按照章節順序,也可以直接開始閱讀多元(multivariate)章節;見圖一。

第二,本書提出的解決方法來源于機器學習和計算統計領域的技術。作者對其中的方法如何有助于因果結構的推斷更感興趣,以及因果推理是否能告訴我們應該如何進行機器學習。事實上,如果我們不把概率分布描述的隨機實驗作為出發點,而是考慮分布背后的因果結構,機器學習的一些最深刻的開放性問題就能得到最好的理解。
付費5元查看完整內容

前言: 目標:本課程旨在讓學生對人工智能的基本概念和實踐有一個堅實的(通常是有點理論性的)基礎。這門課程在第一學期主要涉及符號化的人工智能,有時也被稱為優秀的老式人工智能(GofAI),并在第二學期提供統計方法的基礎。事實上,一個完整的基于機器學習的AI應該有專業課程,并且需要比我們在這門課程中更多的數學基礎。

課程內容

目標: 使學生對人工智能領域的基本概念和實踐有一個堅實的基礎。該課程將基于Russell/Norvig的書《人工智能》:現代方法[RN09]

Artificial Intelligence I(第一部分): 介紹人工智能作為一個研究領域,討論作為人工智能統一概念范式的理性代理,并涵蓋問題解決、搜索、約束傳播、邏輯、知識表示和規劃。

Artificial Intelligence II(第二部分): 更傾向于讓學生接觸基于統計的人工智能的基礎知識:我們從不確定性下的推理開始,用貝葉斯網絡建立基礎,并將其擴展到理性決策理論。在此基礎上,我們介紹了機器學習的基礎知識。

付費5元查看完整內容
北京阿比特科技有限公司