概率圖模型是機器學習中的一種技術,它使用圖論的概念來簡明地表示和最佳地預測數據問題中的值。
圖模型為我們提供了在數據中發現復雜模式的技術,廣泛應用于語音識別、信息提取、圖像分割和基因調控網絡建模等領域。
這本書從概率論和圖論的基礎開始,然后繼續討論各種模型和推理算法。所有不同類型的模型都將與代碼示例一起討論,以創建和修改它們,并在它們上運行不同的推理算法。有一整章是關于樸素貝葉斯模型和隱馬爾可夫模型的。這些模型已經通過實際例子進行了詳細的討論。
你會學到什么
圖模型中的示例算法 通過真實的例子來掌握樸素貝葉斯的細節 使用Python中的各種庫部署PGMs 獲得隱馬爾可夫模型的工作細節與現實世界的例子
詳細 概率圖模型是機器學習中的一種技術,它使用圖論的概念來簡潔地表示和最佳地預測數據問題中的值。在現實問題中,往往很難選擇合適的圖模型和合適的推理算法,這對計算時間和精度有很大的影響。因此,了解這些算法的工作細節是至關重要的。
這本書從概率論和圖論的基礎開始,然后繼續討論各種模型和推理算法。所有不同類型的模型都將與代碼示例一起討論,以創建和修改它們,并在它們上運行不同的推理算法。有一個完整的章節專門討論最廣泛使用的網絡樸素貝葉斯模型和隱馬爾可夫模型(HMMs)。這些模型已經通過實際例子進行了詳細的討論。
風格和方法 一個易于遵循的指南,幫助您理解概率圖模型使用簡單的例子和大量的代碼例子,重點放在更廣泛使用的模型。
通過這個緊湊的實用指南,開始使用Python進行數據分析。這本書包括三個練習和一個用正確的格式從Python代碼中獲取數據的案例研究。使用Python學習數據分析還可以幫助您使用分析發現數據中的意義,并展示如何可視化數據。
每一節課都盡可能是獨立的,允許您根據需要插入和退出示例。如果您已經在使用Python進行數據分析,那么您會發現您希望知道如何使用Python來完成許多事情。然后,您可以將這些技術直接應用到您自己的項目中。
如果您不使用Python進行數據分析,那么本書從一開始就帶您了解基礎知識,為您在該主題中打下堅實的基礎。當你閱讀完這本書的時候,你會對如何使用Python進行數據分析有更好的理解。
你將學到什么
這本書是給誰的
想學習使用Python進行數據分析的同學。建議您具有Python方面的經驗,但不是必需的,因為您需要具有數據分析或數據科學方面的經驗。
有興趣的數據科學專業人士可以通過本書學習Scikit-Learn圖書館以及機器學習的基本知識。本書結合了Anaconda Python發行版和流行的Scikit-Learn庫,演示了廣泛的有監督和無監督機器學習算法。通過用Python編寫的清晰示例,您可以在家里自己的機器上試用和試驗機器學習的原理。
所有的應用數學和編程技能需要掌握的內容,在這本書中涵蓋。不需要深入的面向對象編程知識,因為工作和完整的例子被提供和解釋。必要時,編碼示例是深入和復雜的。它們也簡潔、準確、完整,補充了介紹的機器學習概念。使用示例有助于建立必要的技能,以理解和應用復雜的機器學習算法。
對于那些在機器學習方面追求職業生涯的人來說,Scikit-Learn機器學習應用手冊是一個很好的起點。學習這本書的學生將學習基本知識,這是勝任工作的先決條件。讀者將接觸到專門為數據科學專業人員設計的蟒蛇分布,并將在流行的Scikit-Learn庫中構建技能,該庫是Python世界中許多機器學習應用程序的基礎。
你將學習
這本書是給誰的
機器學習已經成為許多商業應用和研究項目中不可或缺的一部分,但這一領域并不僅限于擁有廣泛研究團隊的大公司。如果您使用Python,即使是初學者,這本書也會教你構建自己的機器學習解決方案的實用方法。今天,有了所有可用的數據,機器學習應用程序只受限于你的想象力。
您將學習使用Python和scikit-learn庫創建成功的機器學習應用程序所需的步驟。兩位作者安德烈亞斯?穆勒(Andreas Muller)和薩拉?圭多(Sarah Guido)關注的是使用機器學習算法的實踐層面,而不是背后的數學。熟悉NumPy和matplotlib庫將有助于您從本書獲得更多信息。
通過這本書,你會學到 :
通過機器學習的實際操作指南深入挖掘數據
機器學習: 為開發人員和技術專業人員提供實踐指導和全編碼的工作示例,用于開發人員和技術專業人員使用的最常見的機器學習技術。這本書包含了每一個ML變體的詳細分析,解釋了它是如何工作的,以及如何在特定的行業中使用它,允許讀者在閱讀過程中將所介紹的技術融入到他們自己的工作中。機器學習的一個核心內容是對數據準備的強烈關注,對各種類型的學習算法的全面探索說明了適當的工具如何能夠幫助任何開發人員從現有數據中提取信息和見解。這本書包括一個完整的補充教師的材料,以方便在課堂上使用,使這一資源有用的學生和作為一個專業的參考。
機器學習的核心是一種基于數學和算法的技術,它是歷史數據挖掘和現代大數據科學的基礎。對大數據的科學分析需要機器學習的工作知識,它根據從訓練數據中獲得的已知屬性形成預測。機器學習是一個容易理解的,全面的指導,為非數學家,提供明確的指導,讓讀者:
通過學習構建一個可以從數據中學習的系統,讀者可以在各個行業中增加他們的效用。機器學習是深度數據分析和可視化的核心,隨著企業發現隱藏在現有數據中的金礦,這一領域的需求越來越大。對于涉及數據科學的技術專業人員,機器學習:為開發人員和技術專業人員提供深入挖掘所需的技能和技術。
高斯過程(GPs)為核機器的學習提供了一種有原則的、實用的、概率的方法。在過去的十年中,GPs在機器學習社區中得到了越來越多的關注,這本書提供了GPs在機器學習中理論和實踐方面長期需要的系統和統一的處理。該書是全面和獨立的,針對研究人員和學生在機器學習和應用統計學。
這本書處理監督學習問題的回歸和分類,并包括詳細的算法。提出了各種協方差(核)函數,并討論了它們的性質。從貝葉斯和經典的角度討論了模型選擇。討論了許多與其他著名技術的聯系,包括支持向量機、神經網絡、正則化網絡、相關向量機等。討論了包括學習曲線和PAC-Bayesian框架在內的理論問題,并討論了幾種用于大數據集學習的近似方法。這本書包含說明性的例子和練習,和代碼和數據集在網上是可得到的。附錄提供了數學背景和高斯馬爾可夫過程的討論。
這個可訪問的文本/參考提供了從工程角度對概率圖模型(PGMs)的一般介紹。這本書涵蓋了每一個PGMs的主要類的基礎知識,包括表示、推理和學習原則,并回顧了每種類型模型的實際應用。這些應用來自廣泛的學科領域,突出了貝葉斯分類器、隱馬爾可夫模型、貝葉斯網絡、動態和時態貝葉斯網絡、馬爾可夫隨機域、影響圖和馬爾可夫決策過程的多種用途。
提出了一個統一的框架,包括所有的主要類別的PGMs;描述不同技術的實際應用;檢視該領域的最新發展,包括多維貝葉斯分類器、相關圖模型和因果模型;在每一章的結尾提供練習,進一步閱讀的建議,和研究或編程項目的想法。
獲得在日常工作中應用機器學習所需的信心。通過本實用指南,作者Matthew Kirk向您展示了如何在您的代碼中集成和測試機器學習算法,而沒有學術潛臺詞。
全書以圖形和突出顯示的代碼示例為特色,使用Python的Numpy、panda、Scikit-Learn和SciPy數據科學庫進行測試。如果你是一個軟件工程師或業務分析師,對數據科學感興趣,這本書將幫助你:
本書通過提供真實的案例研究和示例,為使用Python庫進行機器學習提供了堅實的基礎。它涵蓋了諸如機器學習基礎、Python入門、描述性分析和預測分析等主題。包括高級機器學習概念,如決策樹學習、隨機森林、增強、推薦系統和文本分析。這本書在理論理解和實際應用之間采取了一種平衡的方法。所有的主題都包括真實世界的例子,并提供如何探索、構建、評估和優化機器學習模型的逐步方法。
這本書在對算法工作原理的高層次理解和對優化模型的具體細節的了解之間找到一個平衡點。這本書將給你的信心和技能時,開發所有主要的機器學習模型。在這本Pro機器學習算法中,您將首先在Excel中開發算法,以便在用Python/R實現模型之前,實際了解可以在模型中調優的所有細節。
你將涵蓋所有主要的算法:監督和非監督學習,其中包括線性/邏輯回歸;k - means聚類;主成分分析;推薦系統;決策樹;隨機森林;“GBM”;和神經網絡。您還將通過CNNs、RNNs和word2vec等文本挖掘工具了解最新的深度學習。你不僅要學習算法,還要學習特征工程的概念來最大化模型的性能。您將看到該理論與案例研究,如情緒分類,欺詐檢測,推薦系統,和圖像識別,以便您得到最佳的理論和實踐為工業中使用的絕大多數機器學習算法。在學習算法的同時,您還將接觸到在所有主要云服務提供商上運行的機器學習模型。
你會學到什么?
這本書是給誰看的
希望轉換到數據科學角色的業務分析師/ IT專業人員。想要鞏固機器學習知識的數據科學家。