亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

獲得在日常工作中應用機器學習所需的信心。通過本實用指南,作者Matthew Kirk向您展示了如何在您的代碼中集成和測試機器學習算法,而沒有學術潛臺詞。

全書以圖形和突出顯示的代碼示例為特色,使用Python的Numpy、panda、Scikit-Learn和SciPy數據科學庫進行測試。如果你是一個軟件工程師或業務分析師,對數據科學感興趣,這本書將幫助你:

  • 參考真實世界的例子來測試每一個算法,通過參與,動手練習
  • 在開始編碼之前,應用測試驅動開發(TDD)來編寫和運行測試
  • 探索使用數據提取和特性開發來改進您的機器學習模型的技術
  • 注意機器學習的風險,如數據擬合不足或過擬合
  • 使用k近鄰、神經網絡、集群和其他算法
付費5元查看完整內容

相關內容

 是一種面向對象的解釋型計算機程序設計語言,在設計中注重代碼的可讀性,同時也是一種功能強大的通用型語言。

?介紹

這本書在保持非常務實的教導和結果導向付出很大的精力。構建聊天機器人不只是完成一個教程或遵循幾個步驟,它本身就是一種技能。這本書肯定不會用大量的文本和過程讓你感到無聊;相反,它采用的是邊做邊學的方法。到目前為止,在你的生活中,你肯定至少使用過一個聊天機器人。無論你是不是一個程序員,一旦你瀏覽這本書,你會發現構建模塊的聊天機器人,所有的奧秘將被揭開。建立聊天機器人可能看起來很困難,但這本書將讓你使它如此容易。我們的大腦不是用來直接處理復雜概念的;相反,我們一步一步地學習。當你讀這本書的時候,從第一章到最后一章,你會發現事情的進展是多么的清晰。雖然你可以直接翻到任何一章,但我強烈建議你從第一章開始,因為它肯定會支持你的想法。這本書就像一個網絡系列,你在讀完一章之后就無法抗拒下一章的誘惑。在閱讀完這本書后,你所接觸到的任何聊天機器人都會在你的腦海中形成一幅關于聊天機器人內部是如何設計和構建的畫面。

這本書適合誰?

這本書將作為學習與聊天機器人相關的概念和學習如何建立他們的一個完整的資源。那些將會發現這本書有用的包括: Python web開發人員希望擴大他們的知識或職業到聊天機器人開發。 學生和有抱負的程序員想獲得一種新的技能通過親身體驗展示的東西,自然語言愛好者希望從頭開始學習。 企業家如何構建一個聊天機器人的偉大的想法,但沒有足夠的技術關于如何制作聊天機器人的可行性信息。 產品/工程經理計劃與聊天機器人相關項目。

如何使用這本書?

請記住,這本書的寫作風格和其他書不一樣。讀這本書的時候要記住,一旦你完成了這本書,你就可以自己建造一個聊天機器人,或者教會別人如何建造一個聊天機器人。在像閱讀其他書籍一樣閱讀這本書之前,務必記住以下幾點:

  • 這本書涵蓋了構建聊天機器人所需的幾乎所有內容,而不是現有內容。
  • 這本書是關于花更多的時間在你的系統上做事情的,這本書就在你身邊。確保您執行每個代碼片段并嘗試編寫代碼;不要復制粘貼。
  • 一定要按照書中的步驟去做;如果你不理解一些事情,不要擔心。你將在本章的后面部分了解到。
  • 可以使用本書所提供的源代碼及Jupyter NoteBook作為參考。

內容概要

  • Chapter 1: 在本章中,你將從商業和開發人員的角度了解與聊天機器人相關的事情。這一章為我們熟悉chatbots概念并將其轉換為代碼奠定了基礎。希望在本章結束時,你會明白為什么你一定要為自己或你的公司創建一個聊天機器人。
  • Chapter 2: 在本章中會涉及聊天機器人的自然語言處理,你將學習到聊天機器人需要NLP時應該使用哪些工具和方法。這一章不僅教你在NLP的方法,而且還采取實際的例子和演示與編碼的例子。本章還討論了為什么使用特定的NLP方法可能需要在聊天機器人。注意,NLP本身就是一種技能。
  • Chapter 3: 在本章中,你將學習如何使用像Dialogflow這樣的工具以一種友好而簡單的方式構建聊天機器人。如果你不是程序員,你肯定會喜歡它,因為它幾乎不需要編程技能。
  • Chapter 4:在本章中,你將學習如何以人們想要的方式構建聊天機器人。標題說的很艱難,但一旦你完成了前一章,你會想要更多,因為這一章將教如何建立內部聊天機器人從零開始,以及如何使用機器學習算法訓練聊天機器人。
  • Chapter 5:在本章中,部署你的聊天機器人純粹是設計給你的聊天機器人應用一個最后的推動。當你經歷了創建聊天機器人的簡單和艱難的過程后,你肯定不想把它留給自己。你將學習如何展示你的聊天機器人到世界使用Facebook和Slack,最后,整合他們在你自己的網站。
付費5元查看完整內容

本書涵蓋了這些領域中使用Python模塊演示的概率、統計和機器學習的關鍵思想。整本書包括所有的圖形和數值結果,都可以使用Python代碼及其相關的Jupyter/IPython Notebooks。作者通過使用多種分析方法和Python代碼的有意義的示例,開發了機器學習中的關鍵直覺,從而將理論概念與具體實現聯系起來。現代Python模塊(如panda、y和Scikit-learn)用于模擬和可視化重要的機器學習概念,如偏差/方差權衡、交叉驗證和正則化。許多抽象的數學思想,如概率論中的收斂性,都得到了發展,并用數值例子加以說明。本書適合任何具有概率、統計或機器學習的本科生,以及具有Python編程的基本知識的人。

付費5元查看完整內容

通過機器學習的實際操作指南深入挖掘數據

機器學習: 為開發人員和技術專業人員提供實踐指導和全編碼的工作示例,用于開發人員和技術專業人員使用的最常見的機器學習技術。這本書包含了每一個ML變體的詳細分析,解釋了它是如何工作的,以及如何在特定的行業中使用它,允許讀者在閱讀過程中將所介紹的技術融入到他們自己的工作中。機器學習的一個核心內容是對數據準備的強烈關注,對各種類型的學習算法的全面探索說明了適當的工具如何能夠幫助任何開發人員從現有數據中提取信息和見解。這本書包括一個完整的補充教師的材料,以方便在課堂上使用,使這一資源有用的學生和作為一個專業的參考。

機器學習的核心是一種基于數學和算法的技術,它是歷史數據挖掘和現代大數據科學的基礎。對大數據的科學分析需要機器學習的工作知識,它根據從訓練數據中獲得的已知屬性形成預測。機器學習是一個容易理解的,全面的指導,為非數學家,提供明確的指導,讓讀者:

  • 學習機器學習的語言,包括Hadoop、Mahout和Weka
  • 了解決策樹、貝葉斯網絡和人工神經網絡
  • 實現關聯規則、實時和批量學習
  • 為安全、有效和高效的機器學習制定戰略計劃

通過學習構建一個可以從數據中學習的系統,讀者可以在各個行業中增加他們的效用。機器學習是深度數據分析和可視化的核心,隨著企業發現隱藏在現有數據中的金礦,這一領域的需求越來越大。對于涉及數據科學的技術專業人員,機器學習:為開發人員和技術專業人員提供深入挖掘所需的技能和技術。

付費5元查看完整內容

Python是一種多范式編程語言,已經成為數據科學家進行數據分析、可視化和機器學習的首選語言。有沒有想過如何成為有效處理數據分析問題的專家,解決這些問題,并從數據中提取所有可用信息?好了,別再找了,這就是你要的書!

通過這個全面的指南,您將探索數據,并以一種有意義的方式展示統計分析的結果和結論。您將能夠快速準確地執行實際操作的排序、縮減和后續分析,并充分理解數據分析方法如何支持業務決策。

您將首先了解Python中可用的數據分析工具,然后探索用于識別數據模式的統計模型。漸漸地,您將使用Python、panda和SciPy回顧統計推斷。在此之后,我們將集中于使用計算工具執行回歸,您將了解如何用算法的方式識別數據中的集群。最后,我們將深入探討使用貝葉斯方法量化因果關系的高級技術,您將發現如何使用Python的工具進行監督機器學習。

你會學到什么

  • 將各種數據讀入、排序并映射到Python和panda中
  • 識別模式,以便理解和研究數據
  • 使用統計模型來發現數據中的模式
  • 回顧使用Python、panda和SciPy的經典統計推斷
  • 使用聚類檢測數據中的相似性和差異性
  • 清理數據,使其有用
  • 在Jupyter筆記本生產出版準備工作數據納入
付費5元查看完整內容

概率圖模型是機器學習中的一種技術,它使用圖論的概念來簡明地表示和最佳地預測數據問題中的值。

圖模型為我們提供了在數據中發現復雜模式的技術,廣泛應用于語音識別、信息提取、圖像分割和基因調控網絡建模等領域。

這本書從概率論和圖論的基礎開始,然后繼續討論各種模型和推理算法。所有不同類型的模型都將與代碼示例一起討論,以創建和修改它們,并在它們上運行不同的推理算法。有一整章是關于樸素貝葉斯模型和隱馬爾可夫模型的。這些模型已經通過實際例子進行了詳細的討論。

你會學到什么

  • 掌握概率論和圖論的基本知識
  • 使用馬爾可夫網絡
  • 實現貝葉斯網絡
  • 圖模型中的精確推理技術,如變量消除算法
  • 了解圖模型中的近似推理技術,如消息傳遞算法

圖模型中的示例算法 通過真實的例子來掌握樸素貝葉斯的細節 使用Python中的各種庫部署PGMs 獲得隱馬爾可夫模型的工作細節與現實世界的例子

詳細 概率圖模型是機器學習中的一種技術,它使用圖論的概念來簡潔地表示和最佳地預測數據問題中的值。在現實問題中,往往很難選擇合適的圖模型和合適的推理算法,這對計算時間和精度有很大的影響。因此,了解這些算法的工作細節是至關重要的。

這本書從概率論和圖論的基礎開始,然后繼續討論各種模型和推理算法。所有不同類型的模型都將與代碼示例一起討論,以創建和修改它們,并在它們上運行不同的推理算法。有一個完整的章節專門討論最廣泛使用的網絡樸素貝葉斯模型和隱馬爾可夫模型(HMMs)。這些模型已經通過實際例子進行了詳細的討論。

風格和方法 一個易于遵循的指南,幫助您理解概率圖模型使用簡單的例子和大量的代碼例子,重點放在更廣泛使用的模型。

付費5元查看完整內容

?

改進您的編程技術和方法,成為一個更有生產力和創造性的Python程序員。本書探索了一些概念和特性,這些概念和特性不僅將改進您的代碼,而且還將幫助您理解Python社區,并對Python哲學有深入的了解和詳細的介紹。

專業的Python 3,第三版給你的工具寫干凈,創新的代碼。它首先回顧了一些核心的Python原則,這些原則將在本書后面的各種概念和示例中進行說明。本書的前半部分探討了函數、類、協議和字符串的各個方面,描述了一些技術,這些技術可能不是常見的知識,但它們共同構成了堅實的基礎。后面的章節涉及文檔、測試和應用程序分發。在此過程中,您將開發一個復雜的Python框架,該框架將整合在本書中所學到的思想。

這個版本的更新包括Python 3中迭代器的角色、用Scrapy和BeautifulSoup進行web抓取、使用請求調用沒有字符串的web頁面、用于分發和安裝的新工具等等。在本書的最后,您將準備好部署不常見的特性,這些特性可以將您的Python技能提升到下一個級別。

你將學習

  • 用各種類型的Python函數實現程序
  • 使用類和面向對象編程
  • 使用標準庫和第三方庫中的字符串
  • 使用Python獲取web站點數據
  • 通過編寫測試套件來自動化單元測試
  • 回顧成像、隨機數生成和NumPy科學擴展
  • 理解Python文檔的精髓,以幫助您決定分發代碼的最佳方式

這本書是給誰看的 熟悉Python的中級程序員,希望提升到高級水平。您應該至少編寫了一個簡單的Python應用程序,并且熟悉基本的面向對象方法、使用交互式解釋器和編寫控制結構。

付費5元查看完整內容

本書通過提供真實的案例研究和示例,為使用Python庫進行機器學習提供了堅實的基礎。它涵蓋了諸如機器學習基礎、Python入門、描述性分析和預測分析等主題。包括高級機器學習概念,如決策樹學習、隨機森林、增強、推薦系統和文本分析。這本書在理論理解和實際應用之間采取了一種平衡的方法。所有的主題都包括真實世界的例子,并提供如何探索、構建、評估和優化機器學習模型的逐步方法。

付費5元查看完整內容

書名: Hands-On Machine Learning with Scikit-Learn and TensorFlow

主要內容:

這本書分為兩個部分。

第一部分,機器學習的基礎知識,涵蓋以下主題:

  • 什么是機器學習?它被試圖用來解決什么問題?機器學習系統的主要類別和基本概念是什么?
  • 典型的機器學習項目中的主要步驟。
  • 通過擬合數據來學習模型。
  • 優化成本函數(cost function)。
  • 零、前言
  • 處理,清洗和準備數據。
  • 選擇和設計特征。
  • 使用交叉驗證選擇一個模型并調整超參數。
  • 機器學習的主要挑戰,特別是欠擬合和過擬合(偏差和方差權衡)。
  • 對訓練數據進行降維以對抗 the curse of dimensionality(維度詛咒)
  • 最常見的學習算法:線性和多項式回歸, Logistic 回歸,k-最近鄰,支持向量機,決策 樹,隨機森林和集成方法。

第二部分,神經網絡和深度學習,包括以下主題:

  • 什么是神經網絡?它們有啥優勢?
  • 使用 TensorFlow 構建和訓練神經網絡。
  • 最重要的神經網絡架構:前饋神經網絡,卷積網絡,遞歸網絡,長期短期記憶網絡 (LSTM)和自動編碼器。
  • 訓練深度神經網絡的技巧。
  • 對于大數據集縮放神經網絡。
  • 強化學習。

第一部分主要基于 scikit-learn ,而第二部分則使用 TensorFlow 。 注意:不要太急于深入學習到核心知識:深度學習無疑是機器學習中最令人興奮的領域之 一,但是你應該首先掌握基礎知識。而且,大多數問題可以用較簡單的技術很好地解決(而 不需要深度學習),比如隨機森林和集成方法(我們會在第一部分進行討論)。如果你擁有 足夠的數據,計算能力和耐心,深度學習是最適合復雜的問題的,如圖像識別,語音識別或 自然語言處理。

付費5元查看完整內容

掌握通過機器學習和深度學習識別和解決復雜問題的基本技能。使用真實世界的例子,利用流行的Python機器學習生態系統,這本書是你學習機器學習的藝術和科學成為一個成功的實踐者的完美伴侶。本書中使用的概念、技術、工具、框架和方法將教會您如何成功地思考、設計、構建和執行機器學習系統和項目。

使用Python進行的實際機器學習遵循結構化和全面的三層方法,其中包含了實踐示例和代碼。

第1部分側重于理解機器學習的概念和工具。這包括機器學習基礎,對算法、技術、概念和應用程序的廣泛概述,然后介紹整個Python機器學習生態系統。還包括有用的機器學習工具、庫和框架的簡要指南。

第2部分詳細介紹了標準的機器學習流程,重點介紹了數據處理分析、特征工程和建模。您將學習如何處理、總結和可視化各種形式的數據。特性工程和選擇方法將詳細介紹真實數據集,然后是模型構建、調優、解釋和部署。

第3部分探討了多個真實世界的案例研究,涵蓋了零售、交通、電影、音樂、營銷、計算機視覺和金融等不同領域和行業。對于每個案例研究,您將學習各種機器學習技術和方法的應用。動手的例子將幫助您熟悉最先進的機器學習工具和技術,并了解什么算法最適合任何問題。

實用的機器學習與Python將授權您開始解決您自己的問題與機器學習今天!

你將學習:

  • 執行端到端機器學習項目和系統
  • 使用行業標準、開放源碼、健壯的機器學習工具和框架實現實踐示例
  • 回顧描述機器學習和深度學習在不同領域和行業中的應用的案例研究
  • 廣泛應用機器學習模型,包括回歸、分類和聚類。
  • 理解和應用深度學習的最新模式和方法,包括CNNs、RNNs、LSTMs和transfer learning。

這本書是給誰看的 IT專業人士、分析師、開發人員、數據科學家、工程師、研究生

目錄:

Part I: Understanding Machine Learning

  • Chapter 1: Machine Learning Basics
  • Chapter 2: The Python Machine Learning Ecosystem Part II: The Machine Learning Pipeline
  • Chapter 3: Processing, Wrangling and Visualizing Data
  • Chapter 4: Feature Engineering and Selection
  • Chapter 5: Building, Tuning and Deploying Models Part III: Real-World Case Studies
  • Chapter 6: Analyzing Bike Sharing Trends
  • Chapter 7: Analyzing Movie Reviews Sentiment
  • Chapter 8: Customer Segmentation and Effective Cross Selling
  • Chapter 9: Analyzing Wine Types and Quality
  • Chapter 10: Analyzing Music Trends and Recommendations
  • Chapter 11: Forecasting Stock and Commodity Prices

Chapter 12: Deep Learning for Computer Vision

付費5元查看完整內容
北京阿比特科技有限公司